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Abstract. A theoretical description of the decay z ~ v3rc 
in a covariant tensor language employing the isobar 
model is presented. Special emphasis is devoted to the 
dominating decay mode into vax with al ~ p n  in S- and 
D-wave orbital momentum eigenstates. These formulae 
are useful for quantitative tests of the standard model 
prediction for the parity violation effect recently observed 
by the ARGUS experiment. We emphasize the difference 
between these orbital angular momentum amplitudes and 
Born term amplitudes erroneously identified as S- and 
D-wave in the literature. Implications of a possible PCAC 
suppressed n'(1300) as well as exotic contributions are 
discussed. Analysis methods for the experimental deter- 
mination of these effects, the D/S ratio of the a~ and the 
weak r decay constants are presented. For  the latter a 
new moment is introduced and the model dependence is 
discussed. 

The study of z lepton decays opens a wide variety of tests 
of the leptonic and hadronic weak charged currents. Most 
of the T properties can be calculated in the standard 
model, and many have been tested experimentally (see 
e.g. the review [1]). The gross features are measured to be 
well in accord with standard predictions, however there 
are some inconsistencies between different experiments 
and standard model calculations ("missing one prong 
problem") [2]. A recent CELLO analysis [3] suggests 
that this discrepancy is smaller than previously thought. 
The argument in favour of a "problem" relies strongly 
on the naive isospin expectation B ( z ~ w - ~ - ~ + ) =  
B(z~vrc -rc~  ~ to relate the relative badly measured 
latter channel to the former. 

Recently the ARGUS Collaboration has presented 
preliminary results providing evidence for direct parity 
violation in z decays into three pions [4]. Being sensitive 
to magnitude and sign of gv'gA, their result for the first 
time experimentally shows that (within errors) also the 
r-neutrino appears left-handed only. Based on a sample 
of about 6800 T--, vn ~ n + decays, a clear Dalitz plot 
asymmetry is observed after projecting the decay plane 
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Fig. 1. Feynman diagrams for the Bose symmetrized chain decay 
z - +  v a l ,  a I --.* p ~ ,  p---~ rtrc 

normal onto the z direction. Such an effect has been 
predicted by Kiihn and Wagner [5]. It is based on the 
fact that the (charged) three pion system is dominated 
by pn intermediate states (see Fig. 1). The sign of the 
interference term between the two possibilities to form a 
p depends on the a 1 helicity. A left-right asymmetry due 
to this interference term indicates an al helicity 
asymmetry and thus probes the space-time structure of 
the weak charged current of the third lepton generation. 
For the quantitative evaluation of the z coupling 
constants a model for the hadronic weak current is 
needed. The authors of [5] use a Bose symmetric 3re 
amplitude which is modified by a form factor depending 
on Q2(=m2 ), a p-Breit Wigner and a p-wave factor 
(q~ -q+)u .  Another feature of their amplitude is current 
conservation, i.e. it fulfills the condition QuJu = 0. It does 
however not correspond to an orbital angular momentum 
eigenstate. 

In this paper we propose another ansatz which is 
based on the decay chain a 1 ~ p n  followed by p ~ n n .  
The two possible Born term tensors for this transition 
are transformed to describe L = 0 and L = 2 transitions, 
respectively. Current conservation is not f o r c e d - t h e  
axial current is only partially conserved (otherwise the 
n + were stable and the decay z - ~ v , n -  forbidden). We 
instead use the spin 1 projection operator to get rid of 
the unwanted fourth vector degree of freedom. In fact, 
the timelike component corresponds to a pseudoscalar 
state, which in a phenomenological description should 
not have the al parameters and angular distributions but 
might be dominated by the radial excitation 7z'(1300). We 
also calculate amplitudes for this final state. A high 
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statistics partial wave analysis employing these amplitudes 
can be used to measure the pseudoscalar component as 
well as the not well known DIS ratio of a I decay. The 
possible existence ofa  0-  contribution would also change 
the isospin ratio mentioned above. After describing the 
principal analysis methods shortly, we resume the Dalitz 
plot asymmetry method to measure the v~ helicity [5] 
(and thus the z charged current coupling constants) 
employed by the ARGUS Collaboration [-4] in some 
detail to work out its model dependence. 

Orbital  angular m o m e n t u m  eigenstate amplitudes 
for am ---~ p~r---~ 37t 

We begin with the construction of the amplitude for the 
aa decay into pro ( JP=  1 + --* 1 -0 - ) .  There are two inde- 
pendent parity conserving Born term amplitudes for this 
transition [6]: 9~ and pp, Q~ (Q, is the four-momentum 
of the 31t(= a~) system). 

