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The lattice regularized U(1); ® U(1)g symmetric scalar fermion model with explicit mirror
fermions is investigated in the phase with unbroken symmetry. As a first part of a non-perturba-
tive investigation, in the present work numerical Monte Carlo calculations with dynamical
fermions are performed on 4% X 8, 6 X 12 and 8% X 16 lattices near the expected perturbative
gaussian fixed point, in order to study the cutoff-dependent upper limit on the renormalized
scalar quartic- and Yukawa-couplings. The bare Yukawa coupling of the mirror fermion is fixed
at zero, which is near the region of parameter space where in the broken phase decoupling of
the mirror fermion is expected. Lattice perturbation theory and fermion hopping parameter
expansion is exploited for supporting the numerical simulations.

1. Introduction

An important part of the Standard Model of elementary particle interactions is
the Higgs—Yukawa sector, where the masses of elementary particles arise due to
spontaneous symmetry breaking. The couplings in this sector, namely the quartic
self-coupling of the scalar field and the Yukawa couplings between the scalar field
and the fermions, are not asymptotically free. On the contrary, the perturbative
renormalization of these couplings is governed by an infrared fixed point at zero.
In other words, these couplings are “infrared free”, which means that if the cutoff
in the field theory describing the Higgs—Yukawa sector is much larger than the
physical (electroweak) scale, then the renormalized couplings are small. In fact, in
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the limit of infinite cutoff the infrared free couplings have to be exactly zero: the
continuum limit of such quantum field theories is “trivial”. The perturbation
theory describing the small physical Higgs- and Yukawa-couplings is defined
around this “trivial gaussian fixed point”.

Small renormalized couplings correspond to small scalar and fermion masses
compared to the scalar vacuum expectation value. At present it seems probable
that the two missing particles in the Standard Model, namely the top quark and
the Higgs boson, are relatively heavy. Therefore, the question naturally arises how
far can this perturbative picture be stretched, how large the masses produced by
spontancous symmetry breaking can be, before the perturbative description be-
comes inconsistent. This question obviously requires a non-perturbative framework
like lattice regularization. An outcome of the non-perturbative investigations is the
cutoff-dependent upper limit for the masses. In principle one can imagine two
extreme situations: the upper limits can either be very large or very small. In the
first casc cven with a very high cutoff the renormalized couplings can be strong,
therefore there can in principle exist a strongly interacting Higgs— Yukawa sector
which is outside of the reach of perturbation theory. In the second case, once the
cutoff is a little bit higher than the physical scale, the renormalized couplings
become small and there is no physical situation with strong interactions. In this
case perturbation theory is always applicable. Recently substantial effort has been
invested into non-perturbative lattice investigations in the pure scalar sector.
neglecting Yukawa couplings, which showed that in this case the second alternative
is realized (for references on this subject see ref. [1]). It is an interesting question
whether the influence of strong Yukawa couplings can change the situation. This
motivates a growing number of studies of Yukawa models on the lattice (see e.g.
refs. [2-7] and for further references the review [8]).

In the present paper we investigate the cutoff-dependent upper limit on the
renormalized couplings in the neighbourhood of the gaussian fixed point in the
symmetric phase of a U(1), ® U(1)g symmetric Yukawa model with explicit mirror
fermions (generally, we shall denote the fermion by ¢ and its mirror fermion
partner by x). This is a first part of similar non-perturbative investigations of
lattice Yukawa models. In a subsequent paper [9] we shall extend this study to the
phase with broken symmetry. In the symmetric phase the mirror symmetry is
unbroken, that is the fermions occur in pairs with opposite chirality. The fermion
spectrum is “vectorlike”, the dependence on chirality is manifested only in the
Yukawa interactions. In the phase with broken symmetry the non-zero vacuum
expectation value of the scalar field breaks also the mirror symmetry. The physical
fermions are in general mixtures of the mirror pair with different masses [10]. In
the broken phase it seems plausible that the mirror partners can be decoupled
from the physical spectrum. One possible way is to introduce a second scalar field
with vacuum expectation value of the order of one in lattice units and tune the
Yukawa couplings in such a way that the mass of the mirror fermion also remains
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of the order one (hence very large in physical units). Another, quite opposite, way
proposed by Borrelli et al. [11] is to make the mirror partner massless and tune the
mixing with the physical fermion to zero. This second way has the advantage that it
does not require more fields and parameters.

The non-perturbative study of the symmetric phase can reveal important proper-
ties of our model. In particular, the renormalization group behaviour of the
Yukawa coupling can be investigated. It is expected on general grounds, and it was
also shown by non-perturbative studies in pure ¢*-models [12], that the qualitative
features of renormalization are the same in the symmetric and broken phases.
From a technical point of view the investigation of the symmetric phase is easier.
First of all, the infrared singularities due to the presence of zero-mass Goldstone
bosons in the broken phase require special care. A second difficulty in the broken
phase is that, unlike in the symmetric phase, the fermion and boson masses cannot
be tuned separately (the fermion—boson mass ratio is given by the renormalized
Yukawa- and quartic-couplings). This leads in some parts of the parameter space
to large mass ratios, making numerical investigations difficult. The decoupling of
the fermion doublers (there are 30 of them in our formulation) can also be studied
in the symmetric phase. However, as we discussed above, the fermion and mirror
fermion are degenerate here, therefore the decoupling of the mirror fermion can
only be investigated in the broken phase.

In the Standard Model the Higgs—Yukawa sector is coupled to the rest by the
gauge couplings. Since at the electroweak scale the gauge couplings are weak, in a
first approximation one can neglect them. This we do in the present paper.
Nevertheless, one has to keep in mind that from the point of view of the
decoupling of mirror fermion partners the electroweak chiral SU(2); ® U(1)y
gauge interaction is a non-trivial difficulty (see e.g. ref. [13]). Another simplifica-
tion in the present paper is that we only consider a U(1); ® U(1); symmetry. This
has many important qualitative features in common with the SU(2); ® SUQ2)g
model [10] and with the SU(2), ® U(1)y symmetric model for mirror pairs of
standard fermion families [14]. In particular, due to the breaking of a continuous
global symmetry in the broken phase, there is a massless Goldstone boson. From
the point of view of axial anomalies this model is particularly interesting, because
a U(1) axial symmetry can be anomalous [unlike SU(2)]. As far as numerical
simulations are concerned, the smaller number of degrecs of freedom saves
computer time.

The trivial gaussian fixed point is at vanishing couplings: A = G,=G,=0(ris
the bare scalar self-coupling, G, and G, are the bare Yukawa couplings, and the
corresponding renormalized couplings will be denoted by an index R). Therefore,
we start the numerical simulation at small couplings and look how far the
renormalized couplings A and GpR, can be increased by increasing the bare
couplings (A,G,), without crossing some singularity corresponding to a phase
boundary in the bare parameter space. In the present paper we fix the bare
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Yukawa coupling of the mirror fermion in the numerical simulations to G, =0.
This is because finally we are interested in the broken phase with decoupled
mirror fermions. One of the decoupling conditions is GR =0 and, as we shall
show in this paper, G x = 0 roughly corresponds to G, =0.

The outline of this paper is as follows: in sect. 2 the lattice action and the bare
parameter space will be introduced, the symmetries of the model will be consid-
ered and the renormalized quantities will be defined in a form suitable for
numerical calculations. Sect. 3 is devoted to perturbation theory: the Callan—
Symanzik B-functions and the finite-volume effects will be calculated on the lattice
and in continuum. The unitarity condition for tree amplitudes will also be derived.
In sect. 4 the fermion propagator will be considered in 7th order fermion hopping
parameter expansion. The results of the numerical simulations will be presented in
sect. 5. Sect. 6 contains a short summary and some concluding remarks.

2. Actions and renormalization

2.1. LATTICE ACTIONS AND PARAMETERS

The U(1), ® U(1); symmetric model is the simplest in a general class of Yukawa
models with mirror fermion pairs. The lattice action is analogous to the SU(2); ®
SU(2), symmetric one [10], and has already been defined in a previous work on
the limit of infinitely heavy (static) fermions [15]. We use here the same notations
as in ref. [15], that is the lattice action with a general field normalization is

S=8,+5,,= Z{nd,d) b+ 676"~ Do,
+ug, [(X0,) + (Bex,)] — Z[K (Frsa¥uthe) + K (R iVuxs)]

+K,Z [(fxd’x) - ()?xﬂi"’x) + ('Zxxx) - ('ZXﬂiXx)]

+Glll($x[¢lx - i75¢2x]ll’x) + Gx(/?x[(blx + i75¢2x ]Xx)} ° (1)

Here x is a lattice point and the sum X, runs over eight directions of the
neighbours, j is the unit vector in the direction of u. The fields for the mirror
fermion pair are ¢, and yx,, the complex scalar field is ¢, =, +id,,. A
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normalization convenient for the numerical simulations is defined by
re=1-2A, K,=K, =K, K,=rK, R=p,, +8rK=1. (2)

In the present section this normalization will generally be used. However, some-
times the last condition will not be used and z or u,, will be explicitly written out.
For the perturbative calculations other normalizations are better (see sect. 3).

The term proportional to u,, in the action is a chiral invariant mass term for
the fermions. The term proportional to K, is a chiral invariant Wilson term which
serves to give the fermion doublers masses of the order of the cutoff as explained
below.

