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In this paper ! investigate the behaviour of strongly coupled QED using a set of truncated 
Schwinger-Dyson equations which include the effects of vacuum polarisation. I pay particular 
attention to the renormalisation group flow. TiLe model has a second-order chiral phase 
transition, but the renormalised photon coupling a r is zero at the critical point. I also examine 
the effects of adding a four-fermion interaction, and find that even with this extra term the 
photon decouples at the phase transition. 

1. Introduct ion 

There has recently been considerable interest in the chiral phase transition of 
Q F D  [1-5,8-11] .  This began when Miransky [1] investigated a truncated 
Schwinger-Dyson equation for the fermion propagator and found a second-order 
chiral phase transition, with chiral symmetry spontaneously broken for a > 7r/3. 
Numerous lattice studies [3-5] confirm that non-compact lattice Q E D  has such a 
phase transition, both in the quenched case and with a low number of dynamical 
fermion flavours. The interest in this phase transition arose from the suggestion 
that it might give a non-trivial continuum limit for QED, avoiding the problems 
(such as the Landau pole [6]) that have previously complicated our understanding 

of QED. 
The Schwinger-Dyson equation which Miransky wrote down did not include any 

vacuum polarisation effects, using instead the bare photon propagator throughout. 
It is however very important to include vacuum polarisation when considering the 
possible triviality of QED, because it is the running of the renormalised charge 
which leads to problems when attempts are made to take the ultraviolet cut-off A 

to infinity in a theory that is not asymptotically flee. 
In this paper  I investigate a set of Schwinger-Dyson equations that includes the 

effects of fermion loops on the photon propagator. I find that there is still a 
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Fig. 1. The Feynman diagrams that lead to the Schwinger-Dyson equations for the fermion and 
photon propagators. 

second-order chiral phase transition, but that the renormalised charge at this 
transition is zero. 

In addition to the renormalised charge I consider the fermion-antifermion 
scattering amplitude (as Leung, et al. [8] did in the quenched case). These 
scattering amplitudes show that there are no lines of constant physics in the strong 
coupling phase of QED, because the scattering amplitudes vary along the lines of 
constant a r. Only when an extra interaction is added to the action of QED is it 
possible to define true renormalisation group trajectories. In sect. 5 I investigate 
the theory with a chirally invariant four-fermion interaction added, and find that 
even in this case the renormalised charge at the phase transition is zero. 

2. The truncated Schwinger-Dyson equations 

In order to study the behaviour of QED in the neighbourhood of the chirai 
phase transition, where correlation lengths are very large, I derive a set of integral 
equations for the fermion and photon propagators from the truncated Schwinger- 
Dyson equations shown in fig. 1. Using the full photon propagator, instead of the 
bare propagator that Miransky [1] used is an important improvement. This is 
because it is the vacuum polarisation diagrams, neglected in Miransky's integral 
equations, which are responsible for the running of the charge in QED. The 
fermion loops cause the physical coupling at large distance to be weaker than the 
bare coupling. It is just this running of the charge which leads to problems such as 
the Landau pole when attempts are made to take the theory's ultraviolet cutoff to 
infinity, and have lead to the suspicion that QED and other non-asymptotically 
free theories are trivial. Corrections to the photon propagator are therefore vital to 
any consideration of the triviality of QED. Any approximation that ignores vacuum 
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polarisation graphs is almost certain to find a non-trivial continuum limit for QED, 
while with such graphs present it is possible for the physical a to be zero. 

The self-consistency relations of fig. 1 generate all one-loop diagrams. At the 
two-loop level they differ from the true Schwinger-Dyson equations because the 
bare fermion-photon vertex is used throughout. To minimise the effect of this 
approximation I use the Landau gauge, because in this gauge the order a 
contribution to the vertex vanishes. Euclidean momenta are used throughout. 