These invariant amplitudes are neither eigenstates of 
helicity nor of orbital angular momentum. It will be 
shown below that the common identification of these 
tensors as describing S- and D-wave transitions (see e.g. 
[7]) is wrong. In the absence of more information a 
common approach in strong interaction physics is to 
assume the dominance of the lowest orbital angular 
momentum amplitude. This assumption is in no way 
better or worse than assuming the dominance of the 
lowest dimensional Born term, both are reasonable first 
approximations. But we criticize the use of the terms 
"S- and D-waves" to label amplitudes which are not 
eigenstates of orbital angular momentum. Note in 
particular that the ARGUS Dalitz plot analysis [8] also 
employed Born term amplitudes but named them S and 
D waves. 

Any linear combination with Lorentz scalar co- 
efficients is a valid amplitude: 

Tu~ = O'O~,~ + h'ppuQ~. (1) 

To construct eigenstates of L we calculate the helicity 
amplitudes in the final state helicity system (i.e. the a~ 
rest frame with the p moving along the + z axis) using 
standard polarisation vectors [6]. For  the description 
of the longitudinal outgoing p we take e~)= 1 / ~ "  
(lYol,0,0,Ep), i.e. we normalize using the actual as 
opposed to the nominal p mass. This is in accord with 
extending the usual ortho-normalisation properties and 
angular momentum conservation also to off-shell particle 
polarisation vectors, as is certainly desired in a pheno- 
menological description of strong interactions [9]. The 
helicity amplitudes read: 

. .  �9 T .o*" (2) D ~.,, ,ta =- o,,,~ . uv  ~ 

= - - 6 z . ,  O 6a., + z,, ~ }  

(O.p,) - 0.9  ] 
+ h'6~ ~ I" (3) 

In this derivation the covariant expressions E o = Q P p / x / ~  

and Iffp [2 = ((Qpp)2 _ Q2p2)/Q2 are very useful. Note that 
the magnitude of the 0-term helicity amplitude depends 
on the a t helicity and thus does not describe a simple 
helicity transfer as expected for an S- wave transition. 
We now calculate linear combinations for the description 
of L = 0 and L = 2 transitions defined by an angular 
distribution in terms of spherical harmonics and a 
threshold behaviour of [~'p[ L as in the case of spinless 
final state particles: 

A L ( s . , , S p ) = f L  1 1 \  _ LyL 0* 

Here the bracket expression denotes a standard Clebsch 
Gordan coefficient which is non-zero only for M + sp = s,,, 
s being the spin projection along the z-axis. The correct 
angular behaviour can be achieved by demanding 
that the corresponding helicity amplitude ratios in the 
final state helicity frame are fulfilled. In this frame 

L = AL(2a,, 2p)) the orbital angular (0" = O, s o = 2 o, Dz.,,~, 
momentum must be perpendicular to the particle 
momenta (all Y~t = 0 unless M = 0). Inspection of the 
Clebsch Gordan coefficients leads to D+ +:D00 = 1:1 for 
the S-wave and D + +: Doo = 1: - 2 for the D-wave. Setting 
9 to 1, the coupling constant h then can be calculated 
from the helicity amplitudes (3). The results are: 

1 T s u~ = gu~ Pp,,Q,, (5) 
QPo + 

T ~  = o,~ - (~o)2o)2 ~ ~Y-p~ " pp~, . (6) 

This procedure only restricts the ratio of O and h, the 
overall normalisation is not given by first principles - any 
Lorentz scalar function can be multiplied to the complete 
amplitude. In particular, we can thus realize the expected 
lYpl L threshold behaviour of the amplitude. The necessary 
factors are most easily calculated in the final state helicity 
system contracting the tensors with transverse polarisation 
vectors. Whereas the S-wave in (5) is already correctly 
normalized (constant in ~'p), the D wave tensor has to be 
modified: 

T ~  = ~ " '9 , ,  -- Q2 pp, Q,. (7) 
(Qp,)2o2 Q2p2 QPo + 2 x / ~  z 

Results consistent with the present approach have also 
been found in [10]  

The P-wave transition of the p into two pions is 
unique [6]: (Pl--P+)~. The complete decay matrix 
element for the chain decay reads: 

~v  at E~2p ~;tp 

a, (P l - -P+) ,  (8) Ju(a, --+prc--+nnrt) = Tu~ 2 _ p2 ~ _ imoF " 
m p  

_ v F + v ~ .  2 -- 9 PpPo/Pp . 
= Tu. mZp_p2 _impFo~p a _  - -p+).  (9) 

