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Abstract. The fermion propagator is investigated in a 
chiral Yukawa-model with explicit mirror fermions 
applying the random walk approximation to the hopping 
parameter expansion. It is shown that the global 
SU(2)L| symmetry breaking due to the mass 
splitting within fermion doublets does influence the 
critical behaviour of the fermion spectrum in the 
continuum limit. In particular, in the case of a mirror 
pair of split doublets, where SU(2)LO SU(2)R is broken 
to SU(2)L, no evidence is found for a dynamical spectrum 
doubling at infinitely strong bare Yukawa-couplings, in 
contrast to the case with degenerate doublets and 
SU(2)L | SU(2)R symmetry. 

1 Introduction 

Non-perturbative lattice formulations of chiral Yukawa- 
models have to deal with the consequence of the 
Nielsen-Ninomiya theorem [ 1], which implies the mirror 
doubling of the fermion spectrum on the lattice. The 
mirror doubling, i.e. the existence of fermion pairs with 
the same quantum numbers but opposite chirality, is 
usually realized by "fermion doubler" states in different 
parts of the Brillouin-zone of momentum space. The 
doubling pattern depends on the specific lattice 
formulation. For  instance, for Wilson-fermions [2] the 
"doubling" actually means the existence of 16 states 
associated to every fermion field component. In 
vector-like theories, such as QCD, in the continuum limit 
15 out of these states are removed from the physical 
spectrum by a mass of order 1 in lattice units (infinite in 
physical units). That is, only one fermion state per field 
component remains. In the case of ehiral Yukawa-models 
relevant in the electroweak sector of the standard model 
the situation is different: the lattice formulation becomes 
more transparent if an explicit mirror doubling is 
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introduced at the level of field components. In a 
Wilson-like formulation [3] this implies the existence of 
32 states on the lattice. In the perturbative continuum 
limit 30 out of these states are removed by a chiral 
invariant off-diagonal Wilson-term. The remaining 2 
states correspond to a "minimal doubling" (actually true 
doubling) of the original chiral spectrum. Keeping mirror 
pairs of states in a general continuum limit is important 
because of the existence of phases with spontaneously 
broken mirror symmetry, where the mirror states are split 
in mass and are mixed with each other [3]. Such phases 
will probably also appear in the alternative formulation 
of chiral Yukawa-models without mirror fermion fields 
[4]. In such a formulation the masses of the mirror 
fermion doublers are tuned to be of order 1 in lattice 
units by a Wilson-Yukawa coupling term involving the 
scalar Higgs-field. Due to the expected universality of the 
fixed points governing the continuum limit the two 
formulations with and without explicit mirror fermion 
fields may be equivalent in the large cut-off limit. 

In a formulation with explicit mirror fields the 
problem of decoupling of mirror fermion partners in the 
continuum limit can also be investigated. Without chiral 
gauge fields the decoupling can be achieved, for instance, 
by introducing an additional Higgs-field with vacuum 
expectation value of order 1 in lattice units and by tuning 
the Yukawa-couplings appropriately. Another possibility, 
proposed by Borrelli et al. [5], can be explored also in 
lattice perturbation theory by requiring that in the 
continuum limit the off-diagonal mass mixing between 
fermion and mirror fermion and the coupling of the 
mirror fermion to the Higgs-field vanish. This way of 
decoupling is facilitated by the extension of the global 
symmetry in the "target" continuum theory implying 
Ward-identities. 

The decoupling of mirror partners in the presence of 
chiral gauge fields seems, however, more difficult. The 
extra doublet with vacuum expectation value O(1) does 
not help because its coupling to the gauge fields removes 
the gauge fields, too, from the physical spectrum. The 
decoupling by zero mixing and zero Yukawa-coupling is 
not possible either, because of the gauge coupling of the 
mirror states. Borrelli et al. proposed a way of decoupling 
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also in chiral gauge theories [6], which works in l-loop 
perturbation theory, but the price to pay is the loss of 
gauge invariance and a very large number of tuned bare 
parameters. Moreover, it is not clear whether this 
approach can be extended to higher loops and/or to a 
non-perturbative situation. Therefore, further non- 
perturbative studies of chiral Yukawa-models and their 
gauged counterparts are necessary and useful. 

