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Using dynamical fermions we study the decoupling of the fermion doublers of chiral lattice fermions in the broken symmetry 
phase of a scalar-fermion model. The model uses a chiral invariant Wilson term, called a Wilson-Yukawa term with coupling 
strength w, in addition to the usual Yukawa coupling y. We find qualitative agreement with our results obtained before in the 
quenched approximation. First in the w = 0 case we establish a strong Yukawa coupling region. Then for relatively large but fixed 
w we confirm that the fermion doublers can be easily decoupled by giving them masses of the order of the cutoff as the symmetry 
restoring transition is approached. 

1. Introduction 

Because of  the well-known fermion doubling, lat- 
tice regularization of  chiral gauge theories has proved 
very difficult. On the lattice the doublers of  chiral 
fermions spoil the chiral couplings in these theories. 
The central issue, therefore, is how to remove these 
unwanted doublers so that the theory is left only with 
light physical fermions in its fermion spectrum. 

In two publications [ 1,2] last year we have per- 
sued a nonperturbative investigation o f  a proposal 
[ 3 ] for such a regularization. The scheme essentially 
relies on the Wilson method [ 4 ], now employed in a 
manifestly chiral invariant way with a scalar field in 
the so-called Wilson-Yukawa term such that the 
doublers are rendered heavy dynamically. This makes 
the problem of  decoupling the doublers intrinsically 
non-perturbative, in spite o f  the compelling fact that 
the physical fermions have to remain light. 

Our initial investigations [ 1,2 ] did not involve the 
gauge field dynamics and looked at a chiral 
SU ( 2 ) L ® SU (2)  R invariant scalar-fermion model 
neglecting fermion loops (quenched approxima- 
t ion).  With these approximations we were able to 
show, as the critical region was approached in the 
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broken symmetry phase, that the physical fermions 
remained arbitrarily light while the doublers ob- 
tained masses of  the order of  the cut-off [O(  1 ) in 
lattice units ] and thus got decoupled. 

In the context o f  the standard model o f  electro- 
weak interactions it is presumably sufficient to treat 
the gauge fields only perturbatively. Radially frozen 
scalar fields explicitly present in this chiral-invariant 
formulation o f  the Wilson mechanism can, neverthe- 
less, be interpreted as gauge degrees o f  freedom [ 3 ]. 

With the optimism raised by our results in the 
quenched approximation it is now important  to ex- 
tend the calculations to the case with fermion dy- 
namics. In a recent work [ 5,6 ] we have determined 
the phase diagram of  the unquenched model and have 
located the possible regions of  physical interest in the 
bare coupling parameter space. In the present work 
we investigate the decoupling o f  the doublers in the 
broken phase at relatively strong Wilson-Yukawa 
coupling. 

2. The model 

The investigated model on the euclidean lattice is 
given by the action S = S H  +S~ ,  with 
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S H = - - x E  ½ T r ( ~ t ~ x + a  +~*x+a~x),  (1) 
x / t  

&= E ½[~x~',~'~+~- ~Vx+~r,~x] 
x u 

+Y ~., 9x(~xPR +*t~eL)~x 
x 

+w E {~Px(dPxPR +*IPL)ex 
x , u  

- ½ [ ~x(q~,PR + q~*+aPL) ~P,+,i 

+ 9x+;, ( (Px+aeR + q) *xPL) g"x] }. (2) 

Here the scalar field q~x is radially frozen (the bare 
quartic self-coupling is infinite) and it is a 2×  2 
SU(2)  matrix, the fermion fields ~x and ~x are 
SU(2) doublets (a summation over two identical 
doublets is implied), ~ is the hopping parameter for 
the scalar field, y is the usual Yukawa coupling, w de- 
notes the Wilson-Yukawa coupling and PL, R are left 
and right handed chiral projectors. From the experi- 
ence with the pure qM theories and the related scalar- 
fermion models [ 7 ], we expect that the present model 
with infinite bare quartic coupling of the scalars is in 
the same universality class as models with finite 
quartic coupling. 

