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We present the phase structure of the chiral SU(2); ® SU(2)y scalar-fermion model on the
lattice with on-site Yukawa coupling y and Wilson—Yukawa coupling w for positive y and w.
The hopping parameter « of the four-component scalar field of fixed length is both positive and
negative. From the different behaviour of several observables ferromagnetic, paramagnetic and
antiferromagnetic phases can be distinguished. They split into different regions or phases with
small and large y + 4w. A similar structure is also found in the quenched approximation. In
addition, in the unquenched case a ferrimagnetic phase is found at negative x around y + 4w
= V2. We discuss fermion masses in various regions and point out the possibilities of decoupling
the unwanted fermion doublers in the continuum limit in analogy to the Wilson mechanism.

1. Introduction

Recent years have witnessed a lot of interest in the nonperturbative understand-
ing of the symmetry breaking sector of the standard model of electroweak
interactions. Many of these studies concentrated on the pure scalar sector regular-
ized on a lattice, neglecting gauge and fermion fields (for references see the recent
reviews [1,2]). Whereas it is presumably sufficient to treat the gauge fields only
perturbatively, the inclusion of fermions into the nonperturbative investigation is
important because of the possibility that some heavy fermions exist with strong
Yukawa interactions. Keeping the perturbative triviality of the Yukawa coupling in
mind, it is of phenomenological importance to investigate a possible upper limit on
the fermion mass generated through this coupling and to improve the already
existing upper limit on the Higgs mass, now with fermionic feedback included.
Alternatively, any indication that strong Yukawa coupling might lead to a nontriv-
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ial fixed point with an interacting symmetry breaking sector would be of major
interest for the standard model and, more generally, for quantum field theory.

Field-theoretically it is a challenge to regularize a theory with chirally coupled
fermions on the lattice. The problem is due to the well-known “species doubling”
of lattice fermions, which results for chiral theories also in the occurrence of chiral
doublers or “mirror” fermions [3]. It is nontrivial to remove these unwanted
doublers by the Wilson mechanism [4].

Many of the initial investigations of coupled scalar-fermion models (for reviews
see refs. [2,5-7]) have temporarily avoided the problem of fermion doubling and
explored qualitative properties of models with strong Yukawa coupling. They have
looked at scalar-fermion theories on the lattice with Z(2), U(1) and SU(2) symme-
tries using naive lattice fermions or staggered fermions with either on-site or
hypercubic Yukawa coupling [7-18]. The information on phase diagrams has been
obtained from a combination of approximate analytic calculations and numerical
simulations and is not yet complete. Nevertheless, the following universal features
seem to come out from these exploratory studies of models with on-site Yukawa
couplings:

(i) Within the broken symmetry phase with a nonvanishing expectation value v
of the scalar field (ferromagnetic phase) there is a weak Yukawa coupling region
where the standard perturbative analysis applies. In addition there is also a
nonperturbative strong Yukawa coupling region in which the fermion masses
increase as v decreases at a constant Yukawa coupling [12-16, 19].

(ii) Investigations with dynamical fermions [9-14, 17, 18] demonstrate that inter-
mediate values of the Yukawa coupling strongly favour a ferromagnetic ordering of
the scalar fields. The broken symmetry phase extends to negative values of the
hopping parameter « for the scalar field. Thus at least for such Yukawa couplings
the region of negative « could well be of interest for taking the continuum limit.

(iii) For intermediate values of the Yukawa coupling the phase diagram for
negative k has a very complicated structure, as several phases come close together
[10,12]. Analytic studies performed until now [14,17] fail to describe this region
even qualitatively.

Because of fermion doubling all the above models are vector-like, their spectrum
is unsatisfactory from the phenomenological point of view and some modifications
are required. Several proposals modifying or extending the Wilson mechanism
(see, e.g. ref. [20]) have been discussed recently in ref. [6].

A very promising possibility is to introduce, in addition to the usual Yukawa
coupling of strength y, another Yukawa-like coupling term, the Wilson—Yukawa
coupling of strength w, having the character of the Wilson term [5,6,21-23].
However, due to the presence of the scalar field, this coupling maintains the chiral
symmetry manifestly and the doublers acquire heavy masses dynamically. To see
whether the doublers get decoupled in the scaling region, leaving a chiral scalar-
fermion theory applicable in the continuum, one naturally needs a nonperturbative
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treatment of the model even if the mass of the remaining physical fermion is
assumed to be small. A mean field calculation [19] and simulations in a U(1) ® U(1)
model [24] gave very promising results in this respect.

We have recently made a numerical investigation of the chiral SU(2); ® SUQ2)x
model [12,25] on the lattice with the Wilson—-Yukawa term in the broken phase
and have shown, in the quenched approximation, that for relatively large and fixed
values of w the fermion doublers can indeed be given masses of the order of the
increasing cut-off as the critical region is approached, while the physical fermion
mass can have arbitrarily small values. For the Wilson-Yukawa mechanism of
chiral lattice fermions to hold, our conclusions from the quenched approximation
have to carry over to the full model with dynamical fermions.

In this paper we therefore continue our investigation of the chiral SU(2); ®
SU(2),, scalar-fermion model, including now the fermion dynamics. The first
important aim is to determine the phase structure of the model and to localize the
regions of physical interest. Even keeping the quartic scalar field coupling infinite
(the length of the four-component scalar field is fixed to unity) we have a system
with three coupling parameters x, y and w. We have investigated systematically
this three-dimensional space for y,w >0 and arbitrary real «. We have found
seven different phases or distinctly different phase regions. Some phases, or
different regions of one phase, have the same symmetries but are distinguished by
the combined strength of the two Yukawa couplings. Roughly, for y + 4w < V2
the model has weak Yukawa coupling phases or regions, where the perturbative
analysis in y and w is applicable. For example, in the ferromagnetic phase the
fermion and the doubler masses decrease with the decreasing vacuum expectation
value v of the scalar field. In contrary, in the strong Yukawa coupling regions found
for y + 4w > V2 the Yukawa couplings have a distinctly nonperturbative charac-
ter and in particular the fermion and the doubler masses increase with decreasing
v at fixed y and w [19, 25].

We show in fig. 1 the phase structure of the full model with two doublets of
dynamical fermions for the w =0 case. This phase diagram in a preliminary form
was shown earlier [12]. It is qualitatively similar to the phase structure found
recently in the U(1) model [10]. For w > 0 the phase diagram remains the same as
that for w = 0 except that the funnel-like structure in fig. 1 around y = V2 shifts to
the left with increasing w and is found around y = V2 — 4w until it disappears
from the half-plane y > 0. We use the following notation for the phases and
regions we have found:

Symmetric phases:

PMW: Paramagnetic phase with weak Yukawa couplings
PMS: Paramagnetic phase with strong Yukawa couplings
Broken symmetry phases and their regions:

FM(W): Ferromagnetic phase (weak Yukawa coupling region)
FM(S): Ferromagnetic phase (strong Yukawa coupling region)
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Fig. 1. Phase diagram for w =0 in the unquenched case. A and B are probably two quadruple points
where four phases meet. The approximate position of the crossover in the FM phase is indicated by the
dotted line.