In the present paper we continue the study of chiral 
Yukawa-models with explicit mirror fermions by the 
random walk approximation to the non-perturbative 
hopping parameter expansion. This approach turned 
out to be useful in the sigma model with Wilson-fermions 
and broken chiral symmetry [7]. There it was shown that 
in the infinitely strong bare Yukawa-coupling limit 
mirror fermions are produced dynamically. This means 
that the Wilson procedure to remove the species doublers 
is not completely successfull in that region of the 
parameter space. This is different from the small coupling 
region, where lattice perturbation theory suggests that 
all the doublers are removed. In other words, in general, 
perturbative arguments are not sufficient to guarantee 
the decoupling of doublers. One could perhaps argue that 
in the standard model strong bare Yukawa-coupling are 
not relevant. Nevertheless, Yukawa-couplings get stronger 
and stronger at higher energy scales, therefore even a 
fermion with a mass around 200GeV may correspond 
to a very strong Yukawa-coupling at a cut-off scale near 
the Planck-mass. Therefore, it is possible that in the 
standard model strong bare Yukawa-couplings have a 
physical relevance. 

The random walk approximation was applied also in 
the PhD Thesis of Wagner [8] for the investigation of 
the spectrum in the SU(2)L| symmetric model 
with a miror pair of fermion doublets [3]. In this work 
an 8th order hopping parameter expansion was evaluated 
for the masses and couplings at vanishing scalar hopping 
parameter, infinite bare quartic scalar coupling and equal 
Yukawa-couplings of the fermion and mirror fermion. 
General theorems about mirror doubling of the fermion 
spectrum were also proven. At infinitely large bare 
Yukawa-couplings the random walk approximation 
showed an additional dynamical doubling of the 
spectrum, in accordance with the general theorems. It 
would be useful to confront this result with the 
perturbative decoupling proposal [5]. This is, however, 
not directly possible because in [5] a lepton doublet was 
considered, which has a smaller global symmetry due to 
the mass splitting between the charged lepton and the 
neutrino. More generally, one can rise the question 
whether the larger SU(2)L| SU(2)R global symmetry of 
degenerate doublets is important from the point of view 
of fermion spectrum doubling. Therefore, here we 
consider a model of a mirror pair of fermion doublets 
with mass splitting. This has only a SU(2) L global 
symmetry which can be gauged as in the standard 
electroweak model. The fermion proparator will be 
considered in the random walk approximation and the 
doubling of the fermion spectrum in the continuum limit 
will be investigated. Compared to [8] a further 
generalization is that, besides the infinitely strong bare 
quartic coupling limit 2 ~ ~ ,  the other extreme, namely 

2 ~ 0, will also be considered. In the next section the 
model will be defined. In Sect. 3, the random walk 
approximation to the fermion propagator will be derived 
both for infinite and zero bare quartic coupling. The case 
of a zero mass neutrino without a right handed 
component will also be separately considered. The last 
section contains some concluding remarks. 

2 The model 

The field content of the model is given by the fermion 
doublet field if, the mirror doublet field X and the scalar 
field ~b. The scalar field may be considered either as 
an SU(2)L-doublet or as a four-vector under 0 (4)=  
SU(2)LGSU(2)R. In the O(4)-notation the lattice field is 
~bs~, where x is the space-time point and S = 0, 1, 2, 3. This 
can also be represented by a 2 | 2 matrix ~o x as 

tPx-cP~ + idp~xZs-qbsxtrS- if: F2 

where Zs(S = 1, 2, 3) is a Pauli-matrix, as - (1,iz~) and 
_ _  + FA(A = 1,2) is the doublet field and F A = eABF B. The 

lattice action can be written as 

S = Ex { ]'~ 4a (])Sx(/)Sx "4- "~( (])Sx(/gSx)2 -- K E ~i)Sx + # 

-- K Z [(~x +,D'u~x) + (~';,+ ~TuZ~)] 
# 

-,'K~EtL+,~,/,x)+(,~+,~z~)]+ ~'~Q(4~x)~x}. (2) 
# 

Here we use slightly different notations than in [3], in 
particular, the normalization freedom of the fermion 
fields is exploited in order to have a common hopping 
parameter K for the fields 0 and )~. In addition we 
introduced ~ - (0R, 0L, ZR, ZL) and the block matrix 

