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We checkby explicit computationson thesphereseveralfeaturesof Chern—Simonstheories
suchas scaledependenceof the partition function, reductionof topologically massiveQED to
pure Chern—Simonstheoryin the strong coupling limit, andframe dependenceof Wilson loops.

1. Introduction

Although known for a long time [11, Chern—Simonstheorieshave attracted
renewedinterestfollowing Polyakov’sargument[21in favour of spin transmutation
in the abelianmodel. It has beenstudiedon rigorous basesby various authors
[3—61,howeverthe smartoriginal argumentrelying on comparisonbetweenadia-
batic phasesof matter field propagatorsand expectationvaluesof Wilson ioops
remains inspiring. Meanwhile, Witten [7] has pointed out that mathematical

constructionscould be applied to the non-abelianpure Chern—Simonsmodel to
predict expectation values of Wilson loops as well as partition functions on
compactmanifolds.

Therefore it is worth studying extensivelythe above-mentionedquantities, in

order to check explicitly the constructionswhich build topological or isotopic
invariantsout of physicalexpectationvaluesdependingon variousparameterssuch
as chargeparameters,topological angleor global length scales.It would also be
important to know in which precise sensethe pure Chern—Simonstheoriesmay
correspondto a solvablepoint (at infinite vectorbosonmass)of the phasediagram
of three-dimensionaltopologically massivegaugetheories. This is a non-trivial
issue [81,becausethe strong coupling limit of this model which leads to pure
Chern—Simonsactionsat the level of the classicallagrangian,is not obviousat the
level of expectationvaluesof quantum observables,and becausea rigorous and
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globally definedregularisationof pure Chern—Simonstheories is, to our knowl-

edge,not yet available.
We addressthesequestionshere in the simple caseof abeliantheorieson the

sphere S3. The study of physical systemsin finite geometrieswhich provide a
globallydefined infraredcut-off, hasbeena sourceof progressin many situations.
We solve the topologically massiveand the pure Chern—Simonstheorieson the
sphere.This allows usto compare,for thesetwo models,the scalingpropertiesof
thepartition function in zeta-functionregularisation,the short distanceproperties
of propagatorsandthe expectationvaluesof Wilson loops.

This paper is organisedas follows. In sect.2 we definethe two modelswe shall

study,andwe show how to diagonalisethe kernelsappearingin their action.Sect.
3 dealswith the computationof the partition function. The result for the massive
gauge theory reduces in the strong coupling limit to the one for the pure
Chern—Simonsmodel, up to a counterterm.We discussthe relationshipbetween
this countertermandthe traceof the energy—momentumtensor.The calculation
of a closedform of the propagatorsis presentedin sect.4. The main point thereis
the derivationof an additiontheoremfor vectorsphericalharmonics.The singular-
ity structuresof the result in the two casesdo not coincide, and in sect. 5 we
describethe consequenceof this discrepancyon the behaviourof Wilson loops.

2. Definition of the models

Let usconsiderthe manifold S3 with the euclideanmetric structureinducedby
its identification with the sphereof radius r in flat space

1 4

S3=~(xi,x
2,x3,x4),Ex~=r2

i=1

The abelianpureChern—Simons(APCS)action is definedas

~ = ~ + d
3x~g(x)(v~A)2, (2.1)

where E123 = 1, V~A~= — is the Levi—Civita covariantderivativeand ~
the gauge-fixing parameter.The ghost term will also be consideredlater, for its
contribution to the energy—momentumtensor.We call massiveelectrodynamics
(MQED) the theorywhere a Maxwell term is added:

SMQED = ~ fd3x ~ + ~ (2.2)

Using the Hodge scalarproduct (A~B)= fs
3d

3xV~A~B”this action can be cx-
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pressedin termsof operatorsactingon 1-forms:

1 1
SMQED= ~ A~KT+i,aQ+—KLIA , (2.3)

where ~t = 6e2/2~-2,which we shall supposepositive in this paper, is the photon
mass[1] and

(KTA)A=V~VAAV—V2AA, (KLA)A= —V,~(V~A),

(2.4)
~ig

Sincetheseoperatorssatisfy

Q2=KT, QKL=KLQ=O, (2.5)

