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In this paper we present the calculation of the gluon—gluon contribution to the Drell-Yan
K-factor. The size of the cross section for g+ g — V + ‘X’ is compared with those coming from
the three other subprocesses, i.e. q+q—>V+‘X’, q+g—=V+‘X and q+q— V+ ‘X", Fur-
thermore, the dependence of the K-factor on the factorization and renormalization scales is
analyzed for the current and future colliders.

1. Introduction

During the last few years a great deal of progress has been made in calculating
higher order corrections to inclusive and semi-inclusive processes in the framework
of perturbative QCD [1]. At present it seems that most of the order «, corrections
to n — m parton reactions with »n + m < 4 have been computed. An analysis of the
existing calculations reveals that it will be very difficult to extend the radiative
corrections beyond the first order in «. This in particular holds for semi-inclusive
processes. This statement also applies to order «, corrections to Born processes
which involve more than four partons, like in multi-jet production.

However, in the case of inclusive processes the situation is a little better. An
example is the quantity R defined in the reaction e*+ ¢~ — X, where X denotes
any hadronic final state, which is now completely known up to order o [2].
Another example is the order a? correction to the two-jet cross section of the same
process [3]. Finally, we want to mention the K-factor in the Drell-Yan process for
which a partial result exists at order a? [4].

* Supported by LAA, CERN, Geneva.
**Bitnet address: NEERVEN@HLERULS9

0550-3213 /90 /$03.50 © 1990 — Elsevier Science Publishers B.V. (North-Holland)



332 T. Matsuura et al. / DY K-factor

Higher order corrections are necessary for practical as well as theoretical
reasons. The practical reason is that the statistics in the ongoing and future
experiments will improve, so that higher order corrections will be measurable. This
is expected, as the size of the various K- and R-factors can become rather large.
Also it is interesting to see how the K-factors will behave at very large energies,
which are characteristic of future accelerators like LHC and SSC. Here we expect
that processes with gluons in the initial state will play a very important role. From
the theoretical point of view higher order corrections are interesting because we
can learn something about the behaviour of the perturbation series. In particular
one wants to understand by which type of terms the series is dominated. An
example is the soft gluon part of the K-factor, which can be traced back to
reactions with one or more gluons in the final state. Furthermore, we expect that
cross sections corrected to higher orders of «, are less sensitive to variations in
the factorization and renormalization scales than the lowest order ones. In this
paper we will study the effect of the order a? corrections to the Drell-Yan
K-factor, corresponding to the total cross section for vector boson production.

The Drell-Yan process is given by the reaction

H, + H, » V + hadronic states

; (1.1)
'—»/1+/2

where V' is a vector boson (W, Z or y), which decays into a lepton pair (£, Z,).
The four parton subprocesses contributing to the above are given by

q+q—V + partons, (1.2)

q(g) + g —» V + partons, (1.3)
q(q) + q(q) — V + partons, (1.4)
g+ g— V + partons. (1.5)

The quark-anti-quark subprocess is known in zeroth and first order in «, [5-7],
whereas a partial result exists in order «? [4]. The (anti)-quark—gluon subprocess
shows up for the first time on the order «, level. Its result can be found in refs.
[5-7]. The lowest order cross section for the reactions (1.4) and (1.5) are already of
order a2. The result for the (anti)quark—(anti)quark subprocess is given in refs.
[8,9]. The gluon—gluon subprocess has not been calculated up to now. We will
present the calculation of this process in sect. 2. In sect. 3 we study its contribution
to the K-factor and compare it with the results for the other subprocesses. The
dependence of the K-factor on the renormalization and factorization scales is also
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studied. Furthermore, we make predictions for current and future accelerators.
Details of the calculation and some useful formulae can be found in the appen-
dices.

2. The gluon—gluon subprocess

The contribution of the gluon—gluon subprocess to the Drell-Yan cross section
can be written as

doss 1 1 1
d—Q—2—=Tchj0 dxfO dxlj(‘)dx2S(T—xxlxz)g(xl,Mz)g(xz,Mz)

XCy A, (x,0°, M?) (2.1)

with
r=Q%/8S, C,=ng— gint(ng) +5int(3(n;+ 1)), (2.2),(2.3)
C, = (1+ [1 - 3sin? 0y ] Jint(3n,) + (14 [1 = $sin> 6y ] )int(3(n + 1)), (24)
Cw=int(3n,). (2.5)

In the above equations o, stands for the pointlike DY cross section. The
kinematical variables Q2 and S denote the di-lepton pair mass and the c.m. energy
of the incoming hadrons, respectively. The gluon distribution function g(x;, M?)
depends on the mass factorization scale M. Furthermore, n; is the number of
flavours and 6, the Weinberg angle. In this section we will discuss the calculation
of the Drell-Yan correction term 4,,(x, 0?).

In order a? the process under consideration is (see fig. 1)

g+g—>V+q+q. (2.6)
W_L PYTTYYYITYITIITY) FYYTYITTITIIITS
EITIETNITENETS JITVITININITTNL u;u_uu.muuu_\_

>

Fig. 1. The Feynman diagrams for the gluon—gluon subprocess.
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The parton structure function ng of this process is given by

We(x,0%8) =4 - C[dPS® LM M, (2.7)
where
1 . o e e
A=——: averaging over gluon helicities and colours,  (2.8)
4(N?2-1)
_N . .
C= m: normalization factor, (2.9)
M*: amplitude of the g-g process. (2.10)

The normalization factor C is due to the conventions introduced for the Born
cross section. The summation in eq. (2.7) is over all the quantum numbers of M,.
We use n-dimensional regularization to handle the collinear divergences (¢ =n —
4). Notice that we have only averaged over the two physical helicity states of the
gluon. Actually, using n-dimensional regularization one has to average over (n — 2)
helicity states. This implies that eq. (2.8) and therefore also eqs. (2.12) and (2.13)
have to be divided by a factor (1 + 3¢)? (two initial state gluons!). However, in the
DIS scheme this is not necessary, because the mass factorization (see eq. (2.14))
involves products of parton structure functions which are obtained from subpro-
cesses with one gluon in the initial state. Therefore, one has an overall factor
1/(1 4+ 1¢)? in eq. (2.14), so that it does not matter whether the limit & —> 0 is
taken in this factor before or after mass factorization. Notice that in the literature
[6,7] one also has averaged over the two physical helicity states only. In the case
of the MS mass factorization scheme, however, one has to include the factor
1/(1 + 3¢)?, since the helicity averaging factor does not appear in the splitting
functions.

For the calculation it is convenient to divide the parton structure function ng
into two colour parts

I/f/gg(x,Qz,s)=Iff/ggA(x,Q2,e)+ngF(x,Qz,e), (2.11)

where WS4 and W,Sr correspond to the C,Cy and C£ colour parts of the matrix
element (C,=N, Cp=(N?—-1)/2N, N=number of colours). After partial
fractioning the phase space integration dPS® has been performed in the c.m.
frame of the incoming gluons. The calculational details can be found in appendix
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A. We then find for the parton structure function ng(x, Q% ¢)
77 C 2
W (x, 0%, ¢)

Efzil-l—%a)

(l+e)

Q2
dqry?

a, \2 N?
=(__i) “e(1-x)**

(N?-1)

X {(1+x)*[168, ,( —x) + 24 Li;( —x) + 16{(3) — 241n x Li,( —x)
+161n(1 +x)Liy( —x) + 81In(1 +x)¢(2) — 12In x In(1 +x)
+8Inx In?(1+x) + £ Li,(—x) + §4(2) + ¥ Inx In(1 +x)]