The fermion propagator has the form 

I/( iF(p2)pUyu + -X(p2)) (2.1) 

and the photon propagator 

4-rrA ( p 2 ) 

p- (2.2) 

The photon and fermion renormalisation factors are related to A and F by 

Z 3 = A ( O ) / a  o , Z2= I / F ( 0 ) .  (2.3) 

Because the bare vertex is always used, the vertex renormalisation factor Z t -- 1. 
I he resulting integral equations for the fermion propagator are 

I,.k 2 dk 2 2( k 2) ~d0 
X ( P 2 ) = ' n ° +  4~ D(k 2) "a" 

3A(q-') 
2 sin 2 0 , ( 2 . 4 )  q- 

and 

., .t,.k 2 dk " F( k 2) r d 0  kA(q 2) 
- ~ fo .... 2sine 0 {3q2 F(p ) = 1 +  art D(k 2) 7r q4p cos 0 - 2 kp sin2 0}, 

(2.5) 

where D ( k 2 ) -  k2F2(k2)+ ,~2(k 2) and q 2 - ( k  - p ) 2 = k 2  +p2_  2kpcosO, the 

photon virtuality, if A is constant (the quenched case), the integrals over 0 can be 
done analytically and the equation for F reduces to F ( p 2 ) -  - l and eq. (2.4) 
reduces to Miransky's equation [l] for ,v. 
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Fig. 2. The Feynman diagrams that lead to the Schwinger-Dyson equations for the fermion-anti-ferm- 
ion scattering amplitude in the ladder approximation. 

The equation for the photon propagator is 

k 2 1 I 4 r~F dk 2 .Trd0 
A ( P  2) ao 3 Nt'Jo 4~r Jo ' ~  -'2sin20 F(q ) (8c°s2 

O(q~_) n(q~) 

(2.6) 

where ~ , 2 k2 , 2 q-+=-(k+vp) = +-~p +kpcosO, the virtualities of the fermion and 
anti-fermion. 

It is also useful to write down the integral equations for the scalar and 
pseudo-scalar scattering amplitudes, shown in fig. 2. The case I consider is that of 
a fermion and anti-fermion of momentum p and - p  scattering to momentum r 
and - r .  I average over the angles between initial and final momenta, which gives 
an amplitude depending on p2 and r 2, 

.~-d0 
$5(102' r2)  = Jo/ ~ 2sin2 0 

37rA(t 2) k2 dk 2 2 t 2 + f A2 Ss(k , r  2) fC dO 3A(q2) 2 sin 2 0 2 , 
-0 4~" D(k -2) ~- q 

(2.7) 

S! (p2 r 2) fc~ dO , . . . . .  2 sin 2 0 
3"n'A ( t 2 ) 

t 2 

+f't'-k2dk2.o ~ 4 7 r  S,( kZ, r 2) kaF2(k2)D2( k 2)- "~2(k 2 ) f C  dOTr 2sin 2 0 3A(qZ)q2 , 

(2.8) 

where S 5 and S, are the pseudo-scalar and scalar scattering amplitudes respec- 
tively, t 2 ------ p 2  -F r E - 2pr cos 0 and q 2  --  p2 + k 2 _ 2pk cos 0. Note that the integral 
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equations for the scattering amplitudes are linear, unlike those for the propaga- 
tors. 

I solve this system of integral equations on the computer by representing the 
unknown functions A(p2), F (p  2) and ~(p2) as Chebyshev polynomials in the 
variable log(p2), with p ranging between the ultraviolet cut-off A and an infrared 
cut-off much smaller than the renormalised fermion mass. (log(p 2) is a good 
choice of variable because the functions are smooth when plotted against log(p2)). 
Away from the phase transition the propagators are well represented by 20 terms 
of the series. Near the phase transition (when correlation lengths are large) I use 
30 terms. This is enough to solve the equations for correlation lengths of up to 10 ~2 
times the cut-off. 

