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Abstract. As a first step in the non-perturbative study of 
a chiral U(1)| U(1) Yukawa-model with explicit mirror 
fermions the limit of infinite bare fermion mass is 
considered. Non-perturbative information is obtained 
from 14th order scalar hopping parameter expansion, 
which is confronted with high statistics numerical data. 
A remarkable universality of the upper bound for the 
renormalized quartic coupling is observed. A new kind 
of first order phase transition surface is localized, which 
is characterized by a large jump in the average field 
length. 

1 Introduction 

The existence of heavy fermions with masses of the order 
of at least a few hundred GeV is an interesting possibility 
in the Standard Model. The missing top quark can have 
a mass near 150-200 GeV, and a heavy fourth family with 
massive neutrino is still consistent with the experimental 
data [1, 2]. The mirror doubling of the fermion spectrum 
by three heavy mirror fermion families is not excluded 
either [3]. Even if the Yukawa-interaction is only medium 
strong at the electroweak energy scale, according to 
the perturbative renormalization group equations, it 
becomes stronger and stronger for higher energies. It can 
even become infinitely strong below the scale of quantum 
gravity, and this can be used as a basis for interesting 
theoretical models for the origin of the spontaneous 
electroweak symmetry breaking [4-6].  Therefore, the 
non-perturbative lattice investigation of strongly inter- 
acting Yukawa-models is highly actual and interesting. 

An important aspect of non-perturbative lattice for- 
mulations of chiral Yukawa-models is that they have to 
deal with the consequences of the Nielsen-Ninomiya 
theorem [7], implying the mirror doubling of the fermion 
spectrum on the lattice. The mirror doubling, i.e. the 
existence of fermion pairs with the same quantum numbers 
but opposite chirality, is usually realized by "fermion 
doubler" states in-different parts of the Brillouin-zone of 

momentum space. In the case of chiral Yukawa-models 
relevant in the electroweak sector the lattice formulation 
becomes more transparent if an explicit mirror doubling 
is introduced at the level of field components [8]. This 
doubling of the original chiral field content is convenient 
because of the existence of a phase with spontaneously 
broken mirror symmetry, where the mirror states are split 
in mass and are mixed with each other [8]. The interesting 
question is, whether the mirror fermion states can be 
decoupled, leaving a chirally asymmetric set of fermions 
in the physical spectrum [9, 10]. 

In the present paper we continue the study of chiral 
lattice Yukawa-models with explicit mirror fermions by 
doing the first step in the non-perturbative study of the 
simplest version, namely a model with chiral U(1)| U(1) 
symmetry. We investigate the limit of infinitely large 
off-diagonal bare fermion masses, which can be con- 
sidered as the limit with "quenched" or "static" fermions. 
Different other lattice Yukawa-models have been investi- 
gated in the quenched approximation by several groups 
[11-13]. In these works the bare fermion mass was put 
equal to zero, whereas in our case the bare mass is infinite 
(the fermion hopping parameter is zero). At zero hopping 
parameter the static fermion determinant is not a constant 
(like e.g. in quenched QCD), but is a product of local 
factors depending on the bare Yukawa-couplings. If the 
product of bare Yukawa-couplings is infinite the value 
of the bare mass is not relevant, therefore in this case our 
model is similar to the limit of other effective scalar 
models at infinite bare Yukawa-coupling. (Such limits 
were considered, for instance, in [12, 14, 15]. For a recent 
review on non-perturbative Yukawa-models see [16].) 
The study of the effective scalar theory at infinitely 
heavy fermions is useful, because its phase structure can 
be expected to be continued in the interior of the 
parameter space of the full chiral U(1)| U(1)-symmetric 
scalar-fermion model. The influence of the static fermion 
determinant on the cut-off dependent upper limit for 
the renormalized quartic coupling is also interesting (for 
references on upper limits see [17]). 

The plan of this paper is as follows: after defining the 
model in Sect. 2, the 14th order scalar hopping parameter 
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expansion based on the results of Lfischer and Weisz 
[18] will be presented and compared to high statistics 
numerical Monte Carlo data in Sect. 3. The numerical 
investigation of the phase structure is included in Sect. 4. 
The last section contains a summary and some concluding 
remarks. 

2 Lattice action 

A prototype of the chiral Yukawa-model with explicit 
mirror fermions and S U ( 2 ) |  symmetry was con- 
sidered in [8]. The corresponding SU(2)| U(1)-symmetric 
model with mirror pairs of standard fermion families was 
defined in [19]. Here we consider the simplest version, 
namely a chiral U(1)QU(l)-symmetric model with a 
mirror fermion pair (0x, Z~) and a complex scalar Higgs- 
field 4 ) ~ -  4)Rx + i4)1x. This model has many important 
qualitative features of the standard Higgs-Yukawa-sector 
since, for instance, from the point of view of anomalies 
only the U(1) factor matters. The general lattice action 
of the U(1)| U(1) model can be written as 

S 
x k I t  

I t  

+ Kz(L+~?.X~)] + K ,  ~ [(2x0x) - (L+~0x) 
I t  

+ (r - (~x+~x~)] + G , ( ~ x [ 4 ) , ~  - iV,4) ,~]Ox) 

+ Gz(~[4)R  x + i75 4),~]Z~) t .  (1) 

Here the normalization of the fields is left general, x is a 
lattice point and the sum ~ runs over eight directions of 

I t  

the neighbours. A convenient normalization of the fields, 
which will be used in this paper, is defined by 

/ % = 1 - 2 2 ;  K o --- K x = K; K ,  = rK; 

fi - #ox + 8rK = 1. (2) 

In the present paper we consider the limit of zero 
fermion hopping parameter K =0.  In this case the 
fermionic part of the action S0z ~ can be written as 

Sex4, = ~ 9xQ(4),,) ~x  (3) 
Jr 

where the fermion field ~u = (~., Z~) stands for the mirror 
pair, and the 8 |  fermion matrix Q is given in a 2 |  
block notation by 