(KT+KL)AA= (4— v2)AA (2.6)

andthe first Dc Rhamcohomologyof ~3 vanishes,it is straightforwardto establish
that the space of 1-forms on S3 splits into “transverse” and “longitudinal”
subspaces.The kernelof KL is the direct sumof the “transverse”subspaceswhich
are eigenspacesof Q with non-zeroeigenvalues,and the converseholds for
“longitudinal” subspaces.The non-zeroeigenvaluesof Q and KL, their degenera-

cies anda basisof eigenvectorsareobtainedby considering~3 as a homogeneous
spaceandusingthe Frobeniusreciprocitytheoremfor inducedrepresentations[9].
It is useful to notice, as a consequenceof this construction,that eigenspacesof Q
and KL (with non-zeroeigenvalue)are irreducible representationsof SU(2) x
SU(2) consideredas the coveringgroup of SO(4). Thereforea basisfor eigenvec-
tors consistsin 1-forms A~°(x),A(x). The integers 1, 1’ are related to their
SO(4) totalangularmomentumand rn = (m

1,m2), m’= (mi,m~)are projectionsof
spin along the third generatorsof the SU(2) subgroups.

Explicitly, Ker(KL) is spannedby the transverseorthonormalisedvectors
with / a positiveor negativeinteger, l~~ 2. They satisfy

QAI_m= —A’—~, KLAh~=O; (2.7)

the degeneracyof the eigenvalue(1/r), that is the numberof valuestakenby rn at
given 1, is (12 — 1). We call the A/~transversevector spherical harmonics.The
longitudinal spaceKer(Q) is spannedby the vectorswhich are proportional to
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derivativesof scalarharmonics,A~j~‘~ V~Y’~~with 1’ ~ 2. Onefinds

l~2_1

KLA’~-= r2 A1~-, QA”~-=O (2.8)

the degeneracybeing 1~2in that case.This constructionimplies that the non-zero

spectrumof KL coincideswith the oneof the scalarlaplacian (— ¶72)• Taking (2.5)
into account,we seethat the relations(2.7) and(2.8) providea completediagonali-
sationof the operators

(~
2Q-~-~KL) and

which appearin our models.

3. Partition function and trace anomaly

Weshall now usethe spectrumfound aboveto compute,for the two models,the
partition function ~ as a function of 0, ~ andthe radius parameterr. Following
carefully the stepsof the Faddeev—Popovprocedure,we find that ~? is given by
the expression

det~(KL/2e2~)_~/
2

~)= det~(— V2) -1/2 detc(ST)~2, (3.1)
detç(PL/2e2~)

where det~(K)denotesthe determinant(without zero modes)of an operator K
which actson n-forms,

0 1
ST=i—~QforAPCS and ST= —~(KT+i/LQ)forMQED,

4~ 2e

and ~L is the projectoronto longitudinal subspaces.The term det~(—V2) comes
from the ghostkinetic term. It doesnot involve constantghost fields becausea
constantgaugetransformationdoesnot induce anyvariation of the gaugefield.

Thesedeterminantsare given a precisedefinition by the use of zeta-function
regularisation[101:

d~ ~(l)
det’(K) = exp — —(0) , f(s) = , (3.2)

ds /

)t(1) denotesthe non-zeroeigenvaluesof K and W) their degeneracies.Note that
the denominatorappearingin eq.(3.1) washesout any dependenceon the charge
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and gauge-fixing parameterscoming from longitudinal subspaces.Furthermore
since KL and ( ~2) have the samespectrum, we have detc(KL) = det~(—V2) so
that

~= det~(— V2)1/2 det~(ST)~”2. (3.3)

The zetafunction for the first determinantis

~ i’~
~

0(s) =r
2~~ ‘2 ~ (3.4)

1=2 (1 —1)

leadingto

2 2 _____det~(—V)=c
0r , c0=lTexp 2~2 (3.5)

where CR(s) is the Riemann zeta function. Note that, becauseof the Riemann

symmetryrelation [11], (d/ds)~R(—2)= —(1/4ir
2)~R(3).