3. Propagators, scaling and critical behaviour 

The solution of the Schwinger-Dyson equations gives the photon and fermion 
propagators, from which we can understand much of the physics of the system. 
First I look for Scaling at constant renormalised coupling. The renormalised mass 
and coupling are defined at zero momentum by 

,n r - ~ ( O ) / F ( O ) ,  a r = - A ( O ) / F 2 ( O ) .  (3.1), (3.2) 

If scaling holds the propagators should be functions of p 2 / m 2  r at a given value of 

the renormalised coupling a r. 
This is tested in figs. 3 and 4 which show scaling plots of the photon and fermion 

propagators. The propagators are shown for a r = 0.5 and for three very different 
values of the renormalised mass m r. ( m r / A  = l0 - l ,  10 -3 and 10-4). As always Nf, 
the number of flavours, is 1. When plotted against p / m  r we see immediately that 
scaling is very good in both cases. 

We can also use the solutions of the Schwinger-Dyson equations to get some 
information on the error introduced by the truncation. Fig. 5 shows F, the fermion 
wave-function renormalisation. Because the truncated Schwinger-Dyson equations 
of sect. 2 assume that the dressed and bare vertices are equal, the deviation of 
F(p2) from F(0) is a measure of the violation of the Ward identity Z I = Z 2. This 
deviation is not large (on the order of 10% to 20% for most values of at). The 
violation of the Ward identity would be far larger in any other gauge. In the 
Landau gauge the deviation is of order a 2, in other gauges it is of order a r. (The 

effects of using other gauges are discussed in ref. [9].) 
Fig. 6 shows the dependence of the chiral condensate ( 0 0 )  on the bare 

couplings a0 and m0. When a0 is small ( 0 0 )  vanishes as m0-*0,  as chiral 
symmetry requires. There is however clearly a second-order phase transition, with 
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Fig. 3. v ,  the scalar part of  the fermion propagator, for a r = 0.5 and three different values of the 
cutoff. (The solid line is mr/A = 10-  I, the dashed line mr/A  = 10 -3 and the dotted line mr/A = 10- 4.) 

The agreement of the curves shows that scaling holds. 
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Fig. 4. The photon propagator as a function of a momentum for a r = 0.5 and three different values of  
the cutofl'. (The solid line is mr/ , t - - I ( I  ~;, the dashed line m,./A = 10 ''~ and the dotted line 

tlir/,I = l(I- ,4,) The agreement between the curves shows that scaling holds. 
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Fig. 5. The fermion wave-function renormalisation F as a function of  momentum. The deviation of  F 
from a constant value is a measure of  the error introduced by using the bare vertex instead of the 
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lines show the results for hare masses m. / . . i  = 1 0 - " , ,  = I, 2, 3. The solid line is the result for m.  = 0. 

The chiral phase transition is at a .  = 2.25. 
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Fig. 7. A log-log plot of the chiral condensate (~ tb ) /A  3 against a o -  ac for m o = 0. The solid curve is 
the result of solving the Schwinger-Dyson equations, the dotted straight line is proportional to 

(a o - a c )  I/'- (pure mean-field behaviour). 

chiral symmetry spontaneously broken in the strongly coupled phase. The critical 
coupling for one flavour is t~ c = 2.25 (to be compared with 7r/3 for the quenched 
case). When chiral symmetry is broken the Schwinger-Dyson equations can be 
solved even at m 0 --0, the limitation is the fermion correlation length, which must 
be less than about lOt2/A. (On the lattice, results at m o = 0 have to be obtained by 
extrapolation from finite mo.) Miransky [1] finds that the m 0 - 0 values of (~O)  
and m r exhibit an essential singularity, both vanishing faster than any power of 
a -  t~ c as the critical coupling is approached from above. This happens only in the 
quenched case. The behaviour found here with fermion loops included looks like a 
power law. Other authors who have investigated the effect of modifying the photon 
propagator [10, l l] also find a power law behaviour for Nf 4= 0. Fig. 7 shows a 
log-log plot of (qJqj) (for zero bare mass) against a -  ac. The approach to the 
asymptotic slope is clearly very slow. Unless you look very close to the critical point 
you will overestimate the critical exponents (as I initially did). The asymptotic 

I 
slope is probably ~, corresponding to mean field critical exponents. With more 
than one flavour the slope approaches the mean field value more rapidly. Renor- 
malised mass shows a critical behaviour very like that of ( ~ ) ,  with a slow 

