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We check by explicit computations on the sphere several features of Chern—Simons theories
such as scale dependence of the partition function, reduction of topologically massive QED to
pure Chern—Simons theory in the strong coupling limit, and frame dependence of Wilson loops.

1. Introduction

Although known for a long time [1], Chern-Simons theories have attracted
renewed interest following Polyakov’s argument [2] in favour of spin transmutation
in the abelian model. It has been studied on rigorous bases by various authors
[3-6], however the smart original argument relying on comparison between adia-
batic phases of matter field propagators and expectation values of Wilson loops
remains inspiring. Meanwhile, Witten [7] has pointed out that mathematical
constructions could be applied to the non-abelian pure Chern-Simons model to
predict expectation values of Wilson loops as well as partition functions on
compact manifolds.

Therefore it is worth studying extensively the above-mentioned quantities, in
order to check explicitly the constructions which build topological or isotopic
invariants out of physical expectation values depending on various parameters such
as charge parameters, topological angle or global length scales. It would also be
important to know in which precise sense the pure Chern—-Simons theories may
correspond to a solvable point (at infinite vector boson mass) of the phase diagram
of three-dimensional topologically massive gauge theories. This is a non-trivial
issue [8], because the strong coupling limit of this model which leads to pure
Chern-Simons actions at the level of the classical lagrangian, is not obvious at the
level of expectation values of quantum observables, and because a rigorous and
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globally defined regularisation of pure Chern—Simons theories is, to our knowl-
edge, not yet available.

We address these questions here in the simple case of abelian theories on the
sphere S°. The study of physical systems in finite geometries which provide a
globally defined infrared cut-off, has been a source of progress in many situations.
We solve the topologically massive and the pure Chern—Simons theories on the
sphere. This allows us to compare, for these two models, the scaling properties of
the partition function in zeta-function regularisation, the short distance properties
of propagators and the expectation values of Wilson loops.

This paper is organised as follows. In sect. 2 we define the two models we shall
study, and we show how to diagonalise the kernels appearing in their action. Sect.
3 deals with the computation of the partition function. The result for the massive
gauge theory reduces in the strong coupling limit to the one for the pure
Chern-Simons model, up to a counterterm. We discuss the relationship between
this counterterm and the trace of the energy-momentum tensor. The calculation
of a closed form of the propagators is presented in sect. 4. The main point there is
the derivation of an addition theorem for vector spherical harmonics. The singular-
ity structures of the result in the two cases do not coincide, and in sect. 5 we
describe the consequence of this discrepancy on the behaviour of Wilson loops.

2. Definition of the models

Let us consider the manifold S* with the euclidean metric structure induced by
its identification with the sphere of radius r in flat space R*:

4
S3 = {(XI’XZ’ X3,X4), Z xiZ =I‘2} .
i=1
The abelian pure Chern—Simons (APCS) action is defined as

0 1 2
Ses = 4—77—_5-/53d3x eHA,0 A, + 3o f83d3x Ve(x) (V-4)°, (2.1)

where £'2=1,V,A4,=3,A4, - I}, A, is the Levi-Civita covariant derivative and £
the gauge-fixing parameter. The ghost term will also be considered later, for its
contribution to the energy—-momentum tensor. We call massive electrodynamics
(MQED) the theory where a Maxwell term is added:

1
Smoen = 7.2 [S ExVgF P+ Ses. (2.2)

Using the Hodge scalar product (A|B) = [s:d°x /g A*B” this action can be ex-
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pressed in terms of operators acting on 1-forms:

1 1
SmoED = el A|Kr+ipQ+ EKLlA , (2.3)

where p = 6e?/2m?, which we shall suppose positive in this paper, is the photon
mass [1] and

(KTA)/\=VVV/\AV—V2A/\7 (KLA)A= _VA(V'A),

agpy

(QA)/\ =g/\0’%apAV' (24)

Since these operators satisfy

Q’=Kr, QK =K. Q=0, (2.5)
2
(Kr+K )4, = (7 - \72)AA (2.6)

and the first De Rham cohomology of S* vanishes, it is straightforward to establish
that the space of 1-forms on S’ splits into “transverse” and “longitudinal”
subspaces. The kernel of K, is the direct sum of the “transverse” subspaces which
are eigenspaces of @ with non-zero eigenvalues, and the converse holds for
“longitudinal” subspaces. The non-zero eigenvalues of Q and K|, their degenera-
cies and a basis of eigenvectors are obtained by considering S* as a homogeneous
space and using the Frobenius reciprocity theorem for induced representations [9].
It is useful to notice, as a consequence of this construction, that eigenspaces of Q
and K, (with non-zero eigenvalue) are irreducible representations of SU(2) X
SU(2) considered as the covering group of SO(4). Therefore a basis for eigenvec-
tors consists in 1-forms AZ—"(x), AAL'ﬂ'(x). The integers [,!' are related to their
SO(4) total angular momentum and m = (m,, m,), m’' = (m}, m}) are projections of
spin along the third generators of the SU(2) subgr(;ps.