Go4)x 0 1 0 

Q(4)~,) = 0 Go4):, 0 1 
1 0 Gx4) ~ 0 " 

0 1 0 Gz4)~ + 

(4) 

This is on a chiral basis, that is ~5 = diag(1, 1, - 1, - 1). 
After integrating out the fermionic Grassmann 

variables the scalar path integral involves the fermion 
determinant 

1-I det Q(4)x) = 1-I (GoGz4)+~ 4)~ - 1)'. (5) 
x x 

In a forthcoming publication [20] we shall numerically 
investigate the chiral U(1)| U(1) Yukawa-model (1) by 
using the hybrid Monte Carlo algorithm for dynamical 
fermions [21]. This method requires the duplication of 
the fermion spectrum by adding a second set of"flavours" 
having, instead of Q, the fermion matrix Q § This means 
that in the flavour-doubled model there are two mirror 
pairs of fermions. (In fact, due to the adjoint, the 0-field 
of the second flavour is a "mirror-field" with respect 
to the 0-field of the first flavour.) In the limit of 
zero fermion hopping parameter K = 0  the fermion 
determinant becomes 

1-] det [Q(4)x) + Q(4)x)] = I~ (GoGx4)+~ 4)x - 1) 8. (6) 
x x 

Since we want to apply the results of this work in [20], 
we shall consider also here the determinant in (6) instead 
of (5). Let us emphasize that this flavour doubling is of 
purely technical origin. The model defined by the action 
(1) is a perfectly honorable one. It can be investigated, 
for instance, by a non-perturbative fermion hopping 
parameter expansion. Even its fermion determinant is 
positive in the symmetric phase near K = 0. (In the broken 
phase the determinant of the original model is not positive 
definite but, of course, the flavour-doubled determinant 
det (Q + Q) is.) 

The effective scalar action containing the logarithm 
of the fermion determinant (6) is 

sol, = Z t4); 4)x + ,~(4); 4)x- 1) 2 

+ 81ogll + - 1 - x ~  / '  -- GoGx4)~, 4)xl 4)+~4)~ (7) 
I t  J 

In the present paper we shall investigate the effective scalar 
model defined by this lattice action. It depends on the 
bare Yukawa-couplings only through the product GG - 
GoG x. At vanishing GG it reduces to the O(2)-symmetric 
(or equivalently U(1)-symmetric) two-component 4)4 
model (4-dimensional "xy-model"). At GG = ~ ,  after 
appropriately redefining the field normalizations, our 
model becomes similar to the infinite bare Yukawa- 
coupling limit of some other lattice Yukawa-models 
[12, 14, 15]. 

A qualitatively important property of the effective 
scalar action (7) is the appearance of the infinite loga- 
rithmic singularity at GGI4)xl 2 =  1. This corresponds to 
a very strong (high order) zero in the scalar path integral. 
This zero is, however, partly or completely compensated 
in the fermionic expectation values which involve the 
inverse of the fermion matrix (again in a 2 | 2 block 
notation): 

Q(4)x)-  i + = (GoGx4)x 4)x-- 1) -1 

G~4) + o - 

[ ~ 1 o Go4) :  . (8) 
\ -- 1 0 G04)x 

A complete compensation of the zero in the scalar path 
integral occurs at the maximum possible number of 
fermions in one point. In the flavour-doubled model this 



means an expectation value ( ~  ~x) x 6. This phenomenon 
is quite analogous to the effect of fermion zero modes 
appearing in gauge theories in an instanton field [22]. In 
the present context the zero modes make the computation 
of (static) fermion expectation values more difficult, 
because of the essential difference in the path integral 
measure. For instance, a Monte Carlo updating with the 
effective scalar action in (7) does practically never probe 
the vicinity of the zero modes, hence the numerical 
calculation of fermionic expectation value would be very 
inefficient (especially for higher powers of the fermion 
fields). Therefore, in the present paper we shall only 
consider purely scalar expectation values. 

3 Scalar hopping parameter expansion 

A useful non-perturbative analytical tool is the expansion 
in powers of the scalar hopping parameter ~. This 
corresponds to the "high temperature expansion" in 
statistical physics models [23]. It has been used by 
Liischer and Weisz in their approximate analytical 
solution of the O(n)-symmetric r models [24]. They 
worked out the combinatorial ingredients of the x- 
expansion up to 14th order by using "linked cluster 
expansion" techniques [18]. These are available in form 
of a computer file and can be used to determine the 
expansion coefficients in an O(n)-symmetric scalar model 
with arbitrary one-site potential. The x-expansion is 
expected to give a good approximation in the symmetric 
phase not very close to the critical line of the symmetry 
breaking phase transition, where the scalar boson mass 
in lattice units satisfies, say, m R > 0.5. 

For the determination of the renormalized mass (mR), 
renormalized coupling (gR) and field renormalization 
constant (ZR) one considers the susceptibilities Z2, #2 and 
X4. Denoting the real field components by r (a = R, I) 
and the number of lattice points by N, these are defined 
by connected expectation values ( . . . )~ as 

1 
< r  . . . .  r . . . .  >c . . . .  