The eigenvaluesof ST havea non-vanishingimaginarypart. Therefore,in order
to define the quantity 1/AS= exp(—sin A), we needa cut in the complexplane.
We chooseit along the negativereal axis. In the APCS casewe thereforewrite

= ~~ks) + ~~ks) with

4ir2r 1~—I
s) = e~’~~2E

0 /=2

4~2r iir
= {1+s(ln(~) ±~)+O(s2)}(~R(s_2)-CR(s)). (3.6)

Thesevaluesleadto

iOQ 0 1
det’ —~-—~ = c

1—, c1 = ~—~-exp 2~2 (3.7)

andfinally

r 3/2

~APCS = ~ (3.8)

Notice that this result agreeswith Witten’s argument[7] accordingto which ~
shouldscalewhen0 —‘ ~ as0~~/2,wherey is the dimensionof thegaugegroup.It
also perfectly agreeswith the known propertiesof Ray Singer analytic torsion
(cf. ref. [12], sect. 2), the Schwarzpartition function ~ being exactlyequal to
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ours at the point 0 = 1. /~s~is not itself a topological invariant since it still
dependson r. This also agreeswith the theoremproven in ref. [12] which states
that ~M X (volume of M) 1/2 is a topological invariant for manifolds whosefirst
cohomologyvanishes.

In the MQED caseit is preferableto considerthe ~ function built with the
productof complexconjugateeigenvalues:

f(s) = (4e~r~)5~ 1 1
/-2 (14 + (~rl)2)

(4e~r~)5 F(s+p)

= F(s)

(3.9)

Here F(s) is the Euler F function. Using the explicit valuesof ~R(2p) in termsof
the Bernoulli numbersandtaking into accountthepole of CR(s)at s = 1, onefinds

d~ ~R(3) (,ar)2
—(0) =2ln(V~rer)— 2 +
ds ~- 2

2~Lrdt 2 /~1 — i+(~_) (et_1 _i+~). (3.10)

This expressionis as expectedan analytic function of the variable ,a in the
neighbourhoodof the strictly positive real axis. One can use it to extract the
behaviourof (d/ds)~(0)in the limit ~t —~ ~, where the above integral can be
computedup to O(e~)terms. One of the remainingterms is nothing but the
integral representationof ~R(~), andfinally all termsconspireto give

KT+i,aQ d~
det 2 =exp ——(0)

2e ds

= ~exp( —~{~r+ ~(~r)3} + O(e~)), (3.11)

where c
1 is the samenumericalconstantas in eq. (3.7). Taking eqs. (3.3) and (3.5)

into account,this leadsto

r
3”~2

~MQED = 2V 2_~exp(i~tr+ ~(~r)3} + O(e~)). (3.12)
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In the limit ,u —‘ ~, where the O(e~r)terms become irrelevant,we recoverthe
pure Chern—Simonspartition function with correct normalisation,provided we
subtractthecounterterm~-(~tr + ~(~r)3) from —T= ln(~).F is nothingbut the
gravitationaleffectiveaction inducedby the coupling of the photonto the metric,
and we shall seebelow that the needof the countertermis due to the scale
dependenceof the Maxwell action.

However,we shouldmentionthat the abovederivationassumes~ to be positive
andthat zeta-functionregularisationis not really suitedto determiningthe sign of
the effective action when ~ <0, becauseof the cuts encounteredwhile defining
the argumentsof complex eigenvalues.A careful analysis with a less formal
regularisationwould be required,andsome resultshaveappearedin the literature
[13]. Neverthelessthe zeta-functionregularisationleadsto a quick understanding
of the relationship betweenthe r-dependenceof the partition function and the
expectationvalue of the trace of the energy—momentumtensor [14, 15]. Let us
illustrate this point: underthe changeof metricinducedby a variation of r:

~ ln ~?= ~(f~A e[A~]) = ~ ln ~A — ÔS), (3.13)

where ~S is the action variation, proportional by definition to the trace of the
classical energy—momentumtensor, and the infinitesimal jacobian ~In ~YA is
related to the trace anomaly[141.Considerfor instancein arbitrary dimensiond
the quantity