-8(1-x)S, ,(1-x) + (50x2+ tx—$)in?x

—(50x% + Bx +4)Inx + 5L x? - 48x — ¥}, (2.12)
and
2 Q? F(1+25)
Cg 2 — _ 2e
Wee(x,0%¢) ( ) | (7o)~ 7Y

1
X{——z[—S(l +4x + 4x?)In x — 16(1 + 2x — 3x2)]
€

1
+—[=(1+4x+4x?)(16Li,(1 —x) + 4In* x)
£

—(20 +32x)In x — 86x2 + 88x — 2]
—8(11x% + 14x +2)S, ,(1 —x) = 16(1 +x)8, ,( —x)
+32(4x? + 4x + 1)Li5(1 —x) + 8(x2 — 2x — 1)Liy( —x)
+4(2x% = 2x = 1)¢(3) — 20(4x? + 4x + 1)In x Li,(1 — x)
+8(x*+4x+2)In x Li,( —x) + 4(10x? + 10x + 3)In x£(2)
—16(1 +x)* In(1 +x)Li,( —x) — 8(1 +x)*In(1 + x)£(2)
—2(3x2+3x+ DIn* x +12(1 +x)* In? x In(1 + x)
—8(1+x)*InxIn*(1 +x) + 8(3x*— 10x — 6)Li,(1 —x)
+8(1 +x)Liy(—x) +4(—12x%+ 9x + 5)£(2)
—(12x*+22x+15)In? x + 8(1 + x)In x In(1 + x)
+(38x2 + 4x — 15)In x + &2x? — 128x — 4}, (2.13)
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where u? is an artefact of the n-dimensional regularization, which can be traced
back to the dimensionality of the coupllng constant. Notice that WCA is free of
mass singularities; only the CZ part of W,, contains collinear dlvergences To
handle these divergences we perform mass factorization in the DIS scheme. In this
scheme the contribution of the gluon—gluon subprocess to the Drell-Yan correc-
tion term is given by

Ay(x,0%) = Wyo(x, 0%, 6) + 3(F Vs @ F08)(x, 0%, ¢)
-2(F Ve WP)(x, 0%, ), (2.14)

where .%;"¢ and Wq(;) are the parton structure functions belonging to the deep
inelastic scattering process V + g — q + q and the Drell-Yan process q+g— V +
g, respectively [6, 7]. Furthermore, the symbol ® denotes the convolution, i.e.

1 1
(f82)(x) = ["dy [(dz8(x—y2) f(1)5(2). (2.15)
0 0
Dividing the Drell-Yan correction A also into two colour parts, we have
Agg(x,Q )= ACA(x 0 )+A (x 0Q?) (2.16)
with (see eq. (2.12))
Ap(x,0%) = Win(x, 0%, e =0) (2.17)
and
ASr(x,0%) = ( ) (=410 + 16x + 1)8, 5(1 —x) — 16(1 +x)°S, 5( —x)

+4(4x%+4x + 1)Liy(1 —x) + 8(x*—=2x — 1)Liy(—x)

+4(2x% = 2x—1){(3) — 6(4x*+ 4x + 1)In x Li,(1 —x)
+8(x?+4x+2)In x Li,( —x) —4(4x*+4x+ 1)In(1 —x) Li,(1—x)
—16(1 +x)*In(1 +x)Li,( —x) — 8(1 +x)* In(1 +x)¢(2)

—(4x% +4x + 3)In* x + 12(1 +x)? In® x In(1 +x)

—2(4x2+ 4x+ 1)In x In%(1 —x) — 8(1 +x) In x In>(1 +x)
+(16x%+ 16x + 6) In x{(2) — (6x% + 10x + 7)In® x

—6(8x>+8x+ 1In xIn{(1 —x) +8(1 +x)InxIn(1+x)

+4(3x? —2x— DIn*(1 —x) — (12x% 4+ 72x + 18)Li,(1 —x)
+8(1+x)Liy( —x) +(—12x2+12x+8){(2) —(26x*+96x+24)In x
+(51x2 = 36x — 15)In(1 —x) + £x2>—5x - B}, (2.18)
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3. The results

First we will introduce some notations which will be helpful for the discussion of
our results. Generalizing eq. (2.1) the colour-averaged cross section of the process
in eq. (1.1) is given by

do/dQ’=10,(Q% M3)Wy(r,Q%), (3.1)

where, according to the DY mechanism, the hadronic structure function Wy (z, Q%)
can be written as

Wy (7, 0%) = Zfoldxfoldxlfoldxz5(7—)oc1x2)PD"¢'(xl,x2,M2)
iJ

x A, (x,0%, M?). (3.2)

The function PD¥(x,, x,, M?) is the usual combination of parton distribution
functions, which depends on the mass factorization scale M 2. The indices i and jf
refer to the type of the incoming partons. Moreover, it contains all the information
on the coupling of the quarks to the vector bosons, such as the quark charges, the
Weinberg angle 6, and the Cabibbo angle 6. (the other angles and phases of the
CKM matrix are neglected). The total cross section o for W /Z-production is
obtained by integrating eq. (3.1) over Q? using the narrow width approximation.
Therefore, the relevant mass scale will be Q% = M (M, is the mass of the vector
boson).

Notice that the parton distribution functions do not only depend on the mass
factorization scale M, but also on the renormalization scale R. This is because the
calculation of the anomalous dimension involves the operator renormalization
(= mass factorization) as well as the coupling constant renormalization. However,
in the existing parametrizations of the parton distribution functions the two scales
M and R are put equal. Also the DY correction term A;(x, Q% M?) (Wilson
coefficient) depends on these two scales. This can be seen by expanding the DY
correction term in a power series in the running coupling constant a (R?)

A,(x,0°, M*)= Y al(R*)AP(x,0°, M*, R?). (3.3)

n=Ay

If a(R?)is expanded in a power series in a(M?) the explicit R*-dependence in
eq. (3.3) drops out.

The parton distribution functions as well as the DY correction term are scheme
dependent. In our calculations the mass factorization has been performed in the
DIS scheme, whereas the renormalized coupling constant is determined in the MS
scheme. Therefore, one has to choose an appropriate parametrization for the
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distribution functions in the DIS scheme. We will use the DFLM (set-4)
parametrization [10] for our main computations. However, in order to check its
reliability at high energy colliders, like the LHC and SSC, we also have done some
of our numerical calculations with the leading log parametrizations DO1 [11] and
EHLQ [12]. For the running coupling constant we take the two-loop corrected one
defined in the MS scheme [13].

In the presentation of our tables and figures we have used all expressions for the
various DY correction terms 4,;, which are known up to now, including the one
calculated in sect. 2. Starting with the reaction in eq. (1.2), 44 receives contribu-
tions from the processes

AQ: q+3-V (3.4a)
AQ: q+3->V+g, (3.4b)
@. q+tq—-V+g+t+g
A2 {q+c_1—>V+q+q’ (3.4c)
A(qzq)ys: q+q—>V+q+q. (3.4d)

We have divided the contribution of the subprocess q +§— V + q+q into two
parts. The first one (AZ)) shows up in both the singlet and the non-singlet
contribution to the DY correction term. The second part (A(qzq),s) appears in the
singlet contribution only. The above reactions also include the virtual corrections
to the processes in eqs. (3.4a) and (3.4b). The correction terms can be found in the
literature [4-7], except for the hard gluon contribution to (3.4c) and a part of
process (3.4d), which have not been calculated yet. The known part of 4,5 is
equal to 4, (see below) without the identical quark contribution.