AM(W): Antiferromagnetic phase (weak Yukawa coupling region)
AM(S): Antiferromagnetic phase (strong Yukawa coupling region)
FI: Ferrimagnetic phase.

We cannot completely rule out the possibility that the AM(W) and AM(S)
regions are separated for arbitrarily large negative k by the funnel containing the
FI phase. This phase is less and less distinguishable as k decreases and we could
not locate its end. Thus we cannot exclude that it continues until x = — oo,

For w = 0 the various phase transition lines meet, within our precision of their
localization, in two quadruple points (points A and B in fig. 1). In the three-dimen-
sional phase diagram these points become lines which we call lines A, B.

Fig. 2 shows the phase diagram for the same model at w = 0 in the quenched
approximation. The dotted and the dashed lines denote a crossover, across which
the behaviour of various observables with the fermionic fields changes significantly.
For finite w its position shifts to y = V2 —d4w. For weak and strong Yukawa
couplings y + 4w the unquenched phase diagram is very similar to the quenched
one. The diagrams differ significantly in the region y + 4w = y2. When fermion
loops are included the dashed part of the crossover in the quenched case develops,
approximately at the same position, into the funnel filled with the FI phase. We
expect that the width of the funnel grows with the number of dynamical fermion
species. With the exception of the FI phase all the phases and regions of the phase
diagram with dynamical fermions have analogues in the quenched case.

The outline of the paper is as follows: The model, its symmetries, its fermion
content and the most important observables are described in sect. 2. In sect. 3 we
summarize the presently available analytic information on the phase structure and
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Fig. 2. Phase diagram for w =10 in the quenched case. The crossover in the FM phase is again
indicated by the dotted line. Its continuation in the PM and AM phase is indicated by the dashed line.

on the behaviour of some observables. In sect. 4 we describe the results obtained
in the quenched approximation for the behaviour of several observables in the
three-dimensional parameter space. It provides us with .a useful guideline for an
understanding of the different phases found in the full model, and of the phase
transitions. In sect. 5 we establish for the unquenched model the different phases,
the phase regions and the phase transitions in the y—« plane at w = ( and describe
the dependence of the phase structure on w for w > 0. We conclude and discuss
possible physical relevance of various regions of the phase diagram in sect. 6.

2. The model

2.1. THE ACTION AND ITS SYMMETRIES

The model is given on the euclidean lattice by the action § =S, + Sg, with

Su= kT ATH( @], ; + 1,,,). (2.1)
xXp

SF = Z %(@X‘Yu‘p‘x+ﬁ. - @x+ﬂyylpx) +yz wx((pxPR + (pIPL)lPx

xXp

+wy {Wx(qbXPR + DIP )W, — H[ T (D Py + B} P )W

x x+4 x+4
xp

+¥, 4 x+ﬁPR+<I>IPL)lPx]}. (2.2)
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The scalar field @, is a 2 X2 SU(2) matrix. The freezing of the radial mode
corresponds to the choice of infinite bare quartic coupling of the scalar field. The
experience from the pure @* theory suggests that such a model belongs to the
same universality class as models with finite quartic coupling. The fermion fields
¥, and ¥, are SU(2) doublets, « is the hopping parameter for the scalar field, y is
the usual Yukawa coupling, w is the Wilson-Yukawa coupling* and P  are left-
and right-handed chiral projectors.

The action is invariant under the global chiral SU(2); ® SU(2)y transformations

W > (02, P+ Qg PV, (2.3)
¥ - W (0] Py + QL P,), (2.4)
b -0, P N%, (2.5)

where £ p € SU(2); . In the context of the standard model the SU(2); symme-
try changes into the local gauge symmetry and the global SU(2), symmetry is
broken to an extent required by the mass differences within the weak isodoublets.

For w =0 there are the usual staggered fermion symmetries (see, e.g. [26]),
extended in obvious fashion to the scalar field. We mention also the chiral
U(4); ® U(4)g symmetry [27] present for y =w = 0, which is most easily expressed
in the staggered representation

X~ exp(iy +ie ¥ )X,

X: 2 X oxp( —iy +iey'), (2.6)

o= (= 1) 2.7)
where

X =TY¥., X.=¥T,

T, =vyi'-..vi%, (2.8)

and y and vy’ are arbitrary 4 X 4 matrices built from the Dirac y-matrices.
For w = 0 the model has furthermore the discrete LR symmetry

Py ¥, = Pp 1Y, —@xPR,L_f@xPL,R’ D, > @, (2.9)

which is broken for w # 0.

* The parameters y,w are related to », M used in refs. [5,6,19,22] by w=r, y=M — 4r.
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For y = 0 the model also has the global symmetry
PV, > PV, +e, PR¥, > PV, +E, (2.10)

which guarantees that the fermion mass m} is zero and also that the right-handed
fermion in the standard model decouples at y = 0 for x — x, and any w [28]. Note
that one expects in a symmetric phase for w > 0 in general two distinct fermion
masses my and mg corresponding to fermion fields transforming respectively as
SU@2),. ® 1 and 1; ® SUQQ)g, whereas in the FM phase my=m} [6,19]. For
w =0, mp = m4 always holds, because of the LR symmetry (2.9) (assuming it is not
dynamically broken).

For the purpose of an understanding of the phase diagram it is also useful to
notice at y=w =0 an invariance of the action with respect to the standard
staggered field transformation

K= —K, D —ed, . (2.11)

This invariance can be extended for w=0 to y # 0 [17] by also transforming the
fermion fields

(¥, ¥,) - exp(lie,m)(¥,,¥,), (2.12)
and making the on-site Yukawa coupling y purely imaginary,
y— —iy. (2.13)

This can be interpreted as a remnant of the staggered chiral U(1) transformation.
For w # 0 this invariance is violated by the one-link part of the Wilson term in eq.
(2.2).

Finally, we mention the invariance
b - —P, y— —y, wo —w. (2.14)

It means that without loss of generality one can restrict the study of the phase
diagram to half of the y,w plane. We constrain our study to y,w > 0, however.
The motivation [21-23] for the inclusion of the manifestly invariant Wilson-
Yukawa coupling is the wish to give the doubler fermions masses of the order of
the cutoff and to decouple them in the scaling region.
Recall that for the free inverse Wilson fermion propagator (we use lattice units
with the lattice constant a = 1)

S()‘l(p)=i2yusﬂ+m +r2(1—c#), (2.15)

" @
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where

s, =sinp,, c,=cosp,, (2.16)
the fermion masses are given by
m,=(m+2m). (2.17)

Here n is the number of momentum components p, equal to 7, with n = 0 for the
physical fermion mass m and n = 1-4 for the doubler masses which remain of
order of the cutoff in the continuum limit. The Wilson—Yukawa coupling term in
eq. (2.2) is expected to increase the mass of the doublers in a similar way, now,
however, by means of a dynamical process which has to be treated nonperturba-
tively [5, 6, 22].