~T=det(ST)— f~Ae~T~, (3.14)

where the functional integration covers only the transversesubspaces,and is
definedin thefollowing way: any transverse1-form A is developedon the basisof
eigenvectors

A= >a,mA~° (315)
1,m

and the Feynmanmeasureis defined as P~A= flirn(dairn). The orthonormalisa-

tion of the A1~—which is necessaryin order to have (AISTIA)= L
1,,ja,,,j

2A(l)
requires,sinceg,~scalesas r2, that the eigenvectorsA’~scale as r~2~2.But

since A is a true 1-form, i.e. a metric independentobject, the a/rn’s scale as
r~’2©’2.This meansthat ~JA satisfies

Ma
1 (d—2) ~r

~ln~A=fl 1+ d —1= 2 (3.16)
l,m a/rn r
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Of coursethesequalities are only definedwithin a regularisationscheme.The
point is that within the zeta-functionschemewe naturallyget

(d—2) 6r
3ln.~A= —~(0), (3.17)

2 r

where i(s) is the zetafunction of the problem.On theotherhand,for the Maxwell
action S:

F ~
(~)=(d_4)(fddX~ 42 )=(d_4)61~. (3.18)

This is perfectly coherentwith the well-known result [141for the Maxwell action

= det’(KT/2e
2Y1/2 = (re)tT(°), so that

(4—d) (d—2)

2 ~T(0)~nT, 6ln~A= 2

6 ln ~T = 6 In ~JA — ~6S) = ~T(O)6 ln r. (3.19)

ForMQED in dimension3, onederivessimilarly

= — 6In(det~((KT+i,iQ)/2e2)’~’2) (3.20)

\6lnr/ 61ne2

becausethe Chern—Simonsterm dependsneitheron the metric nor on e2. If we
substitutethe value(3.11) of the determinantinto this equation,we find

(jr) = - 2 6 r (~r+ ~r)~ + O(e~)) (3.21)

which clearly establishesthe fact that the counterterm~r(/Lr + ~(t.Lr)3)is only due
to the lack of scaleinvarianceof the Maxwell term.

4. Propagators

Ourgoal is now to find a closedform for the transversepart of the propagator,
4

1~~(x,y) = (A~(x)A~(y))TR, in the two modelswe consider.Since thesetheories
aregaussianones,thiswill give usaccessto all physical observables(Wilson loops,
etc.).As alreadysaid,this is anotherwayto investigatethe strongcoupling limit of
the topologicallymassivetheoryandto compareit to APCS.As a consequenceof
theresultsdescribedin sect. 2, the transversepart of the two-point Greenfunction
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is given by

= ~ y(1)~A~(x)A~*(y), (4.1)
in

where y(1) = —ie2/,al for the APCS model and y(1) = e2/1(1 + i~~)for MQED.
We haveset the radius of the sphereequal to 1 and shall keepthis convention
from now on. The explicit form of the vectorsphericalharmonicsAl_~being rather
complicated,it is desirable to use a strategywhich avoids the use of them. The
main tool of this strategyis a generalisationto vectorharmonicsof thewell-known
[16] addition theoremfor scalarsphericalharmonics.It providesa closedform for
the sumover rn in eq.(4.1). Moreover,the resultis suchthat the sumover I canbe
explicitly computed.

To derivethis theorem,it is convenientto usecoordinatesof ~ into which our

S3 is embedded.Latin indices i, j~••~ = 1,. . . , 4 will alwaysrefer to the euclidean
frameof fl’~.The expressionof the operatorQ [seeeq. (2.5)] in thesecoordinates
is

(QA)
1(x) = E11k/xka/AJ(x), (4.2)

where ~ijk/ is the fully antisymmetrictensorin 4 dimensionswith p1234= 1. Note
that x,(QA),(x)= 0 andthat, in spiteof the fact that eq.(4.2) implies an extension
of the vector field A(x) to the points x outsidethe sphere,only the tangent
derivativescontribute to this expression.This meansthat the extensionis irrele-
vant,as it shouldbe.We introduce

B,
1,(x,y) = EA~_(x)A~_m*(y), 1E7/, l~~2. (4.3)

The definition (2.7) of the vector harmonicsA/~implies that this quantitymust
fulfill the properties

