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Off-critical conservation laws of a class of irrational conformal models are examined. It has been conjectured that the massive 
theories that arise under perturbation with the energy (respectively spin-density) operator possess an infinite number of conser- 
vation laws, constructable in the Hilbert space of the CFT. A constructive proof of this conjecture is given by means of an algo- 
rithmic Fock space procedure. 

A distinctive feature of 2-dimensional conformal field theory (CFT) is the clear-cut factorization of the the- 
pry into right- and left-moving lightcone sectors. To a large extent the solution of a CFT can then be traced back 
to the representation theory of infinite dimensional Lie algebras. Whenever such a factorization cannot be 
achieved a priory, i.e. left-and right-movers mix in an essential way, most of the stringent algebraic structure 
seems to be lost. As part of his program [ 1-4 ] to study the scaling region around a CFT, Zamolodchikov pro- 
posed in ref. [ 5 ] that the off-critical behavior of certain CFTs, perturbed by suitable relevant operators, should 
be governed by an infinite number of conserved currents of higher spin N>_-2. The latter can be taken as a 
pragmatic definition of integrability. These currents are solutions of the compatibility relation for the mapping 

O~=O~(P, Q): ~ - - , ~ a ® ~ Q ,  (oee ) (z ,Z)=  ~du(pQ(u ,~ , )P(z )  (1) 
z 

and its antiholomorphic partner 

Og(P, Q)PN = OzQN_ 2 = OgQN-2 = 0z(/6, Q)IffN. (2) 

Here 0Q is the perturbation operator and ~e, ~Q are representation spaces of the chiral algebra of the (left-right 
symmetric) CFT in question (with total derivatives divided out; P is usually the vacuum representation, since 
then intermediate representation are absent). These currents, having integer spin, are local in the CFT, but will 
be highly non-local in the perturbed theory. In the superrenormalizable regime now, the Hilbert space of the 
resulting massive theory is expected to be still that of the C F T -  and hence a representation space of their chiral 
algebra. Some recent references in this direction are refs. [ 6,7 ]. This additional algebraic framework would then 
hopefully allow one to (partially) replace the lattice regularization of the quantum inverse scattering method, 
which often spoils the integrability of the classical model on starts with. If so, the chance of getting a hand on 
the exact solution of a large class of massive field theories would be considerably increased. Up to now, neither 
the existence of the currents (2), nor their relation to a more conventional basis (e.g. asymptotic states) of the 
massive Hilbert space seem to have been established. In this letter, we will address the first question for a partic- 
ular class of irrational conformal models, parametrized by a Lie algebra [ here SI (2), S1 (3) ], and a real param- 
eter otz+, related to the central charge. Following the suggestion of ref. [ 8 ] [ for SI (2) ], we will call these models 
(extended) Dotsenko-Fateev (DF) models. For rational values of otZ+ they reduce to the (extended) minimal 
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models of refs. [ 9,10 ]. Although irrational, many of the standard techniques of CFT can still be applied [ 8,1 1 ]. 
In the present context, they are particularly suited to study genuine off-critical effects, without the additional 
complication that arises from the rich null-vector structure of the minimal models. 

For the unextended irrational models, Zamolodchikov considered in ref. [5 ] the perturbation by the 031 

"energy density" #1 and 021 "spin density" operator and conjectured the existence of an infinite number of 
conserved currents at grades 

N=2k, keN, for 0e =001) and ~ ~<a 2 ~< 1 , (3a) 

N = 6 k + 2 ,  6k, ke n  for0e=0t21) and~<aZ+ 4 2 .  (3b) 

The range of the screening charge is chosen respectively such that 0Q is the most relevant field of an operator 
product subalgebra it belongs to. A proof of the first conjecture will be given below. A proof of the 021 case can 
be obtained by embedding the Verma module into the Fock module of an S1 (3)-extended DF model. One first 
shows that under perturbation with the S1 (3) analogue 0(22)(11) of the 0(31) operator, the extended DF model 
possesses an infinite number of conserved currents at grades ~2 