Explicitly, Ker(K, ) is spanned by the transverse orthonormalised vectors A
with / a positive or negative integer, |/| > 2. They satisfy

1
QAm = —4'm K A™m=0; (2.7)
r

the degeneracy of the eigenvalue (I /r), that is the number of values taken by m at
given [, is (I 2 1). We call the A" transverse vector spherical harmonics. The
longitudinal space Ker(Q) is spanned by the vectors which are proportional to
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derivatives of scalar harmonics, AL’ﬂ' ~ VY= with I' > 2. One finds

72

A

TA”’E', QA" =0 (2.8)

Ky Al =
the degeneracy being /' in that case. This construction implies that the non-zero
spectrum of K, coincides with the one of the scalar laplacian (— V2). Taking (2.5)
into account, we see that the relations (2.7) and (2.8) provide a complete diagonali-
sation of the operators

i0 1 1 . 1
4—7T_2Q + ‘27‘5—KL and Z—ez KT+l,LLQ+ EKL

which appear in our models.

3. Partition function and trace anomaly

We shall now use the spectrum found above to compute, for the two models, the
partition function ¥ as a function of 6, u and the radius parameter r. Following
carefully the steps of the Faddeev—Popov procedure, we find that 3 is given by
the expression

detj (K, /2¢%) "

detj(P,/2¢%) """

2=det}(—V?) det;(S;) "%, (3.1)

where det/(K) denotes the determinant (without zero modes) of an operator K
which acts on n-forms,

0 1
St= iFQ for APCS and S;= F(KT +iuQ) for MQED,
m e

and P, is the projector onto longitudinal subspaces. The term deti(— V?) comes
from the ghost kinetic term. It does not involve constant ghost fields because a
constant gauge transformation does not induce any variation of the gauge field.

These determinants are given a precise definition by the use of zeta-function
regularisation [10]:

d (1
det’(K)=exr>(—d—i(O)), &)= 1 o (3.2)

T AD

A(l) denotes the non-zero eigenvalues of K and 8(/) their degeneracies. Note that
the denominator appearing in eq. (3.1) washes out any dependence on the charge
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and gauge-fixing parameters coming from longitudinal subspaces. Furthermore
since K, and (—V?) have the same spectrum, we have det{(K, )= detj(—V?) so
that

2=dety(— V2" detj(5,) 2. (3.3)

The zeta function for the first determinant is

© er

Eo(s) =r” Z::Z W (3.4)

leading to

{r(3) ) (3.5)

det)(—V?) =c,r?, c0=ﬂ-exp( e
where {p(s) is the Riemann zeta function. Note that, because of the Riemann
symmetry relation [11], (d/ds){r(—2) = —(1/472){x(3).

The eigenvalues of S have a non-vanishing imaginary part. Therefore, in order
to define the quantity 1/A° = exp(—sln A), we need a cut in the complex plane.
We choose it along the negative real axis. In the APCS case we therefore write
£,(s) = EM(s) + £§7(s) with

am?r\t = 12—
£*)(s) = e*ims/2 }
0 P
472y i
={1+s|In| ——|+— +0(s%) H{Lr(s —2) = Lr(s)}. (3.6)
These values lead to
i0Q 0 1 {x(3)
det’(m)=cl;, Cl=8_77—3€X (2—77_2) (37)
and finally
7372
Parcs = 2\5#27—; . (3.8)

Notice that this result agrees with Witten’s argument [7] according to which @
should scale when 8 — « as §~7/2, where v is the dimension of the gauge group. It
also perfectly agrees with the known properties of Ray Singer analytic torsion
(cf. ref. [12], sect. 2), the Schwarz partition function Pg» being exactly equal to
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ours at the point 8 =1. P is not itself a topological invariant since it still
depends on r. This also agrees with the theorem proven in ref. [12] which states
that 2, X (volume of M)~!/2 is a topological invariant for manifolds whose first
cohomology vanishes.