The action is invariant under the global chiral 
SU ( 2 ) L ® SU (2) R transformations: 

~--, (g2L PL + I'2R PR) ~P, 9--' ~(I'2]~PR + I2[ PL),  

¢'--'I2L ~f2~, (3) 

where QL,R~ SU (2)L,R. 
When written in terms of the fermion fields ~u~, = 

( ~ P L  +PR) ~ ,  ~Px = ~x(~xPR +PL), which trans- 
form as 1L®SU(2)R, the Wilson-Yukawa coupling 
takes the form of the Wilson mass term familiar from 
QCD. In the broken phase the masses of the ~v and 
~u, fields are equal as they have the same quantum 
numbers under the residual symmetry group 
SU(2)L=R. 

The model ( 1, 2 ) is reduced from a lattice formu- 
lation of the full standard model [ 3 ] by leaving out 
the SU (2) ®U ( 1 ) gauge fields and specializing to just 
two doublets [which may have arbitrary U( 1 ) hy- 
percharge]. For y = 0  the model has an additional 
symmetry, called Golterman-Petcher (GP) symme- 
try, which guarantees that the 7" fermion mass is zero 
and that the right-handed fermion decouples in the 

scaling region [ 8 ]. One useful feature of the GP sym- 
metry is that it predicts the critical value of a fer- 
mionic hopping parameter. One can of course for- 
mulate the standard model on the lattice in a different 
way such that the symmetry does not prevail any more 
in its reduction to a fermion-Higgs system, and then 
tune y by hand to achieve vanishing fermion mass. 
Getting scaling values of physical fermion masses and 
decoupling the spurious doublers by making them 
heavy is independent of the GP symmetry and uses a 
special behaviour of fermion masses in the strong 
coupling region (y+4w>> x/~) as already stressed 
before [2,9 ] and confirmed in this work. Decoupling 
of the right-handed fermion (neutrino) at zero fer- 
mion mass is a different issue and is also expected 
[ 3 ] to hold in models without the GP symmetry. 

One can in principle drop the hopping term SH for 
the scalar field and we shall show some results for 
x =  0. Because the scalar hopping term is generated 
anyway via the fermion determinant, the theory for 
x = 0  is not any different from the x # 0  case, pro- 
vided the intended scaling regions are accessible. But 
then the only way to tune the theory toward regions 
of criticality is essentially through w (y has to be kept 
quite small for light fermions) which takes away the 
irrelevance of w. 

3. The phase diagram 

In fig. 1 we show a schematic phase diagram of the 
model with dynamical fermions at w= 0 [ 5 ]. Briefly 
we describe the properties of the different phases in 
terms of the order parameters v ~ = ( ~ x )  and 
vst~= (~x~bx) where ~ = ( - 1 )(xt+x2+~3+x4). We find 
two symmetric or paramagnetic phases (v= vst =0) :  
PMW and PMS with massless and massive fermions 
respectively and the following broken symmetry 
phases: ferromagnetic FM (v#0,  vst=0), antifer- 
romagnetic AM (v=0,  v~t#0) and ferrimagnetic FI 
(v # 0, v~t # 0). The two regions AM (W) and AM (S) 
in the AM phase are separated by the FI phase for a 
wide range of x and numerically we could not locate 
where, if at all, the FI phase ends. In the quenched 
approximation [ 1 ] at w = 0 the FM phase is split by 
a crossover around y ~ v/2 into two regions FM (W) 
and FM (S) where all the fermion masses decrease or 
increase respectively as v'~ 0. Such a crossover was 
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Fig. 1. The phase diagram at w=0. The different phases and phase 
regions are described in the text. We have indicated the crossover 
by the dotted line. A and B are probable quadruple points where 
4 phases meet. 

first found in the quenched approximation in a sim- 
pler scalar-fermion model [ 10]. We show in this 
work that a similar crossover exists also in the un- 
quenched case of  our model. The dotted line in fig. 1 
indicates its approximate position. 

For w> 0 the phase diagram is approximately given 
by a part of  fig. 1 with the zero of the Yukawa cou- 
pling (y) axis shifted to 4w in the positive y direction 
[5]. I f  one chooses a small value of w, e.g., ~<0.15, 
one still has all the phases and regions as in fig. 1 with 
the crossover in the FM phase at y +  4w~ x/~. But for 
w>_-0.5, the crossover and also the funnel-like struc- 
ture of  fig. 1 disappears to the left and there are only 
the FM (S), PMS and AM (S) phases or phase re- 
gions for y>t 0. 