The fermionic part of the action §,,, can be written with the help of the
“fermion matrix” Q(¢),, as

Slllxdr = Z WyQ((b),vxlI’_,f . (3)
X,y

Here the fermion field ¥, = (¢, x,) stands for the mirror pair, and the 8 ® 8
matrix Q is given in a 2 ® 2 block notation by

Gl,,qb;f 0 m 0
0 G,,,d)x 0 m
Q( ¢).\'X = ayx —Ii- O G ¢ 0
xXrx

0 m 0 G)‘.d);
0 Eu r 0
S 0 0 r

-KY 8, ... © :

% yv.x+u r 0 O Ep. (4)

0 ¥ Sﬂ 0

This is on a chiral basis, that is the euclidean y-matrices are defined as

w=(§ 20) n=(y _Y). (5)

m

Here, for p=1,2,3, 5, = -3, = —ig, and 3,=5,=1 (0, ,, denote the Pauli
matrices). For negative indices the definition is given by 3.=-3_,.

In the numerical simulations we shall use the Hybrid Monte Carlo algorithm for
dynamical fermions [16]. This requires a flavour doubling of the fermion spectrum:
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the fermion part of the lattice action will be, instead of eq. (3),

Svo= L L FDQ(¢)wh, (6)

f=1,2x,y

For the value f=1 of the flavour index the fermion matrix is the same as before:
Q" = Q, but for the other value f= 2 the adjoint is taken: Q® = Q*. This means
that the ¢-field of the second flavour is a mirror fermion with respect to the
y-field of the first one. (Note, however, that these fields transform differently
under the exactly conserved vectorlike U(1),_, defined below.) Let us emphasize
that this flavour doubling is of purely technical origin. It has nothing to do with the
mirror doubling problem on the lattice [17]. The original model with the action (1)
can be studied non-perturbatively, for instance, by the fermion hopping parameter
expansion (see sect. 4).

The global symmetries of the flavour-doubled model can be defined by the
transformations

' o — a—i P { ) (fY — a— i )
Py =e oyl gl =eTimygll), XY =eT o x{f), x{Y =e o x{)

W =gen, XY =xler, XY =xllen, X =x{er.
(7)
Consistency for the transformation of the scalar field requires
ay=apta;_,, ar=agta;_,, @ =ag—a,_5, ap=a_—a;_,. (8)
The scalar field is then transformed as

¢; = e ~ilaL—ag) d’x . (9)

Eqgs. (7)-(9) define a global symmetry U(1), ® U(1)g ® U(1),_,. The last factor is a
vectorlike symmetry implying the conservation of the number of fermions with first
flavour minus the number of fermions with second flavour. The sum of the flavour
numbers is also conserved due to U(1); ® U(1)g, therefore the U(1), ® U(1), ®
U(1),_, symmetry implies the conservation of both flavour numbers.

After fixing the field normalizations, the U(1), ® U(1); symmetric Yukawa
model has altogether 5 independent parameters: 2 mass parameters « and K, and
3 coupling parameters A, G, and G,. This relatively large number of parameters
makes the numerical simulation rather demanding. In any case it is very useful to
have some, at least qualitative, information about different limits. It is convenient
first to fix the bare scalar quartic coupling A. For reasons explained below, in the
numerical simulations we shall also fix the bare Yukawa coupling G, (actually to



480 K. Farakos et al. / U(1); ® U(1)g symmetric Yukawa model

" Gx=0(1)
'l Gy=0
Y.
K (a) K {b)

Fig. 1. (a) The qualitative phase str ure in the {«x. K.G,)-plane in the neighbourhood of the gaussian
fixed point, for G, =0 and any fixed A. The symmetric and broken phases are separated from each
other by the two critical surfaces where, respectively, the scalar and fermion masses vanish. The
intcrsection of these two surfaces is the multicritical line where both scalar and fermion masses are

zero. (b} The samic as {a) for G, = O(1) and A = finite. The picture for infinite A is similar, but then the

phase transition line in the K = 0 plane is a constant as a function of G,, (see ref. [15]), and the critical
surface for vanishing fermion mass touches the K = 0 plane.

the value G, = 0). Therefore, let us consider the space of three parameters
(k, K,G,) for not too large values of these variables, which are relevant for the
symmetric phase in the neighbourhood of the gaussian fixed point at (A =G, =
G,=0,k=rK=3}).

The expected phase structure for zero and O(1) values of GX is shown,
respectively, in fig. 1a and fig. 1b. The plane G, = 0 in fig. 1a is the trivial limit of
uncoupled free fermion fields. Due to the symmetry with respect to the exchange
of ¢ and x, the G, = 0 plane in fig. 1b is equivalent to a part of fig. 1a. The limit
of static fermions at K = 0 was investigated in detail by three of us in a previous
publication [15], using scalar hopping parameter expansion and numerical simula-
tions. In this limit the fermion determinant is local and can explicitly be taken into
account. In the effective scalar model at K =0 there are two phases: a symmetric
phase at small x and a broken phase at larger x. The phase transition between
these two phases is of second order for small and large values of the product
Gwa- At intermediate values of G,,,GX and A # oo, the phase transition is of first
order and is accompanied by a jump in the average field length. In the limit A — o,
the first-order phase transition line disappears by shrinking to the point G,G, =1
For finite A the phase transition line in the K =0 plane depends on G,, but at
A= it is a constant. In the plane k =0 non-perturbative information can be
obtained from an expansion in powers of the fermion hopping parameter K. In the
SU(2), ® SU(2); model this has recently been done in refs. [18,19]. The qualita-
tive behaviour in the U(1), ® U(1); model is similar (see sect. 4). At A = «, where
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up to now most of the fermion hopping parameter expansions were done, the
critical line for vanishing fermion masses touches the K = 0 plane at G,G, =1

The phase transitions at the boundaries K= 0 and « =0 are continued inside
the (x, K,G,)-space (see figs. 1a,b). The critical line in the K =0 plane is con-
tinued as a critical surface, where the scalar mass is zero. As a continuation of the
critical line in the x = 0 plane, there is another critical surface where the fermion
mass vanishes. The intersection of these two surfaces is the “multicritical line”,
where both scalar and fermion masses vanish. Continuum limits can be defined by
going to some of the points of this multicritical line. The two critical surfaces
separate the symmetric phase and the broken phase. The symmetric phases is in
the corner at small k and K. The rest is the broken phase.

An interesting feature is that for A = « the critical surface for the fermion mass
touches the K=0 plane at G,G, = 1. This comes out of the fermion hopping
parameter expansion, as it was first observed in ref. [18]. In fact, in ref. [18] the
critical line for the fermion mass was continued to negative vaiues. However, in the
normalization convention uz = 1 the transformation K — —K can be compensated
in the lattice action by a “staggered” transformation of the fermion field

‘I’x N ( _ 1)x|+x2+x_;+x4q,x, Wx N ( _ 1)x|+x2+x3+x4—q’—x (10)
(x, 534 are the lattice coordinates to the point x). Because of

+x3+x i
(_1)x|+xz X3 A4=eilfr(x|+x1+13+x4), (11)

after Fourier transforming to momentum space the transformation in eq. (10)
means a shift in all momentum components by +7r, that is going to the opposite
corner of the Brillouin zone.

On a finite lattice we assume periodic or antiperiodic boundary conditions for
the fields. Specifically, the scalar field is periodic in all directions, the fermion field
is periodic in space directions and antiperiodic in the time direction. Therefore, on
a L3 X T lattice the allowed values of momentum components are

27 .
D= ——n;, ni=0’1727---’L_11 l=1’2’3’
L
2
P4=T("4+54), n,=0,1,2,....,T—1. (12)

Here, for bosons 8, = 0 and for fermions &, = 3.

The reason for introducing in the lattice action (1) the chiral invariant Wilson
term proportional to the parameter r is to remove the fermion doublers from the
physical spectrum. In the case of free fermions the fermion spectrum can be
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inferred from the free fermion propagator which, for a general field normaliza-
tion, is

1 2

-1
A‘;‘IL’_\‘ = ﬁ Ze"”("""[4K2132 + (“’d;x + er'*Z)']
P

—2Kiy'p g, +rKp?
Moy +TKP?>  —2Kiy-p

(13)

Here the notations p, =sinp, and p, = 25in(%pﬂ) are used. This shows that in
the continuum limit, when p, >0 (u =1,2,3,4), the term proportional to r
vanishes, but at any other corner of the Brillouin zone, where some p, = tm, the
fermion doublers get a mass which is of the order of r = O(1) in lattice units. The
important question is, of course, whether this remains so after switching on the
Yukawa interactions. A hint that at strong bare Yukawa couplings some doublers
may remain in the physical spectrum was obtained in the sigma model with Wilson
lattice fermions [20]. In this model at infinitely strong bare Yukawa coupling, in
the random walk approximation to the hopping parameter expansion, the doubler
at p=(w, 7, w,w) becomes degenerate to the state at p =(0,0,0,0). The same
happens also in the SU(2), ® SU(2), symmetric Yukawa model with explicit
mirror fermions for G, = G, = = [18]. Therefore in non-perturbative studies it is
important to observe the fermion masses at every corner of the Brillouin zone.
This point will be discussed further in sect. 5.