Here we explicitely restrict the p to be a spin one particle 
by projecting out only the physical components using 
the spin summation which in (9) is written in its covariant 
fo rm In this case of equal mass final state particles 
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(pC = p2) the second term in the numerator does not 
contribute, such that the final Bose symmetrized hadronic 
currents can be written: 

- 1  j s =  
rn~ - p~ - impF,, 

/ ( P l - p + ) Q  �9 ~(p~ - p+)~ - Qp.~ + ~ p. ,~) + (1 ~ 2 )  (10) 

D --1 ((Qpm)_Q~Z 2 2 
J~ = 2 U imoF ~ Q P m ( P l - P + ) ~  

mo -- Pm -- 

(QPm + 2 ~ Q ~ , ) ( ( p l  - p + )Q) 
- -  Q2 Pm~ / + (1 +--~ 2). 

(11) 

The isobar model - i . e ,  the coherent addition of 
amplitudes of various subresonances without allowing 
for final state interact ions-  does not obey 3 particle 
unitarity, however it has been shown to be highly success- 
ful and has delivered a wealth of data on baryon and 
meson resonances [11-14]. 

Descr ip t ion  o f  r ~  v31r 

This hadronic axial current now has 4 independent vector 
components, of which only 3 are physical if one wants 
to describe merely the spin 1 contribution corresponding 
to the al. This is achieved by introducing the spin 1 
projection operator into the contraction with the leptonic 
current Lu: 

(alS D) - ~ v3n) = L u" G(Q 2 ) ~ e~.,e)`.lJ v (12) M)` ' (z ~ v a  1 *u v a 1 S , D  

),a t 

= x / ~ a ~ ( p ~ ) ~ . ( g ~  + g A ~ ) u ( p _ ) .  6(Q~) 

�9 ( - g"~ + Q"QTQ2).J  a~s.v. (13) 

In this equation we included a form factor G(Q z) which 
describes the Ia ( J  vc) = 1 -(1 + + )pn final state interaction. 
It is usually described by a Breit-Wigner shape (see the 
discussions in [15-17]) for the a 1 modified by a form 
factor o(Q 2) which describes a possible deviation from a 
pointlike W - a a  coupling: 

1 
G(Q2) = g(Q2).ma~2 _ Q2 _ ima~F,~(Q2)" (14) 

The phenomenological analysis of Bowler [15] suggests 
that no strong deviation from pointlike coupling is 
necessary: If the form factor is parameterized a s  g ( Q 2 )  _-- 

! X / ~ 2 / m a y ,  then n = 0 -- 0.5 (Bowler's x (see (28) below) 
is related to n via x = 2 -  2n). 

Comparing our result with that of [5], we observe 
that the difference only is due to their ansatz guy for the 
axpn vertex. Let us emphasize again that their ansatz is 
neither better nor worse than an S-wave description. 
Their model only should be labelled "lowest dimensional 
Born term" instead of "S-wave'. Both assumptions are 
reasonable first approximations. In both bases, just one 
of two possible amplitudes is considered, and thus both 
are model dependent. Only dynamical models can relate 

both independent amplitudes and give a unique descrip- 
tion. In a recent paper Kfihn and Santamaria [18] argue 
that the lowest dimensional Born term might get some 
justification from consistency with chiral invariance and 
its derivation from chiral Lagrangians [19]�9 Also the 
analytic properties of the Born terms are simpler than 
those of the complicated linear combinations of the 
orbital angular momentum eigenstates. Nevertheless, 
from a phenomenological point of view the latter clearly 
are justified as a basis for a kinematical analysis�9 For  
example, in quark model calculations [10] one calculates 
transition amplitudes for specific orbital angular 
momentum eigenstates. 

In principle, the a a decay into three pions might also 
proceed through a P-wave into a pion and an even isospin 
(nn)s . . . . .  system. This contribution is determined to be 
only 0.003 +_0.003 compared to the pn mode [14]�9 
However, this result of a combined analysis of different 
hadronic production modes [20] relies on the existence 
of a second pole which strongly couples to f0(1400)n and 
is interpreted as a 3q3~ state�9 Thus, an independent 
analysis in z decays is important�9 Also the 1:20 suppres- 
sion of the D wave observed in diffractive production 
[21] might be due to interference with the Deck 
mechanism or, as a dual description, with 2q2~ or 3q3~ 
poles [20]. It should not be taken for granted that these 
numbers are also valid for the a a decay as observed in z 
decays. 