The fermion determinant of the model is real because of the pseudoreality of
the SU(2) group, but not necessarily positive. To guarantee its positivity, required
for the Hybrid Monte Carlo algorithm [29] we are using, we introduce implicitly
two replicas of the fermionic fields by squaring the determinant. It is also known in
the continuum gauge theory that an even number of SU(2), doublets is required
[30]. The identical doublets in our simulation have the same chiral couplings and
we thus avoid an explicit introduction of mirror fermions.

2.2. OBSERVABLES

To investigate the complex phase structure of the model it is necessary to look
simultaneously at several observables. Here we list the definitions of some useful
observables on a lattice of finite volume V. As the exact definitions of the
observables are quite involved, we also introduce some short-hand mnemotechnic
notation for them.

Magnetization:

<q>>]1=u]1=<ll/2q>x> (2.18)

rot

The index “rot” means that each configuration of the scalar field @, obtained
during the Monte Carlo simulation is rotated in the O(4) = SU(2); ® SUQ2)g/Z(2)
symmetry space so that

1
=Yoo =M1 (2.19)
V X

is proportional to the unit matrix. Thus (@) = (M ). This procedure, used in the

simulations of the pure ®* models [31], compensates for the drift of the system on
finite lattices through the set of degenerate ground states in a phase with broken
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symmetry. This drift would cause the vanishing of an observable noninvariant with
respect to the symmetry transformations (2.3)-(2.5) even if its expectation value in
the thermodynamic limit is nonzero. Recently it has been demonstrated that the
rotation provides a very good approximation to the infinite volume quantities [32].
Staggered magnetization:

1
<(pq> 1= UstJl = < [_/ ngq)x> (2'20)

rot

Also here a rotation for each configuration is performed so that the quantity
Y .&.®, is proportional to 1. This rotation is in general not identical with that
leading to eq. (2.19). It is therefore possible that on finite lattices v + v, > 1 (as
happens for some of our data).

Link product:
1
8V

X,

(PTUDY =22=< Y Tr d)j@x+ﬂ>. (2.21)

This observable is invariant with respect to the transformations (2.3)-(2.5). Here U
in the mnemotechnic notation stands for the link separating the @’s. In a gauge
theory U would be a link variable.

Fermion condensate:

(I = —<$Z@I’x> (2.22)

X

rot

The rotation leading to eq. (2.19) is performed on the scalar field before the
quantity (¥ ¥ is calculated by the fermion matrix inversion.
Invariant fermion condensate:

1
8V

X

(VOW) = —< ZWX(GD;PL+¢XAPR)‘I’X>. (2.23)

This observable is proportional to the Yukawa term in the action (2.2).

As expected, the noninvariant quantities are much more sensitive to the phase
transitions between phases of different symmetry than the invariant ones. This is
due to their role as order parameters. On the other hand, (¥ ®W¥) can distinguish
different regions of the same symmetry. We have also monitored the invariant
observables for the reason that if the gauge fields were included these observables
would become gauge invariant, whereas the others would vanish identically by the
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Elitzur theorem. Thus gaining experience with the invariant observables is useful
for later purposes.

In addition to the listed observables we use the available information on the
fermion and the doubler masses, obtained mainly in refs. {12, 16,25] for the FM
phase in the quenched approximation and now in the same way also for the PM
phase at w =0.

Furthermore, we have found it very useful to monitor in all our runs the number
of conjugate gradient iterations N, required for the inversion, with a given
accuracy, of the fermion matrix. This quantity is sensitive to the presence of small
eigenvalues of the fermion matrix [33].

3. Some analytical considerations of the phase structure

Some of the information collected in this section has been obtained for models
which are analogous to but not the same as our model with w = (0. However, we
expect that Yukawa models with different symmetry groups but with on-site
Yukawa coupling have very similar phase structure and that the results obtained
there carry over to our model, at least qualitatively. In addition we present some
mean field analysis for w > 0.

3.1. LIMITING CASES OF YUKAWA COUPLINGS

We first summarize the available information on our model for vanishing or very
strong Yukawa couplings.

y = 0, w = (. In this limit the fermions are massless and free. Thus the well-known
[31,34] phase structure of the pure O(4)-symmetric @* theory (2.1) at infinite
quartic coupling is obtained. One critical point is at k = k, = 0.3045(7). It separates
the ferromagnetic phase FM(W) («x > «_) from the paramagnetic phase PMW at
— k. <k <k, (cf. fig. 2). A second phase transition at k = —k, is related through
the symmetry (2.11) to that at x = k.. For « < —«_ the model is in the antiferro-
magnetic phase AM(W). The order parameters distinguishing these three phases
are (@), which is nonvanishing in the FM(W) phase, and (&, ) having nonzero
values in the AM(W) phase.

y—> o, wx 0. If the on-site Yukawa coupling gets large, the rescaling of the
fermion field ¥ — 1//y ¥ suppresses both the fermion kinetic term and the
Wilson—Yukawa term in the action (2.2). As these are the only terms coupling the
fermion fields on different lattice sites, the fermions cannot propagate, their
masses get infinite and the fermions thus decouple. The phase diagram is that of
the pure @* model. For the scalar field of fixed length it is the same model as at
y = 0, because the fermion determinant depends on the length of the scalar field
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only. The phases are those with the strong Yukawa couplings: FM(S) (x > «_),
PMS (k| < k.) and AM(S) (k < —k_).
y=0, w> 0. As follows from ref. [28] the fermion mass m}. must stay at zero.

3.2. WEAK AND STRONG YUKAWA COUPLING REGIONS

Recently it has been realized [12, 14-16, 19, 25] that for strong Yukawa coupling
the relationship between the fermion mass and v in the FM(S) phase is quite
different from that in perturbation theory. The existence of two regions of Yukawa
couplings can be understood by means of a simple consideration: In the weak
coupling region the Yukawa couplings are relatively small and perturbation in w, y
is appropriate, giving m = yv and r = wu in eq. (2.15). Since v = 0 as « \y k, in the
weak coupling region m,r - 0. Deep in the strong coupling region the Yukawa
couplings are relatively large and the hopping expansion for the fermion propaga-
tor can be used [15,19]. It leads to m =yz~' and r =wz "' [19]. Since z decreases
as k \ K, the fermion masses increase. We note that z =z_=0.44 # 0 at k = «_ 50
that the fermion masses stay finite on the critical line.