In the MQED case it is preferable to consider the ¢ function built with the
product of complex conjugate eigenvalues:

-1

£(s) = (4 i—
22 (P4 (ur)?)

_ (4e"‘r“!x i I'(s+p)

Ir'(s) p! (—,u,zrz)P(gR(2p+4S—2)—{R(2p+4s)).
p=0 !

(3.9)

Here I'(s) is the Euler I" function. Using the explicit values of {g(2p) in terms of
the Bernoulli numbers and taking into account the pole of {x(s) at s = 1, one finds

Lo- — %L
ey on

This expression is as expected an analytic function of the variable p in the
neighbourhood of the strictly positive real axis. One can use it to extract the
behaviour of (d/ds)£(0) in the limit u — o, where the above integral can be
computed up to O(e™*") terms. One of the remaining terms is nothing but the
integral representation of {(3), and finally all terms conspire to give

Ko+inQ d¢
det’(%z——) = exp( - 5(0))

c6 3 B
=7exp(—w{w+§(w)~}+0(e ), (3a1)

where ¢, is the same numerical constant as in eq. (3.7). Taking eqs. (3.3) and (3.5)
into account, this leads to

#3/2

PMoED = Zﬁwzﬁexp(%w{ur + %(,u.r)q} + O(e_‘”)) . (3.12)
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In the limit p — =, where the O(e ™#") terms become irrelevant, we recover the
pure Chern-Simons partition function with correct normalisation, provided we
subtract the counterterm m(ur + 3(ur)®) from —I'= In(Q). I’ is nothing but the
gravitational effective action induced by the coupling of the photon to the metric,
and we shall see below that the need of the counterterm is due to the scale
dependence of the Maxwell action.

However, we should mention that the above derivation assumes u to be positive
and that zeta-function regularisation is not really suited to determining the sign of
the effective action when u <0, because of the cuts encountered while defining
the arguments of complex eigenvalues. A careful analysis with a less formal
regularisation would be required, and some results have appeared in the literature
[13]. Nevertheless the zeta-function regularisation leads to a quick understanding
of the relationship between the r-dependence of the partition function and the
expectation value of the trace of the energy—momentum tensor [14,15]). Let us
illustrate this point: under the change of metric induced by a variation of r:

1
3ln 9= ;—/jﬁ(f_@Ae‘s[A’g“"])=<51ﬂ-@A—5S>, (3.13)

where 8S is the action variation, proportional by definition to the trace of the
classical energy—momentum tensor, and the infinitesimal jacobian &1ln 24 is
related to the trace anomaly [14). Consider for instance in arbitrary dimension d
the quantity

D =det(8;) " "? = f;@A e~ (AlStiN) (3.14)

where the functional integration covers only the transverse subspaces, and is
defined in the following way: any transverse 1-form A is developed on the basis of
eigenvectors

A=Y a,Am (3.15)

IL,m

and the Feynman measure is defined as 24 =11, ,(da,,). The orthonormalisa-
tion of the A" which is necessary in order to have (A1S.lA) =%, ,la,,|*A(])
requires, since g,, scales as r?, that the eigenvectors 4’2 scale as r®~47/2 But
since A is a true 1-form, i.e. a metric independent object, the a,,’s scale as
r“=2/2_ This means that 24 satisfies -

(3.16)

dda d—12) ér
51n9A=I’[(1+—‘m)—1=£—)—
ILm

da,, 2

' im
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Of course these qualities are only defined within a regularisation scheme. The
point is that within the zeta-function scheme we naturally get

51n _@A—(—;—)ﬂ (0), (3.17)

where £(s) is the zeta function of the problem. On the other hand, for the Maxwell
action S:

>(d—) ?T. (3.18)

<;n >-(d 4)<[dd

This is perfectly coherent with the well-known result [14] for the Maxwell action
Pr=det'(K1/2e*)71/? = (re)*™®, so that

4-d -
—(88) = —(T)-—gT(O)Nnr, 5ln 94 = (——)gT(O)alnr
5In Q1 =051n 24 — (8S) = £,(0)81Inr. (3.19)

For MQED in dimension 3, one derives similarly

< 58 > 5 1n(det'((1<T + i/.LQ)/ZeZ)_l/Z)

= - 3.20
Slnr &1ln e ( )

because the Chern-Simons term depends neither on the metric nor on e?. If we
substitute the value (3.11) of the determinant into this equation, we find

88 T o . s o
<51nr>=—581nr('ur+§(p‘r) +0O(e )) (3.21)

which clearly establishes the fact that the counterterm 17 (ur + 2(ur)?) is only due
to the lack of scale invariance of the Maxwell term.