2.2. RENORMALIZED QUANTITIES

Since in the symmetric phase both fermions and bosons are massive, the
renormalization can be defined at zero four-momentum without a danger of
infrared singularities. The two flavours are separately conserved, therefore in this
subsection we only consider a single fermion-mirror-fermion pair ¥ = (¢, x)- The
behaviour of the fermion propagator matrix in momentum space for p—0is

Ay(p)= Le " 0AY =A~ip-yB+O(p?). (14)

The inverse propagator in the same limit is
Ay(p)"'=M+ip-yN +O(p?), (15)

where the matrices M and N are given by
M=A"", N=A"'BA~"'. (16)

The matrices 4 and B can be determined in a numerical simulation from the
expectation values of fermionic time slices. Taking into account that, due to the
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boundary conditions, only the discrete momentum values in eq. (12) are allowed,
possible definitions on the lattice are
w

17r. ¢ - T
A = = A 03090,+ +A s U, U, ™ T2
2[ ¥\ T) "’(000 T)]

. i
=Y cos ?(y4—x4) AY,
. ! ]

. o
= T cos| (v = x.) (BT,

i - T - T
=————14,10,0,0, + =] -4,{0,0,0, — —
BYs= S sn(a/T) [A"( T) "’( 0 T)]

Sin[(”'/T)( A —x4)]

_ ¥
- 2:‘ sin(7/T) Aox
i T 3 - —
-1 Sm[(:;(':)r(/yT) ) (V). (17)

Here, as usual, {...) denotes an expectation value with respect to the Boltzmann
factor ¢S and, for instance, x, is the time coordinate of the lattice point
x=(x, X5, X3, X4).

In the symmetric phase, due to chiral symmetry, the matrices 4, B have in the
(¥, x)-space the general form

0 A, B,, 0
A_(A,,,X 0)’ B‘(O B, | (18)

Therefore, M and N are given by

0 A,

X

A, 0

B A 0
M= — xx“Tox L (19)
0 B'IubAd/x

b

The wave function renormalization has to transform N to the unit matrix. Let us
define the renormalized fermion fields by

Vo =Z,'2W, W=VZ,'2. (20)

According to eq. (19) the matrix Z)/? is given by

o

Z.',,/Z = =

0 z,

bx T xx

A, B_'? 0
0 Ay By’ 2D
ox T
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Multiplying the unrenormalized mass matrix M by Z}/? from left and right gives
the renormalized mass matrix My and renormalized mass wpg,

1/2
My =Zy*MZy/* = ’ Aud Bas ) E( 0 ”“).
172
Albx(Bdullex) 0 pr 0 ]
(22)

The renormalized fermion mass matrix My can be diagonalized by a (physical)
orthogonal transformation. This corresponds to an orthogonal transformation of
the renormalized fermion fields. However, as it is clear from eq. (22), one of the
mass eigenvalues is negative. The negative fermion mass can be turned to a
positive one by a y;-transformation, therefore the diagonalization to positive mass
eigenvalues is as follows:

=, _[mr O _ (1 =y —+=_j_(1 1 )
OMRO_(O MR)’ 0 -/5(1 vs ) o V2 \Ys  Ts)°

(23)

Since in the symmetric phase the masses of the fermion and mirror fermion are
the same, the diagonalization of the fermion mass matrix is not unique. Another
interesting way of diagonalization can be achieved by

ur 0

—
U*MpU (0 u

(P Pr = [Pr PL
: U—(PR PL)’ U—(PL p | @

Here Py are chiral projectors: P = 3(1+1ys), Py=1(1—1y,). This way of
dlagonallzatlon means that the left- and rlght handed components of ¢ and y are
reshuffled in order to obtain a vector-like kinetic part. Sometimes it is advanta-
geous to do this directly in the action, especially for applications in the symmetric

phase (see, for instance, the hopping parameter expansion in sect. 4).
The new fields are

[ §
Uax =Up,+ XRy» Upe =XLx + URy» ‘ZAxE‘ZLx"‘/\—’Rxs JBxE/\_’Lx-*-‘ZRx'

(25)

Denoting now the (¢, rg)-pair by ¥, = (i, ., ¥g,), and using the field normaliza-
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tion condition in eq. (2), & = 1, the fermion matrix in eq. (3) becomes

5yx - sz,ay,x+[i( Y T r) 6yard’mr(Ga! - Y5GB)

§(¢) x =
' 8yx¢:(Ga + VSGB) 6yx - Kzuay,x+ﬁ(7p, + r)

(26)

In contrast to eq. (4), this is in 4 ® 4 block notation (in the (4, ¥g)-space). The
coupling constant combinations G, s are defined as

G,= %(G¢+Gx), Gg= %(Gw—GX). (27)

The result of the transformation (25) is that the fermion action without interaction
becomes diagonal in ¢,, 5 and equals the free Wilson action [21].

The main interest in Yukawa models with explicit mirror fermions is, however,
in the phase with broken symmetry, where the two fermion masses are generally
different. Therefore, the only possible way of fermion mass diagonalization there is
a generalization of eq. (23). For instance, the decoupling of the mirror fermion y
can be formulated as a special case of this sort of diagonalization (see in ref. [9]).

In order to define the renormalized Yukawa couplings in terms of the expecta-
tion values on the lattice, let us introduce some shorthand notations. For instance,
the type of bilinear fermionic expectation values occurring in eq. (17) can be
denoted as

1 .
<¢LXR>06p(r = Z_;_f Z e—,(W/T)(}‘.;_'t‘)(‘pprfo(r) . (28)
x,y

Here p,o are the spinor indices of the chiral components of fermion fields.
Similarly, the fermion-fermion-scalar expectation values for the renormalized
Yukawa couplings are introduced as, for instance

1

<¢L¢+$R>06p¢r§ﬁ Z e—i(w/T)(y4—x4)<¢pr¢z+—xR(r). (29)

X,y,2

The diagonal matrix built from these expectation values is

<‘I'¢¢>0 = diag{(¢L¢+$R>o, <¢’Rd’$|_>0, (XLd’YR)O, (XR¢+YL>0} . (30)

Using these notations the renormalized Yukawa coupling matrix in the space of
chiral components (¢, , ¥, X, xr) is defined as

2
m —
Gp= — ——==MgZ;' (WO Z;"’ My . (31)

V2Z,
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This is given directly in terms of the expectation values, but one can easily see that
it is equivalent to the usual definition in terms of the vertex functions (see sect. 3).
Gy is a diagonal matrix, Gy = diag{Gy,,Gr,,GRr,>-Gg,}> Where

2.2 2,2
MRHUR — MRUR +=
Groe=—oT7—=—xLPXr20=——T7——<xr® XL )0
RP-R RI’LR
= 32
GRX Z,1, 22, <‘l’|_¢’ l[’g)n Z ZZ <¢R¢¢‘L>0 (32)

Here my is the renormalized boson mass and Z, is the wave function renormal-
ization factor of the scalar field (The renormalized quantities in the pure ¢* scalar
sector are defined in the same way as in ref. [12]. See also sect. 3.) Equivalent
expressions useful for the numerical determination are

G. — Z,,,‘/ZZ(,, <XL¢/\-’R>0 B Z,,,‘/ZZ,,, <XR¢+A_’L>0
Ro <¢+¢>0<XL$R>()<1//L/?R>0 B <¢+¢>0<XR$L>0<¢’RYL>()
Z\2Zy b R0 Z\J2Z, (brdiy Yo
Gg,= — — — = — =——. (33)

<¢+¢>0<¢’LXR>0<XL¢R>() <¢+¢>()<'I‘R/\7L>0<XR¢L>0

Particularly simple combinations are

m%luzll<l[’L¢+$R>0<XL¢/?R>ﬂ _ m%{:u‘ZR<¢R¢JL>U<XR¢+/?L>0
<¢+¢>()<¢L;R>()<XL$R>() <¢+¢>()<¢R/\7L>()<XR$L>0

Gr,Gry = . (34)

In egs. (33) and (34) the zero-momentum scalar expectation value is defined as

(¢ d)o= TE TZ(d) b, >—

(35)

R

Very similar expressions for the fermionic renormalized quantities can also be
defined at the other corners of the Brillouin zone. The only change is that in the
definitions like in eqgs. (28) and (29) one has to go to the other corners of the
Brillouin zone by a transformation similar to {10), (11).

3. Lattice perturbation theory

3.1. GENERAL CONSIDERATIONS

In the domain of the trivial fixed point ordinary perturbation theory can be
applied to study the Yukawa model. This amounts to an expansion in the scalar
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self-coupling A and in the Yukawa couplings G, and G, around zero. For this
purpose it is convenient to rescale the fields and the couplings in such a way that
the form of the action corresponds to the continuum conventions. The bare scalar
field ¢, and its components ¢, are defined through

1
\/;4’:4’0: ‘ﬁ(d’m"‘id’oz)- (36)

The lattice lagrangian for the scalar ficld then reads

Ly =(3,00) 00y + midi b+ Leo( b d0), (37)

where 9, denotes a lattice derivative (i.e. finite difference) and the bare mass m,
and bare coupling g, are given by

My 6A
mi=—% -8, gy=—. (38)
K K

Similarly, the bare fermion and mirror fermion fields are defined by
= V2K, Xo=V2Kx, (39)

and the free part of the fermion lagrangian for one flavour is
4
— — l — — —
L= Z {%(d’(),x+ﬁ - '1’0..\-—,1)')’,;'!’0..\- + ir(X(),xﬂz +Xo.x-a — 2X0.x)‘v”0.x
pn=1

+(41/<"X)} + po( Xo. < Wo.x + o, xX0.x) > (40)
with
Mo =My, /2K. (41)