Furthermore, the fermion masses stay nonzero for large Yukawa coupling also
in the PMS phase [14,19], though v =0 there. On the other hand, for small
Yukawa couplings the fermion masses vanish in the PMW phase [14]. These results
for the fermion mass imply the existence of two paramagnetic phases. At the
moment we do not see whether in our model one can define a fermion mass in the
AM phase because of the staggered structure of the scalar fields. The recently
obtained [35] result showing that in the model with staggered fermions and
hypercubic Yukawa coupling the fermion mass vanishes in the AM phase for any y
does not carry over to our case*.

3.3. MEAN FIELD ESTIMATES OF THE PHASE DIAGRAM

The phase structure of several lattice Yukawa models similar to our model at
w=0 has been recently investigated with the mean field method in refs.
[13,14,17-19]. We expect that the results hold qualitatively also in our case and do
not repeat these analyses. The phase diagram is reasonably well described for
y < V2 and y > V2 and it becomes clear that the FM phase continues to negative
k. However, for y = V2 at negative k the mean field results obtained until now do
not reproduce the phase structure found in numerical simulations in ref. [10] and
in this work. In particular, the FI phase has not been detected.

To get a rough idea about the problems of the mean field method in the region
y=y2 and k <0 we have carried out, similar to ref. [19], a simple mean field
calculation in the saddle point formulation both in the weak and the strong
Yukawa coupling regions with the following ansatz for the scalar field and for the

* We thank R.E. Shrock for correspondence on this point.



218 W. Bock et al. / Scalar-fermion model

mean field H:
@ =(v+euvy)l, H.=(h+eh, )], (3.1)

where v, v, h and A, are real. In the leading order, neglecting fluctuations
completely, this method does not produce the FI phase. Otherwise it gives results
qualitatively consistent with our numerical simulations. It also indicates that for
w > 0 the phase diagram in the y—« plane is very similar to that at w = 0 except a
shift along the lines y + 4w = const. In the remainder of this subsection we show
some quantitative results of these calculations.

In the weak Yukawa coupling region with w = 0, the mean field equations lead
to the following estimates for the critical « as functions of y:

n - d4p 1
ke~ +1 ==y [T S = £0.25-0.62)2, (32)
2 —-w/2 T 5

respectively, for the FM(W)-PMW and AM(W)-PMW transitions. Here

2= Y52, (3.3)
"

and n is the number of fermion doublets (i.e. » =2 in our hybrid Monte Carlo
calculation). The two transition lines given by eq. (3.2) do not cross each other
anywhere. Also, there exists no solution with simultaneous nonzero values of v
and vg. Thus, at least in the leading approximation, the FI phase is missing.

The mean field results in the strong coupling region with w =0 are similar.
FM(S)-PMS and AM(S)-PMS transition lines again do not intersect and the FI
phase does not appear.

The strong coupling mean field calculations can be done easily also with w > 0.
The mean field equations are given by

™ d4p S2
ho = 4kv? + 2n0? ,
K ]-17 (277')4 SZ(L'Z_USZt)+«/2

T d4p 52

- 2 _h,2
hv, = —4kvg 2I’LLS[[

, 3.4
_.‘7(277)4 SZ(UZ'—USZI)"‘E/%z ( )

Bu=W'(h+hy)+W(h—hy),

8vg=W'(h+hy) = W(h—hy), (3.5)
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where W(h) =In [dVexpTr(H'V + V'H) with H=H" = h1 is the familiar group
integral over the group elements V. Primes represent derivatives and .#=y +
wX (1~ c,). With v, =0 the first of these equations gives eq. (9) of ref. [19] after
the replacement x — 2k.

The FM(S)-PMS boundary can be approached from within the FM(S) phase
(¢, =0) by letting v — 0 (& — ). The first of the above equations then reduces to

4 2
= d°p s
vi=4dx 0+ 2an2[

it (3.6)

One can have a reasonable approximation to the above integral by simply replacing
each of ¢, and s, by their average values, i.e. taking s?=2and .#=y + 4w, which
leads to

n
Ko~ = ————— 3.7
T ) (3.7)
Similarly the AM(S)-PMS transition is given by
n
Kem —g— ———. (3.8)
(y+4w)

The transition lines again do not intersect, and we find no FI solution with v # 0
and v, # 0 simultaneously. Intérestingly, as the w coupling is turned on, the above
two formulas suggest a shift of the phase diagram along the lines y + 4w = const.,
i.c. the way we observe in our numerical simulation. We also note that the critical
points for y = or w =« are equal to those of the pure @* theory in the mean
field approximation.

34. k > +oo LIMIT

In this limit the action for the scalar field (2.1) makes the scalar field constant.
With &, = 1 the fermions become free with the propagator (2.15) where m =y
and r =w. Further information is obtained by considering the eigenvalues p +iA
of the fermion matrix

(m,A)=|y+4w—w)ec,, Zsi), (3.9)

I “
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which determine the fermion condensate (¥ ¥),
(3.10)

Here the sum extends over all eigenvalues.
The form of (¥V¥) as a function of y and w can be estimated by replacing each
c, and s_ in eq. (3.9) by their average values, i.e.

(1, ) = (y+4w, £V2), (3.11)
which gives
_ y + 4w
(y+4w) +2

One finds that (¥ ¥) has a maximum on the straight line

y+aw=v2. (3.13)

Note that for d dimensions the number V2 in egs. (3.11) and (3.13) would be
replaced by m . This is the reason why we write V2 throughout the paper. An
exact expression for (¥¥), which follows from egs. (3.10) and (3.9), can be
evaluated numerically and the position of the maximum indeed turns out to be well
described by the line (3.13).

35. k> —o LIMIT AT w=20

This turns out to be a complicated and interesting limit. Assuming that the
fluctuations of the scalar field are unimportant for large negative x we insert
@, =(v+ew0,)] in the fermion matrix. Keeping in mind a possible presence of
the FI phase, we allow v # 0.

Going over to the staggered fermion representation (2.8) and using the formal-
ism of ref. [26] the fermion matrix in momentum space can be written as

A= (i +y(v+év))1, (3.14)

where §=1I,s(-7/2<p, <m/2), §=T55;, and the I'’s and the 5’s are 16-
dimensional Dirac and flavour matrices. The matrix 1 in eq. (3.14) is a tensor
product of unit matrices in SU(2), Dirac and “staggered” spaces.

First we calculate the eigenvalues of the fermion matrix (3.14) assuming v =0
and v, = 1, which is correct at k = — in the quenched approximation and most
probably also in the unquenched model. Taking the square of A and using
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{Is, Fu} = 0, one easily obtains the eigenvalues

wHid=+yy*—s’ Iyl > sl
= +iys*—y* Iyl <Isl. (3.15)

Thus in the thermodynamic limit there are zero eigenvalues at any y in the
interval |y| <2. On a finite lattice the zero eigenvalues appear only at singular
y-points, which are completely determined by the possible momenta on the finite
lattice, i.e. by the size, shape and boundary conditions of the lattice. Their effects
in numerical simulation are violent, in particular the inversion of the fermion
matrix is very difficult in the vicinity of these singular points.