4, Propagators

Our goal is now to find a closed form for the transverse part of the propagator,
4,,(x,y)= (A (x)A,(y)) 1, in the two models we consider. Since these theories
are gaussian ones, this will give us access to all physical observables (Wilson loops,
etc.). As already said, this is another way to investigate the strong coupling limit of
the topologically massive theory and to compare it to APCS. As a consequence of
the results described in sect. 2, the transverse part of the two-point Green function
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is given by

A,.(x,9) = 1 y(1) LAP(x)AZ*(y), (4.1)

=2 m

where y(I) = —ie?/ul for the APCS model and y(I) =e?/I(I +iu) for MQED.
We have set the radius of the sphere equal to 1 and shall keep this convention
from now on. The explicit form of the vector spherical harmonics A'? being rather
complicated, it is desirable to use a strategy which avoids the use of them. The
main tool of this strategy is a generalisation to vector harmonics of the well-known
[16] addition theorem for scalar spherical harmonics. It provides a closed form for
the sum over m in eq. (4.1). Moreover, the result is such that the sum over / can be
explicitly computed.

To derive this theorem, it is convenient to use coordinates of R* into which our
S? is embedded. Latin indices i,j,... = 1,...,4 will always refer to the euclidean
frame of R*. The expression of the operator Q [see eq. (2.5)] in these coordinates
is

(QA4),(x) =€ijk/xkalAj(x)’ (4.2)

where ¢, is the fully antisymmetric tensor in 4 dimensions with &,,,, = 1. Note
that x,(QA),(x) = 0 and that, in spite of the fact that eq. (4.2) implies an extension
of the vector field A(x) to the points x outside the sphere, only the tangent
derivatives contribute to this expression. This means that the extension is irrele-
vant, as it should be. We introduce

Bl(x,y) = Y An(x)Almx(y), lez,|l|>2. (4.3)

The definition (2.7) of the vector harmonics A" implies that this quantity must
fulfill the properties

8imkpxkagB;{nj(x’ y) = gjmkpykaj)yBilm(x’ y) = lBilj(x’ y) H

gi[’gjj’B[l’j’(g_lxy g_l)’) =B[lj(x’ .V) , Vge SO(4)
[ Ve Bl(x, x) =12~ 1. (4.4)

Moreover the solution of this system of equations is unique, as a consequence of
the irreducibility of the SO(4) representation carried by the A" at given /. One
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verifies easily that this solution is given by

1
Bilj(xa y) = Tzlll{[(Sij(le) "yixj) + %leijkpxkyp]cm Sl (xy)]

- %Einkpgjnk’p’xkxk’ypyp’C|11”| -1 [(XI_V)] } ’ (45)

where (x|y) =x;y; is the scalar product of R*, C)(u) are Gegenbauer polynomials
(in the Bateman {16] normalisation) and the prime index denotes derivative. This
relation, combined with the definition (4.3) of B;; is the addition theorem for
transverse vector harmonics. The result is remarkably compact, especially when
compared with the explicit form of the 4.

The next step is the sum over / in eq. (4.1). To avoid trouble with the singularity
of A(x,y) at x =y, it is convenient to regularise the series by writing

Ai(x,y) = lim AP(x,y) = lim IZZV(I,Z)B,-’j(x,y) (4.6)
- U
with
| _62 pad ) 2Z(1+iu)sgn(l) 47
‘Y(’Z)__l; I 5 ‘Y( ’Z)—e l(l+l[.L) ( )

for APCS and MQED respectively, and with z€ R. For |z| <1, the series
converges absolutely for all x and y. The addition theorem shows that one can
split B}, into odd and even parts in [: B' =B +Bj, with Bg'o= +Bf . As a
consequence of the property y(—1I,z)=v(l,z)*, B{ contributes only to the
imaginary part of the propagator and the B to its real part. One has for example

ImA® = —1- Y [v(l,z) —y(-1,2)] BS. (4.8)
122

To compute the sum, it is useful to remember that the generating functional for
the Gegenbauer polynomials is

Y z"Cl(u) = lu) <1, |z <1 (4.9)

et (1=2zu+2%)’
and that z"!/|l| can be written as [{dzz/I"! (similar tricks hold for the other
factors appearing in (4.7)). Inserting this form of y(/, z) in (4.8) and inverting the
sum over / and the integral over d¢, which is allowed for |z| < 1, one gets a closed
expression for lim, _, , X(z//DC/_ (u). This immediately gives us the form of the
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imaginary part of the propagator of the pure Chern-Simons model:

. e? 1 dym-8 4.10
m4,;(x,y) = - 4mlp sijkpxkypsin(s d5{ sind }’ (4.10)

where 8(x,y) = arccos[(x|y)] is the geodesic distance between x and y. In the
APCS model, the y(/) are purely imaginary. This means that the real part of 4,; is
vanishing, and in consequence (4.10) is the full transverse propagator.

