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The complete O(a) electromagnetic and weak radiative correct~ns for the differentia~ 
section datr/dx dy of the charged-current deep inelastic lepton-proton scattering at HERA are 
calculated. A Monte Carlo integration technique for the evaluat~n of the single 
brcmsstrahlun~ contribution is explained. We derive formulas that are relevant for t ~  eggmen- 
tiation of soft photonic corrections and show numerical results. Those d~ffere~ m the 
predictions are discussed that arise when either M w or the ~ decay constant G~ h ~ as 
input. In particular the top quark mass dependence of the NC/CC cross sectkm ratk~ h 
investigated. 

1. Introduction 

Radiative corrections for deep inelastic l ep ton-pro ton  scattering at H E R A  have 

been calculated in the past by two independent  groups (Bardin et al. [1,2] and 
B6hm and Spiesberger [3, 4]). Recently a comparison of the results has led to the 

conclusion that  the O ( a )  corrections for the neutral  current  cross section are 

sufficiently well understood [5, 6]. The leptonic corrections to the charged current 

process have been calculated in the leading logarithmic approximation in ref. [7]. 

But a confirmation of the results for the complete O ( a )  electroweak corrections 

for charged current  scattering is still missing. In ref. [2], the electroweak correc- 

tions for CC scattering have been presented, the calculations following the same 

lines as for the NC process [1], whereas in ref. [4] the full corrections had been 

given only for the partially integrated cross section d ~ r / d Q  2. 
In this note we present  results for the charged current  twofold differential cross 

section d E t r / d x d y  that confirm those of ref. [2]. The calculation of the 

bremsstrahlung contributions is performed using a Monte  Carlo integration tech- 

nique which will prove valuable in a future development of a Monte Carlo event 

* Supported by Bundesministerium fiir Forschung und Technologie, 05 4HH 92P/3, Bonn, Germany. 

0550-3213/91/$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland) 



110 H. Spiesberger / Radiatirecorrections 

generator for the simulation of charged current events including radiative effects 
[8]. We shall explain the method in some detail. 

The corrections are known to grow large but negative in the low y-high x 

region. This behavior is due to the dominance of soft photon corrections. It is well 
known that for an adequate description of this situation higher order corrections 
are needed. These may be derived from the exponentiation prescription ~ la 
Yennie et al. [9]. We have derived the relevant formulas and present numerical 
results for the corrections including multiple photon effects. 

Through the self-energy corrections the deep inelastic cross sections depend on 
the yet unknown masses of the top quark and the Higgs boson. We shall discuss 
the question whether the measurement of the ratio of neutral current over charged 
current cross sections R+ for electron or positron scattering could be used to 

d~: ~ive limits on the top quark mass. The sensitivity of R + on m t depends on the 
choice of the input parameters: the theory can be fixed either by the weak boson 

masses M z and M w or by M z and the /z  decay constant G,. In the latter case, 
Mw must be calculated from G, by a formula that includes O(a)corrections, too. 
The resulting value for M w (and consequently the coupling constants via s 2 = 1 - 

2 Mfv/M z) also receive an m t dependence. In the case where G~ is used, the final 
top mass dependence is rather flat and a derivation of m t limits from R + would 
require high precision measurements. One does not gain much in using a fixed 
value for M w as input. Although the sensitivity of R _+ on m t is increased thereby, 
the experimental uncertainty on the value of the W boson mass will probably not 
allow us to derive statements on the value of mt. 

2. The non-radiative cross section 

We start by repeating some basic formulas for the Born cross section. The 
kinematical variables Q2, x, and y are determined by 

Q2=  _(p_p , )Z ,  
X = 

Q2 

2 P ( p - p ' )  ' 

P(p-p') 
Y= Pp xS (1) 

from the 4-momenta p, p', and P of the incoming charged lepton, the outgoing 
neutrino and the proton. S is the square of the center-of-mass energy S = (p  + P)2. 