For simplicity of the notation we display the conventions for one fermion flavour
only. The perturbative results below, however, refer to the full model with two
flavours of fermions and mirror fermions. Introducing the two-component vector

%*ﬁy (42)

the free fermion action can be written as

Sy = Z W0, yWqu'o.x ’ (43)
xy
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with W, being a 2 X 2 matrix in (, x)-space. The Yukawa interaction is

SY = Z Wo.xVid’Oi‘I’o,x ’ (44)
X

where the coupling matrices V; are

Go, T 0
i= 0 G()Xn+ ) ’ (45)
with
Gy=7o7—> Gop=mn—, 46
" KVaK % akV2k (46)

From the expressions above the Feynman rules are derived in the usual way. We
shall present them in momentum space. On a finite L3 X T lattice the allowed
momenta are in the Brillouin zone, eq. (12). For later convenience we introduce
the following abbreviations:

A . p _ - = .
p“=25m(7"), p,=sin(p,), p,=73sin(2p,). (48)
The scalar propagator is

A(p)=8,4(p), A(p)=(p*+m})”", (49)
and the scalar four-point vertex is
—80Sijki> i,j,k,1=1,2, (50)
with
Sijnr = 5(8;;84 + 8,48+ 8,8,.) . (51)
The kinetic term for the fermion reads in momentum space

iy'p nu,

S 52
Kp YD (52)

W( p) = Ze‘in(.v—x)wyx = (
x

where

Kp=Hot L (53)
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Its inverse yields the fermion propagator

(54)

W(p)~' (p2+uf,)_'(—w.p u")

K, —iy-p

If r> 0 there are no doubler poles at p, = +#. Finally the Yukawa interaction
vertex between two fermions and the scalar field ¢, is given by the matrix —V;
defined above.

Using these propagators and vertices the Green functions and vertex functions
are calculated in the usual way. Momentum sums or integrals respectively only run
over the Brillouin zone specified above. They are denoted by

fp=zl__2_(27,) f if L,T=o. (55)

p

In the following we consider the vertex functions
res2e(py),  a=1,...,ng+2ng

for ng bosons, n fermions and s anti-fermions. They refer to the fields ¢, ¥, x,
¥ and Y in the original normalization.

I'®9 js the negative inverse propagator of the field ¢(x). In the one-loop
approximation perturbation theory yields

r»9(p) = -8,Z;'{mg +p*+0(p*)}, (56)

where the wave function renormalization is given by

_ GoyGoym,r(8 —p%) + (G3, + G3,)p°
2Kz¢_1—fp X Fem)
p

1 2osCtgr (0B ) = (Gt G ) 7+ )
P (P2 +u3)

/ [2G0yGo 1% — (G3, + G3,)52][8 - 457 + 2r*p* + p,r (8 - )]
(52 +u2)’

(57)

Y [2G0,Gouit = (Gi + G351 (5 + 1p1P)
’ (P +5)
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and the renormalized scalar mass squared is

-1
2 2 L3 2
my =mg+ gg(,f(p +m3)

P

2G o, Gyt — (Gl + Gy )P
+8f 0T oy My - ( :"1’2 0/\)1) +m(2)(2KZ¢— 1)- (58)
p (I_)- ‘!‘IL;,)

‘The wave function renormalization Z, relates the original field to the renormal-
ized field via

¢R=Z<;]/2¢- (59)
Correspondingly the renormalized bosonic vertex functions are defined through
r:ln.()) — Z:;/zr(n,n)' (00)

The renormalized self-coupling g of the scalar field is defined in terms of the
value of the renormalized four-point vertex function at zero momentum,

grSijui= —TI$"(0,0,0,0),,. (61)

In one-loop perturbation theory we find
s A~ -2
8r=80~ ?g(%f(pz +m(7,)
p
— -4 _
+48 f (P*+u3) [ZGEMG,Z,X;L‘}, —4G,G,, (G5, + G3, + Gy Gy, ) P
P

+(Gdy + G, ) (5] + 280(2¢2, — 1). (62)

The one-loop result for the inverse fermion propagator is of the form

iy-pZ;'  w,Z;!
—2(p) = _"'I _ 0 M_l +0O(p?), (63)
moZ, ly-pZ,
with
- A2 =10 -1
2KZ, + 1+ 2Go, Gy, 1 ‘f(p +my)” (P2 +ud) n,, (64)
P

2KZ, =1~ G}, [ (p*+m}) (P> +u2) "' B2, (65)
p
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and 2KZ, analogous. For the renormalized fermion fields
zZ;'* 0
0 Z:71/2

X

V=259 = v (66)

the inverse propagator is

i .
-IE(p) = =z p)zi2= |7 7 PR )+ 0(p),  (67)
23 ly'p
and determines the renormalized fermion mass,

MR =woZ,/’Z)/?Z,"
=y %Mo(G(Zm + ng)j;)(ﬁz + mg)—z(ﬁz + ﬂi)_'ﬁz

~2Go,Go, [ (B> +m3) ' (P?+u2) ', (68)
p

Finally we come to the renormalized Yukawa couplings. They are specified
through the renormalized boson-fermion vertex function at zero momentum,

I{:2(0,0,0) = ZY*ZY/211-2(0,0,0) 22, (69)

where the index i = 1,2 refers to the component of ¢;. At one-loop order this
matrix is diagonal like the bare vertex V; but with the bare couplings G, and G,
replaced by

Gry=Goy— ngzf(ﬁz +mﬁ)—2(52 +”‘i)-lﬁ2 + %GW,(ZKZ‘,, - 1)’ (70)
p

G = Go = G, [ (53 +m) (72 +13) P+ 4G (262, =1). (D)

The relations above form the basis for renormalized perturbation theory. They
allow us to express the bare parameters of the model in terms of the renormalized
ones. Every other physical, renormalized quantity, like propagators or higher
vertex functions, can then be expanded perturbatively in powers of the renormal-
ized couplings such that the coefficients depend on the renormalized masses.

On the other hand, for sufficiently small bare couplings the bare perturbative
expansions themselves can be used to locate the critical points in parameter space,
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i.e. those points where the renormalized masses vanish,
mg=0, g =0. (72)

From the perturbative expressions for myi and pg one obtains the corresponding
critical values for the bare masses (for r = 1),

- -2
mi.= — 3o [ (5)) '~ 16Go,Go, [ (%72 52+ (52/2)']
p p
-2
+8(G2, + G}, [ 5?5+ (5/2)']  +0(83,8,G3.G3),  (73)
p

o= GouGoy [ [ 72+ (5°/2)] T (74)

In the particular case G, = 0, which is considered in the numerical work, we find
poe=0, K.=g, (75)

and a quadratic equation for the critical value of «,
k2+ (81,G7— (1-21)/8)k.~1,A/2=0. (76)

The numerical constants are

L= [(5%) ' =0154933... (77)
p

_ A 2] 2
L= (5|5 +(5%/2)'] " =0.025703.... (78)
p
For constant A the value of «_. decreases with increasing G,.

3.2. B-FUNCTIONS

The behaviours of the coupling constants are determined by their full g-func-
tions. The perturbative B-functions can be calculated analytically, while the full
B-functions can be studied by Monte Carlo simulations if the finite-size effects are
under good control.

From the results of subsect. 3.1 the renormalization group B-functions can be
derived in the one-loop approximation. The B-functions describe how the renor-
malized couplings change with varying cutoff if the bare couplings are held
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constant. Since in our notation the inverse cutoff, namely the lattice spacing a, is
set equal to one, a change of the cutoff means a simultaneous change of my and
g by the same factor. More precisely, the B-functions are defined by

dggr 0gRr
=M — 4 o ——
Gy, dGry
= +
By=mg Img Hr g (80)
G, Gy,
= +
B, =mg oy KR PP (81)

where the derivatives are to be taken at fixed bare couplings g,, G, and G,,.
Notice that all the couplings in this subsection are those in the continuum
convention normalization.

The behaviours of the renormalized couplings as functions of the scale variable
7 =log(am)~" (where am is some mass in lattice units) in the limit 7 — o are
governed by the infrared structure of the B-functions. We have calculated these
functions in one-loop order including non-universal scaling violating terms. The
resulting expressions, however, are too voluminous to be displayed here. Therefore
in the following we restrict ourselves to the universal scaling parts of the p-func-
tions, which do not depend on the masses. They can be obtained from the
logarithmically divergent parts of egs. (62), (70) and (71) and read

16778 = Tgr + SNng(G%w + G%lx) - 48Nf(G‘l"~'1' + G""X) ’ (82)
167284 = 2( N; + 1)G},, + 2N;Gg Gk, » (83)
16778 = 2(N; + I)G?{x + 2NfGRxG|2W' ’ (84)

where N; is the total number of fermion-mirror pairs and is equal to 2 in our
flavour-doubled model. One can see that gg = Gg,, = Gg, = 0 is an infrared fixed
point, therefore the continuum limit of the model is trivial unless there is some
other nonperturbative nontrivial fixed point. In order to have an interacting
continuum theory, one has to keep the cutoff at some finite scale higher than the
typical mass scale of the theory. The renormalized couplings will depend on the
cutoff scale and will go up as the cutoff is decreased. When the cutoff is as low as
the mass scale, the theory ceases being an effective theory due to large effects from
the scaling violation terms. Therefore, one can get upper bounds on the renormal-
ized couplings which are cutoff dependent. We set the cutoff at several different
scales and obtain the upper bounds on gg and Gy, by integrating the one-loop
B-functions in the continuum from some low-energy scale, which is chosen ad hoc
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Fig. 2. (a) The joint triviality upper bounds on the renormalized scalar coupling gr and the renormal-

ized Yukawa coupling G, are calculated from one-loop B-functions at G x = 0. The intrinsic cutoff

is set at 1 TeV (full circles), 8 TeV (open circles), 100 TeV (full triangles) and the GUT scale (open

triangles). The triviality upper limit on Gg,, at one-loop order is independent of the value of ggr- The

limits from the vacuum stability and the Coleman-Weinberg mechanism are not shown here. (b) The

zeros of the two-loop B-functions at G y = 0 are plotted. The dashed lines are zeros for B, while the
solid line represents zeros for B,,.

