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We presentthe phasestructureof the chiral SU(2)L ® SU(2)R scalar-fermionmodel on the
lattice with on-siteYukawacoupling y and Wilson—Yukawacoupling w for positive y and w.
ThehoppingparameterK of the four-componentscalarfield of fixed length is both positive and
negative. From the different behaviourof severalobservablesferromagnetic,paramagneticand
antiferromagneticphasescanbe distinguished.They split into different regionsor phaseswith
small and large y + 4w. A similar structureis also found in the quenchedapproximation.In
addition, in the unquenchedcasea ferrimagneticphaseis found at negativeK around y + 4w

~ We discussfermion massesin various regionsandpoint out thepossibilitiesof decoupling
the unwantedfermion doublersin the continuum limit in analogyto thc Wilson mechanism.

1. Introduction

Recentyearshavewitnesseda lot of interestin thenonperturbativeunderstand-
ing of the symmetry breaking sector of the standardmodel of electroweak
interactions.Many of thesestudiesconcentratedon the purescalarsectorregular-
ized on a lattice,neglectinggaugeandfermion fields (for referencesseethe recent
reviews [1,21). Whereasit is presumablysufficient to treat the gaugefields only
perturbatively,the inclusion of fermions into the nonperturbativeinvestigationis
important becauseof the possibility that some heavy fermions exist with strong
Yukawa interactions.Keepingthe perturbativetriviality of the Yukawacoupling in
mind, it is of phenomenologicalimportanceto investigatea possibleupperlimit on
the fermion massgeneratedthrough this coupling and to improve the already
existing upper limit on the Higgs mass, now with fermionic feedbackincluded.
Alternatively, any indication that strongYukawacoupling might leadto a nontriv-
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ía! fixed point with an interactingsymmetry breakingsectorwould be of major
interest for the standardmodel and,moregenerally,for quantumfield theory.

Field-theoreticallyit is a challengeto regularizea theorywith chirally coupled
fermionson the lattice. The problem is dueto the well-known “speciesdoubling”

of lattice fermions,which resultsfor chiral theoriesalsoin the occurrenceof chiral
doublersor “mirror” fermions [3]. It is nontrivial to remove theseunwanted
doublersby the Wilson mechanism[4].

Many of the initial investigationsof coupledscalar-fermionmodels(for reviews
seerefs. [2,5—7])havetemporarily avoidedthe problem of fermion doublingand
exploredqualitativepropertiesof modelswith strongYukawacoupling.They have
looked at scalar-fermiontheorieson the lattice with Z(2), U(1) and SU(2) symme-

tries using naive lattice fermions or staggeredfermions with either on-site or
hypercubicYukawacoupling [7—18].The information on phasediagramshasbeen

obtainedfrom a combination of approximateanalyticcalculationsand numerical
simulationsand is not yet complete.Nevertheless,the following universalfeatures

seemto comeout from theseexploratory studiesof modelswith on-site Yukawa
couplings:

(i) Within the brokensymmetryphasewith a nonvanishingexpectationvalue t

of the sca!arfield (ferromagneticphase)thereis a weak Yukawa coupling region
where the standardperturbative analysis applies. In addition there is also a
nonperturbativestrong Yukawa coupling region in which the fermion masses
increaseas v decreasesat a constantYukawacoupling [12—16,19].

(ii) Investigationswith dynamicalfermions[9—14,17,18] demonstratethat inter-
mediatevaluesof theYukawacouplingstronglyfavour a ferromagneticorderingof

the scalar fields. The brokensymmetry phaseextendsto negativevaluesof the
hoppingparameterK for the scalar field. Thus at leastfor such Yukawacouplings
the regionof negativeK could well be of interestfor taking the continuumlimit.

(iii) For intermediatevalues of the Yukawa coupling the phasediagram for

negativeK hasa very complicatedstructure,as severalphasescomeclosetogether
[10, 12]. Analytic studiesperformeduntil now [14,171 fail to describethis region
evenqualitatively.

Becauseof fermion doublingall the abovemodelsarevector-like,their spectrum
is unsatisfactoryfrom thephenomenologicalpointof view and somemodifications
are required. Severalproposalsmodifying or extending the Wilson mechanism
(see,e.g. ref. [201)havebeendiscussedrecentlyin ref. [6].

A very promising possibility is to introduce, in addition to the usual Yukawa
coupling of strengthy, anotherYukawa-like coupling term, the Wilson—Yukawa
coupling of strength w, having the characterof the Wilson term [5,6, 21—23].
However, dueto the presenceof the scalarfield, thiscoupling maintainsthe chiral
symmetry manifestly and the doublersacquireheavymassesdynamically.To see
whether the doublersget decoupledin the scalingregion, leaving a chiral scalar-
fermion theoryapplicablein the continuum,onenaturallyneedsa nonperturbative
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treatmentof the model even if the mass of the remaining physical fermion is
assumedto be small.A meanfield calculation[19]andsimulationsin a U(1) ~ U(1)
model [24]gavevery promising resultsin this respect.

We haverecently madea numericalinvestigationof the chiral SU(2)L ® SU(2)R
model [12,25] on the lattice with the Wilson—Yukawa term in the broken phase
andhaveshown,in thequenchedapproximation,that for relatively largeand fixed
valuesof w the fermion doublerscan indeedbe given massesof the order of the
increasingcut-off as the critical region is approached,while the physical fermion
masscan have arbitrarily small values. For the Wilson—Yukawa mechanismof
chiral lattice fermions to hold, our conclusionsfrom the quenchedapproximation
haveto carry over to the full model with dynamical fermions.

In this paper we therefore continue our investigationof the chiral SU(2)L ®

SU(2)R scalar-fermion model, including now the fermion dynamics. The first
importantaim is to determinethe phasestructureof the model andto localize the
regionsof physicalinterest.Even keepingthe quartic scalarfield coupling infinite
(the length of the four-componentscalarfield is fixed to unity) we havea system
with threecoupling parametersK, y and w. We have investigatedsystematically
this three-dimensionalspacefor y, w ~ 0 and arbitrary real K. We have found

seven different phasesor distinctly different phase regions. Some phases,or
different regionsof onephase,havethe samesymmetriesbut are distinguishedby
the combinedstrength of the two Yukawa couplings.Roughly, for y + 4w -~©

the model has weak Yukawacoupling phasesor regions,where the perturbative
analysis in y and w is applicable.For example, in the ferromagneticphasethe
fermion and the doublermassesdecreasewith the decreasingvacuumexpectation
valuec of the scalarfield. In contrary,in the strongYukawacoupling regionsfound

for y + 4w>> V~the Yukawa couplingshave a distinctly nonperturbativecharac-
ter and in particularthe fermion andthe doubler massesincreasewith decreasing

v at fixed y and w [19,25].
We show in fig. 1 the phasestructureof the full model with two doubletsof

dynamical fermions for the w = 0 case.This phasediagramin a preliminaryform
was shown earlier [12]. It is qualitatively similar to the phasestructure found
recently in the U(1) model [10]. For w> 0 the phasediagramremainsthe sameas
that for w = 0 exceptthat the funnel-likestructurein fig. 1 aroundy %/~shifts to
the left with increasingw and is found around y — 4w until it disappears
from the half-plane y �~0. We use the following notation for the phasesand
regionswe havefound:
Symmetricphases:
PMW: Paramagneticphasewith weak Yukawacouplings
PMS: Paramagneticphasewith strongYukawacouplings
Broken.symmetiyphasesand their regions:
FM(W): Ferromagneticphase(weakYukawa coupling region)
FM(S): Ferromagneticphase(strong Yukawacoupling region)
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FM(W) FM(S)
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-~ T’T~Fl, , T !TT
Fig. 1. Phasediagramfor w = 0 in the unquenchedcase.A andB areprobably two quadruplepoints
where four phasesmeet.Theapproximatepositionof thecrossoverin theFM phaseis indicatedby the

dottedline.

