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Anomalous aspects of chiral quantum gravity in two dimensions
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We study anomalous aspects of a theory in which a set of chiral fermions is coupled to gravity in
two dimensions. We first give a perturbative derivation of the effective action in the conformal
gauge. From this the complete fermion propagator is obtained in the path-integral formalism, and
also from operator solutions. The fermion is shown to acquire an anomalous dimension purely by
quantum effects, i.e., through interactions with scalars which are dynamical only after quantization.

The renormalization of the theory is also discussed.

I. INTRODUCTION

Quantization of gauge theories which are afflicted with
gauge anomalies is known to be problematical. Several
years ago, however, Faddeev and Shatashvili! proposed a
possible framework to overcome the difficulty by adding
the Wess-Zumino action to the original system in order
to cancel the anomaly. Independently, Jackiw and Ra-
jaraman? showed that the chiral Schwinger model, where
a chiral fermion couples to a U(1) field in two dimensions,
yields a consistent unitary theory, although it is anoma-
lous. The common rule for the successful quantization in
both cases is that one should consider the gauge degrees
of freedom as dynamical ones; either they are explicitly
dealt with in the Wess-Zumino action! (gauge-invariant
formulation) or their effect is implicitly accounted for by
integrating them out® (anomalous formulation). Actual-
ly, both formulations have been shown to be equivalent.®
Since then, many efforts have been made to quantize oth-
er anomalous models. For instance, Li* considered a
theory of gravity coupled to a set of chiral fermions in
two dimensions. However, until recently the chiral
Schwinger model (and its generalized versions) had been
the only soluble, consistent anomalous gauge theory.

The situation changed when Li’s theory was recon-
sidered® as a theory of two-dimensional quantum gravity
based on the idea of Polyakov.® It has been shown in
Ref. 5 that although chiral quantum gravity is afflicted
with both gravitational and Weyl anomalies, the theory is
unitary if the number of fermions of each chirality is less
than or equal to 24. The constraint on the number of
chiral fermions is also crucial for closing the deformation
algebra, which is necessary to set up the physical space
consistently.7 Moreover, it has been found that in the
conformal gauge the effective action of chiral quantum
gravity has a structure analogous to that of the chiral
Schwinger model. This unexpected discovery motivated
us to investigate further chiral quantum gravity in order
to reveal common features with the chiral Schwinger
model, and thereby elucidate some characteristic aspects
of anomalous gauge theories.

For this purpose, we discuss in Sec. II the sources of
the anomalies in chiral quantum gravity by presenting a
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perturbative derivation of the effective action in the con-
formal gauge. In Sec. III we obtain the complete fermion
propagator in the path-integral formalism. The propaga-
tor exhibits an anomalous dimension that is common not
only for the chiral Schwinger model, but also for some
other soluble models in two dimensions, e.g., the Thirring
model® and the Schroer model.® Operator solutions for
the fermion, which reproduce the complete propagator,
are also briefly discussed. To realize the specific feature
inherent in chiral quantum gravity which discriminates it
from nonanomalous models, a perturbative derivation of
the propagator is presented in Sec. IV. It is then shown
that induced massless scalars, which become dynamical
only at the quantum level, are responsible for the anoma-
lous dimension. Furthermore, the wave-function renor-
malization constant is shown to be equal to the vertex re-
normalization constant, which usually follows from the
Ward-Takahashi identity for nonanomalous gauge
theories. This equality ensures that there is no renormal-
ization for the gravitational coupling with the fermion.
Section V is devoted to the conclusion and discussion. In
the Appendix we provide a detailed calculation of the
effective action discussed in Sec. III.

II. EFFECTIVE ACTION I ¢

In this section we discuss how the effective action of
chiral quantum gravity is constructed from anomalies. In
the conformal gauge we can do this in a way parallel to
the one discussed for the chiral Schwinger model*!° so as
to compare the two models easily.