to be 90 GeV, to the cutoff scale. We do this for the special case G Ry = 0. The
results are shown in fig. 2a. The allowed region for g, and G, is smaller as the
cutoff is higher, and eventually shrinks to one point at the origin indicating that
the continuum limit is trivial. If the qualitative behaviours of the full B-functions
are like what we see in one-loop order, then we should be able to see that in our
simulations. If we plot the lines of constant physics (on which g, GRry> Gr, and
mg/ug = const.) in the bare parameter space, then for any line along which all
renormalized couplings are kept fixed at some nconzero values, the system will be
driven closer to the critical line as the cutoff increases, but never really reaches the
critical line. As we cross those lines and approach the criticality, we find that
renormalized couplings are decreasing to zero. This is exactly what we are now
exploring in the symmetric phase. Notice that in the broken phase, upper bounds
on the renormalized couplings can be translated into upper bounds on the scalar
and fermion masses.
It can also be easily seen that in the limit 7 — o, among the ratios

G} G2 G?
x=—% oy, ="ty = R (85)
GRry &R 8r

x will stay at zero at any energy scale if G,. is set to zero, and

Ox

x—1 (86)
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otherwise. This is slightly different from what we see in the SU(2) Yukawa model
where one can fix x at any arbitrary value [10, 14]. (The B-functions given in refs.
[10, 14] are for N;= 1.) One can also see that

N;—1+1/N?+38N;+1/2
24N, ’

(87)

if Gy, =0, Gy, #0 (we always assume that g, +0). If both G,, and G, are
nonzero, then we get

2N;— 1+ /4N2 + T6N; + 1
48N,

Yoo Yy = (88)

as 7 — . So the one-loop equations do indicate that G, is (approximately) zero
once G, =0.

The one-loop formulae will break down and higher-loop contributions should
come in as the couplings get relatively strong. In order to estimate when the
one-loop formulae become invalid, we need at least to know the two-loop B-func-
tions.

The universal two-loop contributions can be figured out from ref. [22] in which
the two-loop B-functions of a general scalar—gauge-fermion model were worked
out. We rewrote the action of our model in terms of two-component left-handed
fermion fields and compared the result with the standard form given in ref. [22] to
read off the Yukawa coupling matrix. In this way we obtained the two-loop
B-functions for our model. We write the results in the form

B:i=B"+B?, (89)
with

2
(1672)° 8D = — g3 — 9N, g2(GL, + G&,) +8Nyga(Ghy + Gk, ) + 384N(GRy + Gk, ).
(90)
(1677'2)2351,2) = (5 - 18N) Gy, - 12NfG':sz|21x ~6N;Gr Gy~ 8rGry + 58RGry -
(91)
(1672)2 R = (£ — 18N;) G}, — 12N;G}, Gy — 6NiGry Gty — 38rGiy + 583Gy -
(92)

As a double check, we also obtain the one-loop B-functions from their formulae.
Their results for the one-loop contributions agree with ours.
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Together with the one-loop contributions, one can roughly estimate that the
one-loop pB-functions become invalid when G%,,Gx, ~ 35 for N;=2. One can
also see that, due to the alternating signs, some new zeros of the B-functions are
generated at two-loop level. It is possible that they are just the two-loop artifact
because the two-loop formulae will also be invalid as the couplings become even
stronger. Nevertheless, let us at the moment assume that the two-loop B-functions
are qualitatively like the full ones and see what we have. As usual, we set G,, =0
for the sake of simplicity, and look at B, and B, in the (g,G,)-plane. The zeros of
B, and B, can be easily calculated numerically for N; =2, and are plotted in fig.
2b, where (+, — ), for example, denotes the region in which g, >0 and B, <0 etc.
We actually did not calculate the zeros in the region where both couplings are very
large. However, from eqs. (82)-(84) and egs. (90)—(92), one can see that for any
fixed value of gg, the function B,, which is equal to B + B up to two-loop
order, will become positive as we increase Gy, indefinitely. Similarly, g, will
become positive as g —  for any fixed Gg,. Hence we believe that the lines of
zeros of two-loop B-functions for very large couplings should converge to the
corner at gg = Gy, = . The point at which the solid and dashed curves intersect
each other in fig. 2b is the new fixed point up to two-loop order, and is located at
gr ~ 120, G, ~ 5. Suppose that the full B-functions are like this, then we should
see the “effect” of this ultraviolet fixed point in our Monte Carlo data. What we
should see is the following. If we measure g, and Gy, and find the lines of
constant physics in the bare parameter space, those lines should converge to that
new fixed point. When we approach the critical line at bare couplings greater than
the fixed point values, we should encounter growing renormalized couplings as the
cutoff is increasing. This qualitative picture can be easily generalized to the case

where both G, and G, are nonzero.

3.3. FINITE-VOLUME EFFECTS

For fixed bare parameters «, K etc. any renormalized quantity like mg, ug, gr
etc. will depend on the lattice size L*X T. We impose the renormalization
conditions at L = 7 = c which means that we identify

mg = mg(,®), MR = pg(oe,), gr =ggr(%®,®) etc. (93)

as the renormalized parameters. For fixed values of the bare parameters the
deviation of a renormalized quantity X from its infinite-volume limit is denoted by

8X(L,T)=X(L,T) - X(,). (94)

This can be calculated in renormalized perturbation theory as a power series in
8r» Ggry and Gy,. In finite-volume perturbation theory the lattice momenta
flowing in loops are restricted to the Brillouin zone (12). For momentum sums we
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define the finite-volume deviations in the same way as in eq. (94),
8[£(p) = == TF(p) - (2)~* [*" (). (95)
p L3T p 0

The perturbative finite volume effects to one-loop order can now be obtained
directly from the results of subsect. 3.1 by replacing momentum sums by the
corresponding deviations 8/ and bare parameters by renormalized ones. In the
case of the fermion mass for example one obtains

opg = — %#R(wa + Glzzx)5f,,(ﬁ2 +m§)—2(1_72 +"‘i)—lﬁ2

- 2GMGRxajp(132 +m}) (P2 +12) 'm, - (96)

(In K, the bare mass u, has of course also to be replaced by pg.) The cor-
responding formulae for 6mpg, dgg, G, and 8Gy, are derived in the same way
and need not be displayed here. We have written a program for the numerical
evaluation of these expressions which is used in the analysis of the results of the
Monte Carlo simulation.

3.4. TREE UNITARITY

In this subsection, we present our calculations of the partial wave amplitudes in
tree approximation, aiming at getting an independent estimate of when the
renormalized Yukawa couplings are strong. These considerations are in the spirit
of ref. [23].

Without loss of generality, we here consider only one pair of fermion and its
mirror (i.e.: one pair of ¢ and y). We first diagonalize the fermion mass matrix by
the transformation introduced in sect. 2. After the transformation, the lagrangian
density of the Yukawa interactions in continuous Minkowski space-time is

Ly = _JRA‘/E(GRa - GR375)¢R‘1’RB - JRB‘/—z_(GRa + GRﬁh)"’E"’RA ,» (97)

where
Gro= %(GRUI-'_GR,Y)’ GRB= %(GRJJ—GR,\/)' (98)

Notice that we have replaced bare quantities by renormalized ones, since we will
do the calculations at tree level.

We are mainly concerned with the renormalized Yukawa couplings, therefore
the following two processes are considered here.

Process 1:

fa(py) +fa(p2) = fa(p;3) + fa(ps),
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where f and f mean fermions and anti-fermions respectively, with momenta p; and
helicities A, i=1,...,4.
Process 2:

fa(py) + fA(p>) 2> d(p3) +07 (D),

where the fermions f, and f, have helicities A, and A, respectively.
Now we go to the center-of-mass frame in which we have p, + p, = 0. We set

s=(p,+p,),  E=%s, Ipl=yEI-ik.
Once the z-axis is chosen to be along the direction of p,, we get
P =1pl(cos ¢ sin 6,sin ¢ sin 0,cos 0) ,

where 8 and ¢ are the azimuthal and polar angles of p, with respect to the z-axis.
For process 1, the results for various helicity amplitudes 7, ,,, ., are

8
T,,,,= s_—z(zlplE]GRaGRB - EIZG%W - (E12 _M-ZR)Glzza)’

my

T____= P (zlplElGRaGRB +E{GRg+ (E7- “%)G%{a) )
T++_‘= R(EEG%QB - (E12 - “ZR)Glzia) ’

r__,,=T,, _, (99)

where A = + and — denote the helicity states with left and right handedness
respectively. All other amplitudes are zero.
For process 2, we get the amplitudes as

Tou= oz {2melp(GRs = Gia) — (1~ cos0)(GRs + GRa))}-
4
T, = P e'®sin BIpI(El(G‘,’ia +Gg) + 2|p|GRaGRB) ’
R

4 _
T .- — e~ sin g|p|(E,(G,2h +Gyg) — 2Ip|GR,,GR3),

T_=-T,,, (100)

where t =(p, —p;)>.
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The above amplitudes can be expanded into a partial wave series. Since
|Re(a,)| <3, (101)

one will get upper bounds on the Yukawa couplings from various processes. The
only nonzero partial wave amplitude for process 1 is a J=¢- FOr process 2, one can
get two nonzero amplitudes: a,_, and a,_,. In the relativistic limit (i.e. s — ), we
obtain the unitarity upper limits on Gg, and Gy, from process 1 as

G, + G}, <4w. (102)

Process 2 gives us
Gy, <427, Gi <42w. (103)

Therefore, from tree unitarity limits on the Yukawa couplings, we see that when
GRry>Gr, =3 ~4, the system is becoming strongly interacting. Notice that the
upper limits from the tree unitarity are slightly more strict than the ones obtained
from comparing the one-loop and two-loop terms in the B-functions.