XhX2 

1 
~ (Xl -- X2)2 ~((/) . . . .  ( f l a :~x25c=aa la2#2  

Xl ,x2 
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1 

XI,X2,X3.X4 

__1 
- -  ~(6 . . . .  fi . . . .  + 6 . . . .  6 . . . .  ~- (~ . . . .  6 . . . .  )Z4" 

The relations to the renormalized quantities are: 

(9) 

m2=8X2; ZR=8(Z2)2; gR=--64(p~)2.  (10) 
~2 #2 

Let X stand for X2,/~2 or Z4 and let us write the 14th order 
scalar hopping parameter expansion in infinite volume as 

Z =  ~ z{L)(2;IL. (11) 
L=O 

The coefficients Z ~L) are given by 
Z (L) = ~ v~aN(i,1).c,N(i.2) r~N(i,9) 

L~/ '"2 " ~ 4  "" '~q8 

.{P(i,O)+P(i, 1)2+e(i ,2)2z+.. .+P(i,  7)27 } (12) 

where 

1 Jl+2k (13) 
mZk  2kk! J1 

and Jk is the following integral: 

Jk = ~ dxxke-U(x). (14) 
o 

Here u denotes the single-site potential which, according 
to (7), is 

u ( x ) = x E  + )~(xZ-1)E  + 8 l o g [ 1 - G o G x x 2 1 - 1 .  (15) 

The numbers N(i, j) and the coefficients P(i, j) were 
worked out by Liischer and Weisz [18]. The one-site 
integrals (14) can be evaluated numerically without 
problems. An example of the expansion coefficients at 
2 = 1.0 and GG = 2.0 is given in Table 1. An estimate o f  
the critical scalar hopping parameter Xc(2, GG) can be 
obtained, for instance, from the ratios g~ L- 1)/Z~zL~ of the 
expansion coefficients of the susceptibility X2. A better 
way is, however, to first transform the x-series into power 
series in the variable v defined by 

v = ~ ~ In {S d4q d~b2 exp [2xq~, 4~z - u(q~l)-- u(4~2)] } 

(161 

5 
6 
7 
8 

9 

10 
11 
12 
13 
14 

1.28162273567749629 
26.2809093856875116 
474.041273466298207 
8470.43765154776338 
148679.294294903782 
2604645.50916115567 
45313279.2924877293 
787595575.799141467 
13639906221.8475151 
236091476772.776138 
4077671618171.17187 
70402717447091.7383 
1213809133591099.31 
20922020708512059.0 
360266048400498016. 

0.000O0000000000000 
26.2809093856875116 
1077.83075145527084 
30572.3959919867339 
749336.363319444703 
16919075.3756249063 
363025126.733940005 
7516356382.12631607 
151663696729.061890 
3000024536927.46387 
58428257061388.2617 
1123646109850887.25 
21386298745822485.0 
403501797482870496. 
7556880972703807740 

2 L x ~  
-2.37275249482262840 
-194.622306784011599 
-9187.51262650855460 
-336972.354188083430 
-10623518.0237211734 
-303068726.394580126 
-8046225512.45104313 
-202412434142.887100 
-4881687015081.74805 
-113824209590282.914 
-2581339178546899.75 
-57200047446746501.0 
-1242819376261315070 

-26551619137479991300 
-558993250856086077000 

Table 1. The expansion coefficients of X2,#2 and Z4 at 2 = 1.0, 
GG = 2.0 
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Table 2 a-e .  The  results of the scalar hopp ing  parameter  expansion 
for mR = 0.5 at  (a) 2 = 0.01, (b) 2 = 0.1, (e) 2 = 1.0, (d) 2 = 10.0 and  
(e) 2 = 100.0 as a funct ion of GG. ~c~ is the critical value, n in the 
last co lumn is the value where the renormal ized  mass  m R = 0.5 

(a )  

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

�9 K c 
0.128396(5) 
0.24112(4) 

0.235(8) 
0.0593(1) 

0.0180628(5) 
0.01582i(1) 
0.016070(1) 
0.016401(1) 
0.016678(1) 
0.016902(1) 
0.017087(1) 
0.017241(1) 
0.017372(1) 
0.017484(1) 
o.o17581(1) 
o.o17666(1) 
0.017742(1) 
o.o178o8(1) 
0.017868(1) 
0.017922(1) 
0.017971(1) 

Z~ i 9n 
4.020(2) i3.37(5) 
2.1427(7) 5,8(1) 

2.10(5) -956 
7.7(2) -692 

28.76(4) 34(3) 
39(3} 32.80(7) 

32.29(7) 39(3) 
31.63(7) 39(3) 
3t.11(7) 39(3) 
30.70(7) 39(3) 
30.37(7) 39(3) 
30.09(7) 39(3) 
29.87(7) 39(3) 
29.68(7) 39(3) 
29.51(7) 39(3) 
29.37(7) 39(3) 
29.25(7) 39(3) 
29.14(7) 39(3) 
29.04(7) 39(3} 
28.95(7) 39(3) 
28.87(7) 39(3) 

0,12437 
0.23333 
0,23312 

0.058586 
0.017256 
0.015047 
0.015280 
0.015595 
0.015859 
0.016074 
0.016250 
0.016397 
0.016562 
0.016629 
0.016722 
0.016803 
0.016877 
0"016939 / 
0.016996 

10.017047 
0.017094 I 

(b) GG 
0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.t0 
1.20 
1.30 
1.40 
1~5o 
1.6o 
1.7o 
1.80 
1.90 
2.00 

Kc 
0.14633(2) 
0.24369(4) 2,1231(4) 
0.3619(2) 124304(2) 
0.362(8) 1.39(1) 
0.1337(3) 3.2(2) 

0.04189(1) 12.3661(6) 
0.027096(1) 19.2(4) 
0.025943(2) 20.0(5) 
0.026200(2) 19.8(5) 
0.026577(2) 19.5(5) 
0.026920(2) 19.3(5) 
0.027213(2) 19.1(5) 
0.027464(2) 18.9(4) 
0.027680(2) 18.7(4) 
9.027868(2) 18.6(4) 
0.028032(2) 18.5(4) 
0.028177(2) 18.4(4) 
o.o283o6(2) lS.3(4) 
0.028422(2) 18.3(4) 
0.028526(2) 18.2(4) 
0.028620(2) 18.1(4) 

3.53830(1) 114.9(8 ) 
0.23543 10.5(4) 

10.5(4) 0.34943 
-477 0.35804 
-1818 0.13267 
14(1) D.040425 
38(3) ~.025801 
40(3 / ~.024662 
40(3) 0.024901 
40(3) 0.025260 
40(3) 0.025586 
40(3) 0.025866 
40(3) 0.026105 
40(3) 0,026311 
40(3) 0.026490 
40(3) 0.026646 
40(3) 0.026785 
40(3) 0.026908 
40(3) 0.027019 
40(3) 0.027118 
40__(3) 0:027208 