AM(W): Antiferromagneticphase(weakYukawacoupling region)
AM(S): Antiferromagneticphase(strongYukawacoupling region)
Fl: Ferrimagneticphase.

We cannot completely rule out the possibility that the AM(W) and AM(S)

regionsare separatedfor arbitrarily largenegativeK by the funnel containingthe
Fl phase.This phaseis lessandless distinguishableas K decreasesandwe could
not locate its end.Thus we cannotexcludethat it continuesuntil K = —

For w = 0 thevariousphasetransitionlinesmeet,within our precisionof their
localization, in two quadruplepoints (pointsA andB in fig. 1). In the three-dimen-
sionalphasediagramthesepointsbecomelineswhich we call linesA, B.

Fig. 2 shows the phasediagramfor the samemodel at w = 0 in the quenched
approximation.The dotted andthe dashedlinesdenotea crossover,acrosswhich
the behaviourof variousobservableswith the fermionic fields changessignificantly.
For finite w its position shifts to y — 4w. For weak and strong Yukawa
couplingsy + 4w the unquenchedphasediagramis very similar to the quenched
one.The diagramsdiffer significantly in the region y + 4w ~ When fermion
loopsare includedthe dashedpart of the crossoverin the quenchedcasedevelops,
approximatelyat the sameposition, into the funnel filled with the Fl phase.We
expectthat the width of the funnel growswith the numberof dynamical fermion
species.With the exceptionof the FT phaseall the phasesandregionsof the phase
diagramwith dynamical fermionshaveanaloguesin the quenchedcase.

The outline of the paper is as follows: The model, its symmetries,its fermion
contentand the most importantobservablesare describedin sect. 2. In sect. 3 we
summarizethe presentlyavailableanalytic information on the phasestructureand
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Fig. 2. Phasediagram for w = 0 in the quenchedcase. The crossover in the FM phase is again
indicatedby the dottedline. Its continuationin thePMandAM phaseis indicatedby thedashedline.

on the behaviourof some observables.In sect. 4 we describethe resultsobtained
in the quenchedapproximationfor the behaviourof several observablesin the
three-dimensionalparameterspace.It providesus with .a useful guideline for an

understandingof the different phasesfound in the full model, and of the phase
transitions.In sect.5 we establishfor the unquenchedmodel the different phases,
the phaseregionsandthe phasetransitionsin the y—~ planeat w = 0 anddescribe
the dependenceof the phasestructureon w for w> 0. We concludeanddiscuss
possiblephysicalrelevanceof various regionsof the phasediagramin sect. 6.

2. The model

2.1. THE ACTION AND ITS SYMMETRIES

The model is given on the euclideanlattice by the action S =
5H + SF, with

SH= ~ (2.1)

SF = ~ — +,~‘~‘~)+y~~Iç(cIiXp~+ cPXPL)~Ic

+ wE{~(~XPR+ cI~P~)~1ç— ~{~1’X(‘1~X~R+

+~PX+
4(iX±4PR+~I~PL)WX}}. (2.2)
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The scalar field P.~is a 2 X 2 SU(2) matrix. The freezingof the radial mode
correspondsto the choiceof infinite bare quartic couplingof the scalarfield. The
experiencefrom the pure cfr

t theory suggeststhat such a model belongsto the
sameuniversalityclassas modelswith finite quartic coupling. The fermion fields
111 and~I’~areSU(2)doublets,K is the hoppingparameterfor thescalarfield, y is
the usualYukawacoupling,w is the Wilson—Yukawacoupling* and ~LR are left-
andright-handedchiral projectors.

The action is invariantundertheglobal chiralSU(2)L ® SU(2)R transformations

(2.3)

(2.4)

~xL~x~R, (2.5)

where ~L,R E SU(2)LR. In the context of the standardmodel the SU(2)L symme-
try changesinto the local gaugesymmetry and the global SU(2)R symmetry is
brokento an extent requiredby the massdifferenceswithin the weakisodoublets.

For w = 0 there are the usual staggeredfermion symmetries(see, e.g. [26]),

extended in obvious fashion to the scalar field. We mention also the chiral
U(4)L ® U(4)R symmetry[27]presentfor y = w = 0, which is mosteasily expressed
in the staggeredrepresentation

—~ exp(iy + ie
5y’)x5,

~ —~exp(—iy + ie5y’), (2.6)

f \X~+X2+X5+X4

.7

where

x5=T5~P~, x=1-cT.~

T5=y~’...y~4, (2.8)

and y and y’ arearbitrary 4 x 4 matricesbuilt from the Dirac y-matrices.
For w = 0 the model hasfurthermorethe discreteLR symmetry

“R,L~r’ ~ ~ ~~r’~L,R’ ~x ~3 ~, (2.9)

which is brokenfor w ‘� 0.

* The parametersy, w are relatedto r, M usedin refs.[5,6, 19,22]by w = r, y = M — 4r.
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For y = 0 the model also hasthe global symmetry

PR~PX_+PR1IIX+E, PR~PX—’PR~Ic+~, (2.10)

whichguaranteesthat the fermion massm’F is zeroandalso that the right-handed
fermion in the standardmodel decouplesat y = 0 for K —~ K~andany w [28]. Note
that one expectsin a symmetric phasefor w> 0 in general two distinct fermion
massesmF and m’F correspondingto fermion fields transformingrespectivelyas

SU(2)L~ ~R and ~tL ® SU(2)R, whereasin the FM phasemF = m’F [6, 19]. For
w = 0, mF = m’~alwaysholds,becauseof the LR symmetry(2.9) (assumingit is not
dynamically broken).

For the purposeof an understandingof the phasediagramit is also useful to
notice at y = w = 0 an invariance of the action with respect to the standard

staggeredfield transformation

K K, ~I)
5_*E5cP~. (2.11)

This invariancecanbe extendedfor w = 0 to y ~ 0 [17] by also transformingthe

fermion fields

(2.12)

andmaking the on-site Yukawacoupling y purely imaginary,

y—s —iy. (2.13)

This can be interpretedas a remnantof the staggeredchiral U(1) transformation.
For w ‘~‘ 0 this invarianceis violated by the one-linkpart of the Wilson term in eq.
(2.2).

Finally, we mentionthe invariance

~ y—s—y, w—~—w. (2.14)

It meansthat without loss of generalityone can restrict the studyof the phase
diagramto half of the y, w plane. We constrainour studyto y, w ~ 0, however.

The motivation [21—231for the inclusion of the manifestly invariant Wilson—
Yukawa coupling is the wish to give the doublerfermionsmassesof the order of

the cutoff andto decouplethem in the scalingregion.
Recall that for the free inverseWilson fermion propagator(we use lattice units

with the lattice constanta = 1)

~ (2.15)
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where

s~=sinp~, c~=cosp~, (2.16)

the fermion massesare given by

= (m + 2m). (2.17)

Heren is thenumberof momentumcomponentsp,~equalto ‘ir, with n = 0 for the
physical fermion mass m and n = 1—4 for the doubler masseswhich remain of
order of the cutoff in the continuumlimit. The Wilson—Yukawacoupling term in
eq. (2.2) is expectedto increasethe massof the doublersin a similar way, now,
however,by meansof a dynamicalprocesswhich hasto be treatednonperturba-

tively [5,6, 22].
The fermion determinantof the model is realbecauseof the pseudorealityof

the SU(2) group,but not necessarilypositive. To guaranteeits positivity, required
for the Hybrid Monte Carlo algorithm[29] we are using, we introduceimplicitly
two replicasof the fermionicfields by squaringthe determinant.It is alsoknown in
the continuumgaugetheory that an evennumberof SU(2)L doubletsis required
[301.The identical doubletsin our simulation havethe samechiral couplingsand
we thusavoid an explicit introductionof mirror fermions.