Following the notation of ref. [14] we can split AQ into a “soft + virtual”

(S + V) and a hard (H) gluon part. The structure of the (S + V) part is given by

A(qS(_;—V)(x, QZ, MZ’ RZ)

o £ (S

el 4

n

2n—1
x[ Y a,(Q*M?,R*)Z.(x)+b,(Q% M? R})8(1—x)|. (3.5)
i=0

The coefficients a,; and b, can be found in refs. [4] and appendix C. The hard
gluon part A";‘q does not contain distributions of the types shown in eq. (3.5). Its
expression for the second process in eq. (3.4c) can be found in ref. [15].
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The DY correction term for reaction (1.3) is only known in lowest order [5-7]. It
will be denoted by

ALY q(@) +g->V+q(@). (3.6)

In sect. 2 we have calculated the correction term due to the gluon-gluon fusion
process

A2 g+g—->V+q+3. (3.7)
Finally, the correction term for the subprocess
A% (@) +a(@) > V+q(@) +q(@) (3.8)

can be found for identical as well as non-identical quarks in refs. [8,9] (see also
appendix B). Besides the general structure of the (S + V) part of 4., we found
that the functions A g, AQ) and AY) vanish in the limit x — 1. This feature
explains why the contributions of the processes (3.4d), (3.7) and (3.8) are very small
at the current and future accelerators, as we will see below. Notice that this
property is scheme independent since any finite mass factorization involves only
convolutions of regular functions which vanish in the limit x — 1. Contrary to the
corrections terms mentioned above, A’q’q and Aqg do not vanish for x = 1, so that
their contributions become appreciable in particular at very high (VS > 16 TeV)
energies.

We will now present the Drell-Yan cross section and its K-factor for both pp
and pp-colliders. The input parameters are M, =91 GeV, My, =80 GeV, sin’f,
= 0.227 and sin? . = 0.05. The number of light flavours, n,, is taken to be equal to
five. The QCD scale parameter A, which appears in both the running coupling
constant and the parton distribution functions is chosen to be 0.2 GeV. Unless
stated differently all the results are produced using the DFLM (set-4) parametriza-
tion [10]. Furthermore, we take M = R =M, (M,, is the vector boson mass). The
stability of the cross sections under changes of the mass factorization and renor-
malization scales will be presented at the end of this section. All the numerical
results in this paper are produced by our FORTRAN program ZWPROD, which
can be obtained on request.

Starting with the Z-production at pp-colliders we show in fig. 2 the zeroth order
(ay), the O(a,) corrected () and the O(a?) corrected (o,) DY cross section for
0.5 TeV < VS < 50 TeV. From this figure we infer that o, increases logarithmically
as a function of V. This is not surprising since at large S (small 7) the sea quarks
dominate the process and their distribution functions behave like ~ 1/x for x — 0.
For the discussion of the various contributions to the Drell-Yan correction term it



340 T. Matsuura et al. / DY K-factor

100.0

80.0
o
]
o
L
-
]
©
” 10.0
n
”n
8
4
o
E 5.0
°
=

1'0 a i P A A 1 e P | A
05 1.0 5.0 10.0 50.0
VS ((Tev)

Fig. 2. The total cross section for the Z-production at a pp-collider in three approximations. Solid line:
Born; dotted line: O(e,) corrected; dashed line: O(asz) corrected.

is convenient to introduce the K-factor. It is defined by

Ky= Y K™, (3.9)
th

n=0

where K is the O(al)-contribution to the theoretical K-factor, which is given by

W (r,0%)

KM= 7W(O)(T,Q2) .

(3.10)

The function W (7, Q?) is the order a! term of the hadronic structure function
W (7, 0?) in eq. (3.2). The order «’ corrected K-factor follows from egs. (3.9) and
(3.10) and it equals
i
K= Y K™, (3.11)
n=0

In fig. 3 one observes a slow decrease of K, and K,. In K, the decrease due to
K® is somewhat compensated by an increase of K®. The latter becomes even
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Fig. 3. The K-factor for the Z-production at a pp-collider (see eqs. (3.10) and (3.11)). (1): K, (2): K,
(3 KD, (4): K@,

larger than K for VS > 25 TeV. In particular this implies that at SSC energies
the O(a?)-corrections are larger than the O(a,) ones*. The reason for this effect
can be seen in fig. 4. Here we have split K into the various contributions coming
from the different production mechanisms in eqs. (3.4a)—(3.8). We observe that the
qg-process (i.e. K and K{?) dominates the theoretical K-factor. However, at
very large energies we see a steep rise of K é‘; (quark—gluon subprocess) becoming
larger than K. Notice that the contribution of the quark-gluon process is
negative, therefore it is responsible for the decrease of KV, observed in fig. 3. At
first sight the rapid growth of the gg-contribution is not surprising since the vector
boson production at very large energies implies very small 7 =x,x, = MZ/S. Near
x; =0 the gluon distribution function rises very steeply, so we expect that the
gluons will give a very important contribution to the DY cross section. However,
the large size of Kflg) is not only due to the gluon distribution function. If that
would be the case, we would also have a sizeable contribution from the gluon—gluon
subprocess (eq. (3.7)) calculated in this paper. A quick glance at fig. 4 shows that

* This we find in the approximation used here. The complete K‘® might behave differently. See the
discussion of K{2 below.
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Fig. 4. The various contributions to the K-factor for the Z-production at a pp-collider (see eq. (3.10).
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this is not the case. To understand this we rewrite eq. (3.2) as follows
1 dx T
Wy(r.0%) = T [ 0, (x. M%) 4, 0% 7). (3.12)
i X X
where @;; denotes the parton flux

1dy X
D, (x,M?) = —PD,»-(y,—,Mz). 3.13
6 M?) = [ =5 PDy |y, - (3.13)

X

It appears that for all subprocesses the flux @,,(x, M?) gets very large for x — 0,
whereas it goes rapidly to zero when x — 1. Hence the behaviour of 4;,(x) in the
limit x — 1 is very important. As mentioned below eq. (3.8), it turns out that the
DY correction terms A2 ¢, AZ and AL vanish in this limit, which explains their
rather small contribution (less than 1%) to the total Drell-Yan K-factor. This is
clearly shown in fig. 4. However, AQ) does not go to zero for x — 1. It even
diverges logarithmically. The same holds for AQ>" and the known part of A

For this reason we show in fig. 5 the contributions from the “soft + virtual” and
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Fig. 5. The “soft + virtual” and hard gluon parts of K}]‘;_]) for the Z-production at a pp-collider (see eq.
(3.6)). (1): KRGV, (2): —K{H, (3): K@-S*V), (4): KGM.

hard gluon parts of A separately. We observe that although the (S + V) part
dominates the hard gluon contribution over the whole energy range, the hard (H)
gluon piece is not completely negligible. This holds for both K{ and K. One
also has to bear in mind that the complete hard gluon contribution to K f]:f_]’ is not
known yet. The same applies to Kffg). In the light of the discussion above it is not
improbable that for high energy colliders the missing parts will give appreciable
contributions to the DY K-factor, for they will have the same behaviour near x =1
as the lower order DY correction terms 49" and A).

The above discussion also holds for Z-production at pp-colliders, as can be seen
in figs. 6-9. Because the same applies to W-production at proton—(anti)proton
colliders, in these cases we only give the figures for the total cross section (see figs.
10 and 11).

Notice that there is a difference between W* and W~ production for pp-colli-
sions. At low energies the valence quarks dominate the qq cross section, where
W* and W~ are produced via uy-sea and d,-sea annihilation, respectively. The
dominance of the valence quarks also explains the difference in vector boson
production at pp- and pp-colliders. However, at very large energies the sea quarks
determine the cross section, so that the above-mentioned differences disappear.
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Fig. 6. The total cross section for the Z-production at a pp-collider in three approximations. Solid line:
Born; dotted line: O(a,) corrected; dashed line: O(a?) corrected.