Although suppressed by PCAC, a pseudoscalar 
component might contribute to the hadronic current. It 
would naturally be dominated by the radial excitation 
candidate n'(1300). This contribution corresponds to the 
timelike vector component in the 3n c.m.s., the Born term 
tensor thus is proportional to Q~ (this is the only non-zero 
vector which can be constructed, since the polarisation 
"tensor" of a spin 0 field is just a scalar). The possible 
pseudoscalar hadronic currents (S-wave into n(nn)s . . . . .  
or P-wave into pn) can be written: 

sT"s~ = Q~ (15) 

J 7  'e) = 9. (Q + pz)(pl  - p+) + (1,-,2). (16) 
v 2 2 �9 

m p  - -  P p l  - -  l m p l ' o  

In the absence of detailed knowledge about the scalar 
state fo(1400) we don't  give it a Breit-Wigner form. In 
the spirit of using Watson's theorem in the isobar model, 
one can also include the measured I = 0, J = 0 nn phase 
shifts into the amplitude [13]�9 Certainly the description 
of the (nn)s . . . . .  is one of the weakest links in the isobar 
model, and very different approaches (real phase space, 
fo(1400) Breit-Wigner, measured phase shifts) have been 
followed in different analyses, often without an estimate 
of the systematic uncertainties introduced by the special 
choice�9 

We now calculate the lepton helicity amplitudes in 
the z c.m.s, with the al moving along the positive z-axis�9 
We use standard representation spinors with covariant 
normalisation [6]�9 In this calculation and the definition 
of the coupling constants one has to take care of the 
anticommutation properties of 7 matrices: Our matrix 
element (13) is in accord with the standard model 
coupling constants to be gv = + 1, gA = -- 1, in contrast 
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to the amplitude of [5], which differs in the order of ?s 
and 7, and thus requires a positive 9A in order to couple 
to left-handed neutrinos only. Explicit calculation using 
massless neutrinos leads to 

= + ~ , 2 , =  -~-) Lu(s, 1 1 

= ~ G r ~ ( g v  -- ga)'(1, O, O, 1) (17) 

Lu(s, = -- �89 2, = -- 1_)2 

= x / ~ G v ~ ( g v  - -  gA ) ' (O ,  - -  1, i, O) (18) 

= + ~ , , L  = +�89 Lu(s~ 1 

= x / / � 8 9  + ga)'(O, 1, i,0) (19) 

Lu(s, = -- �89 2,  = + �89 

= x / � 8 9  + ga)'(1,O,O, 1). (20) 

In the standard model ( g v + g A = O )  the latter two 
contributions vanish. Contracting with the a 1 polarisation 
vectors, the helicity amplitudes M~x~ are calculated to be 
(with 2,, = s, + 2, = 2 and _+ 1/2 abbreviated by _ )  

M + _ = - Gv(gv - 9 a ) x / ~ -  2 - Q2 

Q~ 
m ,  J = l  2 + G J = O (  2 

" ( - : ~ ' G ~ = ~  X f ~  Q ) )  (21) 
\ a / z Q  2 

M _ _  = Gp(gv gA)X/--~* Z S= --  - -  O "Gz = 1_ 1(Q2) (22) 

M + + = Gv(g v + OA)W/~, 2 -- Qz. G s ~= = x+, (OZ) (23) 

M _  + = -- Gv(gv + g A ) ~  - -  Q2 

Olz J =  1 2 Q2 
2-'G~=~ ~) . 

This means that in the final state helicity system the a~ 
is polarized depending on the coupling constants gv and 
ga" In the standard model the helicities are - 1 or 0, the 
relative contribution of the latter decreasing with 
increasing three pion mass Q2, helicity + 1 is forbidden. 
The helicity 0 contribution only depends on g~ + g,]. 
Note that for z § decays the roles of neutrino and thus 
a~ helicities are reversed. 

Up to now we did not take into account second class 
currents [22] (corresponding to states with P C ( -  1) J = 1), 
which are measured and expected to be very small and 
only possible due to isospin violation (i.e. the u - d quark 
mass difference). Isospin violation could also introduce 
an I = 2 component (I = 0 is not possible since the 3 pion 
system is charged). To test these expectations in a 
completely model independent analysis also the following 
(exotic) possibilities should be included: I G ( j e c ) =  
2 - ( 0 - - )  and 2-(1 +- )  (first class) and 1-(1 -+)  and 
2 - ( 1 - - )  (second class). The Born term tensor for the 
decay of the latter two possibilities to pn reads [6]: 
Tu~ = ieu~#Q~p~. 