[ ~ G  (q~G)+ 0 #// ) 
Q ( r  ( ) 0 ~, 0 

0 ((pH) (3) 

\ #n 0 (q~H) + 0 

where the 2 | 2 submatrices are: 

~ ;o) 1 5 o=( 1 o0) 
1 02). ,4, 

In the same way as in [3], the transformation properties 
of ff and Z are such that SU(2)L acts on ~b L and ZR and 
SU(2)R on ~b R and XL, that is X is the mirror partner of 
~k. In this case, for /A r or G, :~ G2 or H 1 g: H 2 the 
global SU(2)L| R symmetry is broken to SU(2)L, 
similarly to a mirror-doubled standard fermion family. 
Using the normalization freedom of the scalar field the 
single site scalar part of the action can be written in a 
suitable form: 

s~ = y~ { ~ s ~ s ~  + ~ ( ~ s ~  - 1):}. (5) 
x 



In the limit 2 ~ ~ the length of the scalar field is frozen 
to (as,(aSx = 1. Equation (5) corresponds to the x = 0 limit 
of the scalar action which we shall investigate in this 
paper. As discussed in [7], this particularly simple limit 
is well suited for the hopping parameter expansion 
because all the states, including the scalar boson, are 
represented by fermionic composites. (The general case 
could only be studied in a double expansion in powers 
of K and K.) Since the fermion interactions reproduce the 
scalar coupling, too, it is expected that the ~c = 0 model 
is in the same universality class as K ~ 0, therefore the 
qualitative properties of the model can be studied at 
to=0. 

3 Random walk approximation to the fermion 
propagator 

We want to examine whether the fermions Z and ~ are 
parity doubled or not. To this end we calculate the 
fermion propagator  in the random walk approximation 
and determine the value of the fermion hopping 
parameter K for which there is a pole in the propagator  
at zero momentum. We then examine whether for this 
K there also exist poles in the propagator  for momenta  
at the other corners of the Brillouin-zone. 

The hopping parameter expansion consists in 
expanding the part of the exponential in the functional 
integral containing the kinetic terms. The result is a sum 
of connected single-site expectation values (clusters), 
where the different clusters are held together by the links 
corresponding to the hopping terms. 

The random walk approximation is taking into 
account only paths of a special type [7] which can be 
summed up by a recursion relation. In our case the 
recursion relation reads: 

G(k) = E1 - (M + F)Ko] - ' (M + F) (6) 

where M is the connected two-operator single site vev 
and F = Z'~Fu exp ( - iku). Here F u is the contribution of 
the graph shown in Fig. 1. In order to calculate F we 
need the connected four-operator single site vev matrix, 
as well as the free fermion propagator  K~. (K o in (6) is 
obtained from K u as K o = 2:uK u exp(--iku). Note that 
we have restricted ourselves to the case of vanishing scalar 
hopping parameter  ~, that is, we considered non- 
propagating scalar fields, therefore there is no need to 
take into account scalar field propagators. One will first 
do the fermionic integration giving rise to the matrix 
Q-~. It turns out to be of the form: 

Q - l =  A 0 F 

F 0 

0 B + 

If we define 

Hi=-  llo~i - GiHi(a 2, gi ~- - - -  

A =- as(asg, B =- as(ash. 