Assuming that for large negative « the fermion matrix is of the form (3.14) one
can calculate (¥¥):

4
—_ T/2 d D _
Py = P o TrAe) :

1 j“rr/Z d417 T —if _’_y(l"Y - é\l’]sl)
=1= — Ir
128 w2 i 52 +y2(l,‘z _ Uszl)

It

4
T/2 d P 1
v P — . 3.16
Y /_v/z d s2+y2(u2—z'ﬁ) ( )

In a very similar way one can also estimate the invariant fermion condensate (2.22)
when @, in eq. (2.22) is replaced by £ 1:

(FeWr) P ' :
ey = —yu, — :
Y mt sPyi (et —ud)

(3.17)

The integrals in egs. (3.16) and (3.17) have cuts as functions of y. Taking v =0
and v, =1 in the denominators of the integrand these cuts lie in the interval
lvl <2. A proper definition of the integrals on the cuts would require a study of
the contribution of the field fluctuations which presumably smooth the singulari-
ties. Our numerical results indicate that the fermion condensates at large negative
k stay real. We thus assume that the integrals above have to be handled by the
principal value prescription.

On finite lattices the integrals (3.16) and (3.17) reduce to sums over poles. For
v =0 and v, =1 the poles in y are again completely determined by the momenta
possible on a particular lattice and they coincide with the y-points where the
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eigenvalues (3.15) vanish:

_ 1
(PO = —-y) ——. (3.18)
Py

s —y?

Here the sum is taken over all momenta and s? is defined in eq. (3.3).
From the above considerations we conclude, assuming in the unquenched case
v — 0 as k = —o, that the condensates behave as

(P¥) o v
=0 at k= —co,
(FOV) avg,
#0 at k= —oo. (3.19)

In particular, on finite lattices (W @W¥ ) develops poles at precisely known y-points.
These poles are casily detectable in numerical simulations and can be used for
tests of the code. They should not be misinterpreted as signals for phase transi-
tions.

4. Observables with fermion fields in the quenched approximation

As discussed above, the pure ®* model can be either in the symmetric PM
phase or in one of the broken phases, FM or AM, where SU(2); ® SU(2); is
broken to its diagonal subgroup. The inclusion of fermions in the quenched
approximation of course does not influence this phase structure. However, observ-
ables containing fermion fields (e.g. fermion condensates and propagators) are
highly nonlocal when expressed in terms of the scalar fields after the fermionic
path integration has been carried out. These observables can thus show an
interesting dependence on the coupling constants and even develop singularities.

The accumulated experience with quenched and unquenched calculations in
lattice theories with fermions suggests that many structures observed for observ-
ables with fermion fields in the quenched approximation have remarkably similar
analogues in the unquenched cases. A systematic study of these observables in the
quenched approximation can thus give hints about the phase structure of the
unquenched model and elucidate the interpretation of various phases. Further-
more, in the quenched case the properties of the observables with fermion fields
can be easily related to those of the scalar sector which is known in great detail
[31,34]. For these reasons we have performed in the quenched approximation a
systematic investigation of the fermion condensates, of N and in part also of the
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fermion mass in the {k, y, w} coupling parameter space. Results for the eigenvalues
of the fermion matrix will be reported elsewhere [33].

4.1. DETAILS ABOUT THE QUENCHED NUMERICAL SIMULATIONS

For equilibrated scalar field configurations obtained by a Hybrid Monte Carlo
(HMC) algorithm for the O(4) symmetric @* theory we have performed conjugate
gradient inversions on 4* and 6* lattices. On configurations separated by 100 HMC
iterations we have measured the fermionic condensate (WW¥), the invariant
condensate (¥ @W) and the number N of conjugate gradient iterations re-
quired for one inversion with fixed accuracy. The last quantity shows a sharp peak
when an eigenvalue of the fermion matrix becomes very small [33]. For the
measurement of (VW) and (PP we apply the technique of gaussian noise.
Because of the noninvariance of (¥'¥) we invert the fermion matrix for @ field
configurations rotated according to the prescription (2.19). We have performed
runs at fixed values of w and « for various values of y:

w=0: k=029, 033, 06, —1.2, —x(6*)
=0.33,02,-05,-1.0,—-15,-20,-25,-3.0,-6.0,— 10.0,— 20.0 (4*)
w=0.2: k=029 (6%).

At each point chosen in the coupling parameter space we have typically accumu-
lated 30-50 values for each observable. We have also varied boundary conditions
for fermion fields, using completely antiperiodic, antiperiodic in one direction and
sometimes, for comparison, also fully periodic boundary conditions.

In addition we have calculated the fermion mass m; at w=0 and « =0.29 in
the PM phase for various values of y following the method described in refs.
[16,25]. Here we use a 6°12 lattice with periodic boundary conditions in space and
antiperiodic ones in time for the fermion fields. For the propagator measurement
we have performed inversions of the fermion matrix for 128 @-field configurations
separated by 100 HMC iterations in the pure O(4) model.

4.2, STRONG AND WEAK COUPLING REGIONS IN THE FM PHASE

From our earlier calculation of the fermion mass at w =0 in the quenched
approximation it has become evident that the FM phase of our model has two
regions, a “weak” and a “‘strong” coupling region, FM(W) and FM(S), where the
fermion masses decrease or increase, respectively, as « \ . at a fixed y [16]. Thus
the two regions are separated by a crossover at y = V2 (see figs. 1 and 2 in ref.
[16]), where the dependence of the fermion mass on « changes, and (¥¥) has a
peak. The peak height decreases with decreasing . The crossover is indicated in
tig. 2 by the dotted vertical line.
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Recently, (¥¥) and the fermion and the doubler masses have also been
calculated for w > 0 in the quenched approximation [12,25]. The picture which has
emerged is that with increasing w the strong coupling region FM(S) expands to
smaller y values. The crossover region is found at y + 4w = V2. For w> \/5/4,
only the FM(S) region is found at positive y (see fig. 2 of ref. [25].

In the FM phase we could not detect any dependence of the position of the
crossover on k. We have checked that the peak of (¥¥) does not develop into a
singularity as the lattice size increases. Nevertheless, the number of conjugate
gradient iterations N increases significantly at the crossover. We show N as a
function of y for «=0.33 in fig. 3. Actually the ecasiest way to localize the
crossover is to look for the peak in N.

4.3. SPLITTING OF THE PM PHASE

In the PM phase the noninvariant observables (@), (¥W¥) and (@, ) vanish.
However, (W ®W¥), N, and the fermion mass show y-dependent structures. We
shall describe them first for w = 0.

The observable (¥ W) is close to zero at y < \/5, increases steeply around
y~V2 and stays distinctly nonzero at larger y, decreasing as 1/y for large y. In
the PM phase the invariant condensate thus behaves like an order parameter
distinguishing between different phases. As this is also true in the unquenched
case, we call, even in the quenched approximation, the regions of the PM phase to
the left and right of y = V2 the PMW and PMS phases, respectively. However, we
continue to call the boundary between them a crossover (in the infinite volume
limit it is probably a singularity of nonlocal bosonic observables). In the un-
quenched case it does not correspond to a single phase transition line but develops
into the funnel-like structure partly filled with the FI phase.