The same strategy applies to the topologically massive model and one finds

2
e
Im Aij(xs y)=-— 477_2; EijkmX ik Ym

1 d (msinh[u(7—8)] — (7 — 8)sinh[ pw]
% sin & %{

} . (4.11)

sin & sinh[ ]

It is interesting to discuss the short-distance behaviour of these results. In the first
case one has

T il
ImA;(x,y)lapcs ~ — 2 5 , (4.12)

but in the second one, the derivative of the bracket in eq. (4.11) is finite at § =0
for all masses u, and this leads to

x—=y 7T,l.l,2 EiiternaX iV

Im A;;(x, ¥)lmoep ~ — 10 5 (4.13)

In spite of the fact that one formally recovers the pure Chern-Simons model in the
infinite mass limit of the massive model, the ultraviolet properties of their
respective propagator are essentially different. The 1/8° like singularity of eq.
(4.12) is replaced by a much smoother behaviour in MQED. This discrepancy is the
origin of the strange behaviour of the Wilson loop which we shall discuss in sect. 5.
The phenomenon appears here exactly in the same way as it does in the flat space
R? [8]. It has to be noted that our expressions for Im A(x, y) are regular at x = —y
(opposite points of the sphere) and even vanish there.

To be complete we shall also discuss the real part of the propagator in MQED.
The calculations are simplified if one uses local coordinates on the sphere. Let
e,(x), f,(y) be local frames at x and y respectively. Using the addition theorem
and properties of the Gegenbauer polynomials, one finds that the l-even part of
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B., = (e, ){f,);B]; can be written in the form

ppeT 9x0Y{cos 8C|; _(cos §)}.

!
Blou(5,9) = s (e, 1)l - (c0s) -
(4.14)

Only the first term in the right-hand side of (4.14) will contribute to the expecta-
tion values of observables such as the Wilson loop. This decomposition is the
equivalent on S* of the form (8** — k*k” /k?)G(k?) for transverse quantities in
flat space. The technique outlined above applies for the sum over [ in eq. (4.1) and
one obtains

Re A e? [ sinh[ w(7 —6)] 2 I 5
’ = v . . - + ;: v
¢4,,(x,) = (elf.) 472 | sin & sinh( ) 1+ u? (cos 3)

(4.15)

The function #(x,y) comes from the second term of eq. (4.14). Egs. (4.11) and
(4.15) provide a closed form of the transverse part of the propagator in MQED, up
to gradient terms.

The real part of A4, exhibits the same behaviour as we discussed above when
pu —oo: for § # 0 it goes to zero (which is the value for the APCS model) but the
1/6 pole remains for all u’s. It is easy to show that the same phenomenon
happens for all expectation values of point-like gauge invariants such as the
correlation function of E* = (1/2y/g )e#*?F, . One has

<Ei(x)Ej(y)>= Z lzy(l)Bilj(x’Y) (4.16)

11 =2

and one can once more use the tricks described above to obtain the sum. Lastly we
note that our construction provides a natural gauge-invariant regularisation of the
propagators: This could be useful for the perturbative study of the non-abelian
pure Chern—Simons model and clear up the relationship between results obtained
by dimensional regularisation [18] (in flat space) and other calculations [19].

5. Wilson loops

It is interesting to study the consequences of these results on the behaviour of
Wilson loops exp(1'(C)) = {exp(—ig-dx* A4,)). In our Gaussian models we have

r(C) = -1 Pdx" Pdyra, (x,y). (5.1)
C C
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It is well known [17, 18] that in flat space, for a smooth and non-intersecting curve
C, the imaginary part of I'(C) is finite even in the pure Chern-Simons case. It
gives rise to the statistics changing factor discussed by various authors [2,4]. The
short distance behaviour of the propagators (4.10), (4.11) is the same as for their
R* equivalents. This implies that Im I'(C) is also finite on S*. On the other hand,
in order to get topological invariants in the pure Chern-Simons theory, Witten [7]
introduced a point split definition of the Wilson loop:

Iy(C) = -3 lim Pdx” Pdy4,,(x,y) (5.2)
«2UT C.

where C, is a framing at distance e of the curve C. For APCS, I'(C) is
proportional to the linking number of C and C_, and hence is isotopy invariant but
frame dependent. In that model the two definitions (5.1), (5.2) do not coincide.
However, for the MQED model in flat space, it was shown in [8], that Im I(C) is
frame independent, equal to Im I'(C), and that the limit x — « gives the frame-
independent result for APCS. The main point of the demonstration is that the
ultraviolet behaviour of Im A(x, y) in the massive model is not singular enough to
give a frame-dependent limit in eq. (5.2). Once again, the short distance singulari-
ties of the propagators being the same on S* as in the flat space, the discussion of
ref. [8] applies for the models on the sphere and one gets

Im I';(C)|moep = Im F(C)lMOED >

Im I'(C)| opcs = ,}Tloo Im F(C)|MQED # Im I',(C)| apcs - (5.3)

The topological invariant result cannot be obtained in a strong coupling limit of
MQED. The real part of I'(C) in the massive model can be studied with the help
of the regularisation introduced above, that is evaluating eq. (5.1) with 4{2(x, y)
[see eq. (4.6)]: as in the flat space, the result diverges logarithmically in the z — 1
limit.

We shall illustrate this discussion with a very simple example. Let us introduce
the usual polar coordinates on the sphere

X, =sin y, sin y,cos ¢, X4 =sin x, COS x5,
X, =sin y, sin y, sin ¢, X, = COS X4

and choose the curve C given by the intersection of $* with the plane x, =0,
X3 =cos ¥. It can be parametrised as

Cit=(d(1) =1, x,(1) =X, x,(t) = 37)
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with £ €[0,27[. A framing of C of linking number k € Z is for example

C.:t—(t,x+ecoskt, tm+esinkt).
Since C is planar in R, it is readily seen that &% Y%y, =0 if x,y go along this
curve. Recalling the forms of the imaginary part of the propagators, this means
that the imaginary part of the unframed Wilson loop vanishes in both models:

Im I'(C) =0, (5.4)
but within the framing procedure, the situation is quite different: if x and y go

along C and C, respectively, the ¢,;,,%,9,x,y, term is (up to terms which contribute
to total derivatives in the integral over ¢) proportional to ek and one obtains

_ e?e’ksiny ,r
Im I';(C) = lim ————Xf de(1 = k(t)cos 2 ¥)G[(1 - 1e2)(1 — x()sin %)],
e—0 47T'u, —a
(5.5)
where () =(1 — cos t) and
arccos( —
Glu) =g, 1)
—Uu
sinh( w )arccos( —u) — 7 sinh{arccos( —u
Glu) =4, (u) (—u) ( (—u)) (5.6)

sinh(um)V1—u?

for APCS and MQED respectively. The integral of (5.5) has a distinct € -0
behaviour in the two cases: it is 27 /€% sin } + O(1 /¢) in the first one and O(1 /€)
in the second one. This implies

— ke’  krm?
Im I'i(C)] apcs = Py
Im I'{(C)|pmoep =0 for all masses u (5.7)

which is, when compared to (5.4), exactly the behaviour discussed above. Note that
the result for APCS does not depend on ¥, that is on the curve C. It is the
manifestation in our simple example of the isotopy invariance of the framed
Wilson loop in a pure Chern—Simons theory.
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6. Conclusions

We have solved the pure Chern-Simons model and the finite coupling theory on
the sphere S°. We give the partition function and an explicit form of the
propagator in the two cases. The partition function of MQED reduces in the limit
e? > » to the one of APCS, up to the gravitational-induced effective action. In
view of the importance of such an action in two-dimensional field theories, and of
the peculiarities observed in three-dimensional parity breaking theories [4], one
may consider it deserves a careful further study. The behaviour of the propagators
and the Wilson loops, which relies on short-distance properties, is the same as the
one in flat space: the singularity structures of the propagators are very different in
the two cases, and the topological invariant value of the Wilson loop in APCS
cannot be obtained within a regime of MQED. It could be interesting to check
whether such a phenomenon also appears in the non-abelian case. Another point
is that S° does not allow a hamiltonian formulation. Therefore the bosonisation
formula of ref. [3] cannot be used, and it is an interesting challenge to understand
how spin transmutation may be revealed in this context.

We are grateful to M. Liischer for enlightening discussions and very useful help.
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M.M thanks G. Wanders and D. Camgemi for various comments.
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