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The octonionic S-matrix 
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A new Spin(7) invariant R-matrix is found by solving the Yang-Baxter factorization equation. The solution contains the Spin (7) 
mvariant  tensor Cab~d which is essentially given by the structure constants of  the octonion multiplication table. By imposing 
unitarity, crossing invariance and analyticity, we obtain two minimal  S-matrices, one of  which possesses bound states of  mass  

f2 m. In addition, the new R-matrix defines an integrable multistate vertex-model. 

The work on integrable theories during the past two 
decades has revealed the central role of  the Yang-  
Baxter factorization equation (YBE) [ 1 ]. 

A systematic knowledge off  all YBE solutions is still 
lacking and would clearly lead to important new in- 
sights into the general structure ofintegrable theories 
as well as new integrable models. In this letter, we 
present a new solution o f  the YBE (i.e. a new R-ma- 
trix) invariant under  Spin (7).  By the usual unitari- 
zation procedure, this solution then yields a new fac- 
torizable S-matrix. At the same time, this R-matrix 
defines a new integrable multistate vertex-model. The 
novel feature is that the particles belong to the spinor 
representation of  SO(7)  (hence Sp in (7 ) ) ,  whose 
fundamental  representation has eight components.  

An important  ingredient in our construction is the 
antisymmetric four-index tensor C~ocd built out o f  the 
structure constants of  the octonion multiplication ta- 
ble [ 2 -4  ]; here a, b, c, d, . . . .  1 ..... 8 label the funda- 
mental spinor representation of  spin(7) .  It is thus 
plausible that our Solution is exceptional in a certain 
sense. 

We start by summarizing the pertinent properties 
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of  the tensor Cabcd; for our conventions and a detailed 
discussion, we refer the reader to ref. [ 2 ]. The tensor 
C,,bcd is self-dual, 

C a b c d  1 = "i~(.abcdefgh C e f g h ,  ( 1 ) 

and satisfies [2,3 ] 

defm de [ d , C~bcmC =6d~+96taCbc~ e~q 

C a b i n  n c c d m n  = cd ( 2 )  12d,b + 4Cab ca, 

where all antisyrnmetrizations are to be done with 
strength one; e.g. 

¢~ cd 1 c d c d 

(Our choice o f  phase factors corresponds to putting 
~/' = 1 and ~/" = - 1 in ref. [2 ] ). 

Although their position is immaterial, indices will 
be placed in such a way as to make the formulas most 
transparent. 

The other ingredient is, o f  course, the YBE for the 
R-matrix which reads [ 1,5 ] 

ld t a2k b2c2 t Ralbl(O--O )Rcxl (O)Rka ( 0 )  

- -  m n  I pC2 a262 t --Rc~a,(O )Rnb,(O)Rmp ( 0 - 0 ) .  ( 3 )  
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It is also important to consider the classical limit 
of (3), the so-called classical YBE 

[r,2(o-o' ), r ,3 (0 )  1 + [r ,2(o-o ') ,  r23(0' ) ] 

+ IF,3(0),  r~3(O') ] = 0 ,  (4) 

where 

[e l2(0  ) ]abc def= [ / ' (0 )  ]abdea f (5)  

and the classical r-matrix r(0) is related to the quan- 
tum R-matrix of  (3) via the asymptotic expansion 

R(O) = e [ 1 + r ( O ) + O ( 1 / 0 2 ) ] .  (6) 
0~oo 

Here ,°abCa--=~,a~,bSdXc is the exchange operator. To find 
the new solution, we proceed from the ansatz 

R.bca(O)= 0-1 c a a gaC~b -4-a(O)6a~ b 

"l-b( O)aabaCa+ c( O)Cab cd. (7) 

As is well known, the solutions of (3) are only de- 
termined up to an overall factor, which can depend 
on 0, and we have accordingly chosen the factor 1/0 
multiplying the unit matrix in (7) for later conve- 
nience. The functions a(O), b(O) and c(O) are then 
to be determined from (3). 

The corresponding ansatz for r (0) reads 

Fa ~a(O)= 0-~ d ~ cd ca (aaa~+//~aba +~Ca~ ) ,  (8) 

comparing (7) and (8) and requiring (6) to hold we 
see that 

l ima(O)  = 1, lim Ob(O)=fl,  
0 ~  O~ac 

limOc(O) =7. (9) 

Both R (0) and r(0) are fully invariant under Spin (7) 
transformations. Having a non-abelian invariance 
group, we expect a(O), b(O) and c(O) to be rational 
functions [ 1 ]. The ansatz (7) can be regarded as a 
generalization of the corresponding one for the 
SO(N) invariant S-matrix for N = 8  [4]; indeed, 
seeting c ( O ) = 0  in (7), one would just recover the 
SO (8) invariant solution of ref. [ 4 ]. 