2.2. OBSERVABLES

To investigatethe complexphasestructureof the model it is necessaryto look
simultaneouslyat severalobservables.Herewe list the definitions of some useful
observableson a lattice of finite volume V. As the exact definitions of the
observablesarequite involved,we also introducesomeshort-handmnemotechnic
notationfor them.

Magnetization:

~ =v~~ . (2.18)

rot

The index “rot” meansthat eachconfiguration of the scalar field ‘I~obtained

during the Monte Carlo simulationis rotatedin the 0(4) SU(2)L ® SU(2)R/Z(2)
symmetryspaceso that

(2.19)

is proportionalto the unit matrix. Thus (1) = KM). This procedure,used in the
simulationsof the purecj~models[31], compensatesfor the drift of the systemon
finite latticesthrough the set of degenerategroundstatesin aphasewith broken
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symmetry.This drift would causethe vanishingof an observablenoninvariantwith
respectto the symmetrytransformations(2.3)—(2.5)evenif its expectationvaluein
the thermodynamiclimit is nonzero.Recently it has been demonstratedthat the
rotation providesa very good approximationto the infinite volume quantities[32].
Staggeredmagnetization:

1
K~St)~~ ~ (2.20)

Also here a rotation for each configuration is performed so that the quantity

Ee~’I~is proportional to 11. This rotation is in generalnot identical with that
leadingto eq. (2.19). It is thereforepossiblethat on finite lattices c + v~,>1 (as

happensfor some of our data).
Link product:

K~tU~)=z
2 = ( ~ETr ~x±4). (2.21)

This observableis invariantwith respectto the transformations(2.3)—(2.5).HereU
in the mnemotechnicnotationstandsfor the link separatingthe ‘i’s. In a gauge

theory U would be a link variable.
Fermion condensate:

K~~)=~ . (2.22)
rot

The rotation leading to eq. (2.19) is performedon the scalar field before the
quantity<II’ RI’) is calculatedby the fermion matrix inversion.
Invariantfermion condensate:

= - E ~~(~PL + ~XPR)~X). (2.23)

This observableis proportionalto the Yukawa term in the action (2.2).
As expected,the noninvariantquantitiesare much more sensitiveto the phase

transitionsbetweenphasesof different symmetry than the invariant ones.This is
dueto their role asorder parameters.On the otherhand,K~I’~candistinguish
different regions of the samesymmetry. We have also monitored the invariant
observablesfor the reasonthat if the gaugefields were includedtheseobservables
would becomegaugeinvariant,whereasthe otherswould vanish identically by the
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Elitzur theorem. Thus gaining experiencewith the invariant observablesis useful
for laterpurposes.

In addition to the listed observableswe use the available information on the
fermion and the doubler masses,obtainedmainly in refs. [12,16,25] for the FM
phasein the quenchedapproximationand now in the sameway also for the PM

phaseat w = 0.
Furthermore,we havefound it very useful to monitor in all our runsthe number

of conjugate gradient iterations NCG required for the inversion, with a given
accuracy,of the fermion matrix. This quantityis sensitiveto the presenceof small
eigenvaluesof the fermion matrix [33].

3. Someanalytical considerationsof the phasestructure

Someof the information collectedin this sectionhasbeenobtainedfor models

which are analogousto but not the sameas our model with w = 0. However, we
expect that Yukawa models with different symmetry groups but with on-site
Yukawa coupling havevery similar phasestructureand that the resultsobtained
therecarry over to our model, at least qualitatively. In addition we presentsome
meanfield analysisfor w> 0.

3.1. LIMITING CASESOF YUKAWA COUPLINGS

We first summarizethe available informationon our model for vanishingor very
strongYukawacouplings.

y = 0, w = 0. In this limit thefermionsaremasslessandfree. Thusthewell-known
[31,34] phase structureof the pure 0(4)-symmetric CD

4 theory (2.1) at infinite
quarticcouplingis obtained.Onecritical point is at K = K~ = 0.3045(7).It separates
the ferromagneticphaseFM(W) (K > K~) from the paramagneticphasePMW at

K~<K <Kc (cf. fig. 2). A secondphasetransitionat K = —K~ is relatedthrough
the symmetry(2.11) to that at K = K~. For K < —K~ the model is in the antiferro-
magneticphaseAM(W). The order parametersdistinguishingthesethreephases
are KCD>, which is nonvanishingin the FM(W) phase,and (CD~~)having nonzero
valuesin the AM(W) phase.

y —‘ ~, w ~ 0. If the on-site Yukawa coupling gets large, the rescalingof the
fermion field ~I’-~ 1/ ~/i~i’suppressesboth the fermion kinetic term and the
Wilson—Yukawatermin the action (2.2). As theseare the only terms couplingthe
fermion fields on different lattice sites, the fermions cannot propagate,their
massesget infinite and the fermions thus decouple.The phasediagramis that of
the pure CD4 model. For the scalarfield of fixed length it is the samemodel as at
y = 0, becausethe fermion determinantdependson the length of the scalarfield
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only. The phasesare those with the strong Yukawa couplings: FM(S) (K >

PMS (IKI <Kr) andAM(S) (K < —Kg).

y = 0, w> 0. As follows from ref. [28] the fermion massm’
1~must stay at zero.

3.2. WEAK AND STRONG YUKAWA COUPLING REGIONS

Recentlyit hasbeenrealized[12, 14—16,19,25] that for strongYukawacoupling
the relationship betweenthe fermion mass and v in the FM(S) phase is quite
different from that in perturbationtheory. The existenceof two regionsof Yukawa
couplingscan be understoodby meansof a simple consideration:In the weak
coupling regionthe Yukawacouplingsare relatively small andperturbationin w, y

is appropriate,giving m ~yL’ and r w~’ in eq.(2.15).Sincev —~0as K ~ K~,in the
weak coupling region m, r —~ 0. Deep in the strong coupling region the Yukawa

couplingsare relatively large andthe hoppingexpansionfor the fermion propaga-
tor canbe used[15,19]. It leadsto m ~yz~

1 and r—~wz1[191.Since z decreases
as K ~ K~,the fermion massesincrease.We note that z= z~ 0.44 s~0 at K = K~ SO

that the fermion massesstayfinite on the critical line.
Furthermore,the fermion massesstay nonzerofor large Yukawacoupling also

in the PMS phase[14,19], though i’ = 0 there. On the other hand, for small
Yukawacouplingsthefermion massesvanishin the PMW phase[14]. Theseresults
for the fermion mass imply the existence of two paramagneticphases.At the
momentwe do not seewhetherin our model onecandefinea fermion massin the
AM phasebecauseof the staggeredstructureof the scalar fields. The recently

obtained [351result showing that in the model with staggeredfermions and
hypercubicYukawacoupling the fermion massvanishesin theAM phasefor any y
doesnot carry over to our case*.

3.3. MEAN FIELD ESTIMATES OF THE PHASE DIAGRAM

The phasestructureof several lattice Yukawa modelssimilar to our model at
w = 0 has been recently investigated with the mean field method in refs.
[13,14,17—19]. Weexpectthat the resultshold qualitativelyalso in our caseanddo
not repeat theseanalyses.The phasediagram is reasonablywell describedfor

y ~©v~and y>> %/~andit becomesclear that the FM phasecontinuesto negative
K. However,for y V~at negativeK the meanfield resultsobtaineduntil now do
not reproducethe phasestructurefound in numericalsimulationsin ref. [10]and
in this work. In particular,the Fl phasehas not beendetected.