(c) 

(J) 

(e) 

o.oo{ 
O.lOI 
0.20 { 
0.30 i 
0.40 I 
0.50, 
0.60i 
0.701 
0.80 
0.90 
1.00 
1.10 , 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

~c ~B 
0.17691(2) 
0.23285(3) 
0.31026(6) 
0.4054(1) 
0.5123(1) 1.0119(2) 
0.6212(4) 0.83376(4) 
0.557(5) 0.89(1) 

0.3057(8) 1.48(1) 
0,1416(1) 3.5660(2) 

o.o7543(1) 6.887(7) 
0.058912(2) 8.81(2) 
0.055599(4) 9.33(2) 
0.055254(5) 9.39(2) 
0.055594(5) 9.33(2) 
0.056075(5) 9.25(2) 
0.056557(5) 9.18(2) 
0.057004(5) 9.10(2) 
0.057410(5) 9.03(2) 
0.057777(5) 8.98(2) 
0.058108(5) 8.93{2) 
0.058408(5) 

ZR 9R 
2.935(3) 30(2) 
2.230(2) 26(2~ 
1.6725(8) i 23(1) 
1.2795(4) !21(1) 

19(1} 
13(2) 
-327 

-1162 
-76 

28(2) 
37(3) 
40(3) 
40(3) 
40(3) 
40(3) 
40(3) 
40(3) 
40(3) 
40(3) 
40(3) 

8.88(2) 4o(_33) 

0.16944 
0.22348 
0.29824 
0.39011 
0.49342 
0.59920 
0.54899 
0.30308 
0.13848 

0.072350 
0.056107 
0.052856 
0.052504 
0.052821 
0.053276 
0.053734 
0.054160 
0.054546 
0.054895 
0.055211 
0.055497 

-GG 
0,00 
0,10 

I 0,20 
0.30 
0,40 
0,50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 

~c 
o.157o7(1) 
o.16455(1) 
o.17451(1) 
o.1878o(1) 
o.2o56o(1) 
0.22807(2) 
0.25769(2) 
0.29296(2) 
0,33395(1) 
0.35291(3) 
0.21291(6) 
0.115243(3) 
0.100402(8) 
0.0997990) 
O.lOO93(1) 
0.10219(i) 
o.1o331(i) 
O.lO431(1) 
O.lO518(1) 
0.10596(1) 
0.10665(1) 

3.3o3{8) i 40(3) / 0.14930 
3.153(7) 140(3) I 0.15643 
2.973(7) ] 39(3) I 0.16592 
2.762(6) I{ 39(3) 0.17864 
!.524(7) 39(3) 0.19555 
L269(5) 39(3) 0.21755 
!.014(4) 39(3) 0.25522 
~.772(4) 38(3) 0.27888 
,.554(3) 38(3) 0.31806 
L471(2) 32(2) 0.33768 
.4345(2) 6.7(7) 0.20521 
t.506(9) 37(3) 0.10985 
5.17(1) 40(3) D.095401 
5.20(1) 40(3) 0.094782 
5.14(1) 40(3) ).09585: 
5.08(1) 40(3) }.09703[ 
5.o2(1) 4o(3) ~.o9811( 
4,97(1) 40(3) ).09905] 
4.93(1) 40(3) ).09989~ 
4.89(1) 40(3) 0.10063 
4.86(1) 40(3) 0.10128 

G G ' K c 
0.00i0.15134(1) 
0.1010.15202(1) 
0.20!0.15287(1) 
0.30 0.15397(2) 
0.40 0.15543(2) 
0.5010.15743(2) 

Z~ I gR L 
3.426(9)!41(3)[0.14370 
3.411(0) i41(3) 0.14434 
3.392(9) i41(3 ) 0.14515 
3.368(9) i41(3 ) 0.14619 
3.336(8) 41(3) 0.14758 
3,294(8) 41(3) 0.14948 
3,235(8) 41(3) 0.15218 0.60 

0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 

~2.00 

0.16028(2) 
0.16445(2) 
0.17059(2) 
0.17922(2) 
0.15637(1) 
0,12974(1) 
0.13289(1) 
o.13515(1) 
0.13679(1) 
o,138o2(1) 
0.13896(1) 
o.13971(1) 

0.14031(1) 
o.14o8o(1) 
o.14121(1) 

3.153(8) 41(3) 0.15014 
3,040(8) 41(3) 0.16197 
2.893(8) 41(3) 0.17016 

34320~(s)) 40(3) 0.14861 
41(3) 0.12318 

3.90(1 ) 41(3) 0.12617 
3.84(1) 41(3) 0.12831 
3.79(1) 41(3) 0.12987 
3.76(1) 41(3) 0.13104 
3.732(9 41(3) 0.13193 
3.712(9 41(3) 0.13264 
3.696(9 41(3) 0.13321 
3.683(9 41(3) 0.13368 
3.672(9 41_(3) 0.13407 
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Fig. 1. The critical lines for fixed 2 =0.01,0.1, 1.0, 10.0 and 100.0 
as obtained from the 14th order scalar hopping parameter expan- 
sion. The dotted curve corresponds to ). = 0.1, the dashed one to 
2 = 1.0, the dashed-dotted to 2 = 10.0, whereas 2 =0.01 and 2 = 100.0 
are represented by full curves. (The flatter one is 2 = 100.0.) 

and use the ratios of  the expansion coefficients in v [24]. 
The asymptot ic  behaviour  of  these ratios is correlated 
with the form of the singularity of Z2 at Xc. The most  
precise values of  Xc(2, GG) can, therefore, be obtained 
if one assumes a specific form of the singularity cor- 
responding to the scaling laws near the expected Gaussian 
fixed point. However,  both  the introduct ion of v and the 
assumption of  the scaling law give only small corrections. 
Already the naive estimates based on the original ratios 
Z(2 L- 1)/z(2L) are quite good. The main effect of the cor- 
rections is that  the estimated errors become smaller. The 
obtained critical lines for 2 =0.01,0.1,  1.0, 10.0 and 100 
are shown in Fig. 1. The errors on xc are in most  cases 
so small that  they are invisible on the scale of the plot. 
Exceptions are a few points in the region where, for fixed 
2, xc decreases as a function GG. (For the numerical values 
of K c see Table 2a-e.) 