The neutrino momenturr: p'  cannot be measured directly, but we assume that it 
can be reconstructed from the measurement of the hadronic final state [10]. The 
determination of x and Q2 from measured momenta will deserve further com- 
ments if there is an additional photon (see below). 
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The lowest order cross section reads 

d2or ]Born 'i'g °t 2 x S  

d x d y  cc = 2 s 4  (Q2 + M 2)2 {q + (1 - y)Z~}. 
(2) 

The parton distribution functions enter in the combinations 

0 

u + c  f o r e -  and ~ =  d + ~  f o r e -  
q= d + s  fo re  + ~+~" f o r e  + . (3) 

They are taken as input described by one of the parametrizations that are available 
in the literature. By their Q2 dependence, OCD corrections in the leading 
logarithmic approximation are taken into account. Radiative corrections of 
origin are, however, not discussed in this paper. We restrict ourselves to the study 
of electroweak effects. 

The Feynman diagrams describing the virtual O(a)  electroweak corrections are 
shown in fig. 1. The relevant formulas have been given in ref. [4] (see also ref. [ t lD 

a ~-~oop to the cross section. The basic building and lead to an overall correction 1 + occ 
blocks needed for the calculation of a~-~oop • -cc are self-energies, vertex corrections, 
and box diagrams [12]. They were calculated in the on-mass-shell renormalization 
scheme (OMS). In this renormalization scheme, the basic parameters in the 
formulation of the lagrangian and the counterterms are the fine structure constant 
a,  the weak boson masses Mw, Mz, the Higgs mass M n, and the fermion masses 
mr. The conditions that fix the counterterms express the requirement that the mass 
parameters describe the experimentally observable positions of the poles of the 
respective propagators. Each physical observable is determined as a function of 

these basic parameters. 
A drawback of this scheme is the fact that the W boson mass Mw is not yet well 

measured directly. It has therefore become customary to use as experimental input 
instead of Mw the measurement of the # decay constant G~,. The formulation of 
the theory and the definition of counterterms is thereby not affected: Mw still 
describes the physical W mass. The on-mass-shell scheme where this experimental 
input is used is sometimes called the modified on-mass-shell scheme (MOMS). In 

lowest order the relation 

• "a 1 (4) 
swMw 

describes the transformation from one scheme to the other. In order to be 
consistent one has to include radiative corrections to/z  decay in this relation, too, 
when calculating predictions for other observables in higher orders. Higher order 
corrections to eq. (4) are traditionally collected into a factor 1 - ~ r  [13] changir~g 
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Fig. 1. Feynman diagrams contributing to the O(a)  radiative corrections for charged current scattering. 

eq. (4) into 

~-~ 1 1 
(5) 

s w M  w 1 - A r  
i 

We shall discuss the consequences of using Gu as experimental input instead of a 

fixed value for M w in some more detail below. 
The photonic part of x l-~oop contains infrared divergent contributions. To deal vCC 

with them, the emission of real photons must also be considered. The 
bremsstrahlung cross section is split into a soft part, where the emission of a 
photon up to a maximal energy k 0 is included and a hard part where the photon 
energy is bigger than k 0. The soft part is treated analytically in the soft photon 
approximation and results in a correction xsoft The infrared divergence is con- '-'CC " 
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tained in this part and cancels against that coming from virtual plmtonm correc- 
tions: ,-cca~n + "-cca~q~'P is infrared finite but depends on the unphys~c~! parameter ko. 
The dependence on ko will disappear when hard photons are included. In 
numerical evaluation the cutoff ko is chosen to be small ~ comp~ed to the 
energies of the fermions such that the soft photon a ~ r o x i m a t i ~  is j~ i f ied ,  k,~ is 
also chosen smaller than the experimental resolutkm for p ~  detectkm. 
soft bremsstrahlung thus describes the emission of u n ~ e r v e d  p h ~  and ~ -  
tributes to the non-radiative cross section 

= 1 
d x dy cc cc 

In the neutral current process there is a direct way of c|ass[~ing the correctkms 
into purely electromagnetic and purely weak ones. The electromagnetic contribu- 
tions can be further separated into parts describing |eptonic radiation, radiat i~ 
from the quark line and the interference of leptonic and quarkonic radiation. S ~ h  
a classification is not only helpful for a better understanding of general features of 
the corrections. It is also necessary for the separation of the quarkonic corrections. 
These contain mass singularities = in(m~/Q 2) which have to be factorized and 
absorbed into the definition of the quark distribution functions [14]. O t h e r ~  the 
predictions for the deep inelastic cross sections would depend on ~ |Me~ed  qua~  
masses. 