The size of the various contributions to the DY cross section depends very
heavily on the specific set of parton distribution functions. These functions are
extracted from the deep inelastic lepton-hadron scattering data, which are taken
at x > 0.01. However, vector boson production at future, high energy colliders
requires the knowledge of these distributions at x ~ M,/ VS . For LHC and SSC
this implies x ~6 X 1073 and x ~ 3 X 103, respectively. Therefore, we have to
extrapolate the parton distribution functions to x-regions, which were not accessi-
ble to the deep inelastic experiments carried out up to now. In the future this
situation will improve, when the HERA machine is put into operation. At this
moment the only way to estimate the accuracy of our predictions is to compare the
results obtained for different sets of distribution functions available in the litera-
ture. Here we have chosen the sets DO1 [11] and EHLQ [12], which will be
compared with DFLM4 [10] used above.

The results for Z-production are displayed in table 1 for VS =0.63 TeV
(pp, SppS), 1.8 TeV (pp, Tevatron), 16 TeV (pp, LHC) and 40 TeV (pp, SSC). The
agreement between the three sets is excellent at VS = 0.63 TeV. They start to
deviate from each other at VS = 1.8 TeV. However, the differences are still smaller
than the O(asz) correction. This situation changes, if we go to LHC and SSC



T. Matsuura et al. / DY K-factor 345

2.0 T ) '
- 2
et S
e —
10} ]
08 | ]
06 | |
e
S
& 04 |
™

0.2

0.1 " " i 1 L i 1 " A A
0.5 1.0 5.0 10.0 50.0

VS ( Tev )

Fig. 7. The K-factor for the Z-production at a pp-collider (see egs. (3.10) and (3.11)). (1): K, (2): K,
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energies, where the differences between the three sets are of the same order or
even larger than the O(a,) corrections. Notice that the resuits for the three sets
start to diverge already at the Born level and that adding higher order correction
does not change the situation appreciably.

In table 2 we present the O(«,) and O(a?) radiatively corrected cross sections
for W * production at the same energies as mentioned above. Here the deviation
between the three parametrizations starts already at VS = 0.63 TeV. This is mainly
due to the valence part of the d-quark distribution, which is more important for W
than for Z-production.

From the two tables we infer that the EHLQ set leads to a considerably smaller
cross section than those obtained from the other two sets. At the SSC energy the
DOL1 set gives a result, which is larger by more than 25% than found for the two
other ones. Summarizing the above we can state that the uncertainty in the cross
sections can be estimated to be up to 20% for LHC and 30% for SSC energies. It
is for this reason that in studying radiative corrections it is better to look at the
K-factor than at the cross section, since the uncertainty in the latter will drop out
in the ratio of eq. (3.10).
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Fig. 8. The various contributions to the K-factor for the Z-production at a pp-collider (see eq. (3.10)).
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In tables 1 and 2 we also give the sum of the contributions from the hard gluon
part of the first order qq (A%") and the qg subprocess (4{)) scparately. The
results are put between brackets behind the O(a)-corrected cross section. From
these tables it is clear that the contribution from this sum increases rapidly with
the c.m. energy of the collider, viz. from —6% of the Born cross section at
VS = 0.63 TeV to around —25% at VS = 40 TeV. Moreover, from figs. 4, 5, 8 and
9 one can infer that this growth is mainly due to the qg-subprocess. Therefore we
expect that A((fg), which has not been calculated yet, will give a non-negligible
contribution to the cross section at large energies. The same holds to a lesser
extent for the hard part of A%,

For VS =0.63 and 1.8 TeV (CERN and FNAL) we compare our predictions
with the measurements by the UA2 [16] and CDF [17] collaborations (see tables 3
and 4). For this purpose one has to multiply the results obtained in tables 1 and 2
by the branching ratios BR(Z — e*e™)* and BR(W — ev) [19], respectively. We
find that for the Z-production at CERN one needs the second order contributions
to get an agreement between theory and experiment. For the other cases this

* This branching ratio is calculated using the program ZSHAPE [18].
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statement is no longer true. At Tevatron even the Born approximation agrees with
the measurements.

Finally, we are interested in the stability of our results if the mass factorization
scale M and the renormalization scale R deviate from the “natural” ones, i.e. if
one no longer has M = R = M,,. For this purpose we study the quantity

2_ a2 a2 p2
(3.2, ) = DAL ZMEML R
Un(Q =MV7MV5M\2/)
where o, denotes the O(a?)-corrected cross section. In tables 5-8 we present the
values for S, at VS = 0.63, 1.8, 16 and 40 TeV in the case of Z-production. Since
the functions S, for W *-production exhibit the same behaviour, we do not show
them separately. Notice that the results have been obtained for the DFLM set
only. In this set the scale dependence of the parton distribution functions is
determined by the next to leading order anomalous dimension. The second order
anomalous dimension also shows up in the O(a?) corrected DY Wilson coefficient
A(x, Q% M?). Therefore we expect that the O(a?)-corrected cross section becomes
less dependent on the parameters M and R than the O(«,) one. Notice that the
DY cross section is less sensitive to scale variations than reactions like direct
photon production [20] or heavy flavour production [21]. In lowest order the DY

(3.14)
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Fig. 10. The total cross section for the W*+ W™ production at a pp-collider in three approximations.
Solid line: Born; dotted line: O(a) corrected; dashed line: O(asz) corrected.

cross section is independent of a,, whereas the other two start at @, and aZ,
respectively. If a cross section at lowest order is proportional to @, or a2, it is very
sensitive to variations in the renormalization scale, which will only be partially
compensated by higher order corrections.

Our results have to be interpreted with some care and that for the following
reasons. Firstly, we only take into account a part of the O(a?)-corrections and
neglect the contributions A‘i,) and A(qzc%’H, although for the latter we include the
effect of the parameters M and R as explained in appendix C. This is not a serious
defect, since for SppS and Tevatron energies the neglected subprocesses do not
contribute too much. The second reason was already mentioned below eq. (3.2). In
the existing parametrizations for the parton distribution functions one never
distinguishes between M and R, although the second order anomalous dimension
depends on the operator renormalization (= mass factorization) as well as the
coupling constant renormalization. Therefore, changing R in the O(«,)-corrected
DY correction term has to be solely compensated by the O(aZ) corrections.
Bearing these remarks in mind we can proceed with the discussion of the tables.

In tables 5-8 both scales are taken in the regions: tM, <M,R <2M,. At
VS =0.63 TeV we observe an improvement in the stability of the cross section (or



Total cross section ( nb )

500.0

100.0

10.0

5.0

1.0

T. Matsuura et al. / DY K-factor

349

AL T T
-
Pk
Pt
-
precs
s
. /// B
o
P
o
Pty
L s i
gy
s
P
e
e
s
3 s
s
7.
v
<3
ys
/'.
/-
- /" -
4
/-
A
S
/s~
-~
!.
F ra— i ] —_
0.5 1.0 5.0 10.0 50.0
VS ( Tev )

Fig. 11. The total cross section for the W*+ W~ production at a pp-collider in three approximations.

TaBLE

1

Solid line: Born; dotted line: O(a,) corrected; dashed line: O(a?2) corrected.

The total cross section for Z-production in three approximations at SppS, Tevatron, LHC and
SSC. The value between brackets is the sum of the contributions from A% and A%).