The most  impor tant  information one can obtain from 
the scalar hopping  parameter  expansion is the behaviour  
of the renormalized quantities near the edge of the scaling 
region. The experience in pure scalar ~4 models shows 
that  the 10-14th order expansion is quite accurate in the 
region where the renormalized mass is not  smaller than 
m R ~ 0 . 2 5 - 0 . 5 .  This is supported by high statistics 
numerical simulations [25] showing that in this region 
the scale breaking lattice artifacts are already small and 
the perturbative scaling behaviour  starts to set in: the 
pure 4)4-model behaves as a quasi-cont inuum theory with 
finite cut-off. 

In order to check this behaviour  also in our  effective 
scalar theory including the static fermion determinant,  
we calculated the value of the renormalized coupling on 
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Fig. 2. The value of the renormalized coupling gR for m R = 0.5 in 
the symmetric phase at 2 = 0.01, 0.1, 1.0, 10.0 and 100.0 as obtained 
from the 14th order scalar hopping parameter expansion. The 
dotted curve corresponds to 2 = 0.1, the dashed one to 2 = 1.0, the 
dashed-dotted to 2=  10.0, whereas 2=0.01 and 2 = 100.0 are 
represented by full curves. (The flatter one is 2 = 100.0.) 

the surface where m R = 0.5 (see Table 2a-e)  and compared  
it in a few points to numerical simulation data  with high 
statistics. The Monte  Carlo simulations were performed 
by the Metropolis  algorithm. In order to be able to 
determine the renormalized coupling with good accuracy, 
we have chosen the lattice size carefully. According to 
the experience of previous q~4 calculations in the symmetric 
phase [25], the optimal lattice size for the given mass 
mR = 0.5 is 83.12. This is because on larger lattices the 
statistical errors of OR are too  large. On  small lattices, on 
the other  hand, the finite size effects are too  strong. 
Therefore, we have chosen an 83.12 lattice and performed 
4.106 sweeps in two points at, respectively, 2 = 0.1 and 
2 = 1.0, and 2.106 sweeps in a third point  with 2 = 100.0. 
The corrections for finite volume effects were done 
by assuming l - loop perturbative formulae. These were 
checked to work well in pure ~b 4 models on similar lattices 
and at similar renormalized couplings [25]. The obtained 
results for the mass m, susceptibility Z2 and 

2,1. ~= m 4 Z4 (17) (X2) 2 

are given in Table 3, together with the infinite volume 
extrapolations for mR, ZR and OR- The renormalized 
couplings agree very well with the corresponding results 
of the K-expansion in Table 2a-e.  The modified wave 
function renormalizat ion factors Z'R =-2xZR are, within 
a few percent, equal to 1 in the same way as in pure q54 
models. In  general, the effective scalar model  behaves 
almost always quite similarly to pure ~b 4 models if one 
goes near to the critical line. The exception is the 

;~ c a  ,~ L ,~ ] x :  ] - ~ , ,  I - , , ,  ! z,~ ! g,~ 
0.10 1.0 0.0255 i0.502(2) 75.1(3) 35(3) 0.503(2) 19.0(4) 40(4) 
1.00 1.4 0.0530 0.511(2)~34.9(2) 35(3) 0.513(2) 9.2(2) 39(4) 
100. 2.0 0.1340 0.509(8) 14.5(3) 50(19)]0.510(8) 3.8(4) 59(25) 

T a b l e  3. The results of the numerical simulation together with 
the infinite volume quantities extrapolated by the l-loop per- 
turbative formulae. The numbers in parentheses are error 
estimates in the last numerals 
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intermediate piece of the critical line near GG = 0.5 - 1.0 
where, for fixed )., the critical hopping parameter  K~ 
decreases as a function of GG. In this region, as it is shown 
by Table 2a-e  and Fig. 2, the calculated couplings are 
negative. It will be discussed in detail in the next section 
that here the phase transition to the broken phase is of 
first order and, therefore, no continuum limit can be 
defined. 

4 Phase structure 

In this section, we present what we know about the phase 
structure of this U(1) chiral Yukawa model at K = 0, i.e.: 
the infinitely heavy fermion limit. In this limit, the fermion 
determinant can be easily calculated analytically, and the 
effective action is given in (7). 

There are two limiting cases which are worthy of 
immediate attention. When GG - 0, we get back the pure 
scalar 0(2) model, which has a critical line in the (r, 2) 
plane, separating the symmetric phase and the broken 
symmetry phase. At GG = ~ ,  the action becomes the 
pure scalar 0(2) one minus a ~ log (q~+ ~b~) 8 term. If at 

X 

the same time ). = 0% the system goes back to the pure 
0(2) model with fixed field length and has a critical point. 
So at least for GG = oo at large 2, we believe that the 
system should have a critical point at some x-value. 

The above observation leads us to believe that when 
GG is either small or large, the system should behave like 
an effective scalar field theory and have a second order 
phase transition line (in the (K, GG) plane for fixed 2) 
along which the continuum limit can be taken. 

Also, when ). = co, the field length is restricted to be 
one, hence the log term in the effective action becomes 
an irrelevant constant for any value of GG. We conclude 
that in this case the system undergoes a second order 
phase transition at a fixed ~c for any value of GG. 

When ~ = 0, there is no coupling between fields on 
different lattice sites, therefore the partition function is 
analytic in GG and ). even when the volume is infinite. 
This means that there cannot be any phase transition 
along the ~ = 0 axis and the system is always in the 
symmetric phase. 