To get a rough ideaaboutthe problemsof the meanfield methodin the region

y V~and K <0 we have carried out, similar to ref. [19], a simple mean field
calculation in the saddle point formulation both in the weak and the strong
Yukawacoupling regionswith the following ansatzfor the scalar field andfor the

* We thank RE. Shrock for correspondenceon this point.
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meanfield H:

cD~=(v+e5v~,)1i, H~=(h+e~h~,)]t, (3.1)

where v, v,,, h and h~,are real. In the leading order, neglectingfluctuations
completely,this methoddoesnot producethe Fl phase.Otherwiseit gives results
qualitatively consistentwith our numericalsimulations. It also indicates that for
w > 0 the phasediagramin the y—ic plane is verysimilar to that at w = 0 excepta
shift along the lines y + 4w = const.In the remainderof this subsectionwe show
some quantitativeresultsof thesecalculations.

In the weak Yukawacoupling region with w = 0, the meanfield equationslead
to the following estimatesfor the critical K asfunctionsof y:

K~= ±~_~y2f~2 ~ ±0.25—0.62y
2, (3.2)

2 —s-/2~T 5

respectively,for the FM(W)—PMW andAM(W)—PMW transitions.Here

~2 ~ (3.3)

and n is the numberof fermion doublets(i.e. n = 2 in our hybrid Monte Carlo
calculation).The two transition lines given by eq. (3.2) do not cross eachother
anywhere.Also, thereexists no solution with simultaneousnonzerovalues of v
and vs,. Thus, at leastin the leadingapproximation,the Fl phaseis missing.

The mean field results in the strong coupling region with w = 0 are similar.

FM(S)—PMS and AM(S)—PMS transition lines againdo not intersectand the Fl
phasedoesnot appear.

The strongcoupling meanfield calculationscan be done easily alsowith w > 0.

The meanfield equationsare given by

~r d4p
hv=4Kv2+2nv2f

-~ (2ir)4 s2(v2— u~)~

~
hv~~= —4Kv~ — 2nv~f (2~)~s2(v2 — ~2) ~~2’ (3.4)

8v= W’(h +h~,)+ W’(h —h~,),

8v~,= W’(h + hg,) — W’(h — hg,) , (3.5)



W. Bocket a!. / Sca!ar-fermionmodel 219

where W(h)= In f dVexpTr(HtV+ VtH) with H = Ht = h ]1 is the familiar group
integral over the group elementsV. Primes representderivativesand .4’= y +

w~F(1— c). With v~,= 0 the first of theseequationsgives eq.(9) of ref. [19] after
the replacementK —~

2K.

The FM(S)—PMS boundarycan be approachedfrom within the FM(S) phase
(vs, = 0) by letting v —s 0 (h —~ v). The first of the aboveequationsthenreducesto

~ d~p s2
V2 = 4~v2+ 2nv2f 4 ~ (3.6)

.4’

Onecanhavea reasonableapproximationto the aboveintegralby simply replacing
eachof cF and 5F by their averagevalues,i.e. taking ~2 = 2 and %‘=y + 4w, which
leadsto

n 2~ (3.7)
(y + 4w)

Similarly the AM(S)—PMS transition is given by

n
4 2~ (3.8)

(y + 4w)

The transitionlines againdo not intersect,andwe find no Fl solution with v � 0
and ~ * 0 simultaneously.lnt&estingly,as the w coupling is turnedon, the above
two formulassuggesta shift of the phasediagramalong the lines y + 4w = const.,
i.e. the way we observein our numericalsimulation.We also note that the critical
points for y = or w = are equalto thoseof the pure CD4 theory in the mean
field approximation.

3.4. K -~ +~LIMIT

In this limit the action for the scalarfield (2.1) makesthe scalar field constant.

With CD~= II. the fermions becomefree with the propagator(2.15) where m = y

and r = w. Further information is obtainedby consideringthe eigenvalues~x+ iA
of the fermion matrix

~ (3.9)
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which determinethe fermion condensate(511W),

(3.10)

Here the sumextendsover all eigenvalues.

The form of (hl’hlo) as a functionof y andw canbeestimatedby replacingeach
cF and s,~in eq.(3.9) by their averagevalues, i.e.

(~,A) (y + 4w, ±~), (3.11)

which gives

— y+4w
(11’ 111) 2 (3.12)

(y+4w) +2

Onefinds that (51”P) has a maximumon the straight line

y+4w=V’~. (3.13)

Note that for d dimensionsthe number ~ in eqs.(3.11) and (3.13) would be
replacedby ~ This is the reasonwhy we write ~ throughoutthe paper.An
exact expressionfor (11’11’), which follows from eqs. (3.10) and (3.9), can be
evaluatednumericallyandthe positionof themaximumindeedturns out to bewell
describedby the line (3.13).

3.5. K-~ —~ LIMIT AT w=0

This turns out to be a complicatedand interesting limit. Assuming that the

fluctuations of the scalar field are unimportant for large negativeK we insert
CD~= (v + r~v~~)llin the fermion matrix. Keeping in mind a possiblepresenceof
the Fl phase,we allow v * 0.

Going over to the staggeredfermion representation(2.8) andusingthe formal-
ism of ref. [26] the fermion matrix in momentumspacecanbe written as

A=(i$+y(v+~v~~))1, (3.14)

where ,~= T’F5F(—1r/2<p,.~<~/2), ê = F5~E5,and the F’s and the ~E’sare 16-
dimensionalDirac and flavour matrices.The matrix 1. in eq. (3.14) is a tensor
productof unit matricesin SU(2),Dirac and“staggered”spaces.

First we calculatethe eigenvaluesof the fermion matrix (3.14) assumingv = 0
and v,0 = 1, which is correctat K = — ~ in the quenchedapproximationand most
probably also in the unquenchedmodel. Taking the square of A and using
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(F5,
TF’ = 0, oneeasilyobtainsthe eigenvalues

~+iA=±~ IyI>IsJ

= ±iV~ I~I<Is I. (3.15)

Thus in the thermodynamiclimit there are zero eigenvaluesat any y in the
interval I~I<2. On a finite lattice the zero eigenvaluesappearonly at singular
y-points, which arecompletelydeterminedby the possiblemomentaon the finite
lattice, i.e. by the size, shapeandboundaryconditionsof the lattice.Their effects
in numerical simulation are violent, in particular the inversion of the fermion
matrix is very difficult in thevicinity of thesesingularpoints.

Assumingthat for largenegativeK the fermion matrix is of the form (3.14)one
can calculate(~P51’>:

— (~/2 U~
= ~Pj —~-TrA(p)

iT

ir/2 d4p —i~+y(i’ —

= ~Pf /7~4 s2+y2(~’2—

4

=YVPf~/
2~52~y2(1.2_,~2). (3.16)

In a very similarwayonecanalso estimatethe invariant fermion condensate(2.22)

when CD~in eq. (2.22) is replacedby e/:

— ~./2dp 1
= _yv~~Pf 4 2 2/ 2 2\ (3.17)

—ir/2 IT S +y ~L’

1~t)

The integralsin eqs. (3.16) and(3.17) havecuts as functionsof y. Taking ti = 0
and i:~ = 1 in the denominatorsof the integrand thesecuts lie in the interval
~I<2. A proper definition of the integralson the cuts would require a study of

the contribution of the field fluctuationswhich presumablysmooth the singulari-
ties. Our numericalresults indicate that the fermion condensatesat large negative
K stay real. We thus assumethat the integralsabove haveto be handledby the
principal valueprescription.