4. Fermion hopping parameter expansion

Expansions in powers of the hopping parameters k, K are very useful non-per-
turbative tools for obtaining qualitative analytic information on the behaviour of
Yukawa models in the phase with unbroken symmetry. In fact, this information
can also be quantitatively accurate at the edge of the scaling region (near the
critical hypersurface), if high enough orders are evaluated. An example is the
approximate anaivtic solution of O(n) symmetric ¢* models by Liischer and Weisz
[24], which is based on a 14th-order scalar hopping parameter expansion. This
technique turned out to be very helpful also in a study of the infinitely heavy
fermion limit of our model [15]. In case of the SU(2), ® SU(2), symmetric Yukawa
model with explicit mirror fermions an 8th-order fermion hopping parameter
expansion at k =0, A =~ and G, = C, was applied by Wagner [18]. The extension
to A =0 and to the case of different masses within doublets has been considered in
the random walk approximation in ref. [19].

In the present section the 7th-order hopping parameter expansion of the
fermion propagator will be briefly discussed. More details and an extension to
other quantities will be published elsewhere [25]. The bare scalar quartic coupling
will be fixed to A =, but different bare Yukawa couplings will be allowed
(G, # GX). For the hopping parameter expansion the flavour doubling is not
necessary (unlike in the numerical simulation), therefore here we consider the
original single flavour model (1).

As already mentioned in sect. 2, for the fermion hopping parameter expansion it
is advantageous to reshuffle the left- and right-handed components of ¢ and Y, in
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order to obtain a diagonal kinetic term in the action. In this section we use the
fermion fields ,, ¥ introduced in that section.

The basic ingredient of the hopping parameter expansion is the generating
function of the single-site expectation values Z,. Since we fix A to infinity, the
scalar field has unit length,

b, =ex, (104)
The single-site action S, at k =K=0is

= 0 O el g a—i0( - o
Si=Ualia + Uistip + ¥ (G, — vsGp g + ¥ e (G, + 75Gg)ia - (105)

A

The logarithm of the generating function
Z(N,N)= f[dﬁdww]e—&w‘”ﬁ” (106)
is given by the expression
log Z,(N,N)=F(NN) + ki Bk[(NC,N)2+ (NCZN)Z]k. (107)
=1

Here F is defined as

1 1
F= = , 10
1-G,G, 1—G02,+G§ (108)
and the numbers B, are given by
. (_1)m—l(m__1)!
Bk = . §= | 6/(,'1|+an+3n3+ 6m,n,+nz+n3+ 4kn1 n,!. ..
1 2n, 1 2n, 1 2n;
() ) ) (109
For instance, B, = ; and B, = — &. The matrices C 1,2 are
0 -G, + Ggys 0 —iG, +iGgys
Cl E _ _ L] 2 E . -
G, — Ggys 0 G, +iGgys 0
(110)

By differentiating log Z, with respect to N and N one obtains the connected
single-site expectation values (W ¥\ W, ¥, ... V¥ ).

The fermion propagator can be calculated from the single-site expectation
values by summing up the hopping parameter expansion graphs on the lattice. Let
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us introduce the notations

4 J _ P 0
xl(p)EiZlvaAw(p), xz(p)EAw(p)J(O "(’)) (111)

p=

The block matrix here is in the (¢, x)-space. One can easily see that at zero
momentum the relation to 4 and B introduced in eq. (14) is

xi(p—0) =%(8_ﬁ2)8, xXAp—0)=4. (112)

From egs. (21) and (22) follows

. . X . .
pg = lim (8 - 5?) ., Z,- lim (8-p7) >,
p—0 2 X190 X1, xx p—0 2X1,xx
Xq
Z = lim (8 - p? : 113
X p—>0( )ZXL’JHJ’ ( )

The two “susceptibilities” x, , can be expressed by the one-particle irreducible
(1PI) parts x{'3",

A -1
X2 =X(21Pl)[l _ K(8 _p)X(ZIPl)]
xi=[x{"" + K (8- p2)xy™?] [1 - K(8 — p)xy™] ~°. (114)

Therefore, the physical information on the fermion propagator is contained in

3(p)"™=(p §)+ Zema,. (115)
m

The expansion of A, up to 7th order in K is
C= 16K3F4G,§ + 576K5F"G,;,2
2 273 , 5
+KF*|768G3(3(G2 + G3)* +2G4) - = Gg — 192(G2 — 15G}) |,
D =192K'F*(G2 + G2)|(G2+ G3)" +16G}|

i\ (C+D)(G, - Gp)y, C(G2-G}) | (116)

. c(G2-G}) (C+D)(G, +G,) v,
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Fig. 3. (a) The critical values of K. at which the fermion mass vanishes, are calculated from a 7th-order

hopping parameter expansion and are plotted at G, = 0.5, where G, and G, are the bare couplings in

eq. (1) at @ = 1. The open circles are for the fermion mass defined at the origin of the Brillouin zone.

Open triangles, full triangles and full circles are for the doublers with one, three and four 7’s
respectively. (b) The same plot as in (a) except that G, = 1.0 here.

An important qualitative characteristic of this series is the appearance of the
powers of the product KF. Obviously, the convergence radius in K is proportional
to the value of |FI™' =|1 — G,G,|. Therefore, at G,G, = 1 the convergence radius
of the fermion hopping parameter expansion is shrinking to zero.

Using the series in eq. (116) one can determine, up to 7th order, the critical
value of the hopping parameter K = K_ where the fermion mass in lattice units
vanishes. This can be done for every corner of the Brillouin zone (see figs. 3a,b).
Only the corner giving the smallest K_-value is relevant in the continuum limit,
because the masscs at the other corners are still non-zero at this K= K_ .. Below
G,G, = 1 the smallest K, is obtained at the 0-corner. At G,G, = 1 all the critical
values shrink to zero. Above G,G, =1 the critical values become negative, but
they can be made positive by the transformation (10). If one does this, then the
4z-corner [p = (7,7, @, w)] will have the smallest K. We also note that up to
this order no solution for K was found at the 27-corner p = (7,0,0, 7). Below
G,G, = 1 no crossing of the higher branches was observed, but for larger values of
G,G, there are some crossings. For G,G, — «, K, at the 0-corner is approaching
K. at the 4w-corner. This suggests dynamical fermion doubling at infinite bare
Yukawa couplings, in agreement with the random walk approximation [18, 19]. For
K <K the renormalized mass and the wave function renormalization factor can
be determined from eqs. (113)-(116). The results at the corner of the Brillouin
zone which becomes critical first will be published in ref. [25].
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The hopping parameter expansion shows that at zero scalar happing parameter
for infinite bare scalar self-coupling and finite bare Yukawa couplings the fermion
doublers at the other corners of the Brillouin zone are probably not staying in the
physical spectrum. The degeneracy of the 0-corner with the 4m-corner at (x =0,
A=»,G,G, = o) seems to be an exception. Of course, for other values of x and A
the situation could be different. An interesting qualitative feature shown by the
fermion hopping parameter expansion is that the critical surface for vanishing
fermion mass touches the K =0 surface at (A =, G,G, = 1). In this respect the
singuiar roie of the point (k =k, A ==, K=0, G,G, =1) found in the static
fermion limit [15] is rather remarkable.

5. Numerical simulations

The Monte Carlo simulations were performed by the Hybrid Monte Carlo
method [16]. As already discussed in sect. 2, this requires the flavour doubling of
the fermion spectrum. The fermion degrees of freedom ¥, are represented by a
complex pseudofermion field @,. The expectation value of a purely scalar quantity
(o) is given by

Q)= %f [do][dé*J[dP][dP*Je~Sus -+ @ D0 o(g),  (117)

where S, is the scalar part of the action (1), Q is the fermion matrix in eq. (4) and
Z is the partition function

z= [[461[dp* ao][dd* |e-susr-+ @ 0rt, (118)

The pseudofermion field can also be used for the determination of fermionic
expectation values. For instance, a general fermion bilinear expectation value in
the first flavour sector (with fermion matrix Q) is obtained as

A %f [d6][de* ][d@][dP+] e Samr-e@ e

x®*(Q*Q)'0*1, (0" Q) 'P, (119)

where (1,,),,,. =8,,,8,,. This can be determined during the Monte Carlo process in
the same way as {{2).