The appearance of diagrams with the non-abel|an WWy coupling prevents us 
from seeing immediately how the corrections could be separated into ieptonic, 
quarkonic, and lepton-quark interference parts. This separation is obviously not 
possible in terms of Feynman diagrams. In ref. [2] it has been shown how it can be 
derived nevertheless in a gauge invariant way. For this one has to express the 
charge of the outgoing quark with flavor f ' ,  Qr, and of the W bosom Qw, by the 
charges of the initial quark with flavor f ,  Qf, and the lepton, Q,,  by 

iQ,[ = IQw[, Qf ,  = Q, + Qf- (7) 

The different terms in the bremsstrahlung cross section [4] can then be rearranged 

into the form 

d2tr [BS 

 O-Y y) +Q, Qf,***(x,y) (8) 

In the same way the virtual and soft corrections are separated into a lepton|c, an 
interference, and a hadronic part. The mass singularities due to the incoming 
lepton are then all contained in L, those of the incoming quark in H. They can be 
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calculated explicitly, e.g. in the collinear approximation and it can be shown that 
the singular terms are process independent.  Thus the basic assumption of the 
parton model is not upset: deep inelastic processes can be described by cross 
sections that factorize into process-independent quark distribution functions and 
singularity free cross sections for hard subprocesses. 

There are also mass singularities from the final quark = ln(m2./Q 2) in individ- 
ual terms contributing to L, I, and H, but as is expressed in the 
Kinoshi ta-Lee-Nauenberg theorem these mass logarithms will cancel whence 
virtual and soft parts are combined with the corresponding hard photonic contribu- 
tions. The independence of the final results on me. provides a check of the 
correctness of the numerical results. 

3. Single photon bremsstrah|ung 

In this section we discuss the contribution from hard bremsstrahlung. Some of 
the emitted photons in this case can have energies above the detection threshold. 
But even if their energy, would be large enough for detection they need not be 
observable in a realistic experiment. Most of them will disappear down the beam 
pipe faking a non-radiative event. The calculation of the cross section for events of 
this type would need the introduction of cuts in the angle variables. But instead of 
complicating the calculation by this we prefer to perform the phase space integra- 
tion without any restriction. The assignment of 4-momenta to the incoming and 
outgoing particles that we use to describe the radiative lepton-quark scattering 
eq ~ vq'7 are shown in fig. 2. We shall also use the invariants for the lepton-quark 

p 
P 

e 

k ¥ 

P ~f~ , , 

~, Q2 =_(p_p~k)2 

, X  j 
Fig. 2. Notations for the bremsstrahlung in the lepton-quark scattering. 
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subprocess 

$ = ( p + q ) 2 = x ' S ,  t - ( p - p ' )  a = -xyS, u = ( p ' - o ) 2  = -x'(l - y ) s .  

(9) 

The phase space integration is performed in the reference frame where k + q'  = 
0. The transformation from the HERA laboratory reference frame to this "'center- 
of-mass" system depends on the energy of the incoming quark which is described 
by the variable x'. The energies in this frame are given by 

x'yS - m~ ( x'  - ~r)  s - m~ 
"-- '~ g e Eq 2 Eto t 2 Eta t 

2 2 X '  M 2 ( x y + x ' ( 1 - y ) ) S + m  e + mf  ( - x ) y S -  
E =  E ~ =  v 9 