I approach to an asymptotic slope near .~. 
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Fig. 8. A graph showing the renormalised coupling a ,  as a function of bare coupling "o- The dashed 

lines show the results ;o~ bare masses mo/A = 10-",  n = 0, 8. The solid line is the result for m o =  0. In 
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an infinite fermion correlation length is only possible at ~r = 0. 
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Fig. 8 shows a r. The renormalised coupling vanishes as a0 approaches a c, 
although this vanishing is only logarithmic. The critical behaviour of a r is revealed 
more clearly in fig. 9 which shows a plot of 1 / a  r against mr. The straight line 
behaviour at m 0 = 0  shows that a rct I / log(mr) ,  which of course vanishes as 
m r --> 0. (This is exactly the behavior that would be expected on renormalisation 
group grounds.) This plot also shows that for any given a r there is a minimum 
value of mr. Only at ot r - -0  is the fermion correlation length infinite. This tells us 
that the continuum limit of QED does not involve photons interacting with 
charged fermions. The behaviour arOt l / l o g ( m  r) is exactly the behaviour that 
would be expected on renormalisation group grounds. 

4. Renormalisation group flow for pure QED 

To truly understand the structure of this model we need to know the renormal- 
isation flow. Fig. 10 shows lines of constant renormalised Q:r in the bare coupling 
plane. All the trajectories end at m 0 = 0 in the phase with broken chiral symmetry 
(where the fermion correlation length and mass are finite). 

The pattern of the flow is easy to explain quantitatively. At very large bare 
masses fermion loops are suppressed, and the renormalised and bare couplings are 
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Fig. I0. The renormalised trajectories defined by keeping ~r constant. All the trajectories with finite 
~r eflfJ ~1| /till = (7, (,VII ~>tt'i.. ( i .e .  in the phase where chiral symmetry is broken, and the fermion 

correlation length is finite). 
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the same. This gives the vertical portion of the trajectory at the top of fig. 10. As 
the bare mass is reduced fermion loops cause more efficient shielding of the 
charge and the renormalised t~ is less than the bare, giving a sloping trajectory at 
intermediate values of m 0. This running of a eventually stops at large ao because 
the trajectory moves into the phase where the chiral symmetry is broken. There the 
mass of the fermion comes mainly from the spontaneous breaking of chiral 
symmetry, and reducing m 0 no longer leads to a significant reduction in the 
fermion mass or improvement in the shielding. This is the reason for the vertical 
portion of the renormalisation group trajectory at small m 0. 

Note that despite the existence of a phase transition a decrease in m o always 
requires an increase in a0 to keep a r constant. In other words the /3-function 
defined by keeping ar constant never becomes negative, despite the existence of a 
second-order phase transition. 

The lines of constant a r are however not the entire story. As shown in sect. 3 
the photon and fermion propagators scale on these trajectories. Fig. 11 shows the 

m 2 Ss(pZ.O)/F2(O) 
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Fig. II. The pseudo-scalar fermion-antifermion scattering amplitude at various points on a constant 
a r trajectory. (o r = 2.0, m . / I  = lp -" ,  n ~ 1,7). The lowest curve is for m . / . I  = 10-[, the highest 

7 m . / A  - 10- . At low momenta the scattering amplitude is dominated by the exchange of a single 
photon, leading to a I /p  2 momentum dependence. At large momenta there is also another contribu- 
tion which increases as the bare mass decreases. At m~j= 0 this contribution is infinite. This new 
contribution is due to the fi)rmation of a Goldstone boson in the s-channel, and does not scale in the 
same way as the rest of the :lmplitude. This failure to scale is evidence that a further operator 

is needed. 
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pseudo-scalar fermion anti-fermion scattering amplitude at various points on a 
single curve of constant a r (a  r = 2). At low momenta the scattering amplitude is 
dominated by the exchange of a single photon, leading to an amplitude of 
3~ar/p 2, which is clearly constant along a constant a r trajectory. At large 
momenta there is also another contribution which is much flatter, and which 
increases as the bare mass decreases. This large p contribution grows like 1 /m o 
and at m 0 = 0 it becomes infinite. This contribution to the scattering comes from 
the fermion and anti-fermion binding together to form a pseudo-scalar bound 
state, the Goldstone boson associated with the breaking of chiral symmetry. The 
dependence on the bare mass comes about because the Goldstone boson's mass 
decreases as the bare mass decreases, eventually becoming massless at m 0 = 0. 