The Monte Carlo simulations were performed on 4° X 8, 6 X 12 and 8% 16
lattices with periodic boundary conditions in the space directions. In the (longest)
time direction periodic boundary conditions were taken for the scalar field and
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antiperiodic ones for the fermions. As discussed in sect. 2, this is favourable for the
definition of fermionic renormalized quantities near zero four-momentum because
of the smaller value of the smallest non-zero momentum in the time direction. In
the molecular dynamics step typically 25000 to 35000 trajectories per point were
calculated, with about 10% at the beginning used for equilibration. Exceptions are
the two 83 X 16 points, where after 1000 equilibrating trajectories only about 2500
trajectories were measured. The number of leapfrog steps per trajectory was
chosen randomly between 3 and 10. The step length was tuned so that the
acceptance rate for the trajectories was near 75%. The typical average trajectory
length was between 0.2 and 1.0. The necessary inversions of the fermion matrix
were done by the conjugate gradient iteration, until the residuum was smaller than
108 times the length square of the input vector.

The Wilson parameter in the lattice action (1) was always chosen to be r = 1. As
discussed before, the bare Yukawa coupling of the mirror fermion field G, was
fixed to zero, in order to stay near the region of parameter space where in the
broken phase decoupling of the mirror fermions can be expected. As it is suggested
by the perturbative B-functions, and will come out as a result of the numerical
calculation, G, = 0 implies that also the corresponding renormaiizcd coupling Gy,
is small. Quite generally, as we shall see, the renormalization of different quanti-
ties (like coupling or fermion doubler masses) is relatively small for G,G, =0. The
other bare Yukawa coupling G,, is changed between zero and O(1). For larger G,
our present Monte Carlo program becomes rather slow and inefficient. Therefore,
we did not try higher values of G,. In a forthcoming publication [9] a program
written specifically for strong couplings will be used in order to explore the region
with larger bare Yukawa couplings. The bare quartic scalar coupling was chosen to
be A=0.1,1.0,10.0. Since the measured A-dependence for the renormalized
quantities was very smail (in fact, with our statistical and systematic errors not
observable), no further values of A were considered. The remaining two bare
parameters « and K were used to tune the masses of the scalar (my) and fermion
(ug). Since in the present paper we are mainly interested in the renormalization of
the Yukawa couplings, we have chosen x and K near the multicritical line in such
a way that the two renormalized masses were nearly equal. Large mass ratios are
disfavourable due to finite-size effects and presumably imply larger scale breaking
corrections to the B-functions. With our limited computer time it was not possible
to explore the finite-volume dependence of the physical quantities in a large
number of points of the parameter space. Therefore, the two nearly equal masses
were chosen large enough, namely mg =pug = 1.0 for 4° X 8, mgp = ug =0.7 for
6 X 12 and mg = pp = 0.5 for 8* X 16, in order that the finite-volume effects be
small. The one-loop perturbative formulae for finite-volume dependence (sect. 3)
show qualitatively that in these cases the finite-size effects for the observed range
of couplings are less than about 5% for G, and less than about 10% for the
renormalized quartic coupling gg. The signs of these finite-volume effects are
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TaBLE 1
The chosen points in the parameter space and the measured renormalized masses mg and pg.
Statistical errors in last numerals are in parenthesis
Label L*XT A G, G, K K mg BRr
A 43x8 1.0 0.1 0.0 0.150 0.100 0.99%(2) 1.0744(2)
B 63x12 1.0 0.1 0.0 0.155 0.107 0.80(3) 0.7058(2)
C 83x16 1.0 0.1 0.0 0.158 0.111 0.75(4) 0.5223(9)
D 43x8 1.0 0.3 0.0 0.137 0.100 1.08(5) 1.0650(12)
E 63x12 1.0 0.3 0.0 0.143 0.107 1.03(8) 0.6983(5)
F 43x8 1.0 0.6 00 0.115 0.100 0.89(3) 1.030(2)
G 6%x 12 1.0 0.6 0.0 0.125 0.106 0.64(4) 0.7070(14)
H 43x8 1.0 1.0 0.0 0.070 0.100 0.87(6) 0.969(3)
| 63%x12 1.0 10 0.0 0.070 0.104 0.78(3) 0.749(4)
J 83x16 1.0 1.0 0.0 0.060 0.108 0.50(10) 0.563(10)
K 43x8 1.0 20 0.0 —0.090 0.093 1.05(12) 1.17(2)
L 43x8 0.1 0.1 0.0 0.130 0.100 0.87(3) 1.074(3)
M 43x8 0.1 0.3 0.0 0.117 0.100 1.11(5) 1.063(1)
N 43x8 0.1 0.6 0.0 0.095 0.100 1.02(15) 1.016(8)
(0] 43%x8 0.1 1.0 0.0 0.040 0.100 1.07(4) 0.978(8)
P 43x8 10.0 0.1 0.0 0.135 0.100 0.86(4) 1.0736(4)
Q 4*x8 10.0 03 00 0.117 0.100 1.05(9) 1.061(2)
R 43x8 10.0 0.6 0.0 0.100 0.100 0.82(14) 0.996(8)
S 43%x8 10.0 1.0 0.0 0.030 0.100 1.1(1) 0.99(2)
TABLE 2
Some global expectation values in the points with label defined in table 1. / is defined in eq.
(120), |¢| denotes the absolute value of the average scalar field. The other notations are
self-explanatory. Statistical errors in last numerals are given in parenthesis
! (Xx$x> (d’]_xd’:JRx) <XLx¢x/YRx> ) (|¢x|)
A 0.1661(4) 3.9712(3) 0.0026(2) —0.1676(1) 0.098(1) 0.8600(1)
B 0.1694(5) 3.9105(2) 0.0035(2) —0.1629(1) 0.050(3) 0.8619(2)
C 0.1735(4) 3.8844(3) 0.0042(2) —0.1610(2) 0.030(3) 0.8628(2)
D 0.1532(4) 3.9663(3) 0.0072(2) —0.4968(4) 0.086(4) 0.8556(5)
E 0.1587(9) 3.9044(3) 0.0097(1) —0.4829(4) 0.041(3) 0.8576(4)
F 0.1422(4) 3.9526(5) 0.0136(2) —10.9809(4) 0.0867(7) 0.85299%(12)
G 0.1634(4) 3.8869(3) 0.0195(2) —0.9632(2) 0.058(2) 0.85915(12)
H 0.1291(3) 3.9253(5) 0.0195(2) —1.6038(6) 0.0858(14) 0.8492(2)
1 0.1412(4) 3.8619(3) 0.0257(1) —1.5664(3) 0.0497(17) 0.85266(11)
J 0.1402(16) 3.8305(10) 0.0285(4) —1.5411(6) 0.045(8) 0.8523(3)
K 0.076(2) 3.891(2) 0.019(1) —3.086(3) 0.070(6) 0.8393(5)
L 0.1911(11) 3.9712(5) 0.0034(3) —0.2015(3) 0.120(3) 0.9048(5)
M 0.165(2) 3.9654(6) 0.0086(3) —0.586(1) 0.092(4) 0.893(1)
N 0.159(3) 3.9488(8) 0.0163(5) —1.153(5) 0.102(15) 0.889(2)
0] 0.1182(10) 3.929(2) 0.0191(4) —1.828(2) 0.077(3) 0.8720(5)
P 0.1586(12) 3.9710(4) 0.0034(3) -0.1917(3) 0.117(5) 0.9719%5)
Q 0.135(2) 3.9661(5) 0.0081(3) —0.5717(3) 0.092(7) 0.97088(8)
R 0.144(4) 3.946(2) 0.0178(7) —1.1383(7) 0.12(2) 0.9712(2)
S 0.090(2) 3.930(2) 0.0177(5) —1.871(1) 0.095(8) 0.9693(2)
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opposite: positive for G, and negative (as in the pure ¢*-model [12)) for gg. The
estimated finite-volume effects for the masses are below 10% for my and only a
few percent for uy (both masses are expected to be larger in a finite volume than
in the infinite-volume limit). Since the inverse masses are scaled roughly by the
linear extension of the volume, the change of the finite-volume effects between
different lattices can be expected even smaller. The time extension 7 = 2L of the
lattices is large enough for the good determination of the masses. Especially, the
smallest fermion momentum allows the extraction of the fermion mass with an
error which is probably less than 10%. For instance, a test run at vanishing
coupling on 4 X 8 lattice and K = 0.1 gave a fermion mass wg = 1.076, instead of
the correct L = T = « value ug = 1.000. The scalar mass my was determined by a
cosh fit of the time slice correlations of the scalar field at time distances > 1.
The tuning of the masses was done in shorter runs. As a first orientation for the
position of the multicritical line we took the one-loop perturbative formula (see
sect. 3). The tuning was unproblematic for smaller G, but near G, =1 life was
harder due to the slower equilibration. The points chosen for large statistics runs
are summarized in table 1. Some global expectation values in these points are
collected in table 2. The results for the zero momentum renormalized couplings
and for the wave function renormalization factors, as defined in sect. 2, are
included in table 3. The renormalized quartic coupling could not be determined

TABLE 3
Renormalized couplings and Z-factors in the points with label defined in table 1. Statistical
errors in last numerals are given in parenthesis