2Etot 2Etot 

Eq, = E e + Eq - E ~ -  Ev = ~/E 2 + m2r , 

2 - m r 2  E,o,= Ee + E q -  E~= ~ / ( x ' - x ) y S - m e  (10)  

where M2 =me+2 m E + m 2, is the sum of the squares of all involved fermions. 
The advantage in using this reference frame lies in the fact that the phase space 

is independent of angle variables. Including the averaging over the initial state 
which is parametrized by x'  it reads 

d3p , d~q , d~k 

f dx' f 2E~ 2Eq. 2E~ ~ 4 ( p + q - p ' - q ' - k )  = 
~TyS 

dx dy f 
8 .t 

E y  

dx'  ~tot dz  d~ b- 

(11) 

The integration over the photon energy has been performed using the 8 function 
for the energy-momentum conservation, z = cos0 and 0 and ~b are polar and 
azimuthal angle of the photon with respect to some appropriately chosen axis. 

The lower limit of the x' integration, X'mi n, is determined from the minimally 
allowed photon energy k 0. We decided to define k 0 in the HERA laboratory 
reference frame. This will be advantageous in the development of a Monte Carlo 
event generator. Although k 0 is an unphysical parameter, it can then be used to 
define an experimental minimum of the photon energy such that soft photons can 
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be effectively cut out. Therefore we have to solve 

n F Er,max( X, y ;  Xmin) --" k 0 , (12) 

H X where E~,,m~Lx( , y; X') is the maximum of the photon energy with respect to the 
emission angle in the H E R A  lab-system for fixed x'. It is given by 

H 
E~,,max ( x ,  y: X') = 

s + t  + u  - M  2 

s + t + u - M 2 -I- m ~. 

X ( E y  dr E H -  E y  "1- ~(lffel-l l-  l q H I -  [pHIcos 0y)2 q - lpHI 2 sin2 0~ }, 

(13) 

where all energies, momenta,  and the neutrino scattering angle 0~ are taken in the 
H E R A  reference frame. The solution of eq. (12) for k 0 = 0 is Xmi,(0) = x  + M2/yS. 
For small ko/E ~ it is 

M 2 k o m~,  1 
Xmi . = x + + , (14) 

yS E H yS y + x ( 1 - y ) o "  

H H where tr = Eoroton/E e is the ratio of the proton and the electron energies. Note 
that for fixed x' > x + M2/yS the emission of zero-energy photons is kinematically 
not allowed. Only for elastic scattering without emission of energy by an additional 
photon is the Bjorken identification x ' =  x derived (up to terms of order  O(m2)). 

The infrared divergence appears at the lower limit of the x '  integration as the 
limit Ey ~ 0 corresponds to x '  ---> x + M 2/yS. After substituting for the variable 

u = l o g ( x '  - x - M 2/yS ), 

the x'  integration is completely well behaved. 
We want to add a further comment  on the angular integration. Whereas  the 4' 

integration does not lead to difficulties, one cannot use directly the polar angle 0 
because of the strong peaking behavior of the differential cross section in the 
directions of the charged fermions. This angular dependence is determined by the 
factors 

1 1 
( 15) 

kPi E y (  g i -- IPilcos 0) 

appearing in the modulus squared of the bremsstrahlung matrix element. Instead 
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of using 0 one transforms to the variable 

t,, = log(1 - (ip~llE,)coso). 

This substitution results in a flat v~ dependence. It is performed for the t e ~  
= 1/kp  (leptonic radiation) and = 1 /kq  (quarkonic radiation)separately, choos- 
ing p and q as polar axis, respectively. In case of emission from the final quark 

(terms = 1/kq') this difficulty does not appear because of the choice of  the 
reference frame where k + q ' =  0 and the factor 

E~ 1 1 
- ( 1 6 )  

E o, g,2o, " 

is independent of angle variables. Similarly, transformations can be found that 
render the double pole terms = m2//(kpi) 2 harmless. 