We now calculate the differential decay rate. Using 
the usual recurrence formula [14] the four particle 
Lorentz invariant phase space element can be decomposed 
into 
d LIPS,(r,  v3~) = (2n)- 1 d LIPS2(z, val)  

�9 d LIPS3(a~, 3n)dQ 2 (25) 

= (2n)-1 m~ - Q2 d cos 0,, d~b,, 1 
32n2m 2 1024n2Q 2 

�9 m 2 dm22~ + d~ d cos fl dy dQ 2. (26) d /tl~t + 

Neglecting small corrections of the order (m,/Ebeam) 2 the 
outgoing z's have opposite helicities which leads to 
correlation phenomena [5, 1]. Taking this into account, 
it is in principle possible to "tag" or at least enrich the 
z-  helicity through the observation of the z § decay and 
vice versa. However, analyzing the z decays separately, 
the coherence is lost and the incoherent mean of both z 
helicities is observed: 

d E  1 _ I 2 + I M _ _ I 2 + I M + + [ Z + I M _ + I 2 ) .  
d L I P S g - 4 m ,  ([M+ 

(27) 

In this case we immediately consider the z helicities in 
the z decay helicity frame as already done above, the 
integration over dO., then is a trivial 4n multiplication. 
Performing the integration in the case of the a x recovers 
the well known standard model result [23] 

d r  G~ (m 2 -  Q2)2 
dQ 2 -  16n Q2m3 (mE + 2Q2) 

\ . v / ~ j  ( m 2 _  Q2)2 + m~e~,(Q~)" 

It is interesting to note that the first term in (m 2 + 2Q 2) 
is due to the helicity 0 contribution and the second to 
helicity - 1. 

Prospec t s  o f  a partial  wave  analys is  

If the z direction is measured (by reconstruction of the 
decay vertex), the v momentum can be calculated using 
momentum conservation and the z mass constraint. In 
this case, which may be possible at LEP, all of the phase 
space variables are known and one has a very powerful 
tool for partial wave analysis which would be performed 
in slices of Q2. This could e.g. be done using the extended 
maximum likelihood technique [9, 13, 11, 12] minimizing 
the likelihood function 

d"F  _ _ " d  
Lf(fi') = - ~ In do" ( ~  a )  + CS de)"  (~ ,  ~ )e (~)dm" .  

events i 

(29) 

Here the sum is extended over all detected events in a 
given Q2 bin. ~ denotes the n available phase space 
variables apart from Q2 and ~" the fit parameters: 
One complex number for each spin-parity-isobar-L 
combination if one assumes the validity of the standard 
model, and one additional (real) number, e.g. 

2gvga (30) 
2 '  YAV - -  9 2  -[- 9 A 

if the weak couplings are also to be measured (~AV = -- 1 
for V-- A, + 1 for V + A, 0 for pure V or pure A). Since 
only relative phases are accessible, one phase in each 
incoherent term can be fixed to zero. Where in principle 



two isospin states can occur, these are distinguishable 
only if one considers simultaneously the decay into three 
charged and one charged two neutral pions. This will 
not be considered here. In the extended maximum likeli- 
hood procedure the maximum information including all 
correlations is taken into account. In practice, the cross 
section of the events observed in the experiment is 
calculated as if they were 3 pion phase space events which 
are weighted according to a model cross section depend- 
ing on the fit parameters ~'. The second term in (29) is 
called the normalisation integral, it represents the total 
number of events observed in the detector (e is the 
acceptance) for the actual fit parameter set ~'. The 
conversion constant C has to relate the integrated width 
to the total number of events, it depends on the integrated 
luminosity of the dataset. During the fit procedure, the 
calculation of both terms can be simplified to a few 
complex multiplications [12, 13, 9]. 

Without vertex reconstruction the r direction cannot 
be determined. Only if both z's decay semihadronically 
and are fully reconstructed, the missing two neutrino 
momenta can be reconstructed by kinematic constraints - 
however only up to a twofold discrete ambiguity [5] 
and only if one neglects initial state radiation. This 
complicates a straight forward analysis considerably. 
While cos 0~, still can be calculated, neither q~,, nor the 
3 Euler angles describing the decay plane are uniquely 
accessible, and one has to average over both possibilities 
in doing any fit. However, in all cases a Dalitz plot 
analysis, e.g. analogous to that in [24], is feasible. 
Here one integrates (usually numerically with Monte 
Carlo methods) over all variables except s~ and s2, 
thereby partly loosing coherence and (of course) lots of 
information. 