In fig. 3 we show Ng; at w=0 and «=0.20 on a 4* lattice. A pronounced
symmetric peak, much higher than in the FM phase, is present around the
crossover. With decreasing « the peak in N stays at the same y but increases in
height. A recent study of the fermion matrix shows that the peak is caused by some
of its eigenvalues approaching zero at y =2 [33].

In fig. 4 we display our results for the fermion mass my at x = 0.29 with w =0
on the 612 lattice. In the PMW phase m is consistent with zero. At y = V2 the
mass grows rapidly with y. The present data do not allow us to decide on whether
my jumps or whether it rises continuously. Above the crossover m increases
roughly linearly with y. The slope of the increase is consistent with the expected
value z~'. For comparison we include a dashed line of this slope in fig. 4. Thus,
the crossover detected already in the FM phase also continues in the PM phase
and divides that phase into a massless weak Yukawa coupling phase PMW and a
massive strong Yukawa coupling phase PMS.
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Fig. 3. The number of conjugate gradient iterations as a function of y for several values of « in the
quenched model. The sharp peaks at « = —20.0 are at the positions given by eq. (4.1). Error bars
smaller than twice the size of the symbols are dropped for clarity.

The runs performed at w = 0.2 and « = 0.29 show that the crossover in the PM
phase is shifted along the line (3.13) to a smaller value of y. We assume this to be
true in the whole PM phase.

4.4. SINGULARITIES IN THE AM PHASE

The singularity structure of the observables with fermion fields deep in the AM
phase is unusual. We have restricted its investigation mostly to the w =0 case. On

Ghjﬁ—rfr—[—ﬁw r—ru T ' T .[.rv
mF i e N‘
- Ve .

quenched .

I . ]
r w=0 // 4
4 k=029 7
L 6%12 ]
2 _
O _—
Y I IR R BV SO
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Fig. 4. The fermion mass m in the quenched approximation at w = 0 as a function of y for « = 0.29,
i.e. in the PM phase.
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one hand, for k not far below the PM-AM phase transition line at « = —«_, the
crossover line from the PM phase scems to continue. This is best seen in the
observable N.. As seen in fig. 3, for k = —1.0 it still has a maximum around
y = V2, much higher than in the PM phase. The crossover is indicated in fig. 2 by
the dashed line. It splits the AM phase into the AM(W) and AM(S) regions.

On the other hand, at «k = —o we expect, at least for w =0, the lattice-size
dependent singularities described in subsect. 3.5. We have calculated the fermionic
condensates on several finite lattices with various boundary conditions using the
fully antiferromagnetic field configuration @ =g, 1, which corresponds to a
quenched simulation at k = —. We have found at the right places several sharp
peaks in N, arising from the vanishing eigenvalues (3.15), and poles in (¥ V),
in agreement with the relation (3.18). For example, on a 4* lattice with antiperi-
odic boundary conditions in one direction for the fermions the positions are

y=0.71,1.22,1.58 and 1.87. (4.1)
At these positions we have also found some bumps in (¥¥), which should,
according to eq. (3.16), actually vanish. This can supposedly be explained by the
unreliability of the fermion matrix inversion at these special y values.

This structure also manifests itself at finite but large negative «. This is seen for
Neg at k = —20.0 in fig. 3 and for (¥ @¥) at k = —10.0 in fig. 5Sa. The peaks in

(W dWY are even more pronounced at k = —20.0. As seen in fig. 3, N develops,
already at k = — 1.0, a shoulder on the left-hand side. Decreasing « more and
— R o LN s
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Fig. 5. The invariant condensate (W @W) as a function of y for (a) k = —10.0 in the quenched and (b)
k= —20.0 in the unquenched case. The vertical arrows indicate the expected positions (4.1) of the
poles at k = — =,
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more the asymmetry of such curves becomes more pronounced and at x = —20.0
the curve splits into sharp peaks at the expected y values.

For w > 0 we expect the crossover to shift in a similar way as in the FM and PM
phases. At k = —o with w> 0 we have found an even richer pole structure than
at w=0.

5. Phase diagram of the model with dynamical fermions

As mentioned earlier, the determinant of the fermion matrix of the investigated
model is real. This enables us to use the Hybrid Monte Carlo (HMC) algorithm for
a simulation of the full model with two identical doublets of dynamical fermions.
The resulting phase diagram is already shown in fig. 1 for the w =0 case. For
w > 0 there seems to be essentially a shift of this phase diagram in the negative y
direction so that the new phase diagram for fixed w is still given approximately by
a part of fig. 1 with the zero of the new y coupling axis shifted to y = 4w.

5.1. DETAILS ABOUT THE UNQUENCHED SIMULATIONS

Using mostly a 6 lattice we have monitored all the observables described in
subsect. 2.2 in the three-dimensional parameter space {«, y,w}. Each observable is
calculated from at least 100 Monte Carlo configurations. In a HMC trajectory we
have usually chosen the step-size Ar and the number of steps N such that the
product NAr = 1. Only at very negative values of « where A7 had to be reduced,
was the product chosen smaller than unity to have reasonable Metropolis accep-
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0.75 S R B I
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T
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0.25
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K©

Fig. 6. The observables (@), (P>, (FW¥) and (U ) as functions of « for y = 0.4 and w =0, i.e. in
the weak coupling regions in the unquenched model.
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tance at the end of the trajectory. In these cases we have always performed more
HMC sweeps in between measurements. We have mostly used periodic boundary
conditions in all directions except for an antiperiodic condition in one direction for
the fermion fields. By sometimes varying boundary conditions we wanted to get a
rough idea about the finite size effects. We have found that there are appreciable
finite size effects at small y and one has to be extremely careful in choosing a
boundary condition there. For example, the PMW phase could hardly be seen with
completely periodic boundary conditions for all fields. For large y no significant
finite size effects have been observed, however.

The coupling parameter space has been scanned in the « direction from +0.9 to
— 1.6 mostly in steps Ax = 0.1 and in steps Ax = 0.05 in the vicinity of the phase
transition lines. We have chosen the following fixed values of w and y:

w=40, y=0.2,04,0.8,09,10,12,15,1.7,2.0,2.4,3.0,4.0,7.0,10.0,20.0.
w=0.5, y=20.3,1.0,2.0,3.0.

The coupling parameter space has also been scanned in the y direction in the
interval y = 0.2-10.0 in steps Ay = 0.05-0.2 for the following fixed values of w
and «:

w=0, k=4.0,0.0,-1.0,-1.6,-2.6,—-4.0, - 10.0, —20.0.
w=02, k=0.0,-1.6.
w=0.5, k=10.0,-16.