(7) 

Hi Gi 
h i = (i = 1,2) 

Hi '  H i '  
(8) 

Fig. 1. The graph defining the contribution F u in (6) 
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then the matrices g and h are given by 

0)( o 0) g = h = . (9) 
0 g2 h2 

Further notations in (7) are: 

2) 
((]2aF2ff 2/l-la + p z F , f f  t / n 2 ) l / ( a  z 

F = \ (#2 /H2 _ # a / H O F 2 F * / ( a  2 

(#z/n2 - #a/lI1)rar'~/(a 2 "~ 
(lO) b 

(mr2~2/r la  + #~Fa~, /ng l / (aU"  

It is easily seen that the determinant of Q is equal to 

det Q = (Hal l2)  4 = (/~o#a - G1Ha(a2)4(/~oP2 - G2H2(az) 4 

= p4. (11) 

The two-operator vev is given by 

( ~ b )  = j" [d(a] det Q((a)e-S*Q~l((a) (12) 

[d(a] det Q((a)e- s,  

The four-operator vev is equal to 

_ I [d(a] det O((a)e-S~[Q2a((a)O 5 x((a) _ Q~l((a)O~ b l((a)] 

Ed(a] det Q((a)e s~ 
(13) 

The propagator  K ,  may be seen by inspection to read: 

0o r / 
Ku = 7u r 0 (14) 

r 7, 0 

0 0 7, 

The contribution F u of the graph in Fig. 1 is: 

[d(a] [d(a'] det Q((a) det Q((a')e-S~e-S*'lu((a) 

Fu = ~ [d(a) [d(a') det Q((a) det Q((a')e- Soe- s,. 

1,,(4)) =- (as(as'(aT(ar'EQs ~ - '  - , , _ KuQs" K - u Q T 1 K u Q T  ) 

- Tr(Q s ' K , Q ~ , ' K _ , ) Q T  a K ~ Q ~ ) ]  �9 (15) 

In order to proceed one should perform the scalar 
integration. We shall examine here two extreme case, 
namely 2 = oo and 2 = 0. 

3.1 The  case 2 = 

In this case the length of the scalar field is frozen to unity, 
so we are left with easy SU(2)- integrations. The final 
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result for G(k) 

G(k) = 

where 

at k,  = 0 or  rc is: 

0 0 0 G~'~ 

0 0 Ga 

0 G d 0 

G~ 0 0 

B2/A2 B3/A3 

(16) 

(17) 

and 

K 3 
a i =  16( 8 _ ~ z ) e , + / ~ , ,  Ai = l _ K r ( 8 _ k z ) B , ,  

i =  1,2,3; 

, /~o, # , =  # o  , =  #1 + # 2  . (18) 
#1  - -  / / 1  2 / / Z '  ~ 3  2H1 2 H 2  

Here in/-/~1,2 one should s e t  ~)2 = 1 and /c. is defined, as 
usual, by k .  -= 2 sin k J2 .  Fur thermore ,  ct i is defined by the 
following relations: 

oq = 8rglh a [392 + 3h2 z - (5r 2 + 1)g2h2 

+ 2021 + 2h~ - 4r2g~ha], =2 = el( 1 ~ 2 ) ,  

~3 = 4r(glh2 + g2hl)(glg2 + hlh2) 
2 2 2 2 2 - 4 r ( g l h  2 + gzhx - 2r glh192h2) 

+ 8r(g,h 1 + g2h2)(g 2 + hE -- 2r291hl 

+ g z + hE -- 2r292h2). (19) 

In the expressions for 91.2 and hL,2 one should set q~2 = 1. 
The value of critical K is determined by demanding  that  
A~, i =  1,2, 3 vanish at k u = 0. If the critical K values for 
i =  1,2, 3 are different, the smallest one matters,  and the 
other states are decoupled from the physical spectrum in 
the con t inuum limit (at least in the r a n d o m  walk 
approximat ion) .  In order  to obta in  a c o m m o n  critical 
value for i = 1, 2, 3 the Yukawa-coupl ing  and off-diagonal 
mass mixing parameters  have to satisfy some relations 
(see below). Thus we observe that  the m o m e n t a  lying at 
the other fifteen corners of  the Bril louin-zone in general 
do not  give zero A~, so there is no addit ional  dynamical  
doubl ing in the general case. 