Determination of weak ~ decay constants from a 
parity violating Dalitz plot asymmetry 

Without any restrictions on the recoiling z, in an 
e+e - ~ z + z  - event only the 3n momentum is known, 
and the possible ~ four momenta can only be constrained 
to lie on a cone around the 3n momentum vector with 
an opening angle which depends only on measurable 
kinematics [5]: 

E3n c o s f f =  x ( m 2 + Q 2 ) - 2 Q 2  with x =  . (31) 
(m 2 - -  Q 2 ) x / x 2  - 402/s Ebeam 

The ARGUS experiment [4] has used this kind of 
analysis to observe a parity violating asymmetry effect 
and was thus able to measure 7AV, see (30). Using Kiihn 
and Wagner's amplitude [5] (i.e. the lowest dimensional 
Born term), the preliminary value is in good accord with 
the standard model expectation and has a 29~ relative 
error, it corresponds to a statistical significance of 4.2tr 
for the parity violating effect. In order to explore the 
model dependence, we shortly resume the argumentation 
line. The following relations are worked out in the 3n 
c.m.s, with the z-axis opposite to the z momentum. 
Assuming that the 3 pion system can be described by an 
ax decaying into pn, the z spin averaged and v spin 
summed squared matrix elements (with coupling 
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constants taken out to conform with [5]) can be written: 

1 
r G2" 2 g.,) l L , ( _  gUV QUQV/QZ)j,[2 (32) 

r(gv + 
m 2 O 2 

(ma~l _ Q2)2 + m 2o, r ~ ( Q ~ )  

(m0: ) �9 ~J3J3* + J ~ J l + J * J 2 + 2 7 A v l m ( J ~ J O  . (33) 

In this equation the Ji are the space components of the 
hadronic current (10), which as a reasonable starting 
point would be modelled pure S-wave�9 The J ' J 3  t e r m  

corresponds to an a 1 helicity of 0, all other to _+ 1. Most 
interesting is the last term which is parity violating and 
directly proportional to ~'av. An explicit calculation 
shows that it merely depends on the PlP2 interference: 

I m ( J * J  0 = mvFv 
((m 2 - s l )  2 rnZF 2 m 2 - 2F2 , ,  + p ~) ( (~-s2)  ~ + %  ~,  

"(s2 -- sl)'(Jv2xJp~2 --Jo~zJo~l) (34) 

with the Dalitz plot variables sl = p2 and j~ the (real) 
�9 p i  

hadronic currents (10) with the p Breit Wigner factors 
taken out. Because j p, and ]'p~ both are vectors in the 
decay plane (this is true for any D/S ratio), their cross 
product is proportional to fi3~, the unit length normal 
vector of the decay plane. The combination Jlo~J2o~- 
J2p~Jlp, can be interpreted as z-component of fi3~, 
projected by scalar product with the z direction unit 
v e c t o r :  f i3nP. Having two likesign pions in the final state, 
the orientation of the decay plane normal is unique only 
after multiplying with a scalar function antisymmetric 
under pion exchange. These properties lead Kiihn and 
Wagner [5] to propose to measure the moment 

f d LIPS4 cofi3~P sign(s1 -- $2) 
ARL(Q:) = Q2bln  (35) 

 dLIpS4  
Q2bin 

which is directly proportional to the parity violating term 
and thus to YAV. Since the z direction cannot be measured, 
one has to integrate over all possible z directions in every 
event. Alternatively, (as done f ly  ARGUS) one simply 
replaces ~ by the measurable Q, i.e. the direction of the 
3n system as measured in the laboratory. The mean 
asymmetry observed using this modified moment is 
smaller (and reversed in sign) than the original by (cos ~ ), 
but remains observable: 

( 0 f i 3 n )  = - -  ( p f i3n )COS ~/. (36) 

Since the opening angle ~ is known in every individual 
event, it is possible to select on events with a large cos ~b 
to suppress low and negative values which are not 
contributing to a positive signal and thus reduce the 
statistical significance. In practice the integrations are 
replaced by summing over measured events. Theoretical 
expectations for the experimental observable's dependence 
on 7AV are most easily calculated using the Monte Carlo 
method: Events simulated according to 3n phase space 
are weighted according to the model cross section 
and the required moment. The influence of detector 
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acceptance and resolution effects as well as the effect of 
replacing ~ by 0 ,  of cuts in cos ~b and also the explicit 
decay model dependence is such accessible. Note that 
due to the direct Lorentz transformation from the 
laboratory into the 3n c.m.s, without going via the 
(unknown) z c.m.s, a Wigner rotation is introduced. This 
effect can also easily be handled with the Monte Carlo 
method. 