The fact that k 0 is defined independent of the photon emission angle in the 
H E R A  reference frame has the consequence that the integration limits for 0 and 
4) in the "center-of-mass" system are not always trivial. This is the case if x '  has a 

value such that 

EHmin(  X, r ;  X ' )  < k 0 . (17) 

where E n - is given by eq. (12)with the plus sign in front of the square root ~,, mm 
replaced by a minus sign. Above Xcu t, i.e. the value of x '  where the inequality (17) 
becomes an equation, photons can be emitted into any direction and the limits of 
the angular integrations are simply 0 ~< 0 ~< ~r and 0 ~ 4) ~< 2~-. In the range 

X mi n ~< x'  ~< X cu t the limits for 0 and 4) have to be determined from 

IpHIkq + IqHlkp 
E H --IpHIEH ÷ IqHIEH ko- (18) 

In the concrete calculation we have used X cu t as a cut to separate the x '  
integration into two parts. By this, the amount of CPU time needed to reach a 
certain requested accuracy could be decreased. For the integration we used the 
general purpose Monte Carlo integration technique realized in the VEGAS 

routine [15]. 
The dependence of the sum of virtual, soft, and hard corrections on the IR 

cutoff k 0 is shown in fig. 3 for a selected point in the (x, y) plane. The result is 
independent of k 0 down to quite small values of k 0. Note that there is a strong 
cancellation between the soft and hard contributions. Individually they can be 
larger by an order of magnitude than the final result and depend strongly on k o. 

The last two points in this figure for k 0 = 0.063 GeV and k 0 = 0,126 GeV lie 
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Fig. 3. The  k=o d e p e n d e n c e  o f  the  comple t e  O ( a )  radiat ive correc t ions  (x  = 0.5. y = 0.I) .  
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Fig. 4. The  m r d e p e n d e n c e  of  the ~ ' "  - -  Occ(c ) (x  = 0.1, y = 0.9). 
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somewhat above the results for smaller values of k 0 indicating that the soft photon 
approximation starts to fail. These values of k o correspond to 4 and 8% 

n Ev.m~(x, y; 1), i.e. the maximal value of the photon energy in the HERA labora- 
tory. system where the phase space is still isotropic (above E~m~(x.~ y; I) photon 
emission is allowed only into a restricted range of angles). The error baB ~ ~  [n 
this and the next figure are error estimates given by VEGAS after ev~duat~ of 
30,0(}0 points. As a second check of the validity of our approach, fig. 4 s ~  the 
results for the lepton-quark interference part ~ : ( e - )  at x--0.1, y = 0.9 for 
various values of the mass of the outgoing quark mf~. The resuRs are i ~ p e ~ n t  
of mr over a wide range of values. The sma|lest ~ i b l e  value for mr. ~ r e  ~ r  
program still works is only limited by the accuracy that ks required m t ~  
determination of x&~ from eq. (12). Of course, large values of mf~ constrain t ~  
phase space as is visible in the point for the largest value of m fo ~n fig. 4. ~ has 
the most complicated singularity structure as it contains a|| three ~[ inear  ~ .  
The results of figs. 3 and 4 are typical also for other values of x ~ d  y. 

4. Exponentiation of so• photouic 

An inspection of eq. (13) for the maximaRy allowed energy of emitted ~ ~ a s  
shows that E~m ~ becomes small for x--} 1 and y--} 0. In the large x - ~  y 
region the soft photon corrections are thus dominating. Z~ey are n u m e r : ~ y  large 
and higher order contributions from multip!e photons are expected to 
important. Because one has to deal with a soft photon effect, it ~ |  be sufficient in 
this region of x and y to include in higher orders only these ~ r e d  photons and 
discard the infrared-finite corrections from hard photons [16]. 

Higher order corrections from soft photons have been discussed in the g e n e ~  
case by Yennie et al. [9]. They have shown that the infrared d~ergences of both 
virtual and real corrections can be calculated recursively resulting in the exponen- 
tial series. It is thus believed that the exponentiation of the remainder of v ; ~ l  
and real corrections after the cancellation of the divergent terms results in a better 
description of the true predictions of the theory. Explicit higher order caIculafio~ 
have confirmed this conjecture. 