In addition to the lines of constant a r we can consider lines of constant 
scattering amplitude. Fig. 12 shows the trajectories found by keeping the renor- 
malised pseudo-scalar scattering amplitude m2rS5(m2,0)/F2(O) constant and com- 

pares them with the lines of constant a r. (The scattering amplitude is divided by 
F2(0) because Z 2 - l / F ( 0 ) ,  eq. (2.3)). In the symmetric phase the two sets of 
trajectories agree very well, showing a scattering amplitude that is a function of a r, 
as would be naively expected. However in the broken phase the two sets of 
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trajectories are completely different. The lines of constant scattering all flow into 
the critical point at a = a c, m o = 0. It is clear on the following grounds that the 
pseudo-scalar flows cannot follow the pattern found for the lines of constant at,  
and must have a flow similar to that found, all ending in the critical point. Lines of  
finite constant scattering amplitude can never reach the m o = 0 line in the broken 
symmetry phase, because there the pseudo-scalar scattering amplitude is infinite, 
due to the contribution of the massless Goldstone boson. Nor can they reach the 
m o = 0 line in the symmetric phase because there a r - - )0  leading to vanishing 
scattering amplitude. 

Lines of constant scalar scattering amplitude (see fig. 13) show a flow pattern 
that shares some of the features of the pseudo-scalar case and some of the features 
of the constant ar case. Again the flows follow lines of constant ot r in the chirally 
symmetric phase, but deviate in the broken phase. However, lines of constant Sm 
can end on the m0 = 0 line in the broken phase (because there is no massless 
scalar bound state). The lines corresponding to small scattering amplitudes end in 

the critical point. 
The ratios of the meson mass to the fermion mass shouid flow in the same way 

as the scattering amplitude in the same channel. The fact that scalar trajectories 
can end on the axis at places other than the critical point simply means that in the 
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Fig. 13. The renorm,'dised trajectories defined by keeping the scalar scattering amplitude 
mrSi(m'i,O)/F'()) constant. The dotted lines show lines of constant ar for comparison. Compare this 

graph with fig. 12, the pseudo-scalar case. 
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broken phase the ratio of fermion mass to scalar meson mass has a finite limit as 
m 0 --, 0 (while the pseudo-scalar meson is naturally massless). 

$. Renormalisation flow with a four-Fermi coupling 

it is clear from the mismatch between the lines of constant ar  and constant 
scattering amplitude that only by adding another operator to our action can the 
physics be kept constant while changing the cutoff. In company with a number of 
other authors [5, 8] I consider the effect of adding a four-Fermi interaction to the 
action, 

A chirally invariant four-Fermi interaction term is 

G U 

2 ( ( ~@ )( ~ ) - (~ ' /Sq)(~ 'ys6))"  

(This is the interaction of the Nambu-Jona-Lasinio model [7].) The changed 

C,~t 2 
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0.0 

-100.0 

-2000 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 

(X0 

Fig. 14. The phase diagram when a four-Fermi interaction is included. Chiral symmetry is broken at 
high Go and at high a o. 
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ladder approximation equations the .Y and S 5 are 

t_,k 2 d k  2 ~ (k  2) 7rdO 

" y ( P 2 ) = m ° + f { ;  4 .  D(k2) fo "n" 

3 A ( q  2) 
2 sin 2 0 , + 

q-  

G o / - . ¥ ' k  2 d k  2 .Y(k 2) 

¢r 10 4 ~  D ( k : ) "  

(5 .2)  