On finite lattices the integrals(3.16) and(3.17) reduceto sumsoverpoles. For
= 0 and t’~,= 1 the poles in y areagaincompletelydeterminedby the momenta

possible on a particular lattice and they coincidewith the y-points where the
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eigenvalues(3.15)vanish:

<~CD~)= ~ s2-y2 (3.18)

Herethe sumis takenover all momentaand s2 is definedin eq. (3.3).
From the aboveconsiderationswe conclude,assumingin the unquenchedcase

v —~ 0 as K —~ — ~, that the condensatesbehaveas

=0 at ~

(51’CD51’> ~

*0 at K= —~. (3.19)

In particular,on finite lattices <V’I!I’) developspolesat preciselyknown y-points.
Thesepoles are easily detectablein numerical simulationsand can be usedfor
testsof the code.They should not be misinterpretedas signals for phasetransi-
tions.

4. Observableswith fermion fields in the quenchedapproximation

As discussedabove,the pure CD4 model can be either in the symmetric PM
phaseor in one of the broken phases,FM or AM, where SU(2)L ® SU(2)R is
broken to its diagonal subgroup.The inclusion of fermions in the quenched
approximationof coursedoesnot influencethis phasestructure.However,observ-
ables containingfermion fields (e.g. fermion condensatesand propagators)are
highly nonlocal when expressedin terms of the scalar fields after the fermionic
path integration has been carried out. These observablescan thus show an
interestingdependenceon the coupling constantsand evendevelopsingularities.

The accumulatedexperiencewith quenchedand unquenchedcalculations in

lattice theorieswith fermions suggeststhat many structuresobservedfor observ-
ableswith fermion fields in the quenchedapproximationhaveremarkablysimilar
analoguesin theunquenchedcases.A systematicstudyof theseobservablesin the
quenchedapproximationcan thus give hints about the phasestructure of the
unquenchedmodel and elucidate the interpretationof various phases.Further-
more, in the quenchedcasethe propertiesof the observableswith fermion fields
can be easily related to thoseof the scalarsectorwhich is known in greatdetail
[31,34]. For thesereasonswe haveperformedin the quenchedapproximationa

systematicinvestigationof the fermion condensates,of NCG andin partalso of the
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fermionmassin the (K, y,w) couplingparameterspace.Resultsfor the eigenvalues
of the fermion matrix will be reportedelsewhere[33~.

4.1. DETAILS ABOUT THE QUENCHED NUMERICAL SIMULATIONS

For equilibratedscalar field configurationsobtainedby a Hybrid Monte Carlo
(HMC) algorithmfor the 0(4)symmetric CD4 theorywe haveperformedconjugate
gradientinversionson 44 and6~lattices.On configurationsseparatedby 100 HMC
iterations we have measuredthe fermionic condensate(51’51’), the invariant
condensate<51’CD51’) and the number ~ of conjugategradient iterations re-
quiredfor one inversionwith fixed accuracy.The lastquantity showsa sharppeak
when an eigenvalue of the fermion matrix becomesvery small [33]. For the
measurementof (511511> and (51’CD51’> we apply the techniqueof gaussiannoise.
Becauseof the noninvarianceof (51! Il’) we invert the fermion matrix for CD field
configurations rotated accordingto the prescription(2.19). We haveperformed
runs at fixed valuesof w and K for variousvaluesof y:

w = 0: K = 0.29,— 0.33, — 0.6, — 1.2, — x(6~)

=0.33,0.2,—0.5,—l.0,--1.5,—2.0,—2.5,—3.0,—6.0,—10.0,—20.0(4~)

w = 0.2: K = 0.29 (6~).

At eachpoint chosenin the coupling parameterspacewe havetypically accumu-
lated 30—50 valuesfor eachobservable.We havealso varied boundaryconditions
for fermion fields, usingcompletelyantiperiodic, antiperiodicin onedirectionand
sometimes,for comparison,also fully periodicboundaryconditions.

In additionwe havecalculatedthe fermion massm~at w = 0 and K = 0.29 in

the PM phasefor various values of y following the method described in refs.
[16,25]. Herewe use a 6~12lattice with periodicboundaryconditionsin spaceand
antiperiodiconesin time for the fermion fields. For the propagatormeasurement
we haveperformedinversionsof the fermion matrix for 128 CD-field configurations
separatedby 100 HMC iterationsin the pure 0(4) model.

4.2. STRONG AND WEAK COUPLING REGIONS IN THE FM PHASE

From our earlier calculation of the fermion mass at w = 0 in the quenched
approximation it has become evident that the FM phaseof our model has two
regions,a “weak” and a “strong” coupling region, FM(W) and FM(S), wherethe
fermion massesdecreaseor increase,respectively,as K \~K~at a fixed y [16]. Thus
the two regionsare separatedby a crossoverat y ~ (see figs. 1 and 2 in ref.
[16]), where the dependenceof the fermion masson K changes,and (51’~I’)hasa
peak.The peakheight decreaseswith decreasingK. The crossoveris indicatedin
fig. 2 by the dottedvertical line.



224 W Bocketal. / Scalar-firmionmodel

Recently, (51’ 51’) and the fermion and the doubler masseshave also been
calculatedfor w > 0 in the quenchedapproximation[12,25]. The picturewhich has
emergedis that with increasingw the strong coupling region FM(S) expandsto
smaller y values. The crossoverregion is found at y + 4w y~.For w>
only the FM(S) region is found at positive y (see fig. 2 of ref. [25]).

In the FM phasewe could not detectany dependenceof the position of the
crossoveron K. We havecheckedthat the peakof (51151~)doesnot developinto a
singularity as the lattice size increases.Nevertheless,the number of conjugate
gradientiterations N(.G increasessignificantly at the crossover.We show Nc(; as a
function of y for K = 0.33 in fig. 3. Actually the easiestway to localize the
crossoveris to look for the peakin N(.G.

4.3. SPLITTING OF THE PM PHASE

In the PM phasethe noninvariantobservables(CD), <51’51’) and <~,>vanish.
However, (51’CD51~),NCG and the fermion massshow y-dependentstructures.We
shall describethem first for w = 0.

The observable<~CD51’)is close to zero at y < V~,increasessteeply around

y v~and staysdistinctly nonzeroat larger y, decreasingas l/y for large y. In
the PM phasethe invariant condensatethus behaveslike an order parameter

distinguishingbetweendifferent phases.As this is also true in the unquenched
case,we call, evenin the quenchedapproximation,the regionsof the PM phaseto
the left andright of y V’~the PMW and PMS phases,respectively.However,we

continueto call the boundarybetweenthem a crossover(in the infinite volume
limit it is probably a singularity of nonlocal bosonic observables).In the un-
quenchedcaseit doesnot correspondto a singlephasetransitionline but develops
into the funnel-likestructurepartly filled with the Fl phase.

ln fig. 3 we show ~ at w = 0 and K = 0.20 on a 44 lattice. A pronounced
symmetric peak, much higher than in the FM phase, is presentaround the
crossover.With decreasingK the peakin ~ staysat the samey but increasesin
height.A recentstudyof the fermion matrix showsthat the peakis causedby some
of its eigenvaluesapproachingzero at y V~[33].