For w= 0 the various phase transition lines meet, 
within our precision of their localization, in 2 quad- 
ruple points (A and B in fig. 1 ). In the 3-dimensional 
phase diagram with w> 0 these points become lines 
which we call lines A, B. 

For w--- 0 the coordinates of  the points A and B are 
{y~ 1.0, x ~  -0 .85} and {y~ 1.9, x ~  -0 .80} respec- 
tively. On the x = 0  line, again for w=0,  the FM ( W ) -  
PMW transition occurs at y~0 .62  and the F M ( S ) -  
PMS transition at y ~  2.75. 

4. Some regions of interest 

The scaling regions of  the FM phase are the most 
natural choice for physics of the standard model. One 
has to approach the phase transitions where v x 0 (v/  
a is a physical scale, a being the lattice constant). The 
FM-FI  transition is immediately ruled out because v 
does not go to zero there. 

As we will see below, the FM(W)  scaling region 
bounded on the right by the possible quadruple line 
A (fig. 1 ) is the weak Yukawa coupling region ( y +  
4w<<x/~) where perturbative calculations apply 
leading to mr,.~yv and mD~ ( y + 2 n w ) v  where mF 
and rno denote the physical fermion and the doubler 
masses respectively and n = 1, 2, 3, 4 is the number 
of  momentum components equal to n in lattice units. 
Since v'~0 as the F M ( W ) - P M W  transition is ap- 
proached from within the broken phase, the doublers 
cannot be completely decoupled there, unless the 
crossover in the FM phase near the FM-FI  transition 
bends and approaches the line A or sufficiently influ- 
ences it so that by tuning toward A from the weak 
coupling side the low energy phenomenology re- 
mains practically unaffected and devoid of doublers. 
We have tried to locate the crossover with respect to 
A at w= 0. Keeping in mind the approximate shift of 
the phase diagram for w> 0, we find indications of  
the possibility that the crossover may approach the 
line A but a definite conclusion is difficult because of 
the need to know the position of  A very precisely and 
investigate very close to it. 

In this work, however, we concentrate on the strong 
Yukawa coupling region which is very suitable for the 
purpose of  decoupling the doublers. In the FM(S)  
region for y +  4w >> x/~ a hopping parameter expan- 
sion for the fermion propagator is appropriate. Intro- 
ducing a mean field for the product ~*~x+~,, this 
leads to mv,.~yz -~ and m D . ~ ( y + 2 n w ) z  - I  where 
z2=½ (Tr  qbtx~x+u) is the link expectation value 
[ 9 ]. As the FM (S) -PMS transition is approached, 
v x, 0 and z also decreases though staying finite at the 
transition. As a result mF and rno increase at fixed y 
and w. 

With a choice of w >/0.5 one is in the FM (S) region 
for any y>~ 0 and then choosing y small one can have 
arbitrarily light physical fermions while the doublers 
can have masses of the order of the cut-off since z -  
is O ( 1 ) at the FM ( S ) -PMS phase transition. 
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The PMS phase also has massive fermions. The 7" 
fermion mass follows the approximate z-~ behav- 
iour into the PMS phase [6 ]. This phase could be of 
great interest for the asymptotically free chiral gauge 
theories [ 3 ]. We postpone its discussion for a future 
publication. 

use the notation mF = too, mD -= ml. It turned out that 
within errors ro~ rl and m D ~ mE + 2to j ,  which sup- 
ports the analysis in terms of a free fermion 
propagator. 

6. Fermion masses at w =  0 

5. Details of  the simulation 

Because of the pseudoreality of the SU (2) group 
the fermion determinant is real. This enables us to 
use the Hybrid Monte Carlo algorithm with two 
identical fermion doublets. We have used a 63× 12 
lattice with periodic boundary conditions every- 
where except for antiperiodic ones for the fermion 
fields in the euclidean time direction. 