D), 0@ ) (F¥),+:($1US)
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Fig. 7. Same as in fig. 6 for y=1.5, iie. close to the crossover in the FM and FI phases in the
unquenched model.
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Fig. 8. Same as in fig. 6 for y = 3.0, i.e. in the strong coupling regions in the unquenched model.

5.2. PHASES AT w=10

In the following we describe the properties of the different phases in terms of
the observables we have measured. For interpretation of the phases and regions
we also use their correspondence to the similar regions in the quenched case
where some additional results are available. Examples of our results for w = 0 can
be found in a number of figures: figs. 6, 7 and 8 show (@), (&>, (¥¥) and
{(@'U®P) in scans along the x direction at fixed values of y = 0.4 (weak), 1.5

S
0.8 = unquenched +:6=0.0 (6%) 7]
oic=—1.6 (6%) j
D:x=—2.6 (6*)_]
Hix=—4.0 (4%) ]

0.8
0.4 w=0

0.2

0.0 RO

N T

(@]

—

[ab]
A

Fig. 9. The magnetization (@) as a function of y for several fixed x values in the unquenched model
with w = 0. For clarity, only the error bars larger than the size of the symbols are shown.
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Fig. 10. The condensate (W W) as a function of y for several fixed « values in the unquenched model
with w = 0.

(intermediate) and 3.0 (strong), respectively. These figures show the most interest-
ing observables in all the phases. Figs. 9, 10 and 11 illustrate in more detail the
funnel-like structure in scans along the y direction at fixed values of x = 0.0, — 1.6,
-2.6, —4.0 with w = 0.

FM: In this phase (@) # 0, (VW) #0, (¥P¥) #0 and (P,) =0 (figs. 6-8).
(@'Ud) is always positive here. Similar to the quenched model [16,25], the FM
phase is divided into two regions by a crossover at y + 4w = y2. Some preliminary
unquenched calculations of the fermion mass also indicate that at lower y values,
i.e. in the FM(W) region, the fermion mass decreases with decreasing v. On the
contrary, at larger y values, i.e. in the FM(S) region, the fermion mass increases as
v decreases at a fixed y. The precise position of the crossover (the dotted line in
fig. 1) in the FM phase with respect to the points A, B is under investigation.

PMW: This phase is characterized by (@) =0, (¥¥) =0 and (&) = 0 (fig. 6).
The value of (¥ ®V¥) is very small and it changes sign as « is lowered somewhere
in the middle of this phase, at the same place where {(@'U®) (fig. 6) changes sign
too. Following the correspondence with the quenched results (fig. 4), in this phase
we expect massless fermions.

PMS: In terms of the order parameters (@), (¥ W) and (@, ) this phase is like
the PMW phase (fig. 8). However, it is completely separated from the PMW phase
by the upper part of the funnel containing the FM phase. As in the quenched case
(fig. 4), we anticipate massive fermions in this phase. Unlike in the PMW phase,
the value of (W' ®¥) is appreciable.

AM: Here {(®) =0, (¥¥) =0, but (@) # 0 (figs. 6,8). The value of (PTUD)
is negative. The funnel with the FI phase separates the AM phase into the AM(W)
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Fig. 11. The observables (@), (d,), (FP¥) and N, as functions of y at «= —4.0 in the
unquenched model with w = 0.

and AM(S) regions. Because the funnel possibly stops at large negative but finite «
(see discussion below), these regions could very well be connected.

FI: This is a phase with both ferromagnetic and antiferromagnetic ordering of
the scalar field, i.e. (@) # 0 and (@) # 0 (figs. 7,9, 11). We have also found that
{(¥W¥) is nonvanishing in the FI phase and has a peak as a function of y around
y =2 (fig. 10). Furthermore, N, and the fluctuations of (¥¥) go up quite
substantially at the AM(W)-FI and FI-AM(S) phase boundaries (figs. 10, 11). If at
a fixed value of x a scan is made in the y direction, (¥ ®¥) falls to a large
negative value at the AM(W)-FI phase boundary, then grows from this large
negative value to a large positive value in the FI phase and finally drops to a small
positive value in the AM(S) region (fig. 11). While scanning the FI phase in the
other direction, varying « with a fixed y (fig. 7), we have observed a monotonic
decrease of (P) (see also fig. 9) and a monotonic increase of (P, ). We have
found at k = — 10.0 a still significantly nonvanishing, though tiny value (about 0.03)
of (@) around y = V2. At k = —20.0 the signal seems to be consistent with zero
within our accuracy.

This brings us to the question of the behaviour of the model and of the fate of
the funnel with the FI phase at large negative x. Does the funnel continue to
Kk = —oo, separating completely the AM(W) and AM(S) regions, or does (@)
vanish below some large negative but finite k? A competition of the anti-ordering
tendency of the hopping term and of the ordering tendency of the Yukawa
coupling apparently inhibits the onset of some asymptotic behaviour at moderate
negative values of «. But at large negative «, as in the quenched case, the poles in
eq. (3.18) and the peaks in N expected on finite lattices at k = — o already show
up, making precise calculation, e.g. of (@) practically impossible.



232 W. Bock et al. / Scalar-fermion model

Fig. 5b displays (¥ ®W¥) at k = —20.0. Comparing figs. 5a and 5b we conclude
that in the unquenched case the poles develop later than in the quenched
approximation (the strikingly similar curves have been obtained for k = —10.0 in
the quenched case and for k = —20.0 in the unquenched case), but they are of the
same character, in accordance with the expectation that @, =¢ 1 at k = —o also
in the unquenched model. Thus at k = — « the quenched approximation is possibly
exact and for dynamical fermions the antiferromagnetic ordering of the hopping
term wins completely over the ferromagnetic ordering by the Yukawa term.

The strong singularities indicate that the conjugate gradient inversion gets
unreliable, as observed already in the quenched case (fig. 3), possibly causing
spurious results. We think that one of such unreliable results might be the signal
for (W) at k = —20.0, shown in fig. 10. According to eq. (3.16) this observable is
actually expected to vanish as v — 0. Figs. 7 and 10 show that in the interval of «
from 0 to —2.6 the condensate (¥¥) still increases while v decreases. This is
another indication that the asymptotic behaviour sets in probably only at large
negative k.

Being thus unable to trace the funnel containing the FI phase at large negative «
we can only guess on the basis of our results at « = —20.0 that the funnel
presumably ends at some finite « and the AM(W) and AM(S) regions are
connected around it. Of course it is also not excluded by our data that the funnel
continues down to k = — .

5.3. THE w > 0 CASE

Fig. 12 shows <@1I’> versus y at k = 0 for fixed values of w=0.0,0.2,0.5. The
curves are almost identical to one another except that with increasing w the curves
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Fig. 12. The condensate (¥¥) as a function of y at x =0 for several fixed values of w in the
unquenched model.
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Fig. 13. The observables (@), (®,), (¥W¥) and N as functions of y at k= —1.6 in the un-
quenched model with w = 0.2.

shift to the left along the lines y + 4w = const., as observed also in the quenched
case. The curves for (@) are very similar.