In fig. 4 we displayour results for the fermion massmF at K = 0.29 with w = 0
on the 6~12lattice. In the PMW phasem~is consistentwith zero. At y %/~the
massgrows rapidly with y. The presentdatado not allow us to decideon whether
mF jumps or whether it rises continuously.Above the crossovermF increases
roughly linearly with y. The slope of the increaseis consistentwith the expected
value z~’.For comparisonwe include a dashedline of this slope in fig. 4. Thus,
the crossoverdetectedalready in the FM phasealso continuesin the PM phase
anddivides that phaseinto a masslessweak Yukawa coupling phasePMW and a
massivestrongYukawacoupling phasePMS.
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K-200

Fig. 3. The numberof conjugategradient iterationsas a function of y for severalvaluesof K in the
quenchedmodel. The sharp peaks at K = —20.0 are at the positionsgiven by eq. (4.1). Error bars

smaller thantwice thesizeof the symbolsaredroppedfor clarity.

The runsperformedat w = 0.2 and K = 0.29 show that the crossoverin the PM
phaseis shifted along the line (3.13)to a smallervalue of y. We assumethis to be
true in the whole PM phase.

4.4. SINGULARITIES IN THE AM PHASE

The singularitystructureof the observableswith fermion fields deepin the AM
phaseis unusual.We haverestrictedits investigationmostly to the w = 0 case.On

6 ‘ I’’’ ‘ ‘T’~’ ‘

m~
quenched

w=0

PMW PMS

Fig. 4. The fermion massmr in thequenchedapproximationat w = 0 as a functionof y for K = 0.29,
i.e. in the PM phase.
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one hand,for K not far below the PM—AM phasetransition line at K = — K~,the
crossoverline from the PM phaseseemsto continue.This is best seenin the
observableNCG. As seenin fig. 3, for K = —1.0 it still has a maximum around
y ~ much higherthan in the PM phase.The crossoveris indicatedin fig. 2 by
the dashedline. It splits the AM phaseinto the AM(W) andAM(S) regions.

On the other hand, at K = —m we expect, at least for w = 0, the lattice-size

dependentsingularitiesdescribedin subsect.3.5. We havecalculatedthe fermionic
condensateson severalfinite latticeswith various boundaryconditionsusing the

fully antiferromagneticfield configuration CD~= ~ which correspondsto a
quenchedsimulationat K = — m~We havefound at the right placesseveralsharp
peaksin ~ arisingfrom the vanishingeigenvalues(3.15), andpoles in (51’CD51’),
in agreementwith the relation (3.18). For example,on a 44 lattice with antiperi-
odic boundaryconditionsin onedirectionfor the fermionsthe positionsare

y 0.71, 1.22, 1.58and 1.87. (4.1)

At these positions we have also found some bumps in (511511), which should,

accordingto eq. (3.16), actuallyvanish. This can supposedlybe explainedby the
unreliability of the fermion matrix inversion at thesespecialy values.

This structurealso manifestsitself at finite but largenegativeK. This is seenfor

N~0at K = —20.0 in fig. 3 andfor (51’CD51’) at K = —10.0 in fig. 5a. The peaksin
(51’CD51’) areevenmorepronouncedat K = —20.0. As seenin fig. 3, N(.G develops,

alreadyat K = —1.0, a shoulderon the left-hand side. DecreasingK more and

‘q~n~i~ie~i‘H’ ‘H’’’I’’

0 0.5 4’ 1 4’ 1.54’ 4’ 2 y 2.5

/4,\\ I - unquenched (b)

ii ::~~‘‘
0 0.5 4’ 1 4’ 1.54’ 4’ 2 y 2.5

Fig. 5. The invariant condensate(~I’l’~asa functionof y for (a) K = —10.0 in thequenchedand(b)
K = —20.0 in the unquenchedease.The vertical arrows indicate the expectedpositions (4.1) of the

polesat K = —
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more the asymmetryof such curvesbecomesmore pronouncedand at K = — 20.0
the curve splits into sharppeaksat the expectedy values.

For w > 0 we expectthe crossoverto shift in a similar wayas in the FM andPM

phases.At K = — with w> 0 we havefound an evenricher pole structurethan
at w = 0.

5. Phasediagram of the model with dynamical fermions

As mentionedearlier, the determinantof the fermion matrix of the investigated
model is real.This enablesus to usethe Hybrid Monte Carlo (HMC) algorithmfor
a simulation of the full model with two identical doubletsof dynamical fermions.
The resulting phasediagram is alreadyshown in fig. I for the w = 0 case.For

w > 0 thereseemsto be essentiallya shift of this phasediagramin the negativey
directionso that the new phasediagramfor fixed w is still given approximatelyby
a part of fig. I with the zeroof the new y coupling axis shifted to y = 4w.

5.1. DETAILS ABOUTTHE UNQUENCHEDSIMULATIONS

Using mostly a 6~lattice we havemonitored all the observablesdescribedin
subsect.2.2 in the three-dimensionalparameterspace(K, y,w}. Eachobservableis
calculatedfrom at least 100 Monte Carlo configurations.In a HMC trajectorywe
haveusually chosenthe step-size~ir and the number of steps N such that the
productN~ir= 1. Only at very negativevaluesof K where ~r hadto be reduced,
was the productchosensmaller than unity to havereasonableMetropolis accep-

0:(~),: ~st )~~:~~lr), + : (~tU~)

0.75 ‘ ~‘~~‘‘‘‘ ~ ‘ I ~

0.50 - w=0 -

\ y=O.4

0.25 - ~ -

0.00 - .-~l!~iii -

a::: ‘TTTIT~TI~ITTI,’
—0.5 —0.25 0 0.25 0.5

Fig. 6. Theobservables<~>,K~S~) <‘I”I’) andK~tLJ~)asfunctionsof K for y = 0.4 and w = 0, i.e. in
theweakcoupling regionsin the unquenchedmodel.
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tanceat the endof the trajectory. In thesecaseswe havealwaysperformedmore
HMC sweepsin betweenmeasurements.We havemostly usedperiodicboundary

conditionsin all directionsexceptfor an antiperiodicconditionin onedirection for
the fermion fields. By sometimesvarying boundaryconditionswe wantedto get a
rough ideaaboutthe finite size effects. We have found that thereare appreciable
finite size effects at small y and one has to be extremelycareful in choosinga
boundary condition there. For example, the PMWphase could hardly be seen with
completelyperiodicboundaryconditionsfor all fields. For large y no significant
finite size effectshavebeenobserved,however.

The coupling parameterspacehasbeenscannedin the K direction from + 0.9 to
— 1.6 mostly in steps ~~%K= 0.1 and in steps~K = 0.05 in the vicinity of the phase
transition lines. We havechosenthe following fixed valuesof w and y:

w=0, y=O.2,O.4,O.8,O.9,l.O,I.2,l.S,l.7,2.O/2.4,3.O,4.O,7.O,lO.O,2O.O.

w=0.5, y=O.3,l.O,2.O,3.O.

The coupling parameter space has also been scanned in the y direction in the
interval y = 0.2—10.0 in steps ~~ly= 0.05—0.2 for the following fixed values of w
and K:

w=0, K4.O,O.O, 1.0,—1.6, —2.6, —4.0,— 10.0, —20.0.

w=0.2, KO.O,l.6.

w=0.5, K=O.O,—l.6.

D;(~), ~
10 ~unque~ed~~

Fig. 7. Sameas in fig. 6 for y 1.5, i.e. close to the crossoverin the FM and Fl phasesin the
unquenchedmodel.
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D:(,~:(~t~t, ~t:(~Ht),+:(~tU~)
1.0

unquenched

w=0
0.5 - y=3.0 -

0 — AM(s) MS FM(S) -

—1 —0.5 0 0.5 1

Fig. 8. Sameas in fig. 6 for y 3.0, i.e. in the strongcoupling regionsin theunquenchedmodel.