Ss ( p2, r 2 ) = f~-r dO.a. 2 sin 2 O 
3.JrA( t 2 ) 

t 2 
+ Go + " I "t'-k'- 

dk  2 Ss( / 2 , r 2 )  

"o 4 ~  D ( k  2) 

k 2 -~ ¢rdO 3 A ( q 2 )  Go .t-" d k 2  Ss(k- , r2)  
x f o  2sin2O " + fo . (5 .3 )  

¢r q- ~r 4¢r D(k'-) 

The momenta have the same definitions as in eqs. (2.4) and (2.7). The equations 
for F and A are unchanged (eqs. (2.5) and (2.6)). (Note that in this new equation 
for ,~, the quantity that Go couples to is ( ~  >. This suggests that the effects of the 
new term in the lagrangian will become important when the chiral symmetry is 

i 

broken and ( ~ )  acquires a vacuum expectation value.) 
The phase diagram with the new interaction is shown in fig. 14. At ao = 0 the 

theory is the Nambu-Jona-Lasinio model [7] with a chiral phase transition at 
G . A 2 = 4 w  :. The Monte Carlo simulations of reL [5] show just such a phase 
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" i i i i i  
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~ i i i i ~ !~i i i L. -~-' 

1 5 .  

Fig. 15. The surface a r = 2 and paths within this surface that keep both a r and the pseudo-scalar 
scattering amplitude constant. The lines of constant physics begin at a .  = a r. m. = ~: and end at 

G ( I  ~ - ~ .  
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Fig. 16. The pseudo-scalar fermion-antifermion scattering amplitude at various points on one of the 
trajectories of fig, 15. With tx~a couplings, t ~  and Gq~, the scattering amplitude now scales. Contrast this 

with the situation in figure ! !. with no four-Fermi interaction. 

diagram when both |nteraction terms are present. The shape of the phase bound- 
ary is similar to that found in the quenched planar approximation [8]. 

The fermion and photon propagators scale as before. Now the extra coupling 
allows us to define renormalisation group trajectories which are true lines of 
constant physics. The trajectories shown in fig. 15 keep both the renormalised 

2 charge a r and the pseudo-scalar scattering amplitude mr~(m r, O)/Fa(O) constant. 
Fig. 16 shows that fixing these two quantities is enough to insure that the scattering 
amplitude at all momenta scales just as well as the propagators now that Go has 
been introduced. Contrast this with the situation shown in fig. 11 for pure QED. 

The trajectories of constant physics move through a three-dimensional space 
defined by a o, G o and m 0. In this three-dimensional space the surfaces of constant 
ar form two-dimensional sheets. These surfaces are bounded on the left (low a0) 
side by the line a0 = at ,  m0 = ~ and on the right by m 0 = 0. The lines of constant 
ar shown in sect. 4 (for QED without a four-Fermi interaction) show the section 
through these sheets of constant ar at Go = 0, which is typical of slices at constant 
G 0. Fig. 15 shows a surface of constant ar ( a r =  2.0). This constant ar  surface 
never touches the phase boundary of fig. 14. 

The curves shown by the solid lines in fig. 15 show renormalisation group flows 
with a r and the scattering amplitude kept constant. Trajectories with finite 
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Fig. 17. The variation of  renormalised fermion mass on the a r = 2 renormalisation group trajectory. 
with infinite pseudo-scalar scattering amplitude (which has m o =  0). The limit of  m ,  as G o - "  - =  is 
finite. Even with a four-Fermi interaction added to the lagrangian it is impossible to have an infinite 

fermion correlation length for non-zero a~. 