To begin with, we recapitulate what is known about
chiral quantum gravity,® where a set of chiral fermions
(ng right-handed and n; left-handed fermions) interacts
with gravity (zweibein ej) through the action

_ \/_— i T ax
Ip= [ dx g el ya) . (2.1)
[Notation: y°=oc,, y'=io,, y’=—y%'=0; €'=1,
Y ¥r o =%Yr, x " =(1/V2)(x+x").] The effective ac-
tion I.g=—i lnfdt,bdlz;edF has been obtained by
Leutwyler!! by means of heat-kernel regularization for
the fermion determinant:
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_ 1 N 1 — — —  a .
Ieff——mfdx TV—gR‘/—__*ﬁ(a\/—gR +BV —ggV,0,)+uV —g +5\/—gg“ w0, | (2.2)
where a=ng+n;, B=ng—n;, and two arbitrary pa- . i
rameters p and a represent regularization ambiguities. Ir= fdxje (ry 0-9Yg), (2.8)

Here we define o, =¢e%w =

m u,ab —Eabe:VHEbv, with wy,ab be-
ing the spin connection. In order to quantize the gravita-
tional sector in the path-integral formulation, we consid-
er an integration over the zweibein modulo the
diffeomorphism volume, dej, /Vg. Then it may be
effectively replaced by integrations of the Weyl and the
Lorentz degrees of freedom, ¢ and F, which are the vari-
ables of the zweibein in the conformal gauge:

coshg ~sinh§
=59 —p®/2
8uv=e My, e =e . F F (2.3)
—smh? cosh?

Taking into account the Weyl anomaly associated with
the conformal gauge fixing amounts to adding (24 times)
the Liouville action I,

2=

(The Einstein-Hilbert gravity action is a topological in-
variant in two dimensions and can be disregarded.) The
total effective action I=1_4+241;, can be diagonalized
and reads

i g+241,

de? i
Loler= [d¢dF e (2.4)
Vair

N b 2 64 9 (a2
Iy 287 fdx 2(8“(;3) +ue?+ 2(aHF) ,  (2.5)
with
B 1|8 ’
_ b — o 2B
F F+4a o, b 24 > a 4 (2.6)

In the simplest case where the arbitrary parameter u is
chosen to be zero, one finds that the theory admits two
massless scalars ¢ and F. They have positive-norm states
if the number of each of the chiral fermions satisfies

ng <24, n; <24 . 2.7)

By the unitarity requirement the arbitrary parameter a is
limited by (m ,—mg)/2<a=(m  +mg)/2, where m ,
and mg are the arithmetic and the geometric means of
24—ngi and 24—n;, respectively: m  =[(24—ny)
+(24—n;)1/2, mg=1"(24—ng N(24—n, ).

Now we show how anomalies related to symmetries in-
herent in the classical theory make up the effective action
and eventually render the theory nontrivial. This point
has already been discussed by Alvarez-Gaumé and Wit-
ten'? in a gauge where the zweibein is symmetrized. In
the conformal gauge, however, we should give an alterna-
tive argument in which some modifications are needed,
which is also appropriate for comparison with the chiral
Schwinger model. For simplicity, we focus on a theory
with one right-handed fermion, governed by the action

where we set h =(¢—F)/2. At the classical level, the
theory is symmetric under Weyl and Lorentz transforma-
tions. As a result the energy-momentum tensor
T,,=(—1/V —g)e, (81 /8el') should be traceless,
T,_ +T_,=0, and symmetric, T, _=T7T_,. (In the
conformal gauge, one trivially has T, ,=T7__=0.)
Since T, _ vanishes identically due to the chirality of the
interaction, the only meaningful equation is

T_,=0. (2.9)

Indeed, with the help of the equation of motion for the
fermion

(3_+13_hr=0, (2.10)

we confirm that the energy-momentum tensor derived
from the action (2.8),

(2.11)

r_,= eh(IZRYJS}JpR) )

£
2
vanishes at the classical level. We may recall a similar
situation for the chiral Schwinger model, where chiral
symmetry results in a conserved chiral current at the
classical level, which is confirmed by use of the fermion’s
equations of motion. In chiral quantum gravity the
divergence of the chiral current is replaced by the
energy-momentum tensor.

Let us derive the fermionic effective action I 4 by treat-
ing & as a background field in perturbation theory. In or-
der to define a propagator (i3) ' for the fermion, we add
a free left-handed fermion to I, in Eq. (2.8):

Ix= [ dx igdy+ fdxéh (Fry 8 vdp)+0(h?) .