Gry Gg, z, z, z,

A 1.10(2) ~0.133) 3.04(3) 4.446(11) 4.418(9)
R 0.84(9) ~0.28(6) 2.77(16) 4.123) 4.11(3)
C 1.13) 0.1(3) 2.5(3) 3.96(8) 3.90(7)
D 3.11(9) ~0.39(4) 2.79(14) 4.345(18) 4.436(17)
E 2.7(2) —0.56(6) 2.8(4) 4.01(2) 4.1003)
F 4.7(2) -0.75(14) 1.93(3) 4.05(2) 4.35(2)
G 4.8(2) ~0.7(1) 2.26(9) 3.70(2) 4.13(2)
H 6.7(4) -1.02) 1.69(4) 3.48(3) 4.36(2)
I 7.66(16) ~1.06(7) 2.509) 3.4103) 4.28(2)
J 7.2(6) ~0.93) 3.0(4) 3.08(11) 4.15(5)
K 12.6(1.2) -1.0(5) 2.003) 3.21(12) 4.81(11)
L 1.23(6) ~0.09(5) 3.54(6) 4.44(2) 4.44(2)
M 3.37(12) ~0.38(9) 3.3(2) 4.31(2) 4.43(2)
N 6.1(5) -0.89(11) 3.4(3) 3.90(7) 4.38(2)
o 7.5(4) -1.2(2) 2.24(12) 3.53(6) 4.41(4)
P 1.16(4) -0.11(4) 3.24(10) 4.44(2) 4.4202)
Q 3.53(13) ~0.50(6) 3.003) 4.31(3) 4.43(2)
R 5.5(4) -0.82(6) 2.8(3) 3.76(4) 4.33(3)
S 7.9(7) -1.7(3) 3.1(9) 3.60(13) 4.40(3)
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with our statistics (the statistical errors were typically about 100%), therefore it is
not included in the table. (For the estimates of finite-size effects we arbitrarily
took ggr =40, a large value roughly equal to the tree level unitarity limit.)

As it can be seen in table 1, the values of the fermion hopping parameter K for
the given masses are not changing much with the bare couplings A.G,. At the
same time, the values of the scalar hopping parameter « are strongly decreasing as
a function of G,. Eventually, the point “K” at G, = 2.0 is already at negative «.
This implies that the multicritical line, where both masses vanish, is going to
negative values for large G,. This seems to be a general feature in all Yukawa
models investigated up to now (see e.g. refs. [2-8]). The normalized link expecta-
tion value

<¢;-+ﬁ¢x>

!
1o,y

(120)

shown in table 2 is also decreasing for increasing G,,. This could be a hint for the
appearance of anti-ferromagnetic phases at large G, and large negative « [2-8].

An important question for the non-perturbative investigations of lattice Yukawa
models is, whether the fermion species doublers at different corners of the
Brillouin zone are heavy enough to be decoupled from the physical spectrum. The
answer is clearly yes in the points of bare parameter space (with G, = 0), which we
investigated up to now. A typical example is shown in fig. 4 at A =1 on 63 X 12
lattices. The large mass of the fermion doublers is in accordance with lattice
perturbation theory and fermion hopping parameter expansion (see sects. 3 and 4).
Comparing the results on different lattices one can see that for decreasing physical
mass at the O-corner the masses at the other corners decrease by about the same
amount. Therefore, the ratio of doubler masses to the physical mass becomes
larger.

As it can be seen from table 3 and figs. 5a, b, the renormalized Yukawa coupling
Gy, is rising approximately linearly with G,. The values at G, < 0.3 are, within
errors, equal to the unrenormalized coupling G,, in eq. (46). However, at
G, = 1.0, where « starts to strongly decrease, Gry is substantially smaller than
G- The value of G, at G, =1.0 is about twice the tree unitarity limit in eq.
(102). According to the point “K” at G,=2.0 the increase of Gg, is still
continuing. Nevertheless, this point has less statistics and is not very well tuned
because of the inefficiency of the present program at large G,,.

There seems to be no strong dependence of the renormalized Yukawa coupling
Gy on the renormalized masses. Since the coupling is rather strong at G, = 1.0,
the change according to the one-loop perturbative B-function (which should be
valid near the multicritical line for fixed bare couplings and fixed ratio of the
renormalized masses) would be much larger. For instance, at (Gg, =7.0, Gg, =
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Fig. 4. The fermion masses at the different corners of the Brillouin zone on 6* X 12 lattice at A = 1.0
as a function of the bare Yukawa coupling G,,. The masses increase monotonously with the increasing
number of mr-values in the lattice momentum.

0.0) and a logarithmic scale change A7 =log2, the one-loop B-function in eq. (83)
gives —B,A7 = —9. Such a change is definitely excluded by our numerical data.
The renormalized Yukawa coupling stays constant within errors for increasing
cutoff and certainly does not decrease by such an amount. Of course, there is no
reason why the one-loop B-function should be correct in a point where the
absolute values of the two-loop terms are already larger than the one-loop
contribution.

The renormalized Yukawa coupling of the mirror fermion field G x s substan-
tially smaller than G Rry» IN agreement with our expectations. The dependence of
the renormalized quantities on the bare quartic coupling A is small, in fact not
observable with our errors (see fig. 5b). Since, the average length of the scalar field
is very close to 1 already at A = 10.0 (according to table 2 it is about 0.97), no
substantial change can be expected between A = 10.0 and A = », Therefore, apart
from a few test runs, we did not perform longer numerical simulations for A = o,
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Fig. 5. (a) The renormalized Yukawa coupling G, as a function of the bare coupling G, at A = 1.0

on 43 x 8 lattice (crosses), 6° X 12 lattice (circles) and 83 X 16 lattice (stars). The points at a given value

of G, are horizontally shifted a little in order to display better the error bars. (b) The same as (a) on

4% x 8 lattice for different values of the bare quartic coupling: at (A = 0.1; stars), (A = 1.0; circles) and
(A = 10.0; crosses).

Since the A-dependence seems to be very weak, in the future one can concentrate
the simulations (at least for G, = 0) to a single, large A.

6. Discussion and summary

The cutoff dependent upper limit on the renormalized quartic- and Yukawa-
couplings near the infrared stable gaussian fixed point in chiral Yukawa models is
an important issue for the understanding of the Higgs-Yukawa sector of the
Standard Model. In the present paper the behaviour of the renormalized Yukawa
couplings was investigated in the symmetric phase of a U(1); ® U(1)g symmetric
lattice Yukawa model with explicit mirror fermions. We started at small bare
couplings (A =0.1, G, = 0.1) in the perturbative region near the gaussian fixed
point and then increased the couplings up to (A =10.0, G, = 1.0). The bare
Yukawa coupling of the mirror fermion field was fixed to G, =0, in order to stay
near the region of parameter space where in the broken phase decoupling of the
mirror fermions can be expected. In the numerical simulations practically no
dependence of the renormalized Yukawa coupling Gg, on the bare quartic
coupling A was observed. G, rises approximately linearly in the whole range as a
function of the bare Yukawa coupling G,. This rise is presumably continued
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beyond G, = 1, as it is suggested by a (numerically difficult) simulation at G, = 2.0.
The obtained values of the renormalized Yukawa coupling G, at G, = 1.0 are
about twice the tree unitarity limit. Within out statistical and systematical errors of
the order of 10%, no dependence on the masses in lattice units between my = ug
= 1.0 and mg = pg = 0.5 was observed.

Taken at face value, the results of the numerical simulation imply that the upper
limit on the renormalized Yukawa coupling, at a cutoff corresponding to masses in
lattice units of about 0.5, is at least 2 or 3 times larger than the tree unitarity limit.
This is different from pure é*models, where the corresponding upper limit is
roughly equal to the tree unitarity limit (for references see ref. [1], and in
particular for the symmetric phase [12,26]). Since the change of the renormalized
Yukawa coupling between masses of about 1.0 and 0.5 in lattice units is small, the
B-function describing this change is small, much smaller than the one-loop B-func-
tion. The qualitative behavior is closer to the two-loop B-function which implies a
non-trivial ultraviolet stable fixed point at large couplings, but the couplings are so
large that neither the one-loop nor the two-loop approximation is reliable. Still one
has to keep in mind that the large values of the measured renormalized Yukawa
coupling can be caused by some non-perturbative non-trivial critical structure at
large couplings.

The observed behaviour of the renormalized Yukawa coupling as a function of
the bare Yukawa coupling does not necessarily contradict the previous numerical
studies of simple Yukawa models. The effect of the virtual fermion loops on
renormalized Yukawa couplings may be large, therefore it is difficult to compare
with quenched calculations. The unquenched study of the Yukawa model with a
real scalar field and staggered fermions [27] was restricted to a rather limited range
of bare Yukawa couplings (in the statistical physical parametrization) near the
perturbative region. In the corresponding range one obtains quite similar results in
our model, too. (Note, however, that the value of the bare Yukawa coupling
cannot easily be transferred from one model to another. Comparing the values of
renormalized couplings one obtains that the range in [27] is similar to G,=0.15in
our case.) This is one place where th> advantage of studying the behaviour of
renormalized Yukawa couplings in the symmetric phase becomes manifest, be-
cause we can much more easily control finite-volume effects in a wide range of
bare Yukawa couplings.

A possibility to make the physical situation in this Yukawa model more similar
to the pure ¢*-model would be that the scaling region, which in the ¢*model
starts near masses of about 0.5 in lattice units, could begin here only at much
smaller masses. In this <ase the present results could be influenced by large lattice
artifacts. The large renormalized Yukawa coupling could gradually decrease to
smaller values before the scaling region at much smaller masses is reached.

Numerical simulations with high statistics on larger lattices are required for the
investigation of this question.
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The Monte Carlo calculations for this paper have been performed on the CRAY
Y-MP of HLRZ, Jiilich.
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