Z production rate (nb)

VS (TeV) DO1 EHLQ DFLM4
Born 0.63 1.37 1.37 136
Olay) 1.78 (—0.08) 1.79 (—0.08) 1.79 (—0.07)
O(a?) 1.95 1.95 1.96
Born 1.8 471 455 4.93
O(a,) 5.85 (—0.53) 5.64 (—0.52) 6.16 (—0.52)
Oa?) 6.45 6.22 6.78
Born 16.0 40.8 32.4 39.9
O(ay) 46.3(—9.0) 37.0(-6.9) 46.7 (~7.4)
Oa?) 523 41.8 525
Born 40.0 100.0 711 76.1
O(a,) 108.0 (—28.0) 79.0 (- 17.0) 86.2 (—17.0)
O(a?) 124.0 90.6 98.3




350 T. Matsuura et al. / DY K-factor

TABLE 2
The total cross section for W*+ W™ production in three approximations at SppS, Tevatron, LHC and
SSC. The value between brackets is the sum of the contributions from AG}™ and AQ).

W*+ W™ production rate (nb)

VS (Tev) DO1 EHLQ DFLM4
Born 0.63 4.69 4.16 4.39
Olay) 6.11 (—0.31) 5.42(-0.28) 5.76 (—0.26)
O(a?) 6.70 5.95 6.33
Born 1.8 15.4 14.5 16.3
O(a,) 19.0(-1.9) 17.9(-1.9) 203(-1.9)
Ola?) 211 19.8 22.4
Born 16.0 127.0 100.0 131.0
Ole,) 141.0 (=31.0) 123.0 (-23.0) 153.0(-25.0)
O(a?) 161.0 128.0 173.0
Born 40.0 300.0 213.0 232.0
Olay) 313.0 (- 95.0) 233.0 (- 56.0) 262.0 (—53.0)
Ola?) 362.0 269.0 300.0

TaBLE 3

o,BR and oy -+, w-BR for CERN. We have used BR(Z > e "¢ ") =335x 10" 2 and
BR(W — ev) =0.109 (see refs. [18] and [19]).

VS =0.63 TeV
DOl EHLQ DFLM4 UA2 [16]

g, XBR(Z—e*e™) (pb)

Born 45.8 45.9 45.7
O(a,) 59.8 59.9 60.0 70.4 + 5.5 + 4.0
Oad) 65.4 65.5 65.6

ow+ . w-X BR(W - ev) (pb)
Born 511 453 479
Ola,) 666 590 628 660 + 15 + 37
Ola?) 731 649 690

more precisely §,) under changes of M and R, while going from the Born to the
O(a?) level. The same applies to the results for VS = 1.8 TeV, although the
difference between S, and S, is hardly noticeable. What is very striking is that
there is almost no difference between S, (Born) on the one hand and S|, §, on the
other hand. At VS = 16 and 40 TeV the result for S, is much more stable than for
Sy, but for S, the stability diminishes compared to S,. The latter is probably due to
the fact that we have not included the mass factorization and renormalization
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TagLE 4

o,BR and o+ . w-BR for Tevatron. We have used BR(Z - e*e ™) = 3.35 x 1072 and

BR(W — ev) = 0.109 (see refs. [18] and [19)).
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VS =18 TeV
DO1 EHLQ DFLM4 CDF [17]
gz XBR(Z—e*e”) (nb)
Born 0.158 0.152 0.165
Oa) 0.196 0.189 0.206 0.197 + 0.012 + 0.032
Ola?) 0.216 0.208 0.227
ow+w-X BR(W - ev) (nb)
Born 1.68 1.58 1.77
Olay) 2.08 1.95 221 2.06 + 0.04 + 0.34
O(a?) 2.30 2.16 2.44

The functions S, S, and S, (first, second and third row, respectively) for Z-production at SppS

TABLE 5

(\/E =0.63 TeV). The variables M and R are the factorization and renormalization scales.

R/M,

M/M, 1 W2 1 V2 2
1 1.09 1.09 1.09 1.09 1.09
1.05 1.04 1.03 1.02 1.01
1.02 1.01 1.01 1.00 0.99
W2 1.04 1.04 1.04 1.04 1.04
1.04 1.03 1.01 1.00 0.99
1.02 1.01 1.00 1.00 0.99
1 1.00 1.00 1.00 1.00 1.00
1.03 1.01 1.00 0.99 0.98
1.02 1.01 1.00 0.99 0.98
V2 0.96 0.96 0.96 0.96 0.96
1.02 1.0 0.99 0.98 0.97
1.02 1.01 1.00 0.99 0.98
2 0.93 0.93 0.93 0.93 0.93
1.02 1.00 0.98 0.97 0.96
1.02 1.01 1.00 0.99 0.98
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TABLE 6
The functions Sy, S; and S, (first, second and third row, respectively) for Z-production
at Tevatron (yS = 1.8 TeV). The variables M and R are the factorization
and renormalization scales.

R/M,

M/M; 3 32 1 V2 2
i 0.99 0.99 0.99 0.99 0.99
1.02 1.01 1.00 0.99 0.98
1.00 0.99 0.98 0.97 0.97
2 1.00 1.00 1.00 1.00 1.00
1.02 1.01 1.00 0.99 0.98
1.01 1.00 0.99 0.98 0.97
1 1.00 1.00 1.00 1.00 1.00
1.02 1.01 1.00 0.99 0.98
1.02 1.01 1.00 0.99 0.98
V2 1.00 1.00 1.00 1.00 1.00
1.03 1.01 1.00 0.99 0.98
1.03 1.02 1.01 1.00 0.99
2 1.00 1.00 1.00 1.00 1.00
1.03 1.02 1.01 1.00 0.99
1.04 1.03 1.02 1.01 1.01

terms from A®). This shows once more that for LHC and SSC the O(a?)
contribution from the qg-subprocess will not be negligible. However, it is also
possible that at very small x-values the parametrization of the parton distribution
function does not exactly reproduce the M-evolution. From the tables we infer that
at fixed M the function S, (n > 1) decreases for increasing R. For fixed R the
behaviour of S, depends on the energy that one is considering. At VS =0.63 TeV
S, decreases, whereas S, nearly remains constant, when M gets larger. For
Tevatron §, remains almost constant, whereas S, increases. At VS =16 and 40
TeV both quantities increase for growing M. Morcover, there is a large variation
in S,, if M is varied between 1M, and 2M,. The dependence on R is less
pronounced. Putting M = R we see that §, grows when both parameters increase.
Therefore, we do not see any minimum in S, contrary to what has been observed
in DY production at fixed target energies (e.g. VS =274 GeV, see ref. [22]). The
PMS scheme [23] does not seem to work here.

Summarizing our results we conclude that the contribution of the gluon—gluon
process (3.7) to the DY cross section is very small. This also applies to the singlet
part of the qg (3.4d) and the qq (3.8) reactions. This statement even holds at very
large energy, where these contributions never exceed the 1% level. The minor role
of the gluon—-gluon fusion in the DY process contrasts with that observed in other
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TasLE 7
The functions S, S, and S, (first, second and third row, respectively) for Z-production at LHC

(‘/E = 16.0 TeV). The variables M and R are the factorization and renormalization scales.

R/My
M/M, z W2 1 V2 2

1 0.83 0.83 0.83 0.83 0.83
0.96 0.94 0.93 0.92 0.91

0.94 0.92 0.91 0.90 0.89

W2 0.91 0.91 0.91 0.91 0.91
0.99 0.98 0.97 0.96 0.95

0.97 0.96 0.95 0.95 0.94

1 1.00 1.00 1.00 1.00 1.00
1.02 1.01 1.00 0.99 0.99

1.01 1.01 1.00 0.99 0.99

V2 1.08 1.08 1.08 1.08 1.08
1.03 1.03 1.02 1.02 1.01

1.05 1.05 1.04 1.04 1.03

2 1.16 1.16 1.16 1.16 1.16
1.04 1.04 1.04 1.04 1.03

1.09 1.09 1.08 1.08 1.08

processes like heavy flavour production [21]. This implies that besides the gluon
flux, the behaviour of the Wilson coefficient is of utmost importance in determin-
ing the size of the higher order radiative corrections. Furthermore, we have shown
that the reliability of the parton distribution functions becomes much less if one
makes predictions for cross sections at energies much larger than 1.8 TeV. This is
also corroborated by the sensitivity of the cross section to the mass factorization
and renormalization scales at very large energies, such as for LHC and SSC.
Finally, we observe that the missing parts given by AZ and A" are not
completely negligible and therefore have to be calculated too. This will be done in
the near future, so that the complete O(a?)-correction to the DY K-factor will be
known.