N=2,  3 mod 3 for0(22)(11) • (3c) 

This is done by characterizing the conserved densities as Weyl invariant, quasiprimary Fock space solutions of 
the differential equations 

(~ '~+)_IPN=0,  i = 1 , 2  (4) 

where ( ~ +  ) _ 1 are the residues of the screening operators of the S1 (3) DF model. In this situation, a version 
of the recursive argument given below for the case (a) can be applied. The result for the 021 perturbation of the 
unextended model can then be obtained by a truncation. Although we have basically completed this construc- 
tion, there are a number of subtleties involved, that require a more detailed exposition than can be given here 
(see ref. [ 12 ] ). For the rest of this letter we will restrict attention to the proof of case (a). 

The Hilbert space of an (unextended) DF model is a direct sum of irreducible representation spaces of a pair 
of Virasoro algebras: 

~ = ~  ~M®~M. (5) 
M 

The sum runs over all completely degenerate highest weight representations of Vir with the given central charge 
c= 1 3 - 6 o ? - 6 a ¥  z. These are labelled by a pair of integers M =  (m' ,  m). The highest weight is given by 
hm,m=h(Otm,m); h(ot)=½a(a-4x/~Oto), 2ao=a+ +a+ 1, where am,,,=(1/x/~)(1-m')ot+ +( l /  
x/~) ( 1 - m ) a  + 1 is a weight vector of S1 (2). As usual, ~vt% is obtained as the quotient of the Verma module with 
highest weight hM by this maximal singular submodule ~M= V~/SVM. For a2+ irrational SV~t is generated by a 
single null-vector at level m' m. This allows a simple Fock space construction of ~M: Introduce the Frock module 
of a single free boson 

F,~,,~o = ~ a-xv~,,,~o, (6) 
2 

[a,,,am]=mY,,+m,o anv~,,o=0, n>0,  aova,,~o=OtV~,,~o, va,c~o=d~vo,,~o. (7) 

Here and in the sequel, we index the states of a module by partitions 2= (21, ..., 2ttx) ), 1 ~<21 ~<... <2p; l(2) is 
called the length of the partition and a_~ is shorthand for a_~t a-a2...a-a~. The Feigin-Fuks construction of null- 
vectors [ 13] gives the kernel of the canonical projection 

#t The completely degenerate representations of  a SI ( r +  1 ) D F  model are labelled by pairs of  Z'  vectors. We will always take P to be the 
vacuum representation, P =  ( 11 ), etc. 

~2 Here there are subcases for the range of  a2+, because ¢(22) t i 1 ) is contained in more  than one subalgebra [ 12 ]. 
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Ore'm" V(hm,m,C)-~Fm.m, L-~.lhm'm)---'~ ~ (Om'm)~..ua--uYm'm, 
It 

n - - I  

L_.=[ao+(n-1)x /~otola_n+ ½ ~ a_gag_.+ ~ a_._kak, n>O.  
k =  1 k>~O 

In case of a single null-vector it is directly given by the image of 

Qm: F_,,, m--,F_,,,_,,, m',m>O, Qm= ~,dul ...dUm V,~+(Ul)...V,~+(Um) , 

with V,+ (z) the screening operator. Thus 

(8) 

(9) 

(10) 

~m',, ----- Fm,,,/Ker Om'm "~ Fm, m/ OmF-,.,,,.m ( 11 ) 

and employing duality (F'm,,, g F_ m',-,, as Verma modules; Q~ = Qm ) one has the physical state condition [ 8 ] 

~m,mgKer(Q, , :  Fm,,~--'F,,,'-m), m ' ,m>O.  (12) 