We carried out Monte Carlo simulations in exploring 
the phase structure on 84 lattice which is enough for 
qualitative understanding. Most of the runs were done 
at ). = !.0. What  was found about  the phase structure in 
the regions mentioned above basically agrees with the 
expectations. Values of the critical ~ at small and large GG 
also agree with those obtained from the scalar hopping 
parameter  expansion (up to some small deviations pre- 
sumably due to finite size effects). 

However, at ) .=  1.0, we also found very strong 
evidence for a first order transition at GG = 0.3, 0.4, 0.5, 
0.7,0.8,0.82 and 0.83. The phase structure seems to be 
more complicated than expected (Fig. 3). At the first order 
phase transition we have obtained either strong hysteresis 
loops or two-peak structure in the histogram of the link 
variable l, where l is given by 

1 - -  + , 

l -- ~ - ~  ~b~+~q~ x (18) 

1.00 . . . .  
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Fig. 3. The critical points at 2 = 1.0 as obtained from Monte Carlo 
simulations on 84 lattice. Triangles represent first order phase 
transitions. Points without error bars have errors smaller than or 
comparable to the size of the symbol. 

and V =- N - L3T is the number  of lattice points. 
We also measured the slope of the constrained 

effective potential at some intermediate points to make 
sure that the recta-stability or the two-peak histogram 
we saw is genuine (Table 4). The constrained effective 
potential on a finite lattice is defined as 

exp{--VUv(~)}=_~D[dpxJb(~b-l~dp~)e -s*rf (19, 

where the effective action S~ff is given by (7). The 
derivative of the effective potential along the real direction 
in the 0(2) space can be worked out as 

8Uvs(~R = (2 - 16K)6R + (~(~bx4).  + $ _ l)~bRxt 6 

16G,Gz q~a~ \ (20) + 

where ~b a means the real component  of the complex 
field, and ( )6 is the statistical average subject to the 
constraint represented by the f-function in (19). Due to 
the underlying 0(2) symmetry, no generality is lost 

Table 4. Data of the slope of the constrained effective potential 
measured on 8* lattice. U~ means OUv/O~ a 

1 0.3 0.74 0.8 0.0 -0.869(2) 
1.0 0.3 0.74 1.2 0.0 2.630(1) 
1.0 0.3 0.74 2.1 0 . 0 - 2 . 0 1 4 ( 3 )  
1.0 0.3 0.74 2.4 0.0 7.298(2) 
1:0 0.8 0.135 0.1 0.0 1.301(1) 
1.0 0.8 0,135 1.2 ]0.0 -0.247(8) 
1.0 0.8 0.135 1.6 0.0 0.041(3) 
1.0 0.83 0.1117 0.2 0.0 2.882(1) 
t .0  0.83 0.1117 0.5 0.0 9.130(1) 
1.0 0.83 0.1117 1.1 0.0 -0.207(3) 
1.0 0.83 0.1117 1.4 0.0 -0.202(1) 
1.0 0.83 0.1117 1.7 0.0 2.258(4) 



when we choose the derivative with respect to the real 
component of the ~ field. In Monte Carlo simulations, 
one just has to generate the probability distribution 

e{~)}oC(~[~--l~x ~)x]e-Sefr (21) 

which can be achieved by using the technique of the 
Lagrange multiplier in the hybrid Monte Carlo method 
[26]. We always set ~ = 0 in our simulations. 

We believe that we understand how this first order 
phase transition arises and will explain in the following. 

When x = 0, the effective action is a simple sum over 
the on-site action because there is no coupling between 
fields at different lattice sites. (Remember we are at K = 0.) 
Due to the presence of the log term which comes from 
the fermion determinant, the on-site action, when plotted 
against ~b + r has a double-well structure with a singular- 
ity at ~b + ~b~ = 1/GG between the two minima. As we turn 
on x, that x-term in (7) will align the spins at both minima. 
The energy density of the minima will decrease as the 
spins are more aligned. When the energy factor beats the 
entropy factor, the broken symmetry phase will have the 
lower free energy density and becomes the state of the 
system in the infinite volume limit. So the system goes 
from the symmetric phase to the broken symmetry phase 
through a seccond order phase transition. However, the 
one-site potential has a double-well structure and the 
energies of the two minima will depend on the value of 
GG. Therefore, there is also a possibility that the system 
jumps from one minimum to the other through a first 
order phase transition. After the x-term is turned on, 
depending on the values of GG and K, either the symmetric 
phase or the broken phase with spins from either minimum 
will have the lowest free energy density and defines the 
state of the system in the thermodynamic limit. Different 
mechanisms can come in to change the state of the system 
at different stages. So sometimes we have a second order 
phase transition and sometimes a first order one. This is 
basically what is behind the phase structure of the system. 

We explore the phase structure by observing the 
system in the (x, GG) plane at a fixed 2. The (x, GG) plane 
can be divided into three regions according to the value 
of GG. In these regions the mechanism triggering the 
phase transition is qualitatively different. The three 
regions will later be called regions (A), (B) and (C) 
corresponding to small, large and intermediate values of 
GG, respectively. To make the presentation simpler, let 
us call the symmetric phase with shorter spins "symmetric 
phase (I)". The broken phase with shorter spins is called 
"broken phase (II)". The symmetric and broken phases 
with longer spins are called "symmetric phase (III)" and 
"broken phase (IV)", respectively. We use x t and x~ to 
denote the values of x at which first and second order 
phase transitions happen. 

( l )  Region (A) 

In this region, GG is so small that the minimum with the 
smaller ~+ ~b~ value is the global minimum at x = 0. As 
x increases from zero at a fixed GG, the spins with longer 
field length are more easily aligned. But the minimum 
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with larger field length has a much higher energy density, 
therefore for smaller x values the system will be in phase 
(I). Then the second order phase transition from phase 
(I) to phase (II) happens at some xc value. At some even 
larger x, value, the minimum with longer fields has lower 
free energy density. The system will jump from the 
previous minimum to this minimum, and undergoes a 
first order phase transition from phase (II) to phase (IV). 
After this, the system will continue to be in phase (IV), 
because it has longer fields and is energetically favoured 
by the x term in the action. 