scattering amplitude begin at mo = ~, ao = a t  and move in the direction of 
increased ao. (Flow is defined as moving in the directien of increased correlation 
length.) The trajectories end at Go = - ~ ,  with various values of ao. The trajecto- 
ries show no sign of meeting in some common ultraviolet fixed point. When the 
paths get to G o = -oc the fermion correlation length still has a finite value. The 
trajectory with S 5 = 0~ moves along the m o = 0 edge of the constant ar  sheet, 
beginning at G 0 = + ~  and ending at G 0 = -0~. (The path of this limiting trajec- 
tory in the ao-Go plane is the dashed line of fig. 15.) Even this limiting trajectory 
always has a finite correlation length. This is illustrated in fig. 17, which shows the 
fermion mass along the chiral (mo = 0 )  trajectory. (The other flow lines, with 
m o ~ 0 have larger renormalised fermion masses.) It is natural that the fermion 
correlation length is always finite within a constant a r surface, because these 
surfaces never touch the phase boundary, which is where the fermion correlation 

length is infinite. 
The finiteness of the fermion correlation length means that adding the four- 

Fermi interaction has not changed the conclusion that only at ar = 0 is there a 
continuum limit with a fermion present. (The limiting trajectory, at m o = 0, which 
has an infinite pseudo-scalar scattering amplitude, will of course have a massless 
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Goldstone boson, but this will be electrically neutral, and so not interact with the 
photon.) 

6. Conclusion 

In this paper i have looked at the renormalisation group flow for a set of 
truncated Schwinger-Dyson equations which include vacuum polarisation effects, 
considering the theory with and without a four-Fermi interaction term. 

Consider first the behaviour found in pure QED, as discussed in sect. 4. The 
lines of constant renormalised coupling a r that result from the truncated equa- 
tions correspond to a renormalised coupling at the phase transition of 0. If the 
renormalised coupling is finite the fermion correlation length cannot be taken to 
infinity, but has some finite maximum, as can be seen clearly in fig. 9. The 
explanation for this fact is quite simple. The lighter a fermion is, the better it is at 
shielding charge, in the chirally symmetric phase decreasing the bare mass of the 
fermion decreases its renormalised mass, and the bare coupling a o must be 
increased to compensate for the improved shielding. However, once the flow has 
reached the broken symmetry phase, the rcnormalised mass of the fermion is 
mainly due to symmetry breaking and only weakly dependent on the bare mass. A 
decrease in the bare mass no longer causes any great improvement in shielding, 
and so no change in ao is needed to keep o~ r constant. The fact that the behaviour 
found in sect. 4 is readily comprehensible suggests that the full theory will behave 
in the same way. 

in the broken phase the scalar and pseudo-scalar scattering amplitudes follow 
different flow patterns from those defined by keeping a r constant, while in the 
s~nmetric all three flows agree. The fact that flows defined in different ways 
disagree in the broken phase is evidence that a new scale is introduced when the 
Goldstone boson forms. This is to be expected in the broken phase because the 
mass of the Goldstone boson has to vanish as m 0 ~ 0, while the mass of the 
fermion will be finite in terms of the cutoff. 

Many of the results from this analysis of the Schwinger-Dyson equations lend 
themselves to tests in Monte Carlo simulations of QED. 

Lattice measurements of a r could be compared with the flow patterns of fig. 10, 
or plotted against measurements of the fermion mass (as in fig. 9). Such compar- 
isons would go a long way towards settling the nature of the phase transition, 
although the range of correlation lengths possible on the lattice is of course far 
smaller than the range considered in this paper. 

The result that in pure QED the lines of constant scattering amplitude and the 
lines of constant a r do not agree can be tested by measuring a r from Wilson loops 
or from the photon propagator, and comparing these to mass ratios, in particular 
the pion to fermion mass ratio, which should behave like the pseudo-scalar 
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scattering flow. Similarly, lines of constant scalar meson to fermion mass ratio 
should look like the curves in fig. 12. 

In sect. 5 1 investigated the theory in the presence of a four-Fermi interaction. 
The largest fermion correlation lengths occur when G 0 is large and negative (i.e. 
repulsive), but even in this region it is not possible to have an infinite fermion 
correlation length and a finite a r, i.e. a continuum limit involving photons 
interacting with charged fermions. It would be interesting to find out what happens 
on the lattice with negative G 0, and compare this with the results of sect. 5. 

I would like to thank Gerrit Schierholz for various conversations during the 
progress of this work. 
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