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In liquid mixtures or analogous binary systems at low temperatures the pure phases may
coexist, separated by an interface . The interface tension vanishes according to o=Q,ß (1 - T/Tc)"
as the temperature T approaches the critical point from below. Similarly, the correlation length
diverges as ~ = 6 ('1 (TIT, - 1) - ° in the high-temperature region . For three-dimensional systems
the dimensionless product R + = oe(6 � ) Z is universal . We calculate its value in the framework of
field theory in d = 3 dimensions without recourse to the e-expansion . The result R_ = 0.39 ± 0 .03
is in agreement with experimental data .

1 . Introduction

Various binary liquid mixtures exhibit the phenomenon of phase separation (see
refs . [1, 21) . Below a certain critical temperature T,, the two liquids cannot be mixed
completely . An interface forms which separates two phases with different relative
concentrations . It is associated with an interface tension T which varies with the
temperature T . For interfaces in other critical binary systems, e.g . for liquid-gas
coexistence, the same considerations apply . For later convenience we introduce the
reduced interface tension

where

o = ,71U,

where k is Boltzmann's constant . As T increases towards Tc the interface becomes
more and more diffuse and at T, the interface tension vanishes according to the
scaling law
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o ^' Qotw , ( 2 )

t=
Tl (3)
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and o-o is the critical amplitude of the interface tension . The experimental results
for the critical index Lc are consistent with the universal value [3-6]

w = 1 .26 ± 0.01 .

	

(4)

For temperatures above Tc a homogeneous mixture can be produced. The
correlation length ~ in this mixture diverges as T approaches Tc from above
according to

~ - S)t-, .

	

(5)

The experimental values for the critical exponent v [7-9] are consistent with the
prediction from the renormalization group [10],

v = 0 .630 ± 0.002 .

	

(6)

In the low-temperature phase a correlation length and corresponding amplitude
~O can also be defined but is not easily accessible experimentally .

In three dimensions the exponents A and v are related through Widom's scaling
law [3,11],

which is a consequence of the scaling hypothesis . Furthermore, the dimensionless
product of critical amplitudes

R+=
0_0(

	

+0 ) Z

	

( 8)

is expected to be a universal number although the amplitudes themselves vary
considerably for different substances [12,13] . The constant R+ has been deter-
mined experimentally for a number of mixtures and simple fluids [5,6,141 . The
results can be summarized by

R + = 0.38±0 .02 (exp .) .

	

(9)

On the other hand, first Monte Carlo calculations for the interface tension in the
three-dimensional Ising model [15] gave rise to the smaller value R+ = 0.24 . The
same quantity was calculated by Pant [16] and Br6zin and Feng [17] in the
framework of quantum field theory by means of the e-expansion, where d = 4 - e
is the number of dimensions of space . Evaluated at e = 1 the result is 0.14 to first
order and 0.2 to second order in e . The discrepancy between the experimental and
theoretical numbers gave rise to worry among experimentalists and caused the
reconsideration of experiments in view of possible systematic errors [5,6,14] . The
analysis, however, resulted in a confirmation of the experimental value .
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A recent study of the Ising model led to a reconciliation of the Monte Carlo
value for R+ with the experimental one [18] . With the help of a finite-size scaling
analysis Mon obtained

R,=0 .36+0.01 (MC) .

	

(10)

This result has been confirmed by Meyer-Ortmanns and Trappenberg [19] . To
measure the interface tension the latter authors employ a new method, used in ref.
[20] for the four-dimensional Ising model, which reduces the finite-size effects
on o- .
The situation described above calls for a new field-theoretical treatment of the

problem . In this article the results of such an investigation are presented .

2 . Interface tension from renormalized field theory

The framework for field-theoretic investigations of critical phenomena is eu-
clidean 04-theory . The scalar field O(x) represents the local order parameter
which in our case is proportional to the difference of the concentrations of the two
fluids .