We now propose to use also another moment  to 
measure 2~av which takes advantage of the knowledge 
about  the relative importance of the parity violating term 
depending on the measurable Dalitz plot variables: 

2mpFo(sl --s2) AF(Q2)- r J d LIPS4c~ (2m2 -(s~ +s2))2+4m~F 2 
Q 2 b i n  

" ( e / b i ~ d L I P S , 0 9 ) - '  (37, 

Analysing data using this moment  has the advantage that 
statistical fluctuations of the majority of events, which 
we know can hardly contribute to the asymmetry, are 
damped. It  is similar in spirit to Kiihn and Wagner's A o. 
One should not get confused by the lower numerical 
values of these moments (see below) compared to ARL: 
being weighted moments oc (sx - s2) instead of a simple 
asymmetry ~ :s ign(s~-s2)  their statistical significance 
may easily be larger although numerically smaller. ZAV 
can be determined by comparing the measured 
asymmetry moments with the predicted ones: 7av(Q 2) = 
A.~"~(Q2)/A~"d(Q2). Note that in the standard model this 
quantitywill be negative for z -  and positive for r § decays. 
Of course, in a reasonable model the result should be 
independent of Q2. 

Model dependence in the determination of 7A v 

The determination OfTA v using the Dalitz plot asymmetry 
depends on assumptions about  the hadronic current. In 
this section we summarize some contributions which are 
easily accessible using the formalism developed in this 
paper. 

As indicated repeatedly, the amplitude in [5] does 
not correspond to an L = 0 transition but the lowest 
dimensional Born term. The influence on the asymmetry 
moments  can be seen by normalising g in (1) to 1 and 
observing the dependence on h, or better h', the coefficient 
in front of the Pp, v in (10). The current in the pp interference 
term (34) in the 3n c.m.s, can be rewritten as Jlp2J2p~- 
J2pzJlp~ oc(4--(1 + h ' ) 2 ) . p 2  x p" I. Kiihn and Wagner's 
model (h '=  0) leads to a factor 3 in front of the cross 
product. The maximum reachable value (for h' -- - 1) is 
4, large positive and large negative h reduce the asym- 
metry and can even change its sign. Thus, it is clearly 
evident that a proper modelling/t la (10) is important for 
the quantitative evaluation of the parity violation effect. 
The results are summarized in Figs. 2 and 3. It  turns out 
that the S-wave matrix element (solid line in Fig. 2a) and 
that of [5] (dotted line) do not differ severely. However, 
an admixture of D-wave with either sign changes the 
expected asymmetry strongly. A pure D-wave as well as 
a pure h Born term tensor predict a few percent asymmetry 
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Fig. 2a, b. Standard model prediction for the moment ARL as a 
function of the three pion mass Q2 (negative for z-, positive for 
z+). a Solid line: Pure al opn, S-wave; dotted: calculation of [5] 
(i.e. lowest dimensional Born term amplitude); dashed: pure al ~ pn, 
D-wave. Dash-3 dotted line: Qz mass spectrum as observed by 
ARGUS [-4] (not acceptance corrected), b Solid line: Pure a 1 ~pn, 
S-wave; dashed: 2.2% D-wave admixture (upper curve: relative 
sign + and vice versa); dotted: 10% a~ ~en wave admixture. 

with reversed sign (!) (dashed line in Fig. 2a); a 20% 
D-wave admixture with negative sign leads to an almost 
vanishing asymmetry. Note that the Isgur et al. analysis 
[10] of the ARGUS Dalitz plot projections [8] results 
in a D/S amplitude ratio of - 0 . 1 4  ___ 0.03 (corresponding 
to a relative branching ratio of 2.2%), in accord with the 
flux tube breaking model prediction of - 0 . 1 5  (lower 
dashed line in Fig. 2b). 