5.2. PHASESAT w = 0

In the following we describethe propertiesof the different phasesin termsof
the observableswe have measured.For interpretationof the phasesand regions
we also use their correspondenceto the similar regions in the quenchedcase
where some additional resultsareavailable.Examplesof our resultsfor w = 0 can
be found in a number of figures: figs. 6, 7 and 8 show (CD), (CD5~),(51,51’) and
<CDtUCD) in scansalong the K direction at fixed values of y = 0.4 (weak), 1.5

0.8 -‘ unquenched +:~=0.0 (6~)

~ 0123~4

Fig. 9. The magnetization(~ asa function of y for severalfixed K valuesin the unquenchedmodel
with w = 0. For clarity, only theerrorbars largerthan thesizeof the symbolsareshown.
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0 8 - unquenched ~ ~:~=—~o(44) -J)~j D:~=—2.6(6k)

‘~c=—1.6(6~)0.6 - +:,c=rO (6k) -

EL_
Fig. 10. Thecondensate(‘I’~’>as a funetion of y for severalfixed K valuesin the unquenchedmodel

with w = 0.

(intermediate)and3.0 (strong), respectively.Thesefiguresshow themost interest-
ing observablesin all the phases.Figs. 9, 10 and 11 illustrate in more detail the
funnel-likestructurein scansalong the y directionat fixed valuesof K = 0.0, — 1.6,
—2.6, —4.0 with w = 0. — —

FM: In this phase <CD) * 0, (51’51’) * 0, (51’CD51’) * 0 and (CD5~)= 0 (figs. 6—8).
<CDtUCD) is always positive here. Similar to the quenchedmodel [16,251,the FM
phaseis divided into two regionsby a crossoverat y + 4w v~.Somepreliminary
unquenchedcalculationsof the fermion massalso indicatethat at lower y values,
i.e. in the FM(W) region, the fermion massdecreaseswith decreasingv. On the
contrary,at larger y values,i.e. in the FM(S) region, the fermionmassincreasesas
v decreasesat a fixed y. The preciseposition of the crossover(the dotted line in
fig. 1) in the FM phasewith respectto the points A, B is underinvestigation.

PMW: This phaseis characterizedby <CD) = 0, (511511) = 0 and (CD~1)= 0 (fig. 6).

The valueof (51’CD51’) is very small and it changessign as K is loweredsomewhere
in the middle of this phase,at the sameplacewhere(CDtUCD) (fig. 6) changessign

too. Following the correspondencewith the quenchedresults(fig. 4), in thisphase
we expectmasslessfermions.

PMS: In terms of the order parameters(CD), (~i~51’)and(CD~1)this phaseis like
the PMW phase(fig. 8). However, it is completelyseparatedfrom the PMW phase

by theupperpart of the funnel containingthe FM phase.As in the quenchedcase
(fig. 4), we anticipatemassivefermions in this phase.Unlike in the PMW phase,

thevalue of <51’CD51’) is appreciable.
AM: Here <CD) = 0, <51’51’) = 0, but (CD~~)* 0 (figs. 6,8). The valueof (CD

5UCD)
is negative.The funnelwith theFl phaseseparatesthe AM phaseinto the AM(W)
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o: ~)~, :(1’st)’ :(iJi c1’sJ~),+ : NCG
‘‘‘II ‘‘‘II’’’ I

1.0 -e~oeooe.e.+p~ -

0.5 —

0.0 ne ~ - - ____ -

-0.5 - -~::~‘-

—1.0 - AM(W) Ft AM(S) —

III
0 0.5 1 1.5 2 2.5

Fig. 11. The observables(~),K~) ~‘!‘~‘J’) and ~ as funetions of y at K —4.() in the
unquenchedmodel with w = 0.

andAM(S) regions.Becausethe funnelpossibly stopsat largenegativebut finite K

(see discussionbelow), theseregionscould very well be connected.
Fl: This is a phasewith both ferromagneticand antiferromagneticorderingof

the scalar field, i.e. <CD) * 0 and <CD~1)* 0 (figs. 7,9,11).We havealso found that
(51151~)is nonvanishing in the Fl phaseand has a peakas a function of y around

y ~ (fig. 10). Furthermore,N~0and the fluctuationsof (51’51’) go up quite
substantiallyat the AM(W)—FI andFl—AM(S) phaseboundaries(figs. 10,11).If at
a fixed value of K a scan is made in the y direction, <51’CD51’) falls to a large
negativevalue at the AM(W)—FI phaseboundary, then grows from this large
negativevalueto a largepositivevaluein the Fl phaseandfinally dropsto a small
positive value in the AM(S) region (fig. 11). While scanning the Fl phasein the

other direction, varying K with a fixed y (fig. 7), we have observed a monotonic
decreaseof <CD) (see also fig. 9) and a monotonic increaseof <CD,1). We have

found at K = — 10.0 a still significantly nonvanishing, though tiny value(about0.03)
of <CD) around y ~ At K = —20.0 the signal seemsto be consistentwith zero
within our accuracy.

This brings us to the questionof the behaviourof the model and of the fate of
the funnel with the Fl phase at large negative K. Does the funnel continueto
K = —m, separatingcompletely the AM(W) and AM(S) regions, or does <CD)
vanish below some large negative but finite K? A competitionof the anti-ordering
tendency of the hopping term and of the ordering tendencyof the Yukawa
coupling apparentlyinhibits the onsetof some asymptoticbehaviourat moderate
negativevaluesof K. But at large negativeK, as in the quenchedcase,the polesin
eq.(3.18)andthe peaksin N~~5expectedon finite latticesat K = —m alreadyshow
up, making precisecalculation,e.g.of <CD) practically impossible.
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Fig. Sb displays(51’CD51’) at K = —20.0. Comparingfigs. 5a and5b we conclude
that in the unquenchedcase the poles develop later than in the quenched
approximation(the strikingly similar curveshavebeenobtainedfor K = —10.0 in
the quenchedcaseandfor K = — 20.0in the unquenchedcase),but theyareof the
same character, in accordance with the expectation that CD~= e,]l at K = — m also
in the unquenched model. Thus at K = — the quenchedapproximationis possibly

exact and for dynamical fermions the antiferromagneticorderingof the hopping
term wins completelyover the ferromagneticorderingby the Yukawaterm.

The strong singularities indicate that the conjugate gradient inversion gets

unreliable, as observed already in the quenchedcase (fig. 3), possibly causing
spuriousresults.We think that oneof such unreliableresultsmight be the signal

for (~sI1)at K = —20.0, shown in fig. 10. Accordingto eq.(3.16) this observableis
actuallyexpectedto vanishas v —~ 0. Figs. 7 and 10 show that in the interval of K

from 0 to —2.6 the condensate (51’51’) still increases while v decreases.This is
anotherindication that the asymptoticbehavioursets in probably only at large
negativeK.

Being thusunableto trace thefunnel containingtheFl phaseat largenegativeK

we can only guess on the basis of our results at K = —20.0 that the funnel
presumablyends at some finite K and the AM(W) and AM(S) regions are
connectedaroundit. Of courseit is also not excludedby our datathat the funnel
continuesdown to K = —

5.3. THE w> 0 CASE

Fig. 12 shows (51151~)versus y at K = 0 for fixed values of w = 0.0, 0.2,0.5. The

curvesarealmostidentical to oneanotherexceptthatwith increasingw thecurves

0.4 - unquenched -

D:w=0.0

Fig. 12. The condensate<~F’i’> as a function of y at K = 0 for several fixed values of w in the
unquenchedmodel.
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o : (‘1’), : 1’St ), ~: (~4’), +
‘‘‘‘I’ll’’’’

unquenched

AM(w) Fl AM(S)
I,,,

0 0.5 1 1.5 2

Fig. 13. The observables(~),~ (‘I”P) and N~
0as functions of y at K = —1.6 in the un-

quenchedmodel with w = 0.2.

shift to the left along the lines y + 4w = const., as observedalso in the quenched
case.The curvesfor <CD) are very similar.