For the discussion of conservation laws we further need the notion of a quasiprimary state. Let 

q~ A ( u ) B ( z )  (13) 
(AB)  (z)  = J u - z  

z 

denote the normal ordering adopted to the operator product expansion, with A(z)=Y, ,A,z  . . . .  , 
B (z) = ~,, B,z -" -  b momentarily two fields of integer spin. It gives a natural 1-1 correspondence between right- 
nested operator monomials and states in the corresponding module (based on a vacuum v): 

lim (Am-a(An2-a(...Ank-a(Bm'-b(Bm2-b(...Bmt-b)...) )...) ) )(Z)V 
z ~ O  

~ -  ( m - a ) ! ( n 2 - a ) ! . . . ( n k - a ) ! ( m l - b ) t ( m 2 - b ) L . ( m t - b ) ! A - - n l a - n 2  ...A-,,kB-m~B-m2 . . .  B - m t Y  " (14) 

The inverse mapping is given by 

(A_,B_, , ) (z)= ~du (U-z)a-n+b-m-IA(u)B(z), etc.  (15) 
g 

This is designed such that the action of 0z on operators coincides with that of L_ ~ on states. The equivalence 
classes modulo L_ ~ exact pieces shall be called quasiprimary states #3 and the corresponding modules signified 
by a hat, e.g. 17~= V~/L_ 1V~, etc. Forgetting about the antiholomorphic part, we are interested in the kernel of 

0,: ~1,--,~3,, 0 , = ( ~ 3 , ) - , d , 3 , .  (16) 

Here we have split off the charge-shifting part of  the vertex operator and adopted a non-standard moding: 

(17) 

(18) 

(19) 

V,~(z) = d , : a ° ° ~ ( z )  , 

~ ( z ) = e x p ( ~ , ° t a " z " )  ( ° t a n Z - "  ) 
, . > / ,  e x p o S ,  - =Z( )kZkk, z 

( N ) k =  ~ hl+k(ota_,,/n)hl(--aa,,/n), 
l ~ 0  

hk being the elementary Schur polynomials. From 

a3 The usual definition Lll ) =0 [7] fixes a representative. 
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1 
( ~)kV,~.,~o =hk(ota_n/n)v,~.,~ o = ~.. (L(__a?)kv,~.,~o (20) 

one has coincidence with the Verma module formulation [ 5 ]. 
On the vacuum Fock module, the physical state conditions (12) is ~ 1 --- Ker [ ( ~ ÷  ) _ ~ ]. Since ~1 = ~_~+ one 

sees that the conserved densities are characterized as physical, quasiprimary, $2 invariant states in Fit [ 14 ]. 
Here we defined a physical quasiprimary Fock state as a state feP~.,~o such that there exists another state 
geP,~,,~o with ( ~÷  ) _ ig~ 0 and 

( ~+)_,d,~+ ( f + L _ , g ) = O .  (21) 

$2 is the Weyl group of S1(2) and acts trivially via a , ~  ( - )"+ ~a, on F,~,,~ o. Explicitly, the conserved densities 
Pu can be constructed in two ways. Either one pre-selects the $2 invariant Fock monomials of  a given grade in 
an Ansatz f o r f a n d  then tries to solve eq. (21); or one pre-selects physical quasiprimary Verma module states 
and tries to find $2 invariant combinations of  their Fock space projections. Consider for illustration N =  6, say. 
Either way one finds (skipping the vacuum v~ 1; -- is the equivalence relation in P~ ~ ) 

p6 =L3_2 + ( 2 a o  2 l 2 I 6 g a 4  20~2 "~ 23 ~ 2  (22) - 7 1 ) L - 3  -~ ~a_l +5(a~--½)(a- la -2)2+16~ o--~ o v'~J,,-3 

in agreement with ref. [ 5 ]. 
However, the Fock space formulation alone does not gain much in establishing the existence of an infinite set 

of  conservation laws. Taking f i n  (21 ) $2 invariant, g arbitrary, one easily checks from the partition functions 
that (21 ) amounts to a linear system of 3, 7, 16, 30, 56 equations for 4, 8, 15, 30, 55 unknowns at grades N =  4, 
6, 8, 10, 12 respectively. (The number of quasiprimary Fock monomials of  odd power at grade N is 
½ [P(N) - P ( N -  1 ) - ½ ( N - 2 )  ] for N even, where [ ] denotes the integer part and P(N) the number of  parti- 
tions of N). For N~> 8 this system cannot be expected to have solutions on mere dimensional grounds. This 
means that besides the dimensions of  the various subspaces of  P~I, a partial input is required about the actual 
form of the physical states. Fortunately, this input turns out to be very simple, and gives rise to a recursive 
algorithm by means of which the existence of the conservation laws can be established. 