The calculation of those terms that are exponentiated is usually carried t ~ o u ~  
in the soft photon approximation, separating out thereby certain infrared t-mite 
parts that are included only in their original nonexponentiated form. If the result 
of a complete O(a) calculation is a correction factor 1 + ~tot = 1 + ~-E~p ÷ ~ a  ÷ 
6 h~d one writes 

1 + 8 t°t = 1 + ~IR + ~fi~ -o exp{61R}(1 + ~ ) .  (19)  

A priori, the separation of photonic corrections into IR parts that should be 
exponentiated and non-IR, finite parts that are not exponentiated is arbitral .  One 
can always shift around non-lR contributions. But the separation of those parLs 
that should be exponentiated is further restricted by the requirement that it should 



120 H. S~es~rger / Radiaticecorrections 

be gauge invariant. Otherwise, the different prescriptions for the treatment of  IR 
and non-IR pieces would lead to gauge-dependent predictions for physical observ- 
ables. In addition to this, one imposes the requirement that the exponentiated 
terms should be ultraviolet finite. This means just a simplification of the calcula- 
tion because the renormalization prescriptions that have been worked out in a 
finite order of perturbation theory remain unchanged. 

The general form of the | R  parts obeying these two additional conditions was 
given already in ref. [9]. In the following we present the explicit formulas as needed 
for the charged current reaction. The soft photonic parts are separated as dis- 
cussed above into leptonic, quarkonic, and interference contributions. The sums of 
virtual and real IR corrections to the cross sections for scattering of leptons and 
quarks with flavor f read (in the notation of ref. [9]) 

- In ~ In 2 a ( R e  B + B)~, 
- u  - u  K 2 K 2 

- - ~  + In ~ in - -~  - In - -v  

- u  / - u  1 
+ in ~ ~ln ~ + 

mz~ 4E~ 
-u( -u 1) 

+ I n - - v -  In + 

, _ u  , _ u  ( 
- 2 1 n Z 4 E ~  -~ l n a 4 E ~  2Li 2 1-1 u 

~.g2 

3 

2 a ( R e  B +/~)~ 
o ,( 4 2( _, _,) K2 

- ~ Q ~  In ~ -  t In ~m~ + In ----Tm~. - In ~Eq. - In Eq2 

--t ( --t 
+l"m ~ ln~q2 

,) _,( _, 1) 
+ i  +lnm~--- T l n ~ + i  

-t (4E.E. , )  =~ 
~ - t  ~ l n 2 ~  - 2Li2 t 3 - ~ In ~ 4--~ ~ 4e~ ' 1 + 

2 a ( R e  B +/~)~ = 
{ 4K2 s K 2 - u (  Eq 2 

- 2 - - ~ Q , ~ Q f  21n ~ In ~ + 2In ~ + l n ~  2In ~ - --U --t Eq, m 2. K 2 

+ 2 L i  2 1 +  + 2 L i  2 1 +  
t 

- 2 L i  2 1 + In 2 ~  
s 4Eg, 

4EeEq' ) u 

2}, 
(20) 

2) 
(21) 

t s - t  4,n -2 
+ In 2 -- -- In 2 ~ - In + ~ + 2 

u - u  s 3 " 
(22) 
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In these equations K is the maximum of the photon energy and t~he soft 
bremsstrahlung cross section was integrated over all angles. If we wa~: to treat t ~  
photon totally inclusive in the calculation of corrections to d',r/dx dy~cc we have 
to use these formulas in a reference frame where the upper l i ~ t  of t ~  phase 
space is isotropic, i.e. the maximal photon energy does not d e , r i d  on an~es.  ~ i ~  
is the case in the frame where p + P -  p '  = O. in this frame the ener#es  are given 
by eq. (10)with x ' - -  | and 