Appendix A

THE PHASE-SPACE INTEGRALS

A large part of the calculation of the gg-contribution to the Drell-Yan correc-
tion term consists of performing three particle phase space integrations. Here we
will discuss some of the details of these computations and also will give some
useful results.



354 T. Matsuura et al. / DY K-factor

TaBLE 8
The functions S, $; and S, (first, second and third row, respectively) for Z-production at SSC

(\/§ = 40.0 TeV). The variables M and R are the factorization and renormalization scales.

R/M;
M/M, 7 V2 1 V2 2

i 0.77 0.77 0.77 0.77 0.77

0.95 0.94 0.93 0.92 0.90

0.93 0.92 0.90 0.89 0.88

W2 0.88 0.88 0.88 0.88 0.88

0.99 0.98 0.97 0.96 0.95

0.98 0.96 0.95 0.94 0.93

1 1.00 1.00 1.00 1.00 1.00

1.01 1.01 1.00 0.99 0.99

1.02 1.01 1.00 0.99 0.99

V2 1.12 1.12 1.12 1.12 1.12

1.02 1.02 1.01 1.01 1.01

1.05 1.05 1.04 1.04 1.03

2 1.23 1.23 1.23 1.23 1.23

1.01 1.01 1.02 1.02 1.02

1.09 1.09 1.09 1.08 1.08

For the subprocess

g(k,) +g(ky) > V(g) +q(p)) +3(p,) (A.1)

the three particle phase space integral is defined by

1
3y n n n 2 __ N2 2 2
[ dps® = (27)2n_3fd q [d'p, [d"p, 87 (a*~Q)8"(p})s*(p3)
X 8"k, +ky—q—p,—p,). (A.2)

In the c.m. of the incoming gluons it can be parametrized as

1-n/2

& & . n—3 . n—4
_3)/0 dB/O de¢(sin8)" “(sin ¢)

s
(47)" I'(n

/d PS® =

stzdsl /Szgz_ﬁdsz {(515,=50%)(s + Q% =5, _52)}'1/2_2 (A.3)
sQ°/s4
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with s = (k, +k,)?, 5, =(p, +¢)* and s, = (p, + q)*. Furthermore, in this frame
the momenta are given by [24]

k,=1/s(1,0,...,0,0,1),  k,=1V5(1,0,...,0,0, — 1),

5—5,

= ——(1,0,...,0,sin0,cos §),
Py 2\/; ( )

s—s
Py= 2\/_1(1,0,...,sinxsind),cosxsin9+sianos¢cosﬂ,
s

cos ycos @ —sin ycos¢psin8), (A.4)

where y is the angle between the momenta p, and p,. It satisfies the relation

s(s £ Q% -5, -+5,)

sin?(3x) = Gos)G-5) (A.5)
For the actual calculations we rewrite eq. (A.3) as
DY 1 (Qz)n43 3-n 2n-5 (7 . . n=3g . n-4
fdPs3 = G T (1-x) fo dafo dé(sin )" >(sin ¢)

Xfoldy fol dz{z(1 _Z)}n/Z—z{y(l _y)}n—3{1 —a __x)y}l—n/Z.

(A.6)
The variables x, y and z are defined by
x=0Q?/s, s;=s{1—=(1-x)y},
x+ (1-x)y(1 =y)(1 =2)}
§5,=$ bt 0 . (A7)

1-(1-x)y

Before giving the results, let us fix the notation. We express the matrix element in
terms of the invariants

2
Pij=(li+lj) s B, =P+ Py, By, =Py + Py (A,8)

with I, =p,, I, =p,, ;= —k, I, = —k, and /5 = q. The last two invariants appear
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after partional fractioning, i.e.

1 1{1 1} (A9)
=—{—+—), :
P13P14 Bl Pl3 P14
1 1{1 1} (A.10)
=—{—+— .
P23P24 BZ P23 P24

which is needed to handle the angular integrals. After this partional fractioning all
the angular integrations can be performed using

w w sin8)" (sing)”*
] do[ dé [ ( : —
0 0 (1 —cos8)'(1—cosacos8 — sinacos ¢sin §)

Cln=1-NTI(ln-1-4) I'(n-3)
I'(n—2-i—j) r:(in-1

=21~y

)F(i,j;%n - 1;cos? 3a),

(A.11)

where I' is the gamma function and F(a,b;c; x) denotes the hypergeometric
function.

To perform the remaining integrations over y and z, the following set of
integrals turned out to be very useful.

(1-2)

z

fldzzT(l—z)y_lF a,By; — w
0

Tl +a+7)I(1+B+7)
Irl+y+n)r(l+a+g+r)

1+

XF(lta+7,1+B8+7m;1+a+B+7;1—-w). (A.12)
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Furthermore, defining

1 yrE(1—y)”
I(i,j)= | dy ———————F(le,e;1+¢;(1 - , A.13
(i) fo y (7 (Ge.e;1+e;(1—x)y) (A.13)
J(ir)) = /Oldyy'“(l ) (1-(1-x)y) 7 (A.14)
we find

1(=1,0) =1/ — e£(2) +£2(2£(3) + 3 Li5(1 —x)), (A.15)
1(00)—1—2+21L'(1—)—(2—lxmx + 2 (A.16
) - € £ 2 12 X é’ ) 2 (1_x) 21 . )

Loyl 2|1 e 1(x2f2x)l 1 (29 —31x)

(1,0) =3 —e +&”| 7 Lir(1 —x) — 34( )+§W nx+£(—1_7

(A.17)

1(0,1) = {-Inx+e[—2Li),(1-x) — $In%x]

1
(1-x)

+62[ =38, ,(1 —x) +4Lij(1 ~x) — 3Inx Li,(1 —x) + {(2)Inx — { I x]},

(A.18)
1
1(0,2) = -0 {(1=x)+e(1+x)Inx
+&2[3(5 +3x)Liy(1 —x) — (1 -x)4(2) + H2 +x)In%x]}, (A.19)
1
1(0,3) = x—z(;—ﬁ{%(l -x?%) +e[%(1 +x?)Inx— (1 —x?)]

+e2[ (54 3x2)Li)(1—x) — $(1—x2)£(2) + §(2+x?)In?x

—3(2+3x+2x)inx+ 1x(1 -x)]}. (A20)
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For the integrals J we have

J(—1,0) =1/e +e[3 Liy(1 —x) — £(2)] +£2[2£(3) — 55,,(1 —x) — Lis(1 —x)],

(A21)
1
J(0,0) = =) {(1=x) +e[3xInx—3(1-x)] +&2[3(1 +x)Li,(1 —x)
—(1-x){2) +xIn®x—3xInx+2(1-x)]}, (A.22)
1 2
J(1,0) = W{;(1 —x)? +e[—H(x?=2x)Inx — §(5 - 7x)(1 —x)]

+52[§(1 +2x —x?)Liy(1 —x) — 3(1 -x)%2(2)

— (2= 20)In% x + (70— 8x)Inx + 5(27 - 45x)(1-x)]},  (A.23)

J(0,1) = 7 1x) {=Inx+e[—2Liy(1 —x) — LIn?x] +e2[4Li5(1 —x)
=28, ,(1—x) = #Inx Li,(1-x) + {(2)Inx — 5 In* x]}, (A.24)
1
7(0,2) = m{(l —x) +e[3(1+2x)nx— (1 —x)]
+e2[2(1+x)Li(1—x) — (1 —x)Z(2) + (1 + 2x)In?x
—f(1+2x)nx+ H(1-x)]}, (A.25)
J(0,3) = xz(ll—_x)g(l —x?) + e[+ 2xH)Inx - $(1 - x?)]