When GG gets smaller, the difference between the two 
minima at x = 0 is larger, which implies that ~q grows as 
GG decreases. Also the first order transition should be 
stronger at smaller GG. The average field length of the 
other minimum becomes larger as GG decreases, therefore 
xc is smaller for smaller GG. In our Monte Carlo 
simulations at 2 = 1.0 we have seen these qualitative 
behaviours. We think that the first order phase transition 
line can go all the way to the corner at x = oo and GG = 0, 
because no matter how small GG is, we can eventually 
make phase (I V) be the phase with the lowest free energy 
density by increasing x indefinitely. However, for some 
very small value of GG, the value of xt can be very large. 
Also, as far as the continuum limit is concerned, the first 
order phase transition line is not relevant, therefore we 
did not pursue the details of it. 

(2) Region (B) 

In this region, GG is large enough such that the minimum 
with the larger ~b~ + ~bx value becomes the global minimum 
at x = 0. So, for small x values, the system is in the 
symmetric phase (III). As the x-term is turned on to align 
the spins, the system will go from phase (III) to phase 
(IV) through a second order phase transition. As x gets 
even larger, phase (IV) will keep having the lowest free 
energy density, and the other minimum never has a 
chance to become the global minimum. Therefore in this 
region, we have only the second order phase transition 
line. 

As GG grows to infinity, the field length at the global 
minimum will decrease gradually. This shows that ~c c 
should increase gradually as GG approaches infinity. We 
also see this qualitative behaviour in our simulations at 
2 =  1.0. 

(3) Region (C) 

In the region where the value of GG is intermediate, the 
minimum with shorter field length is still dominant at 
x = 0. So, at small enough x the system is in phase (I). 
However, the difference between the two minima becomes 
so small that when x grows the higher minimum comes 
down before the spin-alignment at the lower minimum 
has occured. This implies that in this region, the first 
order phase transition from phase (I) to phase (IV) will 
happen first. The first order transition line in this region 
is the continuation of the first order line in region (A). 
As x becomes even larger, the energy of the minimum 
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Fig. 4. Hysteresis loop of the link variable at 2 = 1.0, GG = 0.8 on 
84 lattice. Each point represents 20000 Metropolis sweeps with 5 
hits per lattice site. Errors are smaller than or comparable to the 
size of the symbols 
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Fig. 5. The his togram of the link variable at 2 = 1.0, GG = 0.83 and 
tc = 0.1117 on 84 lattice. The statistics is based on 80000 measure- 
ments. The normalizaion is chosen such that the total area under 
the curve is one 

with the larger field length will drop faster, and phase 
(I V) will always have the lowest free energy density. Hence 
in the thermodynamic limit, we have only the first order 
phase transition. 

When GG becomes larger in this region, the difference 
between the two minima at x = 0 will be even smaller. 
So we expect that x t value will decrease as GG increases. 
Also, the first order phase transition should become 
weaker as GG increase. We see this qualitative behaviours 
in our simulations on the 84 lattice at 2 = 1.0. There we 
obtained a weak hysteresis loop at GG = 0.8 (Fig. 4) and 
a double-peak structure in the histogram of the link 
variable l at GG =0.83, x = 0.117 on 84 lattice (Fig. 5). 
Compared to the hysteresis loop of I at GG = 0.3 (Fig. 6), 
we clearly see that the first order phase transition is 
becoming weaker and weaker as GG increases. At GG = 
0.85, we did not see any two-peak structure in the 
histogram. 
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Fig. 6. A strong hysteresis loop of the link variable l at 2 = 1.0, 
GG = 0.3 on 84 lattice. Each point  has 30000 Metropolis sweeps 
with 5 hits per lattice site. Errors  are smaller than or  comparable  
to the size of the symbols 

An important point is that we did not find any phase 
transition between the two symmetric phases with short 
and long spins. This implies that for small enough x, as 
we go from region (A) to (C) and then to region (B) by 
increasing GG, the system will change from symmetric 
phase (I) to (III)  in a gradual fashion. Hence, the second 
order phase transition line in region (B) is actually a 
continuation of the first order transition line in region 
(C). Somewhere along that line, the phase transition 
changes from first order to second order. We cannot be 
sure about exactly at which GG value this happens. 
However, based on our qualitative picture, we know that 
when we are well within region (B), (for 2 = 1.0, this means 
a GG value substantially larger than one), the phase 
transition should be safely a second order one. There the 
mechanism for the phase transition is the spin alignment 
caused by the x-term in the action. This is completely 
different from the mechanism triggering the phase transi- 
tion in region (C). In order to verify this numerically, we 
did finite size scaling analysis on the specific heat C v at 
GG = 2.0 and 2 = 1.0, where Cv is defined as 

Cv = V [ ( l  2)  - (l)Z]. (22) 

We first got some idea about the location of the phase 
transition point on 6a,84 and 104 lattices and then 
measured Cv around the transition point on these lattices 
(Fig. 7). If the phase transition is of first order, then we 
expect that 

Cv(L)ma, oc L" (23) 

with a = 4.0 in four dimension, where L is the linear size 
of the L 4 lattice, and the subscript max means the peak 
value of Cv(L) vs. x. If the system behaves like a pure 
scalar O(n) model (n = 2 in our case), then the phase 
transition is of second order with ~ = 0 (plus some 
logarithmic correction since we are in four dimensions). 
We obtained a = 0.20 + 0.10 by fitting the data of the 
specific heat. (If we use data from 84 and 104 lattices only, 
we get a = 0.16 _+ 0.21.) This clearly shows that the phase 
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Fig. 9. A schematic plot of the phase diagram at strong 2 (e.g.: 
2 = 10.0). The first order phase transition here is weaker than that 
in Fig. 8. 
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Fig, 8, A schematic plot of the phase diagram at weak 2 (e.g.: 
2 = 1.0). Solid curves a re  the second order phase transition lines. 
The dash line depicts the first order phase transition. Regions 
corresponding to different phases are marked in the figure 

transition is not a first order one, and is consistent with 
a Gaussian critical point instead. We believe that for GG 
greater than 2.0 at 2 = 1.0, the phase transition is second 
order and the continuum limit can be taken around it. 