~imkpxkapBrnj(x, y) = ~JmkPYkaI~BIm(X, y) = lB/~(x,y),

g
11g11B,~1(g‘x, g

1y) = B,’~,(x,y), VgE SO(4)

fd~x%I~B~(x,x)=12_i. (4.4)

Moreoverthe solution of this systemof equationsis unique, as a consequenceof
the irreducibility of the SO(4) representationcarriedby the A!m_ at given 1. One
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verifieseasily that thissolution is given by

Bf1(x, Y) = 2~2IlI{[(6,1x1y —~x1 + ~l~jJkpxkyp]C~I 1[(xly)]

— InkpnjnkpXkXkYpYPCIii - 1[(xiy)] }~(4.5)

where(x~y) =x,y, is the scalarproductof R’~,C,~(u)areGegenbauerpolynomials
(in the Bateman[16] normalisation)andthe prime index denotesderivative. This
relation, combined with the definition (4.3) of B,1 is the addition theoremfor
transversevector harmonics.The result is remarkablycompact,especiallywhen
comparedwith the explicit form of the A’°”s.

The next stepis the sumover 1 in eq.(4.1). To avoid troublewith the singularity

of ~i(x, y) at x = y, it is convenientto regularisethe seriesby writing

zl.3(x,y) = lim ~~x,y) = lim ~ y(l,z)B/1(x,y) (4.6)
z~1_ z~1~ /l~2

with

e
2 z” ~(/+E~*)sgn(/)

y(l,z) = —i————, y(l,z) =e2 (4.7)
p. 1 1(l+ip.)

for APCS and MQED respectively, and with zE 11. For z~<1, the series
convergesabsolutelyfor all x and y. The additiontheoremshows that one can
split B,’

1 into odd and evenparts in 1: B’=B~+B~with B~3=±B~,0.As a
consequenceof the property y(_l,z)=y(l,z)*, B~contributes only to the
imaginarypart of the propagatorandthe B~to its realpart. One hasfor example

Im~= ~ [y(l,z) —y(—I,z)]B~. (4.8)

To computethe sum, it is useful to rememberthat the generatingfunctional for
the Gegenbauerpolynomials is

1
~ z”C,~(u)= 2 ‘ Iu~<1, ~zI<1 (4.9)

n~O (1—2zu+z )

and that z~/~lIcan be written as f~dtt
1I’ (similar tricks hold for the other

factors appearingin (4.7)). Insertingthis form of y(l, z) in (4.8) andinverting the
sumover I andthe integraloverdt, which is allowedfor IzI <1, onegetsa closed
expressionfor lime ~.i ).(z’/I)C,L

1(u). This immediatelygives us the form of the
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imaginarypart of the propagatorof the pureChern—Simonsmodel:

e2 1 d ir—8
Im ~,

1(x, y) = — 4~
2p.EIJkPXkYP in6 ~ { sin6 (4.10)

where 6(x,y) = arccos[(xly)] is the geodesicdistancebetween x and y. In the
APCS model, the -y(l) are purelyimaginary.This meansthat the realpart of ~i,, is
vanishing,and in consequence(4.10) is the full transversepropagator.

The samestrategyapplies to the topologicallymassivemodel andonefinds

e2
ImLt,

1(x,y)= — 2 EijkmXkYm
4~rp.

1 d I sinh[p.(~-—6)] — (ir — 6)sinh[p.ir]
~. (4.11)

sin6 d3 sin 6slnh[p.?r]

It is interestingto discussthe short-distancebehaviourof theseresults.In the first
caseonehas

X-*y ~ ~ijk,nXkYm
Im%.t11(x,y)IAPcs ‘~ , (4.12)

but in the secondone,the derivativeof the bracket in eq. (4.11) is finite at 6 = 0
for all massesp., and this leadsto

x-.’y ~p.
2 ~ImLt,J(x,y)JMOED ‘~ — 6 (4.13)

In spiteof the fact that oneformally recoversthepureChern—Simonsmodel in the
infinite mass limit of the massive model, the ultraviolet properties of their
respectivepropagatorare essentiallydifferent. The 1/62 like singularity of eq.