+52[%(1 +x3)Liy(1-x) — 3(1—x%)(2) + (1 +2x*)In x

—£(5+ 12x+10x?)In x + 2(1-x2)]}. (A.26)

Using the integrals listed above and some properties of the hypergeometric
function [25], we were able to solve most of the 61 phase space integrals for the
gg-subprocess. However, we also encountered some integrals which had to be
computed using brute force methods. The results of the latter will be given



T. Matsuura et al. / DY K-factor 359

subsequently. In the following list we have left out an overall factor

w

(4m)*

x75(1—x)*. (A.27)

dmu? | T*(1+¢)

Q? )Er2(1 + 1¢)

List of gg phase-space integrals
“propagators” — [ d PS® “propagators”

53 16 1 1 21 Li(1 2]
- 4 e[l oy
B\B,P;P,; &’ (1—X){ £ [2 i,(1-x) =4(2)

+63[—%51,2(1—x)—%Li3(1—x)+2{(3)]}, (A.28)

53 16 1

- 1
B,B,P;;P,,  ¢&° (1—x){

—Jelnx+e?[ -3 Liy)(1-x) —{(2) — $In x|

+63[24(3) =28, ,(1 —x) + 2 Lij(1 —x) + 3{(2)In x

—$InxLiy(1-x) - 10’ x]}, (A29)
- _ tel N L
P3P 5Py Py &° (1+X){ nxTe ir(1-x) i(—x) = {(2)

+3In?x - 2InxIn(1 +x)]

1—-x
+32[2S,,2( —x) +4Li5(1 —x) —3Lij(—x) + 4Li3(1—+—)
x

1
—4L1'3( - ——i) —37(3) +In x Li,(1 —x) + 2In x Li,( —x)
+2In(1 +x)Li,(—x) + 2£(2)In x + £(2)In(1 +x) + + In’x

+ 1 xIn(1+x) +InxIn?(1+x)

} , (A.30)

s3 8
=2

1
5 5 5 p = -t Inx+e{—2Li,(1-x)+2Li,(—
P3PisPyyPys € x{ nx+el ir(1-x) i,(—x)

+4(2) —In*x + 2In x In(1 +x)]
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+2[ =58, (1 —x) — 38, ,(—x) +8Li,(1 —x) + 2 Liy( —x)

. X . 1_x 9 .
—4L13(m—) +4L13(— 1—;;) +3¢(3) —3In x Li,(1 —x)
—3Inx Liy( —x) = 3In(1 +x) Liy( —x) — 3£(2)In(1 +x)

+2{(D)Inx— 310’ x + 3 I’ xIn(1 +x) — 3InxIn?(1 +x)] (A31)

2

s 8
————— = — —{-Li,(—x) = 3¢(2) + i In’x—InxIn(1 +
PPy, P, { i(—x) —34(2) 5 In’ x — In x In( x)
+£[28, ,(1 —x) + 38, ,(—x) = 2Li5(1 —x) — 3 Liy( —x)
(1—x ) 1—x s )
+2Ll3(1+x) _2Ll3(-m) —- 3 (3)+21I1.XL12(1—X)
+3lnx Lis(—x)+3In(1+x) Li,(—x) — $(2)In x + 2£(2)In(1+ x)
+3In° x = gIn® x In(1 +x) + 3In x In?(1 +x)]}, (A.32)
sP s? 4
B +—{—lnx—(1—x)
P5Py3 Ps PPy Pys €
+e[ = (1+2x)(Li,(—x) + 3(2) + Inx In(1 +x))
—2Li,(1—x) +xInx+ 3(3 - 2x)Inx + 3(1 —x)]}, (A.33)
P}, s?

: —g{%(Zx—l)lnx—%(3—5x)(1—x)+g[(6x2+2x—-1)

Py5Py3 Py - PisPy Py

X (5 Liy(=x)+3£(2)+ 3 In x In(1+x))+ (2x—1)Li,(1-x)~ 2x?In% x

+5(10x? — 18x + 7)In x + (13 — 19x) (1 —x)]}. (A.34)
Appendix B

THE STRUCTURE FUNCTIONS FOR qq, G4 AND g, SINGLET
In this appendix we will discuss the structure functions for the subprocesses

q+q—->V+q+gq, (B.1)

q+q—-V+g+q, (B.2)

q+3— V+q+q,singlet (B.3)
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in some detail, because they are non-trivial due to the somewhat complicated
structure of the Drell-Yan correction term.

The diagrams for the subprocesses under discussion are given in fig. 12. In case
of non-identical quarks only the diagrams corresponding to the amplitudes A4, and
A, have to be taken into account. However, if identical quarks appear in the initial
and /or final state, also the crossed diagrams contribute (amplitudes A, and A4,).
Notice that each amplitude A4, is gauge invariant. In ref. [24] the Drell-Yan
correction term has been computed for V'=+vy*. The calculation was done by
dividing the Drell-Yan correction term into four parts:

A e 14,17,

A, oA AL and  A;A4],

Ant o4, AL and A, A],

Al 4, 4% and A, AL (B.4)

They then found

o0 = (2 s, (B.5)
a0 = () s, (B.6)
s = (=) soe, (B.7)

2

final a VN1 o 1 2
a0 = 32 | == (3200 = 39(0)In(1 —x) —02(x)). (B3)

where the expressions for 399, 34, 30 and 03 can be found in egs. (6.9), (3.27),
(7.6) and (7.8) and appendix D of chapter III in ref. [24], respectively. Notice that
in this reference contrary to ref. [9] the momentum sum rules have been imposed
on the splitting function I{.

Introducing also axial couplings the results of ref. [24] have to be slightly
adapted. Contrary to the other processes we studied, the axial part of the coupling
contributes differently to A (x) from the vector part. This is due to the particular
trace structure of the 4, 4% (4,;A4}) interference term. In this paper we have not
yet included this new contribution. Notice, however, that this only affects the
results for Z-production, as W-production has no contributions from A' NE
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// -~
=23 1— =03 ——3 1— 3
A1: E + Az-‘- +
—32 4 2 4 =t 4 2—Ht
~ N
// //
2—== 3 2 -3 2 3 2——3
Aj= + A= + é
1 L 1 A 1—~= b 1—3<—4
~ ~

Fig. 12. The diagrams for the qq-subprocess. The amplitudes 4, and A, only contribute in case of
identical quarks in the initial and /or final state.