The remaining question is how this phase structure 
at 2 = 1.0 changes as we vary 2. If we go back to the 
one-site action at x = 0, we will see how the distance (in 
field length) and the difference in energy density between 
the minima change as 2 is changing qualitatively. From 
that, we expect that the first order phase transition 
appearing in both regions (A) and (C) becomes weaker 
as 2 grows and finally disappears at 2 = ~ .  The "border" 
between regions (A) and (C) will shift to a larger GG value 
as 2 grows and stops at GG = 1.0 when 2 = ~ i  The same 
happens to the "border" separating regions (B) and (C). 

The width of region (C) measured in GG becomes 
narrower and eventualy vanishes at 2 = ~ .  So, phase (II) 
and phase (I V) become the same in the 2 = co limit. This 
means that these two broken phases are analytically 
connected to each other. By looking how the field length 
of either minimum changes as 2 varies, we can also 
qualitatively see that the second order phase transition 
lines in regions (A), (B) should become flatter and eventual- 
ly join each other at 2 = ~ in such a way that the whole 
second order phase transition line becomes completely 
parallel to the x = 0 axis in the (x, GG) plane. Hence at 
2 = ~ ,  we do not have the first order phase transition, 
and x~ for the second order phase transition is independ- 
ent of GG. These features are schematically shown by 
Figs. 8 and 9. The qualitative statements about  the second 
order phase transition line and the positions of borders 
between different regions have been verified by the 
x-expansion. We have done simulations at 2 = 0.1,2.0, 
5.0,6.0,6.5,7.0 and 10.0 in region (C) on 8 4 lattice. 
Compared to the result at 2 = 1.0, we do see that the first 
order transition is getting weaker and weaker as 2 
increases. At 2 = 6.5, we are still able to obtain a weak 
hysteresis loop of l (at GG = 0.9). However, at 2 = 7.0, no 
hysteresis loop or two-peak histogram can be found on 
8 4 lattice. We believe that the phase transition in regions 
(A) and (C) should remain first order for all 2% (except 
for 2 = ~) ,  because the mechanism triggering the phase 
transition from phase (1) to phase (IV) is the jump 
between two minima, which is quite different from spin 
alignment by the x-term in the action. However, it is not 
easy to verify this numerically. 

Based on this qualitative understanding of the phase 
structure, one can conclude that continuum limits can be 
taken at the critical xc both at small and large values of 
GG, i.e. in regions (A) and (B). 

Note that the model has the symmetry K--,--h:, 
~bx~(--1)xq~x. Therefore, in the negative x-half-plane 
there is a phase transition between the symmetric phase 
and the anti-ferromagnetic phase. 
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In the future, as we move to nonzero K values, it will 
be very interesting to see how the first order phase 
transition hyper-surface goes as K varies. We think that 
in the small K region a K-expansion may give some 
information on that. 

5 Discussion and summary 

In the effective scalar model including the static fermion 
determinant of the U(1) chiral Yukawa model the phase 
transition surface between the symmetric and broken 
phases has three different parts. At small and large values 
of the product of the Yukawa-couplings GG the numerical 
simulation data suggest second order phase transition, 
which is due to the alignment of the field by the nearest 
neighbour coupling. This is supported by the information 
obtained from the 14th order scalar hopping parameter  
expansion. In the intermediate region the transition 
becomes first order, as shown by strong hysteresis loops 
and double-peaked histograms. This first order transition 
is continued inside the broken phase. It is characterized 
by a jump of the system from a state with typically short 
fields to another state with longer fields. The broken 
phases with short and long fields are analytically con- 
nected to each other in the 2 = oo plane, where the field 
length is frozen to 1, and the first order phase transition 
disappears (in the limit 2 ~ oo it shrinks to the point 
GG = 1, x = x~(2 = ~)) .  An interesting question is, how 
this first order phase transition is penetrating inside the 
parameter  space with K # 0, in particular whether it 
also appears in the subspace describing the chiral U(1) 
Yukawa-model  in the broken symmetry phase with 
decoupled mirror fermions. We intend to investigate this 
in the future. 

The point ( 2 =  ~ ,  G G =  1, x = x c ( 2 =  ~ ) )  in the 
parameter  space is rather interesting since, for instance, 
it is the endpoint of the lines separating the first order 
phase transition from the second order ones. Therefore, 
it could be an interesting non-trivial tricritical point. The 
investigation of its vicinity in the full Yukawa-model  is 
one of the interesting questions for the non-perturbative 
study of this model with dynamical fermions [20]. 

Cont inuum limits can be defined near the second 
order parts of the phase transition surface. All non- 
perturbative information we obtained is consistent with 
the statement, that the model in the scaling region belongs 
to the equivalence class of two-component  ~b4-models 
with 0(2) symmetry (and trivial continuum limit). In 
particular, the values of the renormalized coupling at the 
edge of the scaling region, obtained from the scalar 
hopping parameter  expansion and checked by numerical 
simulations, are such that in the scaling region the 
interaction gets never really strong. The upper limit on 
the renormalized coupling at mR = 0.5 is practically the 
same in this extended model as in the pure q~4-model 
(roughly 9R < 40). A remarkable feature is that this upper 
limit is reached not only at 2 = ~ ,  but also at any other 
2 if the product of Yukawa-couplings GG is large 
enough. The independence of the upper limit from the 
Yukawa-couplings is another example of the unexpected 

universality of the upper limit for the renormalized 
quartic coupling in lattice ~b 4 models. We investigated 
this upper limit only in the symmetric phase but, by the 
Liischer-Weisz connection [24] between the scaling 
regions in the symmetric and broken phases, the 
universality is extended also to the broken phase. 
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