The funnel in the negative « region shifts in the same way, as depicted in fig. 13
at w=0.2 and k = —1.6. We also have evidence from the runs in the « direction
at different fixed values of y and w = 0.5 that the FM(S) and AM(S) regions as
well as the PMS phase appear at the expected places after the origin of y in fig. 1
is shifted to 2.0 (= 4w).

All the accumulated evidence seems to be consistent with the above discussed
shift along the y + 4w = const. lines, though, of course, the scan of the phase
diagram with w > 0 is not complete, especially in the funnel region. In particular,

TaBLE 1
Some points of the FM(S)-PMS and PMS—AM(S) phase transition lines at
w=0.5on a 6* lattice

FM(S)-PMS PMS-AM(S)
y K y K
0.5 -0.22 + 0.08 1.0 —0.55+0.05
0.8 —-0.05 +0.05 2.0 —0.45 + 0.05
1.0 —-0.05+0.05 3.0 —0.40 £ 0.05
1.0+0.2 0.00
2.0 0.15 + 0.05

3.0 0.25 +0.05
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we do not yet know the position of the crossover in the FM phase with respect to
the lines A, B. For future mass calculations in the FM(S) and PMS phases and a
study of the decoupling of the doublers it is important to locate rather precisely
the FM(S)-PMS and PMS-AM(S) phase transition lines for w sufficiently large
such that the line y =0 falls in the strong coupling region. Then the physical
fermion mass can remain small as seen in the quenched approximation in ref. [25].
We give in table 1 some positions of these lines for w = 0.5.

6. Conclusion and outlook

The phase structure of the chiral SU(2); ® SU(2), scalar-fermion model turns
out to be very complex. Assuming that the funnel containing the FI phase does not
continue to « = —o, the model has for y >0, w > 0 and arbitrary real « seven
distinct regions lying in five phases. The phases are separated by six different
phase transition sheets. Within our accuracy of their location, the phase transitions
meet for w = 0 at two quadruple points A, B, which for w > 0 presumably continue
as lines A, B in the three-dimensional space of coupling parameters. At present we
have little information about the order of the transitions in the model except that
we have nowhere observed phenomena indicating a strong first order. In addition,
in consequence of the theorem in ref. [28] that the fermion mass vanishes at y =0
for any w, the fermionic correlation length diverges everywhere on the sheet y = 0.

The dynamics of fermions has a strong feedback on the scalar sector for
intermediate values of the Yukawa couplings and tends to align the scalar field.
The FM phase extends to the negative « region and splits the PM phase in two
different phases, PMW and PMS with massless and massive fermions, respectively.
For negative k the FM phase ends at the phase transition to the FI phase which
still has ferromagnetic properties mixed up with antiferromagnetic ones. Also, the
antiferromagnetic phase is split over a large x range into two regions AM(W) and
AM(S).

We show that with the exception of the FI phase all the phases and their regions
found in the unquenched model have corresponding analogues in the quenched
model. This is of help for the interpretation of the various phases and regions, as
in the quenched case the calculations are easier and quite a lot of information
about the fermion and the doubler masses is available.

Some of the regions are surely not relevant for the standard model but could be
useful in other branches of physics. Concerning the standard model or, in general,
the electroweak interactions, we would like to mention some points of interest:

(i) The FM(S) region in the neighbourhood of the FM(S)-PMS phase transition
with w > 0.5 and small values of y appears to be very promising for the decoupling
of the fermion doublers [25]. The fermion mass can be kept small in the scaling
region by taking y close to 0 whereas the doubler masses are expected to stay of
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the order of cutoff without tuning w. Our quenched results [12, 25] support these
expectations. Further investigation is necessary to check that the perturbative
properties of the standard model are reproduced in this region.

(i) In the FM(W) region fermion doubling occurs. However, it may be possible
that tuning both y and w toward the line A raises the doubler masses sufficiently
such that the low-energy phenomenology is practically unaffected. In the quenched
approximation the crossover intersects the FM-PM transition line, which appears
to offer the possibility of decoupling the fermion doublers in the FM(W) scaling
region at small y by tuning w toward the intersection point [6,12,25]. Whether
such a decoupling is really possible depends crucially on the position of the
crossover with respect to the line A in the full model with dynamical fermions.

(iii} The PMS phase containing, for small y and sufficiently large w, massive
fermions and heavy doublers in spite of ¢ =0, could be of interest for more
general field-theoretical investigations, e.g. for the asymptotically free chiral gauge
theories without scalar fields in the classical action [6, 19].

(iv) It could also be that the model possesses nontrivial fixed points on the lines
A, B where an interesting field theory is obtained in the continuum limit.

The exploration of the phase structure done in this work is a necessary
prerequisite for the studies of these interesting questions which we want to address
in the future.

We have benefitted from discussions with I.M. Barbour, A. Hasenfratz, C.B.
Lang, J. Shigemitsu and R.E. Shrock. The continuous support by H.A. Kastrup
is gratefully acknowledged. The computations were performed on the CRAY
Y-MP /832 at HLRZ Jiilich.

Note added in proof

(1) Recently the possibility of decoupling the doublers in the FM(S) region of
our model has been demonstrated also in the unquenched calculation [36].

(2) In a recent paper [37] the decoupling of the fermion doublers was found
possible also in a class of fermion-scalar models with Wilson—Yukawa coupling
which were formulated in the spirit of refs. [5,38,39] and happen to lack the
Golterman—Petcher (GP) symmetry [28]. We expect that the type of models in ref.
[37] are not essentially different from our’s (i.c. will be in the same universality
class), but welcome in our model the GP symmetry which is of course very helpful
in pinning down the critical Yukawa coupling.

We would like to comment on some remarks in that paper: One may get the
impression from ref. [37] that our fermion-scalar model applies only to right
handed fermions with hypercharge zero. This is not the case. The lattice formula-
tion [21-23] of the standard model has a straightforward reduction (i.e. leaving out
gauge fields and considering only mass degenerate doublets) to our SU(2) ® SU(2)
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fermion-scalar model. Our model therefore applies to fermions in all weak
hypercharge representations occurring in the standard model. The decoupling of
doublers found in refs. [25,36] is thus relevant for all fermions in the standard
model in the weak gauge coupling limit.

(3) We have learned from M.A. Stephanov and M.M. Tsypin [40] that they have
found in their mean field calculations [17] extended to the SU(2) ® SU(2) case an
indication of the crossings of the FM(W)-PMW and AM(W)-PMW lines (our
point A) and of the FM(S)-PMS and AM(S)-PMS lines (point B). We thank these
authors for their information and also for pointing out to us an erroneous factor in
our MF calculations, which however does not change our failure to find there the
points A and B.
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