We analyzed our results of  the SU (2)L.R invariant 
propagators Trsu(2) ( ~L,g ~PL,R > in terms of effective 
free fermion energy formulas. The time dependence 
of the L -L  or R - R  part of  the free Wilson fermion 
propagator at spatial momentum components 0, zc 
with chiral representation of the 7-matrices is given 
by 

ZL, R 
2X/1 + 2rm,  + m 2 

exp ( - E+ t) - t/exp [ - E+ (Nt - t) ] 
× 1 - r / e x p ( - E + N , )  

- E _  t ) - ~ e x p [ - E _  ( N t - t )  l ) 
- ( - 1 y e x p (  l - t / e x p ( - E _ N t )  ' 

(4) 

where ZL,R = 1, E+ and E_ are the rest energies of  the 
fermion and its "t ime doubler", respectively, and 
t/= 1 ( - 1 ) for periodic (antiperiodic) boundary 
conditions in time. The energies are related to the 
mass parameters by 

E_+,. = I n (  y/1 + 2rm. + m 2 + r+ m. . )  , 
i+_--; (5) 

with m , =  m + 2rn and n the number of  components 
of  the spatial momentum equal to n. From fits of the 
fermion propagator to the expression (4) we deter- 
mined E+,, for n = 0,1 and from this m,  and r, using 
(5), allowing r to depend on n. In the following we 

Fig. 2 shows mF as a function of v with w=0  for 
various fixed y=0 .2-2 .0  on a 63× 12 lattice. For x 
deep in the FM phase corresponding to v~> 0.5 there 
is a crossover around y ~  1.4-1.5 where mF is almost 
independent of v. For y <  1.4, mE deafly decreases 
with decreasing v while for y >  1.5 the behaviour is 
opposite. 

As x is gradually reduced to approach the 
F M ( W ) - P M W ,  FM-FI  and FM(S) -PMS phase 
transitions, the v-dependence of mF for fixed y be- 
comes more complex. As can be deduced from fig. 2 
the crossover position seems to depend appreciably 
on K (or v). For y=0.2-0 .8  as the F M ( W ) - P M W  
transition is approached, v goes to zero and so does 
inF. The perturbative tree relation mF =YV is fulfilled 
quite well for sufficiently small v. For y=2 .0  and 
higher, the FM(S) -PMS phase transition is ap- 
proached and the z -  ~ behaviour of  the mass is ap- 
proximately valid for sufficiently large z - t  (i.e., suf- 
ficiently close to this transition). For y =  1.0-1.7 the 
FM-FI  transition is encountered and as already 

r n  F 

3 
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Fig. 2. Fe rmion  mass  in dependence  of  the scalar  field v a c u u m  
expecta t ion  value  v at  w = 0  for different  values  o f y  in a range 
f rom 0.2 up to 2.0. For  y =  1.0, 1.2, 1.4, 1.5 and  1.7 v stays non-  

zero as the F M - F I  phase  t rans i t ion  l ine is approached.  
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pointed out v does not go to zero there. For y =  1.0, 
1.2, 1.4 at moderate values of v, mE decreases first 
with decreasing v, then very close to the transition at 
K = - 0 . 7  and smaller it increases as v further de- 
creases. This indicates that the crossover may shift 
from around y ~  1.4 deep in FM phase to around 
y~  1.0 at the FM-FI  transition. This would be very 
close to the point A in fig. 1. If  the crossover ap- 
proaches the line A in a similar way also for nonzero 
w, there is a good chance that by tuning toward A from 
the weak couplings side (approximately y ~ 0 ,  
w~0.25, K--~ --0.85 ) one may achieve arbitrarily light 
physical fermions and very heavy doublers. 

1TIF,1TI D 
2 . 5  . . . .  ~ . . . .  t . . . .  I . . . .  

2.0 6a12  D:mF } 
/c----O <>:In D / 

1.5 y = ~  

1.0 

0.5 

o.o 

i P~,w ~(~) ~(s) :: PUS 
-o.~ , , , I . . . .  i . . . .  i , ,:, , 

0 0.2 0.4 0.6 0.8 
W 

7 .  F e r m i o n  m a s s e s  w i t h  w > 0 

Fig. 3. The masses mF and mD as a function of w for y---O. 1 and 
to=0 in the FM phase. 

Having now established the crossover and the 
FM (S) region at w = 0 in the full model with dynam- 
ical fermions, we now consider the w~ 0 case and try 
to decouple the doublers using the typical strong cou- 
pling mass behaviour, viz., fermion masses increase 
with decreasing v. We approach the FM(S) -PMS 
phase transition where v ~, 0 and simultaneously have 
small y to allow for light physical fermions. At this 
transition we have looked at the distributions of v and 
z 2 over a modest number of configurations and failed 
to detect metastable states. Actually our preliminary 
results of the scalar mass on a 84 lattice show that it 
is close to the corresponding value (for the same v) 
in the pure O (4) scalar theory which is known to have 
a second order transition. The above preliminary 
checks on the order of the transition are so far carried 
out only at w=O. For w>0 we assume it to be a con- 
tinuous transition although more investigation is cer- 
tainly needed. 