As it is considerably easier to determine the coef- 
ficients fl and y rather than the functions a (0), b (0) 
and c(O), let us first consider the classical YBE (4) 
with the ansatz (8). After a little algebra, we find 

f l = - l ,  7=-~ (10) 

besides the well-known SO (8)-invariant solution with 
7= 0. This result will be useful below. Next, we turn 
to the full quantum YBE ( 3 ). Inserting (7) into (3) 
and making use of ( 1 ) and (2),  one gets thirty equa- 
tions for the coefficient functions after a rather tedi- 
ous calculation. More specifically, these equations are 
obtained by equating the coefficients of  the linearly 
independent six-index tensors in (3).  Several among 
them turn out to be identically satisfied; others occur 
twice (which is a useful check on the calculation). 
Finally, some of the equations are equivalent upon 
interchanging 0' and 0 - 0 ' .  Using the standard no- 
tation a = a ( O ) ,  a ' = a ( O ' ) ,  a " - a ( O - O ' ) ,  etc., the 
independent equations are 

a' +a"  - a - 6 c '  c" - a c '  c" +ca'c"  +cc' a" +4cc'  c" 

= 0 ,  (11) 

b' +b" - b + b ' a "  +a 'b"  +8b 'b"  - c a ' c "  +ac 'c"  

+ab'  b" + bb' b" - c c '  a" - 4 c c '  c" = 0 ,  (12) 

ab' - b a '  +bb 'a"  + c a , c , +  6cb'c" - a c ' c "  +cc 'a"  

+4cc 'c"  = 0 ,  (13) 

c' +c" - c - c ' a "  - a ' c "  +4c 'c"  +2ac 'c"  +cc 'a"  

+ca'c"  +cc' c" = 0 ,  (14) 

ac' - ca' - 2cc' a" + ca' c" - ac' c" - 2cc' c" = O, (15) 

bc' - c b '  +cc'  a" - a c '  c" - 2 c a '  c" +cc'  c" - a b '  c" 

+bb'  c" +cb'  a" - 4 c b '  c" = 0 ,  (16) 

bc' a" + ba' c" + 2ac' c" +ca'c"  + cc' a" - 2cc' c" 

= 0 .  (17) 

The key to solving these equations is (17) which, un- 
like the other equations, is homogeneous. After di- 
viding by cc' c", it becomes 

which tells us that a ' / c '  + a " / c "  must be a function 
of 0 alone. This is only possible if  a / c  is a linear func- 
tion of 0. We therefore make a linear ansatz for a / c  
with two unknown coefficients. Substituting this an- 
satz into ( 15 ), we can then solve for c(O) and a(O). 
To determine the unknown coefficients, we then use 
(14) and match the expressions for a(O) and c(O) 
with the asymptotic formulae (9), (10). Finally, b (0) 
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then follows from ( 18 ). So, we arrive at the solution 

30+5 1 
a ( 0 ) - 3 0 + 4 ,  c ( 0 ) = 3 0 + 4 ,  

9 ( 0 + 2 )  
b ( 0 ) =  - (19) 

( 3 0 + 4 ) ( 3 0 + 1 0 )  ' 

which, by construction, is also consistent with (9) and 
(10): It remains to verify that indeed all equations 
(11 ) - (17 )  are solved by (20). This is a somewhat 
tedious but elementary exercise which we will not re- 
produce here. 

Observe that the solution R (0) given by (7) and 
(19) is symmetric and parity-invariant 

R(O)=R(O) x, R(O)=PR(O)P.  (20) 

It is straightforward to check that 

R( O)R( - O) ='0p (0 ) ,  (21) 

with 

( 0 2 - - 4 ) ( 9 0 2 - - 4 )  

p ( 0 ) = -  02(902_16) , (22) 

as it must be since R (0) is a regular solution of the 
YBE [1]. 

It is also worth mentioning that the classical R-ma- 
trix (8) with the values (10) can be cast into "Fad- 
deev-type" form [6 ]. (Notice, however, that the sum 
in (23) runs over 28 index pairs [ran] rather than 
21 pairs). 

We have 

2 
Fabcd = --  ~-~ G a % n G b ~  ~ , ( 2 3 )  

where G mn are the Spin(7) generators defined in eq. 
(3.19 ) of ref. [ 2 ]. To establish (23), one only needs 
formula (3.31) ofref.  [2] and the completeness re- 
lation Fa%" Fa% n = 8 ( ~ab ¢~cd - -  (~adC~bc ) .  

Our solution defines an integrable vertex-model 
where the weight R d  a (0) is assigned to the vertex 
configuration whose bonds are in the states a, b, c, d. 
However, the relevance of this model for statistical 
mechanics is not inmediate since some of the weights 
are negative (as is obvious from the antisymmetry of 
Caaca). On the other hand, the new R-matrix can be 
associated with a two-body S-matrix which describes 
the factorizable scattering of particles of mass m in 

the spinor representation of SO (7). To construct it, 
w e  set  

10iO 
0= 3---~ ' (24) 

where O is the usual rapidity variable defined here by 
s=2  m 2 ( 1 +cosh O) [4]. The two-body S-matrix is 
then given by 

S(O) =F(O)PR(103~IO). (25) 

The factor F (O)  here is necessary for unitarity and 
crossing invariance, i.e. 