The funnel in the negativeK regionshifts in the sameway, asdepictedin fig. 13
at w = 0.2 and K = — 1.6. We also haveevidencefrom the runs in the K direction
at different fixed valuesof y and w = 0.5 that the FM(S) and AM(S) regionsas
well as the PMS phaseappearat the expectedplacesafter the origin of y in fig. I
is shifted to 2.0 (= 4w).

All the accumulatedevidenceseemsto be consistentwith the abovediscussed
shift along the y + 4w = const. lines, though, of course, the scanof the phase
diagramwith w> 0 is not complete, especiallyin the funnel region. In particular,

TABLE 1
Somepoints of theFM(S)—PMS andPMS—AM(S)phasetransition lines at

w = 0.5 on a 6~lattice

FM(S)—PMS PMS-AM(S)

3) K 3) K

0.5 —0.22±0.08 1.0 —0.55±0.05
0.8 —0.05±0.05 2.0 —0.45±0.05
1.0 —0.05±0.05 3.0 —0.40±0.05
1.0 ±0.2 0.00
2.0 0.15 ±0.05
3.0 0.25 ±0.05
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we do not yet know the position of the crossoverin the FM phasewith respectto
the lines A, B. For future masscalculationsin the FM(S) and PMS phasesand a
studyof the decoupling of the doublersit is important to locaterather precisely
the FM(S)—PMS and PMS—AM(S) phasetransition lines for w sufficiently large
such that the line y = 0 falls in the strong coupling region. Then the physical
fermion masscanremainsmall asseenin the quenchedapproximationin ref. [25].

We give in table 1 somepositionsof theselinesfor w = 0.5.

6. Conclusion and outlook

The phasestructureof the chiral SU(2)L ® SU(2)1~ scalar-fermion model turns
out to be very complex.Assumingthat the funnel containingthe Fl phasedoesnot
continueto K = — m, the model has for y ~ 0, w ~ 0 and arbitrary real K seven
distinct regions lying in five phases.The phasesare separatedby six different
phasetransition sheets.Within our accuracyof their location, the phasetransitions
meet for w = 0 at two quadruplepointsA, B, which for w> 0 presumablycontinue

aslinesA, B in the three-dimensionalspaceof coupling parameters.At presentwe
havelittle information about the order of the transitionsin the model exceptthat
we havenowhereobservedphenomenaindicating a strongfirst order. In addition,
in consequenceof the theoremin ref. [281that the fermion massvanishesat y = 0
for any w, the fermioniccorrelationlength divergeseverywhereon the sheety = 0.

The dynamics of fermions has a strong feedback on the scalar sector for

intermediatevalues of the Yukawa couplingsand tends to align the scalar field.
The FM phaseextendsto the negativeK region and splits the PM phasein two
differentphases,PMW andPMS with masslessandmassivefermions,respectively.
For negativeK the FM phaseendsat the phasetransition to the Fl phase which
still has ferromagneticpropertiesmixed up with antiferromagneticones.Also, the
antiferromagnetic phaseis split over a large K rangeinto two regions AM(W) and
AM(S).

Weshow that with the exceptionof the Fl phaseall the phasesandtheir regions
found in the unquenchedmodel havecorrespondinganaloguesin the quenched
model. This is of help for the interpretationof the various phasesandregions,as
in the quenchedcase the calculationsare easierand quite a lot of information
about the fermion and the doubler masses is available.

Someof the regionsaresurelynot relevantfor the standardmodel but could be
useful in otherbranchesof physics.Concerningthe standardmodel or, in general,
the electroweakinteractions,we would like to mentionsome pointsof interest:

(i) The FM(S) region in the neighbourhoodof the FM(S)—PMSphasetransition
with w ~ 0.5 andsmall valuesof y appearsto be very promisingfor the decoupling
of the fermion doublers [25]. The fermion masscan be kept small in the scaling
regionby taking y close to 0 whereasthe doublermassesareexpectedto stay of
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the order of cutoff without tuning w. Our quenchedresults[12,25] supportthese
expectations.Further investigation is necessaryto check that the perturbative
propertiesof the standardmodel are reproducedin this region.

(ii) In the FM(W) regionfermion doublingoccurs.However,it may be possible
that tuning both y and w toward the line A raisesthe doublermassessufficiently
suchthat the low-energyphenomenologyis practically unaffected.In the quenched
approximationthe crossoverintersectsthe FM—PM transitionline, which appears
to offer the possibility of decouplingthe fermion doublersin the FM(W) scaling
region at small y by tuning w toward the intersectionpoint [6, 12, 25]. Whether

such a decoupling is really possible dependscrucially on the position of the
crossoverwith respectto the line A in the full model with dynamicalfermions.

(iii) The PMS phasecontaining,for small y and sufficiently large w, massive
fermions and heavy doublers in spite of i = 0, could be of interest for more
generalfield-theoreticalinvestigations,e.g. for the asymptoticallyfree chiral gauge
theorieswithout scalarfields in the classicalaction [6, 19].

(iv) It could also he that the model possessesnontrivial fixed points on the lines
A, B where an interestingfield theory is obtainedin the continuumlimit.

The exploration of the phase structure done in this work is a necessary
prerequisitefor the studiesof theseinterestingquestionswhich we want to address
in the future.

We have benefittedfrom discussionswith I.M. Barbour, A. Hasenfratz,C.B.
Lang, J. Shigemitsu and R.E. Shrock. The continuoussupport by HA. Kastrup
is gratefully acknowledged.The computationswere performed on the CRAY

Y-MP/832 at HLRZ Jillich.

Note added in proof

(1) Recently the possibility of decouplingthe doublersin the FM(S) region of
our model hasbeendemonstratedalso in the unquenchedcalculation[36].

(2) In a recent paper [37] the decoupling of the fermion doublerswas found
possiblealso in a class of fermion-scalarmodels with Wilson—Yukawa coupling
which were formulated in the spirit of rcfs. [5,38,39] and happento lack the

Golterman—Petcher(GP) symmetry[28]. We expectthat the type of modelsin ref.
[37] are not essentiallydifferent from our’s (i.e. will be in the sameuniversality
class),but welcomein our model the GPsymmetrywhich is of coursevery helpful
in pinning down the critical Yukawacoupling.

We would like to comment on someremarksin that paper:One may get the
impression from ref. [37] that our fermion-scalar model applies only to right
handedfermionswith hyperchargezero. This is not the case.The lattice formula-
tion [21—23]of the standardmodel hasa straightforwardreduction(i.e. leavingout
gaugefields andconsideringonly massdegeneratedoublets)to our SU(2)® SU(2)
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fermion-scalar model. Our model therefore applies to fermions in all weak
hyperchargerepresentationsoccurring in the standardmodel. The decouplingof
doublersfound in refs. [25,36] is thus relevant for all fermions in the standard
model in the weakgaugecoupling limit.

(3) We havelearnedfrom MA. Stephanovand M.M. Tsypin [40] that theyhave
found in their meanfield calculations[17] extendedto the SU(2)® SU(2) casean
indication of the crossingsof the FM(W)—PMW and AM(W)—PMW lines (our
point A) andof the FM(S)—PMSandAM(S)—PMS lines (point B). We thank these
authorsfor their informationand also for pointing out to usan erroneousfactor in
our MF calculations,which howeverdoesnot changeour failure to find therethe
pointsA andB.
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