K-- ½ y(l 

The final prescription for the improved cross section is 

i d2~ -- E ( 1  + 8~n)exP{~Cws} dxd~:  (24) 
dx dy  cc f ~ ~ -  

where 

~$Ivr. s 2 a ( R e  B + B ) , +  2 a ( R e  B + B)~ + 2 a ( R e  B + /~ ) r  = (25) 

(d2 t r /dx  aom d Y ) l e q f - - . v q r  a r e  the Born cross sections for the quark s u b p r ~ s  
including the quark densities and 8 ~  contains all other nonphotomc corrections 
and the IR-finite parts of the photonic corrections: 

(26) 

5. Numerical results 

Numerical results for the electroweak radiative corrections to the charged-cur- 
rent deep inelastic scattering cross sections for incoming electrons as well as for 

positrons are shown in figs. 5-7. We show the quantities 

d la ,/ !"" 
8~c(e +) = ~ (e +- ~ (e  +) - 1, (27) 

d x d y  d x d y  cc cc 

where in d2tr/dxdy[~:c are included the leptonic, quarkonic or interference 
contributions only as denoted by the index a = f ,  q, i. ~$~:c do not contain the bulk 
of weak corrections but only certain terms containing logarithms of s, t, and u 
which can become large at small values of x, y or 1 - y  and are compensated by 
corresponding contributions from the bremsstrahlung [2]. In order to compare our 
results with those of ref. [2] we have chosen the now obsolete values for the weak 
boson masses M w = 82.0 GeV and M z = 93.0 GeV besides m u = m d = 30 MeV, 
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Fig. 5. Leptonic corrections 8~c for electron and positron scattering. 

m t = 60 GeV, M H = 100 GeV. The parametrizations of the quark distributions are 
taken from ref. [ 17]. The results for the individual parts do not contain exponentia- 
tion. They agree perfectly well with those of ref. [2]. The similarity of the results as 
compared to those for the neutral current case with pure Z exchange [6] shows that 
the separation in eq. (8)was indeed sensible. 

The quarkonic corrections 8~:c(e -+) yet contain the quark mass logarithms that 
should be absorbed into the quark distribution functions. The results of fig. 6 
should therefore not be included in the derivation of corrections for physical 
observables as they stand. We present them here for the reason to compare our 
results with those of ref. [2]. The only physically observable feature of this part of 
the corrections is the Q2 dependence of 8~:c(e -+) visible in the figures. In ref. [6] it 
has already been explained how the quarkonic corrections should be treated and 
we do not repeat this discussion here. 

We want to point out that the corrections would have looked differently if the 
kinematical variables x and Q2 would have been defined by the momentum of the 
outgoing quark rather than by that of the unobserved neutrino, e.g. with the help 
of the Jaquet-Blondel formula [10]. In the first case, the phase space integration is 
performed with fixed q', whereas in the latter case p '  would remain fixed. The 
exchange of these two momenta amounts to an exchange of the invariants t and u. 
This enters into the formulas for the phase space limits which are the most 
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Fig. 6. Quarkonic corrections ~ c  for electron and positron scattering. 

t x=O.~ 
" k  

1.0 

important sources of the peculiar raise of the leptonic corrections with y. This 
main feature can already be understood in the calculation of the leptonic correc- 
tions in the collinear approximation. There the initial state leptonic corrections are 
described by 

° l + z  

d-xd-y = 2rr In 2 dz ] - - z  
t ' ~  C Z m i  n 

~ ( ( ~ ( z )  - (~(1)) + S(zmi.)(~(1)} (28) 

with 

1 2 S { , z ) = 2 1 n ( 1 - z ) + z + 2 z  . (29) 

The integral contains the well-known Altarelli-Parisi splitting function that de- 
scribes the emission of an energy fraction 1 - z  by collinear photons. ~(z)  is the 
lowest order cross section where the momentum of the initial radiating lepton i~ 
rescaled by z and S(zmi n) contains soft and virtual contributions. 
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Fig. 7. Contribution of the interference of  leptorric and quarkonic radiation ~int for electron and ' - ' C C  

positron scattering. 