It is interesting to display the expressions for a~ in 
two special cases. The value of the pa ramete r  r is easily 
seen not  to have any part icular  physical importance,  
therefore we set it equal to 1 in what  follows. In that  case 
for (G1 = G2 = G,  H1 = H 2  = H, #o = ]21 ~- ]'/2) it turns out 
that  9 1 = 9 2 = g  and h a = h z = h  and c q = % = c t  3 =  
4 0 g h ( g -  h) 2. This agrees with the results in Ref. [8], 
therefore, in the limit of  infinite Yukawa-coupl ings  
( p O = # l = / t 2 = 0 )  we get a dynamical ly  doubled 
spectrum. In another  special case (G 2 = H 2 = 0), we have 
g2  = h2 = 0 and al  - -  1691hl(gx - h i )  2, (~2 = 0 ,  (x 3 --- a l / 2 .  
Therefore,  at the critical K = Kc, determined by the 
vanishing of A~. (i = l, 2, 3), we are forced to tune #~.2 
and #o to non-zero values. As it can be seen from the 
structure of  the equat ions  determining Kr for #o.1.2 :/: 0 
the K ~  values for all o ther  corners of the Bril louin-zone 
are larger, therefore dynamica l  fermion doubling does 
not  occur. 

3.2 The case 2 = 0 

In this case, in order  to perform the scalar integration, 
we have to invoke Gauss ian  integrals. To  simplify the 
calculations, we set here the pa ramete r  r equal  to 1 from 
the beginning. Fo r  G(k) at  ku = 0 and k,  = r~ we end up 
with a result of  the same form as above.  The  functions 
#'1 and cq are now given by 

1 2 
#'1 = ~ [#o#27Io -/~oZ#2(2fll + flz)Ia 

+ #oG2Hz(fla + 2f l2 ) I  a - -  IgoGzH20tlc] (20) 

respectively, 

1 
~1 = r2-  [3G1H x(G2 - n2)2(ctla - fllB + Tic) 2 

/de t  

+ 2G~Ha(GI - n o z ( # ~ # ~ l a  - 2po#2 
2 2 2 

�9 G2H2I B + G2H2Ic)  ] (21) 

#2 and 0c 2 are obta ined f rom the corresponding 
expressions for #'1, respectively, c~ 1 by interchanging the 
indices 1 and 2. We also have 

1 
#'  - [ 2 y Z l o  - 3flyla + (f12 + 2 a y ) l s _  ~fllc ] (22 )  

3 2#0lde t 

~3 is given by a3 = E12 + E21, where E21 is obta ined from 
E12 by interchanging the indices 1 and 2 and 

E,  2 = (GI - Ha)(G2 - H2) {G~HE[(yl A - 2,0,1. + eric) 2 
212et 

+ 2 & ( &  - ~2)Idc] 

+ 4f l lG2HI(GIHz - G2HOlnlc}  

+ (G2 -- Hz)2{GxHI(7Ia -- fll s + o~lc) 2 

2 2 2 2 2 + G2H2(#o#l la  - 2 # o t a l G 1 H l I  ~ + G i H l l c )  }. 
(23) 

The symbols  appear ing  in these equat ions are defined as 

=- G1H1G2H2, fll =- #oplG2H2,  f 1 2 - # o # E G 1 H 1 ,  

f l=  fll + fl2, Y = # 2 / q # 2 ,  lo =- ~ dqSe-C'~P, 
I a -- Idc~e-~'2PZ(a2, I~ - iddpe-~ 

IC ~ I dfpe-4a2P2~ )6, Idet  ~ ~ d~P e-ep2P4 (24) 

P is defined in (11). If we consider the limits (G~ = G2 = G, 
H1 = H2 = H) and (G2 = H2 = 0), we find qualitatively 
the same results as in the case 2 = or. Thus is seems that  
the dynamical  fermion doubling near  the critical point  
does not depend on the value of 2. 

3.3 No  right handed neutrino 

The results of the previous subsections cannot  immediately 
be applied to the case when #2 = G2 = Ha = 0, that  is 
when the second state in the doublet  has zero mass  and 
is completely decoupled f rom the rest. This is a simple 
special case, but  we consider it explicitly here, because it 
occurs in the s tandard  model  in the lepton doublet  and 



it was considered by Borrelli et al. in [5]. F r o m  the 
technical point  view, some of the above formulae  become 
singular in this limit, therefore it is not  easy to 
immediately  infer the results. It  is better  to work  them out  
separately. The  results have the same form as above. In 
order  to find the critical hopping  pa ramete r  K one has 
to look for the zeros of Ai, i =  1, 2, 3. 