(4.12)is replacedby a much smootherbehaviourin MQED.This discrepancyis the
origin of the strangebehaviourof the Wilson loop which we shall discussin sect.5.
The phenomenonappearshereexactlyin the sameway as it doesin the flat space
~ [81.It hasto be notedthat our expressionsfor Im ~1(x,y) are regularat x = —y
(oppositepointsof the sphere)andevenvanish there.

To be completewe shall also discussthe realpart of the propagatorin MQED.
The calculationsare simplified if one useslocal coordinateson the sphere.Let
e~(x),ft(y) be local framesat x and y respectively.Using the additiontheorem
and propertiesof the Gegenbauerpolynomials,one finds that the i-even part of
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~ = (e,~)~(f,,)~,B,çcanbe written in the form

B~(x,y) = ~(eUIfV)CI’,Hl(cos6) — ~ 3~{cos6C~11_1(cos6)}.4~T 4ir Il~

(4.14)

Only the first term in the right-handside of (4.14) will contributeto the expecta-
tion values of observablessuch as the Wilson loop. This decompositionis the
equivalenton S3 of the form (6~”— k~k7k2)G(k2)for transversequantities in
flat space.The techniqueoutlinedaboveapplies for the sumover I in eq. (4.1) and

oneobtains

e2 ~sinh[p.(~—6)] 2
Re~t~(x,y)=(e~fj—

7 . . — 2 +ö~~(cosö)
47~- sin6sinh(p.ir) 1 +p.

(4.15)

The function ~x, y) comesfrom the secondterm of eq. (4.14). Eqs. (4.11) and
(4.15) providea closedform of the transversepartof thepropagatorin MQED, up
to gradientterms.

The real part of ~ exhibits the samebehaviouras we discussedabovewhen
p. —~ ~: for 6 * 0 it goesto zero (which is the valuefor the APCS model) but the
1/6 pole remains for all p.’s. It is easyto show that the same phenomenon
happensfor all expectation values of point-like gauge invariants such as the
correlationfunction of E’~= ~ One has

~E,(x)E1(y)) = ~ 1
2y(l)B,’

1(x, y) (4.16)
I/I ~2

andonecanoncemoreusethe tricks describedaboveto obtainthe sum.Lastly we
note that our constructionprovidesa naturalgauge-invariantregularisationof the
propagators:This could be useful for the perturbativestudy of the non-abelian
pureChern—Simonsmodel andclearup the relationshipbetweenresultsobtained
by dimensionalregularisation[18] (in flat space)andothercalculations[19].

5. Wilson loops

It is interestingto studythe consequencesof theseresultson the behaviourof
Wilson loopsexp(F(C))= (exp(— i~~dx~A;)>. In our Gaussianmodelswe have

1(C) = _~dxv ~dy’~~~(x,y). (5.1)
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It is well known[17, 18] that in flat space,for a smoothandnon-intersectingcurve
C, the imaginarypart of 1(C) is finite even in the pure Chern—Simons case. It
gives rise to the statistics changing factor discussed by various authors [2,4]. The
short distancebehaviourof the propagators(4.10), (4.11) is the sameas for their
~ equivalents. This implies that Im 1(C) is also finite on 53~On the otherhand,
in order to get topological invariantsin the pure Chern—Simonstheory, Witten [7]
introducedapoint split definition of the Wilson loop:

Ff(C) = —~ lim ~dx~ ~dyPz~,~(x,y) (5.2)
E

0C C,

where C~is a framing at distance e of the curve C. For APCS, I~(C)is
proportionalto the linking numberof C andC~,andhenceis isotopy invariantbut
frame dependent.In that model the two definitions (5.1), (5.2) do not coincide.
However,for the MQED model in flat space,it wasshownin [8], that Im F~(C)is
frame independent,equal to Im 1(C), and that the limit p. —* gives the frame-
independentresult for APCS. The main point of the demonstrationis that the
ultraviolet behaviourof Im ~i(x, y) in the massivemodel is not singular enoughto
give a frame-dependentlimit in eq.(5.2). Once again, the short distancesingulari-
tiesof the propagatorsbeing the sameon S3 as in the flat space,the discussionof
ref. [8] appliesfor the modelson the sphereandonegets

Im 1f(C)IMQED = Im 1(C)IMQED,

Im F(C)IAPCS = lim Im 1(C)~MQED~ Im Ff(C)IAPCS. (5.3)

The topological invariant result cannotbe obtainedin a strong coupling limit of
MQED. The realpart of 1(C) in the massivemodel canbe studiedwith the help
of the regularisationintroducedabove, that is evaluatingeq. (5.1) with ~kx, y)
[seeeq. (4.6)]: as in the flat space,the result divergeslogarithmically in the z —~ 1
limit.