Studies of the properties of interfaces near criticality are confronted with two
problems . The first one is more general and also concerns bulk quantities . Due to
infrared divergences in d = 3 dimensions it is not possible, in contrast to the
four-dimensional case, to construct the critical, i .e . massless, theory within pertur-
bation theory . This led to the introduction of the e-expansion [21] (for a review see
ref. [22]), whee the theory is considered in 4 - e dimensions and all calculations
are effectively done in the four-dimensional theory . This difficulty, however, has
been overcome in refs . [10,23] . There the massive three-dimensional theory is
considered in renormalized perturbation theory . The renormalized coupling g,z is
dimensionful and the perturbation expansion actually goes in powers of the
dimensionless variable

uR = 91Z/MR >

	

(11)

where MR is the renormalized mass. This indicates the infrared problem for the
critical theory . But the variable uR has a finite limit uR* if one approaches the
critical point . Thus information about the critical theory can be obtained by
evaluating the expansions at u *R . With the help of series summation techniques this
has led to very precise estimates of critical exponents .
Concerning the critical behaviour of interfaces in three or less dimensions

another infrared problem shows up which is due to the roughening transition [24] .
Near the critical point long-wavelength fluctuations of the interface lead to a
delocalization of the interface, whose width diverges logarithmically with its
diameter [251 . This manifests itself in the form of infrared divergences in calcula-
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tions of the interface profile [26-28] . Therefore, field-theoretic calculations of
interface properties have so far been done in the e-expansion [16,17] .
The interface tension, however, remains finite even in the presence of the

roughening phenomenon . This fact is clearly visible in the case of the two-dimen-
sional Ising model, where the interface is always rough, but its tension has a finite
value already determined by Onsager [29] . It should thus be possible to calculate
the interface tension directly in three dimensions without recourse to the e-expan-
sion . This is the approach which will be taken in the following .
The bare lagrangian of euclidean 0 4-theory in the broken symmetry phase is

written as

where the double-well potential

has its minima at

- 2 d,,0o d"00 + V(00) ,

mo

	

2

	

go

	

4

	

_
3 m4

	

go

	

2 -

	

2)2
V(Oo) - -4~o + 4i ~o + 8 go

	

4! (~o

	

Vo

1
G(P) - I -Z(mk+PZ+O(p4)} .

R

1.1 R =Z R 1/2 1 , ,

(12)

(13)

(14)

The parameters are defined such that the value of the potential at its minima is
zero and mol is the bare mass . The renormalized mass

(15)

is the inverse of the second moment correlation length . It is defined together with
the wave-function renormalization Z R through the small-momentum behaviour of
the propagator :

(16)

In the critical region MR is within the accuracy considered here numerically
indistinguishable from the "true" mass m, which equals the inverse true correla-
tion length 1/~ [30] . The renormalized vacuum expectation value of the field is

(17)

where c is the expectation value of the field (~ o . For the renormalized coupling I
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(18)

which is very convenient in the low-temperature phase [31,32] .
Now I turn to the consideration of the interface tension . A corresponding

investigation in the case of d = 4 dimensions has been made in ref. [33] where
more details about the method can be found . The basic idea behind the calculation
is a relation between the interface tension and the tunneling correlation length .
Let the hamiltonian H be the generator of translations along the x o-coordinate .
The other coordinates are called x' and x2 . We consider a cylinder-type geometry,
where the cross section perpendicular to x ° is quadratic of area L X L and the
fields obey periodic boundary conditions . Then H has a unique ground state which
is symmetric under the reflection (h - -(ß . Separated from the ground state by a
small energy splitting 4E is an antisymmetric state . This means that the degener-
acy of the infinite volume ground states is lifted . The energy splitting AE is due to
tunneling and its inverse is called the tunneling correlation length ~L. Its area
dependence has been predicted [34-36] to be of the form

with classical action

2 2
gR =3(MR 'R)~

JE =Cexp( - QL 2),

	