(2.12)

Since the interaction part in Eq. (2.12) is proportional to
the energy-momentum tensor 7, in Eq. (2.11), each of
the perturbative contributions, which are correlation
functions of 7 _’s, appear to vanish due to the Weyl
and the Lorentz symmetries. Unfortunately, since the in-
teraction term contains a derivative, the contributions are
quadratically divergent so that we cannot neglect them
naively. This situation differs from the case of the chiral
Schwinger model, where all the perturbative contribu-
tions of current correlation functions, except the logarith-
mically divergent one with two external lines, are seen to
vanish because of their finiteness.!> Therefore we gen-
erally have to evaluate diagrams with n external A fields.
However, assuming that the Lorentz (or the Weyl) anom-
aly of the theory is proportional to the Riemann curva-
ture, we may fix the effective action to be quadratic in ¢.
Then we are allowed to consider only the diagram with
two external lines of A, depicted in Fig. 1. Itis
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FIG. 1. Diagram which contributes to the effective action in
o (h).

d .
Ig=1 (2:)2h<p)11<p)h<~p), (2.13)
with
(2k
——~f dk P , (2.14)
a) k_(p—k)_

which appears, as stated above, quadratically divergent.
Note that in the symmetrized gauge'®!* we encounter an
integral which is similar to Eq. (2.14) but has a different
tensorial structure and accordingly is readily evaluated
by using tricks introduced in Ref. 15. However, in the
conformal gauge the tricks does not work and one has to
find out a way to give meaning to the integral (2.14). This
is done by employing dimensional regularization, where
no divergent part shows up in this case, which gives

P+P—

I(p)=— 2.15
(p) Sy ( )
Using a relation @ = —2d _A in the conformal gauge, we
end up with

de _
)|0>:f Ve.u d]/]dlpefh(x)/Zw;z(x)e

diff

COITyg (x)9g (y

—h(,v)/Z.J}Q (y)e
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(2.16)

In arbitrary coordinates Eq. (2.16) becomes exactly the
effective action I 4 in Eq. (2.2) for the case a=f=1, up
to general coordinate-invariant local counterterms
JdxV —gg"w,o,and [dxV —g.

For dimensional regularization we encounter the ambi-
guity in defining y matrices in d dimensions. Here we
only take into account the two-dimensional part of them
and disregard the ambiguity of order e=d —2. This am-
biguity reflects the arbitrariness of the effective action
(2.2). A detailed discussion for it is provided in the Ap-
pendix.

III. FERMION PROPAGATOR

Coming back to the general case of a and 3, we can
study the physical behavior of the fermions by observing
the complete propagator, e.g., for the right-handed fer-
mion,

_ de? _ _ ;
(O TR )T (0)]0) = [ - d g d v (x)Tg (»)e '
diff

(3.1)

By employing a familiar trick in the path-integral formal-
ism,!® we can easily evaluate it in the following way.
First we note that the fermion can be made free by the
chiral transformation

Yr —’1// h/zl/’

in the action (3.1). However, as is well known, this trans-
formation induces an anomalous Jacobian,>!” dydv

— il
=dy'dy’e *". As a consequence Eq. (3.1) becomes

(3.2)

il

=quﬁdF‘dtb’dtZ’eﬂh(xv”””””lﬁ}dx)lﬁ}g(y)e I

=P 4(x,)Pp(x,»)iSh(x —y) ,

where S§(x —y) is a free fermion propagator for a right-
handed fermion, and Py and P} represent the ¢ and F
path integrals, respectively, after diagonalizing the action
with Fin Eq. (2.6).

The integral P, is involved for u70 because we need
the propagator for ¢ in the Liouville theory. However,
when u is chosen to be zero, it is easy to calculate Py by
rescaling ¢—V'b /487 ¢:

Pylx,p)= [ ddexp [c (60 +o(3)]+i [ dz 48,620 |

—qu&exp[fdz%

=exp{ —ic}[Dp(x —y)+Dr(0)]} .

2)P+J (z;x,9)(2)}

(3.4)

(3.3)

f

Here we defined a source J(z;x,y)=—ic[b(z—x)
+8(z—y)] with ¢=—(1+B/4a)V'37/b, and Dg(x)

— (i /4m)In(—m2x2+i0) is the propagator for a mass-
less scalar with an infrared-cutoff mass m. Together with
an analogous procedure for P, we finally arrive at

(O| TR (x)P g (»)]0)

—47ik[Dp(x —y)+Dp(0)]}iSE(x —y) ,

where k=(3 /4ab)(24—n, ), with b given by Eq. (2.6).
From this, one may define the renormalized propaga-
tor for the renormalized fermion ¢ =Z; />4 with

=exp|{ (3.5

—4mikD(0)

Z,=e (3.6)
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(Usually, wave-function renormalization is performed to
normalize the residue of a pole at the physical mass.
Here we use ‘“‘renormalization” simply to mean the re-
scaling which eliminates the infinity in the fermion prop-
agator.) Then, for (x —3)? <0, one has

1

(0| Ty ( —_———
TR [m2l(x —pP| ¥

Wr(»)|0)= iSE(x —y) .