Let us first consider the case with 2 = oo. In this case 
~2 = 1 and A i is given by 

A K 3 
Ai=--I - K ( 8 - - k 2 ) I  16(8--k2)o~i-t-#'i '  ] (25) 

where 

0 q = 1 6 9 1 h l ( g l - h 0 2 ,  0%=0,  0 % = 8 0 1 h 1 ( g l - h l )  z, 

,, - P o  " 0 " G1H1 - 2#o#1 
- , #2 = , #3 2#o(GIH1 Po#O #a GIHx -- PoP1 

H1 G1 
- , h x =  . (26)  

91 G1H1 - -  # 0 # 1  G1H~. - -  # 0 # 1  

It follows that  A 2 = 1 permanently.  
The  case with 2 = 0 is similar but, instead of  Eq. (25) 

we have 

Ai = l - K(8  - k2)V K3 ] 2~n2 (8 - k2)cti + #'i' ] (27) 
L le  

where 

oq = 16#4G1Hl(G1 - H1)  2, 0~ 2 = 0, 

~Z 3 = 8p4G1HI(G1 - H1) 2, 

l # 2 1 2 4 G 3 H 3  2 2 #t  ,, = _ _ 1 8 G I H l # o #  1 

2 2 3 3 rt __ 0 + 6 G a H l # o P a - # o P a ] ,  # z -  , 

tt 1 4 4 3 3 2 2 2 2 
#3 =/dd [60G1H1 - 60G1Hl#~ + 9 G 1 H 1 # ~  

3 3 4 4- 
-- 25G1H1#o#l  + POP1] 

i d  4 4 3 3 2 2 2 2 = #o[120G1H 1 - 96G1H1#o# 1 + 3 6 G x H d t o p  1 
3 3 4 4 

-- 8G1HlPol t l  + #oPt ]  
#2 

I ,  = o 2 2 2 2 ~ -  [12G ~H 1 -- 6G1HtI~o#l + #o#~]" (28) 

Compar ing  these formulae to those in the previous 
subsection it is clear that  the qualitative behaviour  in the 
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case of the s tandard  lepton doublet  is the same as in the 
general split doublet  with different non-zero masses (like 
the quark  doublets  in the s tandard  model). 

4 C o n c l u d i n g  r e m a r k s  

The main  result of  this paper  is that  the dynamical  
fermion doubling phenomenon  in the chiral SU(2) 
Yukawa-mode l  with explicit mir ror  fermion fields seems 
to depend on the mass  splitting within doublets.  In the 
case of  split doublets  with reduced symmet ry  in the 
r a n d o m  walk approx ima t ion  to the hopping  paramete r  
expansion no evidence is found for dynamical  fermion 
doubling. This is in contrast  to the case of degenerate  
doublets,  where dynamical  fermion doubling seems to 
occur  [8]. This shows the non-trivial  rSle played by the 
global  symmetries,  which can very well affect the phase 
structure in any Yukawa-mode l  with strong couplings. 
The impor tan t  consequence for non-per turba t ive  studies 
of  Yukawa-mode ls  is that  at some point  the global 
SU(2)L | SU(2)R symmet ry  breaking has to be considered 
as well. 

A new aspect of our  calculation with respect to [8] 
is that,  besides infinitely s t rong bare quart ic  coupling, we 
also considered the case of zero bare quart ic  coupling. 
In bo th  cases at infinitely strong bare Yukawa  coupling 
we found the same qualitative behaviour.  In particular,  
the p rob lem of dynamica l  fermion doubl ing seems to be 
quali tat ively the same both  for 2 = oo and 2 = 0. This is 
a non-tr ivial  point,  because in the presence of 
Yukawa-coupl ings  there is no general reason why the 
bare quart ic  scalar self-coupling could not  influence the 
physical picture even qualitatively. 
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