(19)

where (T is the interface tension . One sees that tunneling effects vanish very
rapidly with increasing area .
The energy splitting can be calculated in a semi-classical calculation including

one-loop effects . To this end one considers the tunneling amplitude which is given
by the euclidean path integral with boundary conditions

(lp,

	

xo ---> 00

- t, o,

	

xo ---> -oo

and evaluates it by means of the saddle point approximation . The path integral is
dominated by a classical solution, the so-called "kink" :

(20)

a is a free parameter specifying the location of the kink . In the language of

2

&(x) - V 3~0(,
tanh('mo(xo-a)) (21)

m
2

i~- L2 . (22)
go
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statistical mechanics this solution represents a bare interface (fluctuations are still
neglected) which separates the two phases corresponding to ~(x) = v o and O(x) _
-v o respectively . S, is then the energy of the interface .

In the one-loop approximation the quadratic fluctuations around the classical
solution are taken into account as a gaussian integral . For fluctuations

with the fluctuation operator

the quadratic part of the action is given by

S=S,+
2J

d3xrl(x)Mn(x) +O(n3)

	

(23)

M= -a al, + m 2 - 3m2 cosh -2(-',mo(x° -a » .

	

(24)

M has a zero mode corresponding to translations of the kink or shifts of the
parameter a, which has to be treated separately by the method of collective
coordinates [37] . Taking into account also all contributions from non-interacting
multi-kink configurations, which exponentiate, the result for the energy splitting is

The factor S' ," - L is due to the zero mode . The determinant, which represents a
one-loop effect, leads to the following three types of contributions . First of all it
produces precisely those counterterms which are required to convert the unrenor-
malized parameters appearing in eq . (25) into the renormalized ones . Moreover it
yields an additional factor L' . Finally it gives a one-loop correction to the term
proportional to L2 in the exponential . Using the techniques of ref. [33] the
determinants can be evaluated analytically . Omitting the details of the calculation,
which are analogous to those in ref. [33], the final result is

4E=Cexp { -cr(L)L2},

	

(27)

S det' M -'
AE =2e-~~

/
c

27r

11/2

det Mo~

, (25)

where det' is the determinant without zero modes and

Mo = -a~ aw + mó . (26)
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C-4
I-(1/4) U UR

	

(28)

The interface tension o- has a negligible exponentially small L-dependence . Its
value at L = x is

z u, 39 15
2 uR \1

	

47r ( 32

	

16
log3) + O(UR) ) .

	

(29)

Since m is the inverse of the correlation length in the low-temperature phase,
the result of sect . 2 immediately leads to an expression for the amplitude product,

R

	

= o,o ( eo
)z
_	I1 - 4Tr ( 32

	

16
log3) + O(U

2

	

* 39 15
R Z )l .

	

(30)

In order to get a numerical estimate we have to evaluate it at the fixed point value
uR of U R . In the language of statistical physics uR can be expressed as the
universal amplitude ratio

u

3 . Conclusion

3C
(31)

where B and C_ are the critical amplitudes of the magnetization and low-temper-
ature susceptibility of an Ising type system respectively . Using the results of refs .
[30, 38, 39] one finds

The one-loop contribution amounts to 22% of the leading term
assume that the next order yields a correction of a few percents . The desired
quantity

and we may

R+- (

	

°
~ 2

R_

	

(34)
~o

uR=15 .1±1 .3 . (32)

R_= 0 .1024 + 0.0088 . (33)
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is finally obtained with the help of the conversion factor [30,401

and reads

- = 1 .96+0 .03,

	

(35)
60

R+= 0.39 ± 0.03 .

	

(36)

The discrepancy between the experimental, eq . (9), and field-theoretic numbers
thus appears to be resolved .

I thank Hildegard Meyer-Ortmanns for discussions about their Monte Carlo
calculations .
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