(3.7)

It implies that the fermion is not free for x —y and ac-
quires an anomalous dimension k. Owing to the unitarity
condition for the theory it has the lower limit

3

> -
KZ o (3.8)

For the case of Dirac fermions, ng =n; =np, one is natu-
rally led to choose @ =0 to ensure the Lorentz invariance
of the theory. As a result, the Weyl anomaly associated
with the Lorentz degrees of freedom is absent and ac-
cordingly the number 24 is shifted to 25. In this case the
anomalous dimension of the fermion is uniquely deter-
mined:

3

sz . (3.9)

We also see from Eq. (3.7) that the canonical anticom-
mutation relation is anomalous: {¥k(x), ¥R (D)} Er
#8(x'—y1). Proceeding analogously, the propagator for
the left-handed fermion can also be seen to have a form
identical to Eq. (3.7) with obvious replacement of S} by
S ,{ , the free propagator for the left-handed fermion.

The renormalized propagator (3.7) can also be obtained
directly in the operator formalism. For this, we have
only to notice that the equation of motion for the fermion
(2.10) can be formally solved by g (x)=e "2k (x T)
in terms of a free right-handed fermion ¢4 (x *). This im-
plies that the operator solution for the renormalized fer-
mion may be given by

! 4+ 3F

Ph(x)=:exp Wph(xt) . (3.10)

B
+_
4a

For u=0, one can readily confirm that it reproduces the
renormalized propagator (3.7), with the help of the iden-
tity e :eB:=e[A(+)'B(7)J:eA+B:, valid for free fields 4
and B.

Remarkably, even for u0, there is a particular point
of regularization,

__B

a 4’
where the right-handed fermion (3.10) consists of only
free fields F and 1% . Because of the positivity constraint
on a, Eq. (3.11) is possible only if the theory contains
more left-handed fermions than right-handed ones, i.e.,
ny >ng. Of course a similar situation exists for the left-
handed fermions: 1; can be solved analogously to (3.10),
and at a point a =[3/4, the left-handed fermions become
free if ngp > n;. Such a point does not exist for Dirac fer-
mions.

(3.11)

IV. RENORMALIZATION

The appearance of an anomalous dimension for the fer-
mion is a common feature of several soluble two-
dimensional models, such as the chiral Schwinger model,
the Thirring model® and the Schroer model.® In fact, be-
cause of conformal symmetry, the latter two models have
the same fermion propagator, Eq. (3.7), up to the value of
the anomalous dimension. For the chiral Schwinger
model in the anomalous formulation, Eq. (3.7) also holds
as long as we look at the short-distance region which re-
covers conformal invariance. In each of the models the
anomalous dimension arises from the contribution of a
scalar field which interacts with the fermions in the
theories. However, the nontrivial aspect of chiral quan-
tum gravity lies in the fact that the massless free scalar
fields (the Weyl and the Lorentz degrees of freedom) ap-
pear only at the quantum level. In other words, the in-
teraction is solely due to the quantum effect of the anom-
aly. We have a similar situation in the chiral Schwinger
model, where the longitudinal degrees of freedom in the
U(1) field is partly responsible for the anomalous dimen-
sion.'®!® It is a salient feature common to anomalous
models that the fermion propagator exhibits an anoma-
lous dimension through the scalar fields being made phys-
ical by the anomaly at the quantum level.

To gain a better intuitive understanding of this non-
trivial situation, let us evaluate the fermion propagator
perturbatively. The vertices needed to calculate diagrams
up to two loops are given in Fig. 2. Here we note that the
Weyl and the Lorentz degrees of freedom acquire their
kinetic terms in the effective action (2.2) owing to the
quantum effect of the fermion. Accordingly the propaga-
tors for those degrees of freedom are ‘“‘complete” ones,
namely, they require no further corrections. Their com-
bined effect on the fermion shows up in the propagator

for h:
(O|Th (x)h (y)|0)=—16mikDp(x —y) . 4.1)