The existence of a possible al decay into (nn)s . . . . .  n 
can contribute to an asymmetry moment  in several ways. 
A reliable isobar model prediction cannot be given, since 
the S-wave is not dominated by a relatively narrow Breit-  
Wigner like resonance. It  is not even clear how many 
poles contribute to the complicated nn phase behaviour. 
If we nevertheless assume that it can be described by a 
single Breit-Wigner BW~, we have to consider the inter- 
ference between both ways to construct such an e, and 
altogether 4 terms between the p's and gs. The first can 
lead to an observable asymmetry, becoming increasingly 
important with Q2 due to the high fo mass. The p -  e 
interference terms can be written as 

Ip~ ocffl x ff2"Im((h' + 1)(BW*,BW, 2 - BW*2BW~ ,) 

+ 2(BW* 1BW,, - BW* BW~)). (38) 

A large fraction of the interference cancels after integra- 
tion over the whole phase space. The dotted lines in 



A(F) 

0 . 1 5  

0 . I 0  

0 . 0 5  

0 . 0  

- 0 . 0 5  

. . . .  i . . . .  I . . . .  i . . . .  

a) 

/ -'<---- 0 . 1 / P  d r / d Q  z 
\ 

/ 

. /  .. ............... i \  ............. 

/ f . . . "  . \  

I , , i b  

0 . 1 5  . . . .  ~ . . . . . . . .  , . . . .  

b) 
0 . 1 0  

0 0 5  

0 . 0  

- 0 . 0 5  . . . .  i . . . .  I . . . .  ~ . . . .  

0 5  1 . 0  1 . 5  2 0  2 . 5  

Qa/GeVZ 

Fig. 3a, b. Standard model prediction for the moment A F as a 
function of the three pion mass Q2. Line symbols as in Fig. 2 

Fig. 2b show the effect if the en branching ratio were 10% 
with both relative signs, corresponding to the ARGUS 
upper limit for non-pn decays I8]. If the S-wave is not 
gwen a phase, the p -  e interference still remains signi- 
ficant, leading to an even larger deviation from pure 
pn, S-wave at low Q2. 

Another model dependent feature can be seen directly 
from (33): A possible 0 -  background to the al ,  which 
naturally is helicity 0, cannot contribute to the parity 
violating term (which is due to the helicity + 1 / - 1  
asymmetry). Such a background thus can only reduce 
the asymmetry by increasing the parity conserving part. 
One should also test the influence of exotic intermediate 
3n states, e.g. a vector contribution like a possible hybrid 
or 4 quark state 15 with quantum numbers 1G(J "ec) = 
1 - ( t -  +). As a second class current and because of its 
exotic origin it is expected to be suppressed. The sym- 
metrized decay matrix element into pn can be written as 
a vector along the decay plane normal, leading to a 
vanishing asymmetry for a pure t5. One could however 
imagine a strong interference between the al and the 15. 
Quantitative evaluation shows that this interference has 
no large impact on the asymmetry term at low three pion 
masses, but becomes increasingly important  with 
increasing Q2. With a 10% relative branching ratio of the 
15 the asymmetry smoothly goes down (similar to the 
al --* en admixture) and reaches 0 at Q2 = 3 GeV 2. 

Part  of these model dependencies can be minimized 
by a consistency check between both moments  types, An/~ 

687 

as defined by Kiihn and Wagner as well as our proposed 
moment  A e. Another good test of the importance of 
n o n - a l e p h  background is the dependence of the 
extracted asymmetries on the 3 pion mass Q2: There 
should be no such dependence if the background is small. 
A large part  of detector effects can be excluded, if no 
asymmetry is observed for z -  and z+ added without 
changing the sign for antiparticle decays. Finally, even 
with infinite statistics and considering all possible 
intermediate states with infinite accuracy, there remains 
a small theoretical uncertainty due to the neglect of final 
state interactions in the isobar model. Only a z + z -  
correlation analysis, an improved Dalitz plot analysis or 
even a full-fledged partial wave analysis will reduce these 
uncertainties and give some more insight into the 
hadronie currents. 

Summary and conclusions 

In summary, we (re-)derived a theoretical description of 
z decays into v3n in a covariant tensor language using 
the isobar model. Special emphasis was devoted on the 
orbital angular momentum eigenstates of the a I ~ p n  
decay, which frequently are mixed up with the simplest 
Born term amplitudes. Amplitudes are also given for 
other possible intermediate states. We discussed the 
physics perspectives of the reaction, i.e. the measurement 
of the weak z decay coupling constants and the structure 
of the hadronic 3n current. Some analysis methods have 
been discussed and a new moment  for the weak coupling 
constant determination with available data (ARGUS) 
has been proposed. Finally we discussed the model 
dependence of such a measurement and found it to be 
considerable (at the + 2 5 / -  50% level, depending on Q2) 
without a further investigation of the hadronic 3n current. 
Consistency checks using different moments and 
comparing the Q2 evolution can help to reduce theoretical 
uncertainties. 
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