A simple possibility to decouple the doublers is to 
fix y and ~c at appropriate values in the FM phase and 
increase w. If  y is small, mE stays small while mD in- 
creases with w. Fig. 3 shows the physical fermion mass 
mE and the first doubler (n = 1 ) mass mD at ~c= 0 and 
y=0.1 as functions of w on a 63× 12 lattice. At 
w = 0.12-0.13, i.e., at the FM (W)-PMW transition, 
both masses are consistent with zero. Increasing w we 
find an almost negligible increase of mE while mD in- 
creases very rapidly. At w=0.7, i.e., very near to 
FM (S)-PMS transition, my is still around 0.1 and 
mD >> l, showing a clear indication of decoupling of 

the doublers in the FM(S) scaling region. 
In the following we present a more detailed fer- 

mion mass calculation at w= 0.5. Because of the above 
mentioned shift of the phase diagram for w> 0, the 
y =  0 sheet will now be approximately at the position 
y = 4 w = 2 . 0  in fig. 1 so that the FM(S)-PMS phase 
transition can be approached by decreasing i¢ in the 
FM (S) region with arbitrarily small values of y. 

Fig. 4a shows mv and mD as functions of  v at sev- 
eral values ofy from 0.8 down to 0.2 with fixed w= 0.5 
on a 63 X 12 lattice. Both my and mo increase as v de- 
creases. Lowering y means a smaller mE but mD al- 
ways remains substantially above the cut-off. In fig. 
4b we have translated the data of fig. 4a by a simple 
interpolation into a plot of mE and mD as functions 
of y for several fixed values of v. In this figure it is 
more apparent how mE approaches zero as y-~0 ac- 
cording to ref. [ 8 ] while mD remains much above the 
cut-off even very close to the transition and thus the 
doublers get completely decoupled. 

8 .  C o n c l u s i o n  

In the FM (S) region the fermion doublers can eas- 
ily be given O ( 1 ) masses with scaling values for the 
fermion masses as vx~0 at the FM(S)-PMS phase 
transition. Our results favour strongly the possibility 
of a lattice regularized theory with chirally coupled 
fermions. They have to be extended to larger lattices 
to estimate finite size effects which are certainly pres- 
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A c k n o w l e d g e m e n t  

We have  bene f i t ed  f rom discuss ions  wi th  K. 

Jansen ,  J. Jers~k, T. N e u h a u s  and  J. Smit .  The  con-  

t i nuous  suppor t  by H.A. Kas t rup  is grateful ly  ac- 

knowledged .  The  numer i ca l  s imula t ions  have  been  

p e r f o r m e d  on  the  the  Cray  Y - M P / 8 3 2  at H L R Z  
JiJlich. 
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Fig. 4. (a) The masses mr and m e  displayed as a function ofv at 
w=0.5 for various values ofy. (b) The masses mr and rn D inter- 
polated from fig. 4a shown in dependence ofy for fixed values of 
v. The dashed straight lines correspond to K= oo. 

ent  in ou r  data.  O u r  p rev ious  q u e n c h e d  results  [ 1,2 ] 

are in qua l i t a t ive  a g r e e m e n t  wi th  the  u n q u e n c h e d  re- 

sults p resen ted  here. A recent  q u e n c h e d  [11]  and  

p rev ious  exp lora to ry  u n q u e n c h e d  analyses  [ 7 ] in re- 

la ted chiral  mode l s  c o n f i r m  ou r  results  and  suppor t  

the  v iew in ref. [ 3 ]. Ge t t i ng  r e n o r m a l i z e d  Yukawa  

coupl ings  f rom the  lat t ice and  its c o n f o r m i t y  wi th  

pe r tu rba t ion  theory  in the  c o n t i n u u m  for  the  lowest  

lying spec t rum is ve ry  i m p o r t a n t  and  is present ly  un-  

de r  inves t iga t ion .  
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