From this we recognize that the power of the anomalous

7 4
7/ /
« ~
7/ 7
» P~ < P .
T p—k p N poki—h
AN
ke N\
ko,
«
7/
e
Fa3 > >4

> > » >
4 P p—

k

FIG. 2. Vertices appearing up to O(h?); they read
(i/2)2p—k)_y ,(1/2)2p —k,—k,)_y (Z? —1) and
(ZV—1)(1/2)(2p —k)_y~, respectively. Z%* is the two-loop
wave-function renormalization constant and Z " is the one-loop
vertex renormalization constant, which are necessary to renor-
malize contributions up to O (k).
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dimension k corresponds to the number of loops in calcu-
lating the fermion propagator perturbatively. Hence it is
clear that the anomalous dimension is generated by the
massless scalars coupled to the fermion. Actually if we
sum up all the relevant diagrams up to two loops collect-
ed in Fig. 3, we obtain

2
S31°%(p) =5 (p) {1+kIn | —£&
m
2
K_2 _QZ 4
+? In mz . (4.2)

The expression (4.2) is in agreement with the complete re-
normalized propagator in the momentum space up to
0 (k).

In the above perturbative calculation one notices a
quite interesting point: the vertex renormalization con-
stant Z, is identical to the wave function renormalization
constant Z,: Z,=Z,. Actually this aspect is suggested
by the fact that only the rescaling of the fermion is need-
ed to get the renormalized fermion propagator (3.7). It
becomes clear by looking at the self-energy correction
and the vertex correction. The corresponding one-loop
diagrams are depicted in Fig. 4. The self-energy correc-
tion =V(p) is given by

_r dk (2k—p2
2(1)( )= —
=m0 K2(p — k)%
_p2
=—ip_y {1—Z +kIn 3 . 4.3)

On the other hand, if we set the momentum insertion

’ ~ ’ ~ 4 ~
£ Y 2 (N Ky
P RN "—\‘ /——s\
’ AN ’ N ’ N
L AY L LY L A}
< 7 ) 7 N ’
Neo - \ L R ’
\s—’ S ="
-—— PR
P ~ ., ~ -
4 A ’ N, Pad N
4 — L M L \ 7
\ 7 Ny
’
AR \\_,’ AT
Py --
. N z ~
) N AV A
N
- - -
’ N, ’ ~ - N
Lo NeN L A ’ v N
7 VA

FIG. 3. Diagrams which contribute to the fermion propaga-
tor up to O (x?).
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k k
7 » = ~ Pd > = ~
N\ / N

_>_1__..>__,.., \ ) \
> T 1 g
P p—k P P \ P

A

|

p-p

FIG. 4. The self-energy correction ='"(p) and the vertex
correction I'"(p,p") in O (k).

p’—p to be zero for the vertex correction, I''(p,p’), we
find that it yields exactly the same integral expression as
the right-hand side of (4.3). It then follows that both re-
normalization constants are equal and read

Z\V=zV=1—i lim %2(1’(p)=1~47riKDF(O).
p_—® —

(4.4)

This gives correctly the complete wave function renor-
malization constant Z, in Eq. (3.6) up to O ().

As a result of the equality (4.4), there is no “coupling
constant’ renormalization in our theory; that is, the bare
constant 1 which is the coefficient of the interaction be-
tween s and fermions is not renormalized. This remark-
able aspect of renormalization is also common to other
soluble models in two dimensions, as the Thirring model
or the chiral Schwinger model. '®

V. CONCLUSION AND DISCUSSION

In this paper we first presented a perturbative deriva-
tion of the effective action of the chiral quantum gravity
in the conformal gauge. It coincides with the one origi-
nally derived by Leutwyler with a more involved
method, ! if only the diagram with two external lines is
considered. This restriction could arise from the form of
the anomalies the effective theory should possess. If this
criterion is disregarded, the perturbative effective action
in the conformal gauge would contain terms of arbitrary
order in the external field. We have seen that the
energy-momentum tensor in the chiral quantum gravity
corresponds to (the divergence of) the chiral current in
the chiral Schwinger model; both vanish classically but
nevertheless their correlation function gives the effective
action because of the anomalies at the quantum level.

From the effective action, we obtained the complete
fermion propagator for the case ©x=0 and found that it
acquires an anomalous dimension. Further it has been
shown that the equality of the wave function and the ver-
tex renormalization constants holds although the sym-
metries are broken by the anomalies. It is however
known that these aspects, the appearance of the anoma-
lous dimension and the equality between the two renor-
malization constants, also exist in other soluble models in
two dimensions. Indeed, at the quantum level in the con-
formal gauge the chiral quantum gravity resembles the
Schroer model in its massless case. What makes the
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chiral quantum gravity distinct is that the scalars, which
give rise to the anomalous dimension to the fermion, be-
come dynamical only at the quantum level due to the
Weyl and the Lorentz anomalies. Since a similar quan-
tum effect is also present in the chiral Schwinger model,
it seems to be a typical feature of anomalous gauge
theories in two dimensions.