Introduce the Fock module 

P~ = K~Q~/(P~,)o  (23) 

with the $2 invariant sector (/~i~)o modded out. The vertex operator in (21 ) maps invariant polynomials onto 
each other, so that this makes sense. Further one infers that the physical state condition involves mixing of a 
Fock monomial of  power p with all those of lower powers. This means that P( ~< k) -'= dim ~ [p<~k is well de- 
fined, giving the number of  physical quasiprimary states (at a given grade) in which the highest non-invariant 
monomial has power k. Now suppose that at fixed grade N a list of  physical, quasiprimary Fock states has been 
given and one searches for a $2 invariant linear combination of them. The above properties of  the physical state 
condition then imply that if  one does this by elimination in order of decreasing power, one can use the dimen- 
sional bounds P( <~ k), k<~N, contained in the original list. Let C(~<k) denote the number of  representatives of  
~1 I,~k constructed in the course of  the elimination process. The recursion process is now driven by the fact 
that after the first step C( ~< k) >_-P( ~< k), for all k ~< N - 5  and the highest monomials of the representatives are 
forced to lie within a P( ~< k)-dimensional subspace of fill. 

The first non-trivial example for the mechanism at work here occurs at grade N =  10, so consider this for 
illustration. A basis for the physical quasiprimary Fock states is given by the Fock space projections of the Verma 
module states. To describe their structure, the following symbolic notation is convenient: Write [ a ]" for a quas- 
iprimary Fock monomial of  power p and let (C~o k) denote a polynomial in ot o of  maximal power k ~4. In this 
notation, the projections in ~ t  are of the form 

I fh  were included, this would be a homogeneous polynomial in a0 and h. 
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L-sL_2 ~- (0/0) [a] 3 , 

2 L_6L-2 ~' (0 /0)  [a ]5+  (0/3) [ a ] 3 ,  

3 L_4L-2 ~ (0/0) [a] 7+ (0/05) [a] 5+ (0/03) [a] 3 , 

5 L_2 = (0/03) [a ]7+ (0/g) [a ]5+ (0/03) [a] 3 , 

(24a) 

(24b) 

(24c) 

(24d) 

where = is now the equivalence relation in ~ .  The monomials to be eliminated are just those with odd power, 
and their number at power p = 3 ,  5, 7, 9 is respectively given by 1, 2, 1, 0. Clearly, [a ]  7 can  be eliminated 
trivially, resulting in 

5 L_2 + (a~)L-4L2-z ~- (0/3) [a] 5+ (a3)  [a] 3 • (25) 

Since the space of quasiprimary Fock monomials of power 5 is 2-dimensional, the combination occurring in 
(25) could in principle be different from that in (24b), apparently providing an obstruction to further elimi- 
nation. However, from (24a) -  (24d) we know that P( ~< 5 ) = 1, so that in fact the combinations have to coincide 
(the author has checked this by calculation). Thus [ a ] 5 can also be eliminated resulting in 

L 5 2 L 2 4 2 (0/o)L_6L_ 2 ~_ (0/7) [a]3 (26) _ _ 2 + ( 0 / 0 )  _ 4 L _ 2  -]- 

T h e  last step is again trivial giving the conserved density 

5 2 4 2 (0 /o)L-6L-2  + (0/06)L-sL-2 • Plo = L _ 2  + (0/o)L_4L-z + (27) 

In retrospect note that, say in the second elimination step, the information dim ~ l  IN= ~o.p=5 = 2, is actually not 
needed. The new state with highest non-invariant term at p =  5 is forced to lie within the P( ~< 5 )-dimensional 
subspace ~ ~ I p<. 5. Also the value P( ~< 5) is not needed. In any case, one has P( ~< 5) + 1 representatives of  the 
P( ~< 5 ) equivalence class, so that the linear system representing the elimination has at least one solution. This 
drives the next recursion step, etc. 