We will now give the structure functions for the above processes. Keeping in
mind the correspondence between the Drell-Yan correction terms and the
Feyman diagrams in fig. 12 (see eq. (B.4)), one finds for the gq and qq contribution
to the Z-production cross section

dga+da@

1 1 1
W =7-aZfO dxj;) dxl-/(‘) dx26(~r—xxlxz){qu(xl,xz)Aqq(x)

+Zog(x1, %) AL (%) +Zfl‘3](x1,x2)(Aic’l‘é' x) + A0 x))} (B.9)
The structure functions Z,, are given by

ZQ = CPO(uy + ¢ )(uy +¢3)

+ CO{(uy +¢)(dy +5,) + (dy +5)(u + c2)}

+C{P(d, +5,)(d, +s,) + {quarks — anti-quarks}, (B.10)
Z2=Cfuu,+cicy} + Cyldid, +5,5,)

+ {quarks — anti-quarks} (B.11)
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with
8 . 2 2
C,=2(1+(1-4sin%0,)), (B.12)
4 .2 2
Co=2(1+(1-4sin’6y)"), (B.13)
Cud= %(Cu+cd)’ (B14)
Cl=2(1-¥sin?0y,)’, (B.15)
cl=2(1-4sin%0y)’, (B.16)
Cly=—2(1-%4sin?6y,)(1 - £sin?0y,). (B.17)

Furthermore, u,, d;, s; and ¢; are the distribution functions for the up, down,
strange and charm quarks for x,, the barred quantities will represent the corre-
sponding antiquarks. For the qg-subprocess the cross section is given by

do

1 1 1
agr Ty v ) [ dnatr men )

X{qu(xl,xz)Aqq(x) —Z(:q(xl,xz)Aqu(x)} (B.18)
with
Zé{j): C™u, +c ) (u,+¢,)
+ CO(uy +e)(dy+5,) + (d, +5)) (i, +3,))
+CP(d, +s)(d, +35,) + {12}, (B.19)

The corresponding formulae for W ™-production are

dg9a+aa | 1 1
———————sz =70Wf0 dx ‘/(‘] dxlf0 dx26(r—xxlxz){qu(xl,xz)Aqq(x)
W, x) AT (1) + WA (x, x,) AT (X)), (B20)
dga

1 1 1
—dQ2 =TUW/;) dxfo de/;) dx, 8(7 —xc X)) Wog(x,, x,) Agq(x) (B.21)
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with
qu =(u, + 51)(‘?2 +§2) +(di+s5)(uy+ ;) +{1e2)
+2(u, +¢,)(u,+¢,) +2(d, +s5,)(d,+5s,), (B.22)
Wt =2(@, i1, + ¢,C, +d,d, + 5,5,} (B.23)

W inal — cos? O (i, d, + €,5, + dyuy + 5,6,
+sin?0.{5,5, + €,d, +d;c, +s,u,} + {12}, (B.24)
W= (0, +2)(uy+c,) +(d, +5)(d, +5,) + {12}

+2(u, +c,)(dy+5,) +2(d, +s) (1, +¢,) (B.25)

The cross sections for W™ can be obtained by replacing all the quarks in the
formulae for W™ production by anti-quarks and vice versa.

Appendix C

SCALE DEPENDENCE OF THE DRELL-YAN CORRECTION TERMS

When performing mass factorization in the DIS scheme one still has the
freedom to choose arbitrary scales for the running coupling constant and the
parton distribution functions. Mostly these scales are chosen to be equal to
the invariant mass of the lepton pair (=“natural” scale). In this appendix we will
give the additional contributions to the Drell-Yan correction term when one no
longer restricts oneself to the “natural” scales. Here we will only present the
scale-dependent parts of the Drell-Yan correction term, the scale-independent
pieces can be found elsewhere.

In the subsequent formulae we will use the shorthand notations

2
N R ] -

where Q? is the invariant mass of the vector boson and M? and R? are the scales
to be used in the parton distribution functions and the running coupling constant,
respectively. Notice that for the “natural” scale we have L, =Lz =0, so that all
the expressions given in this appendix are zero for this scale. Furthermore, we



T. Matsuura et al. / DY K-factor 365

introduce the distribution

In*'§ (15 In‘(1 —x) co

+0(1-6—x)———. :
e 0w (€2
We will start with the scale-dependent contributions to the order «, Drell-Yan
correction terms. In the following we will omit overall factors (a,/47)". For the
qqg-subprocess we find

F(x) =8(1 —x)

A(ql%(x, Q?, M* R*)=Cg{68(1 —x) +8Zy(x) —4(1+x)}L,,. (C3)
The additional term for the qg-process is given by
AD(x, Q% M? R*) = (1-2x+2x>)L,,. (C4)

In ref. [4] the second order qg-subprocess has been calculated in the soft limit
x — 1. The scale-dependent part, however, can be determined exactly, because the
second order non-singlet anomalous dimension has been calculated without the
soft limit approximation (see ref. [26]). For numerical computations it is convenient
to split the qq Drell-Yan correction term into a “soft + virtual” (S+ V) and a
“hard” (H) gluon piece, viz.

AR(x, Q% M?, R*) = ARGV (x, 0%, M?, R*) + A2 "(x, 0% M?, R*) (C.5)
with
ADSV(x, 0%, M2, R?)
=6(1 —x)[CR{(18 — 32£(2)) L3, + (15 + 24£(2) + 112£(3)) L}
+CACH{11LY, = 2Ly g+ (3 + 3°4(2) = 240(3)) Ly — (5 + 7°4(2)) Lg}
+nCe{ =203 + 4Ly L — (3 + FL(2)) Ly + (3 + 22(2)) Lg)]
+C2[96L,,2,(x) + (6413, + 144L ) 2 x)
+(48L3, + (52 + 64£(2)) Ly ) Zo( )]
+CACE] = (Lyy + L) Z1(x) + (¥13, - $Ly Ly
+(B —16{(2)) Ly — 22Lg) Zo(x)]
+0,Ce[ B ( Ly + Lg) Zy(x) + (= 3L + 2Ly L — 5°Ly + 4L ) Zo(x)]

(C.6)
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and

AZH(x, 0%, M2, R?)

Inx
=C§{[—32(1_x) =32(1+x)In(1 —x) +24(1 +x)Inx — 40 — 8x [L3,

+{—16(1 +x){Liy(x) +£(2) +3I*(1 —x) + §In? x — 3In x In(1 — x)}

In x In(1 —x)

nx
-0 “0-n

— (176 + 80x)In(1 —x)

+(72+ 24x)In x — 112—24x}LM} +CACF{—%(1 +x) L3, + 32 (1+x)L,, Ly

n’x

(1-x)

+[(1 +x){8£(2) —4In x + % In(1 —x) — % Inx} +8

184 1012

176 Inx
3 (1-x) °  °°

Ly+[$(1+x)In(1-x) + 838x+44]LR}

+nch{§(1 +x)L3,— 31 +x)L, L,

32 lnx 8 64 136
+ —?m - 3(1 +x){ln(1 —x) —2In x} +35+ 55X LM

+[—§(1+x)1n(1—x)—s—gﬁx]LR}. (C.7)

In eqgs. (2.17) and (2.18) we have presented the scale-independent part of the gg
Drell-Yan correction term. The calculation which we have performed also enables
us to determine the scale dependence of A,. It is equal to

A (x,0% M2, R?)
= [—2(1 +4x+4x2)Inx — 41+ 2x - 3x?)| L3,
+[—4(1 + 4x + 4x?)(Li,(1 —x) + In x In(1 —x)) — 6(1 + 8x + 8x?)In x

—8(1+2x —3x%)In(1 —x) — 15— 36x + S1x%| L,,. (C.8)
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Finally, we give the results for the qq, Gq and qq (singlet) subprocesses. We find
that only 4., and Afcig"" have scale-dependent terms (see appendix B for the
notation used), viz.

2

N
Agy(x, 0%, M?, R?) = N

21
{(1+x)lnx+%—%x+§;_§x2}lgv[

+{2(1 +x)(Li(1 —x) — $In®x + In x In(1 —x))

41 41
+(1~x+ I3 —%xz)ln(l—x)-i-(g— +4—5x+§x2)lnx
x X

44 1 17 .2 37 19
+?;—7x —7+7x LM (C9)
and
. Ni—1
Alral(x, 0%, M*, R) = — |20 +x)Inx +4(1 —x)

1+x?

s {In?x —4InxIn(1+x) —4Li,(—x) ~2{(2)}]LM. (C.10)
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