S(O)S(O)*= 1, 

Saa ca(o) =Sa,~Cb(izc-- tg) (26) 

(the spinor representation of SO (7) is real, so there 
is no need to distinguish between particles and 
antiparticles). 

NOtice that S(O)S(O) t is indeed proportional to 
the unit matrix due to eq. (21 ) and the fact that R (0) 
is real for real 0. Recall that, by real analyticity, 
S ( O ) * = S ( - e )  [5]. 

We find it convenient to express the final result in 
the following form: 

SabCa( O) = t ( O ) ( 8 ~  

3 i~9/2~z+-~ a c 
+ 20 (iO/2zc) (iO/2zc+¼) 8,~db 

3 iO/2rc+ 3 

-- 20 (iO/2zc+ ~ ) (iO/2zc+ ½ ) 6ab3~a 

1 l + l ) C a a C a  ) (27) 
20 (iO/ 

with the transition amplitude t(O). In order to sat- 
isfy unitarity and crossing invariance, t (0 )  must obey 

t (~ )  = t ( i ~ - O )  (29) 

and 

Z2(Z2-- l~ ) 
t(O)t(6))*= (z2__~6)(z2 T~), (30) 

where we have defined z=--iO/2z~ for notational 
simplicity. A minimal solution is a function t(O) sat- 
isfying (29) and (30) with as few zeroes and poles 
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as possible in the physical sheet 0 ~< Im O< n (i.e. 0 ~< 
R e z <  ~). 

There are actually two solutions enjoying these 
properties, namely 

g( - z )  z(z-~)  
t(o)= g(z) (z-{o)(Z+a~)' (31) 

with two possible choices for g (z): 

gA(O)  = r ( z +  1 ) F ( z + 3  ) F ( z + 4 ) F ( z +  1 ) 
F ( z +  3 l 3 ~, v6)F(z+ ~)I'(z+ ~ )r(z+~) 

(32) 

and 

gB(o)= r(z)r(z+~)r(z+~)r(z+~) 
F ( z +  ~ ) F ( z + ~  ) F ( z +  ½ ) F ( z + ~ )  " 

(33) 

For solution A, S(~9) has a pole at @=i~/2,  whereas 
for solution B it has a zero there instead (note that 
the pole for solution A is solely due to the factor mul- 
tiplying t(O) in (27) as t(O) has no singularities m 
the physical sheet). In both cases 

lira t ( O ) = l ,  (34) 
O~±oo 

as one expects. It is well known that the minimal so- 
lutions can be modified by multiplication with so- 
called CDD factors, which respect all the relevant 
properties (29) and (30) [5]. In fact, solutions A 
and B precisely differ by such a factor: 

sh O - i  
tA(o) = sh o+---~ tB(o). ( 3 5 )  

Solution A exhibits a bound state with mass m'  = 2m 
× cos (z r/4) = \ / ~  m, whereas solution B possesses no 
bound states. 

It is also instructive to diagonalize the S-matrix and 
to compute the phase-shifts in the various channels. 
The eigenehannels are in one-to-one correspondence 
with the representations appearing in the 
decomposition 

8~ × 8~ = 1~ + 35~ +7~ + 21~. (36)  

The projectors are given by 

P(1 )ab ~d= ~bS~d ,  

P(35)abCa= t c a a c ( (~a(~b -~- f~a~b --  l (~abf~Cd ) (37)  

and [2] 

p ( 7 ) a b C d _ _  l c d d c - - (~aSb -- 5a6b + Cab cd),  

P (  21)abCd= 3 +.~c xd xd.~c g \ V a O ' b - - t , ' a u b - - l  Cab cd) • (38) 

In terms of these, the S-matrix (27) takes the simple 
form 

s(o)  = g ( - z )  Fz+ ~ P(l) +e(Zl) 
g ( z )  L z - ½  

Z + ~ p  
z -  ~°- (P (35 )  + z - ~  ° ( 7 ' ) 1  (39) 

+ Z+~o 

from which the phase shifts can be read off directly. 
Moreover, it is interesting to compute the residue of 
SA(O) at the bound state pole O=i~r/2 from (39). 
We find positive imaginary residues for the channels 
21 and 35 and negative imaginary residues for 1 and 
7. Therefore the corresponding particles with masses 
v/2 m belong to the representations 21 and 35 or to 1 
and 7 depending whether their parities are odd or 
even, respectively [ 7 ]. 

As we have already pointed out, the R-matrix (7) 
can be associated with an integrable multi-state ver- 
tex model on a two-dimensional lattice. The free en- 
ergy per site is related in the thermodynamic limit to 
the transition amplitude by 

f ( 0 ) =  - L o g  t ( 0 ) .  (40) 

One of us (H. J. de Vega) would like to thank the 
DESY Theory Group and NORDITA for the kind 
hospitality extended to him. 
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