ACKNOWLEDGMENTS

We would like to thank F. Brandt and G. Kramer for
useful discussions. We are supported through funds pro-
vided by the Studienstiftung des deutschen Volkes (T.B.)
and by the Alexander von Humboldt Foundation (I.T.).

APPENDIX

In this Appendix we present the perturbation theoretic
derivation of the effective action including one of the am-
biguous terms in Eq. (2.2). For this purpose we use arbi-
trary coordinates in flat Minkowski metric, instead of the
light-cone coordinate used in obtaining Eq. (2.16).

The interaction part of the action (2.12) linear in

=1(¢—F) reads

An l‘ -— Rd
I;Ifdxzh[lpyﬂa#(wys)w] . (A1)
In the perturbative expansion we employ dimensional
il

regularization to evaluate the contribution of O (h2). We
then immediately encounter the well known difficulty
with the definition of ,},5 in d dimensions. However, it
may be circumvented by means of the Breltenlohner—
Maison scheme, !° where the d-dimensional y is defined
in such a way that it no longer anticommutes with d-

dimensional y, matrices, but still satisfies (y>)?=1. Y, in

the vertex may generally be written as
7u=rv,ts0,0"7° (A2)

where 6,,=¢,,+0(€) is an antisymmetric tensor

(e=d —2), and r and s are arbitrary parameters which
satisfy

r+s=1+0/(e), (A3)
so that ¥, in (A2) satisfies ¥,—y, as d—2. This
prescription has been originally proposed to derive the
general effective action of the chiral Schwinger mod-
el.2%2! In our case one realizes that the interaction ver-
tex in (A1) can also be generalized:

—_ = — 5 5
V,=(¢7,—F60,.7 “y)(1+y°) .

V', is the most general vertex which gives the original one
n (Al) as d —2. (¢ and F may be exchanged without
affecting the final result.)

Then the effective action is given by

(A4)

i (2k —p(p —k)°(2k —p)*
enl$ F]= l f ) f K2p —k)? Liovp(p)
=L 11“‘””( ) F TP (p)+0(€) [T (p) (A5)
64 2 )2 0 p € ,uovpp ’
where I, ,(p)=Tr[V,(p)y,V,(—p)y,] and
1% (p)=— —1217 [—p*(g"7g*P+g 7 g +g""g ") +4(p plgH" +pprg)
+10p°p*g"* —8p¥pPe™ —2p¥p°e P —5pFpgf],
(A6)
167" (p)= ——367 4p*(ghg P +g g +gH g ?P) —13(p"p’g +ppPgh)

% Vi Vi vV, 3 v
—31p°p gt +23ptpPg +5ptpg P+ 14ptp g 7P + ?p”p"p P’

As I§°YP(p) is not singular in €, the contraction with "

done in d dimensions. The result is

Ieﬂ‘[¢’F] 384
=mfdx[%¢l](¢—F (a/2)(¢—F)O($+F)],
where we used the condition (A3) and set s = —2a. This

expression (A7) is just the conformal gauge version of
(2.2) for a=p=1 without the u term, as we have
R =—¢ ?0¢, 0, =3, (F+¢) in this gauge. It is not ob-

novp
ly to the unambiguous contribution of the effective action. The contraction of (1/€)I*%?(p) and T

(p) can be performed with d =2. This leads straightforward-

uovp(P) has to be

—— [dx[(r +9X¢—PDO(¢—F)+(r}—s>)(¢—F)D($+F)]

vious how to get the pu term in the conformal gauge, be-
cause it would require to calculate perturbative contribu-
tions in all orders of A.

We finally comment on a subtlety in defining the
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theory. We evaluated the effective action by generalizing
the vertex to d dimensions [see Eq. (A4)]. Instead, one
may define the interaction part (the energy-momentum
tensor) by a usual point-splitting procedure, as it has been
done for the current of the chiral Schwinger model to get

the ambiguous term in the model.!° This however fails to

get the ambiguous a term in the present model, since the
“phase” part which restores the Weyl and the Lorentz in-
variances is real, in contrast with the imaginary phase in
the current of the chiral Schwinger model.
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