We shall illustrate this discussionwith a verysimple example.Let us introduce
the usualpolar coordinateson the sphere

= sinXi sin X2 cos4, x
3 = sinXi cosX2’

x2 = sinx1 sin x2 sin ~, x4 = cosXi

and choosethe curve C given by the intersectionof S
3 with the plane x

4 = 0,
= cos~. It canbe parametrisedas

C: t —~ (4(t) = t, x2(t) =~, x1(t) =
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with t E [0,2ir[. A framing of C of linking numberk E Z is for example

C~:t —~ (t, k + E coskt, ~- + c sin kt).

SinceC is planarin ~ it is readily seenthat ~ = 0 if x, y go along this
curve. Recalling the forms of the imaginary part of the propagators,this means
that the imaginarypart of the unframedWilson loop vanishesin bothmodels:

ImI(C)=0, (5.4)

but within the framing procedure,the situation is quite different: if x and y go
along C andC~respectively,the EiJkIXiYJXkYI term is (up to termswhich contribute
to total derivativesin the integralover t) proportionalto e2k andoneobtains

— e2e2ksin~
Im If(C) = lim f dt(1 — K(t)cos2~)G[(1 — I�2)(1 — K(t)sin2 i)],

�-.*O 47rp.

(5.5)

where K(t) = (1 — cost) and

arccos(—u)
G(u)=3~ / 2

vi —u

sinh(p.~-)arccos(—u) — ~- sinh(arccos(—u))
G(u)=3 (5.6)

U sinh(p.ir)~[1_u2

for APCS and MOED respectively.The integral of (5.5) has a distinct c —‘ 0
behaviour in the two cases: it is 2~/e2 sin ,~+ 0(1/c) in the first one and0(1/c)

in the secondone.This implies

— ke2 kir2
ImIf(C)IAPCS= =

2p. 0

Im Ff(C)IMQED = 0 for all massesp. (5.7)

which is, when comparedto (5.4),exactlythe behaviourdiscussedabove.Note that
the result for APCS does not dependon ,~, that is on the curve C. It is the

manifestationin our simple exampleof the isotopy invarianceof the framed
Wilson loop in a pureChern—Simonstheory.
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6. Conclusions

We havesolvedthepureChern—Simonsmodel andthe finite coupling theoryon
the sphere S3. We give the partition function and an explicit form of the
propagatorin the two cases.The partition function of MQED reducesin the limit
e2—~ ~ to the one of APCS, up to the gravitational-inducedeffective action. In
view of the importanceof such an action in two-dimensionalfield theories,andof
the peculiaritiesobservedin three-dimensionalparity breakingtheories[4], one
may considerit deservesa careful furtherstudy.The behaviourof the propagators

andthe Wilson loops,which relieson short-distanceproperties,is the sameas the
onein flat space:the singularitystructuresof the propagatorsareverydifferent in
the two cases,and the topological invariant value of the Wilson loop in APCS
cannotbe obtainedwithin a regime of MQED. It could be interestingto check
whether such a phenomenon also appears in the non-abelian case. Anotherpoint
is that S3 doesnot allow a hamiltonianformulation. Thereforethe bosonisation
formula of ref. [3] cannot be used, and it is an interesting challenge to understand
how spin transmutationmay be revealedin this context.

We aregrateful to M. LUscherfor enlighteningdiscussionsandvery usefulhelp.
A.C. thanksthe DESY TheoryGroup wherethis work hasstarted,for hospitality.
M.M thanksG. Wandersand D. Camgemifor variouscomments.
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