The result for generic N follows now from the facts: for N even, N>~ 6, 

(1) d i m ~ l N . p > l  i f f 3 ~ < p ~ N - 4 ,  d imPHIN,  N_~=0, P ( ~ < N - - 3 ) = 2  (28) 

(2) d i m f ~ l N . t = P ( ~ < 2 1 - 1 ) ,  l<~N/2-1 [l ,=l(2)inL_a;p:=l(2)ina_a]. (29) 

Point (2) express the fact that there is no need to solve the combinatorial problem of calculating the absolute 
values of the numbers P( ~< k), 1 ~< k~< N - 3 ,  because the dimensional restrictions they impose follow from the 
same set of  physical quasiprimary states that are used afterwards to eliminate the non-invariant terms of the 
~t~ I k sector. Note that even without any reference to the Lie bracket, the Virasoro generators play a distin- 
guished role as an organizing principle for the physical states. The Fock space projections of  the Virasoro mon- 
omials in ~ ~ have a maximal staggering in their [a] powers, which allows the deduction of an equality in (29). 
From an arbitrary basis of  ~l i one could only infer inequalities for the P( ~< k), k ~< N. The first point guarantees, 
in particular, that the recursion can be started. One easily checks that L ~_/2 and L t~- 2 ) /2 m- L_ 4L _ 3L t~-  2) /2 are 
the only physical quasiprimary states containing [a]~C-a; i.e. P ( ~ N - 3 )  =2.  In contrast, for N odd, one has 
L~-3)/EL_3" 0 and L(_N-5)/EL_5~-L_4L_3Lt_N2-7)/2 ~-L3_aLt_.~ -9)/2 is the only physical quasiprimary state 
containing [a ] u-4, so that the first step of the recursion fails. From the Jacobi identity, the absence of conser- 
vation laws at odd grades implies directly that the conserved charges ~ dzPu(z) for N even are mutually 
commuting. 

In summary, we can picture the situation in a flow diagram (fig. 1 ). The test P( ~< N -  2) >/2 rules out N odd 
from the beginning. For N even, there are two non-trivial steps in each cycle. The first includes that the calcula- 
tion of the new representatives in ~ ,  [~,~k is actually possible, because of the above dimensional argument. A 
necessary condition for this dimensional argument to work is that C( ~ k) >/P( ~ k). The second non-trivial step 
of the cycle is that this is just guaranteed by the preceeding recursion step. Thus, given the numbers P( ~ k), 
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@_--N-q 

Cate~Za te  ~ e w  

< k representatives I I  

Enter P(< k) 
- ~ ) ~ - - ~  C(< k)=  P(< k)+ iI I 

o/: 9 
Fig. 1. Flow diagram for recursion procedure. 

3 ~< k~< N, the algorithm will for N even inevitably run until  P( ~< 0) = 1, establishing the existence of a conser- 
vation law at grade N with unit  multiplicity. 

As ment ioned in the introduction,  a similar line of argument can be followed in the case of the S1 ( 3 )-extended 
DF  model. It turns out that the closure condit ion for the ~F (S1 (3) ) algebra is not needed. Again, the conformal 
generators serve mainly as an organizing principle for the physical sector of the Fock space. Thus, there appears 
to be no principle obstruction to the generalization to arbitrary Lie groups, although the complexity will increase 
quickly with the rank of the group. 

I like to thank H. Nicolai and H.J. de Vega for some useful discussions related to this work. Financial  support 
by Deutsches Elektronen Synchrotron DESY is gratefully acknowledged. 
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