If one calculates the range of integration of the energy variable z one would find 
for a fixed neutrino momentum Zmi n = (1 - y ) / ( 1  - x y ) w h e r e a s  in the second case 
where the final quark momentum is fixed it was Zmin = y / ( 1 - x ( 1 - y ) ) .  Conse- 
quently the plots would look essentially as following from exchanging y ~ 1 - y  
[181. 

Finally in fig. 8 the results for the complete O(a )  electroweak corrections are 
shown. This figure contains also the results of the exponentiated version of the 
cross section (24). The main effect of the soft photon exponentiation is the raising 
of the curves at small y and large x to less negative values, but there is also a 
visible effect for small values of x. For small x and y the non-IR parts 6~, 
become large and the second order contribution 6vvs6~n induced by the exponen- 
tiation leads to the lowering of the corrections. 

6. Fixed M w versus  f ixed G~ 

Next to the photonic corrections discussed above the most important O(a)  
contribution is the W self-energy H w. It amounts to about 15%. It is only 
logarithmically Q2 dependent and does not differ much from its value at Q 2=  0 
which in turn dominates the O(a)  correction Ar to the Mw-G~, relation. Conse- 
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quently, part of the corrections is already included in the Born expression, if that 
value of Mw is inserted that is derived from M z and G~ using the radiatively 
corrected relation (5). This "improved" Born expression of the MOMS reads 

d2o. limproved Born "~ 4 
= G~Mw(1 - a t ) ' -  xS { q + ( l  _y)a(~} (30) 

dx d y ccl "a" (Q2 + M~v )2 • 

The numerical results for ~,t°~ • ,cc are smaller by about 15% in this case. 
The W self-ener~ ~ receives a contribution from the top-bottom loop which rises 

quadratically with increasing ma. In discussing the top mass dependence it be- 
comes im~r tan t  to state precisely what kind of input parameters are used because 
via J r  the Mw-Gu relation contains corrections of the same kind. In the 
on-mass-shell scheme with fLxed Mw t"-re is only the direct W self-energy 
correction which introduces an m, dependence: 

dxdv. o: = d x d v .  Ice 

d-'tr Born 

d x d y  
c c  

( 1 - 2H w + 8 "~') 

( 1 + 2 A r  + ~ ~,t ) .  

All other (mt independent) contributions are contained in ~rest. In order to 
illustrate the situation we show predictions for the NC/CC ratio [19]* 

d t r ( e - ~  e - X )  

R = d t r ( e - ~  veX ) (32) 

in fig. 9 for two different points in the (x, y) plane (corresponding to  Q 2 =  10 3 

GeV 2 in fig. 9a and Q2___ 10 4 G e V  2 in fig. 9b). These figures contain also the 
band of variation resulting from the present experimental uncertainty of M w of 
_+0.6 GeV. The result for R_ in the OMS is rising by about 10% of its value at 
m t = 50 GeV if rn t is increased to 250 GeV. 

In the modified on-mass-shell scheme, where G, is used as input, M w itself 
depends on mt. Eq. (5) can be solved for M w if the slight M w dependence of Ar 

* T h e  m t dependence of the neutral current cross section is obviously not important for this 
discussion. In fact, the neutral current is dominated for not too large values of Q2 by the y 
exchange which does not receive corrections proportional to mt 2. 
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w=~M~ ' 1 +  1 -  
4rrt~ 

(33) 

Because Ar is of order a one can expand eq. (33) in powers of Ar. To first order 

one finds 

, M ~ M? (G Mz, Mz,O)' S2w Ar}.  (34) 
l -  2c v- l 

With this one finds for the cross section in the MOMS 

MOMS Born 

dxdy  1 - 2 A r - 2 H  w 29,._2 _ 1 J r +  
dr r tY~cc  Ice ~ - - w  - j 

d2 l.o 2 ) 
= ~ i - 9  Sw ar + 8 'e~t ( 3 5 )  

dx d y lcc ~ - 2 C w -  1 

The coefficient of J r  is here about - 0 . 8 0  for S~v = 0.221 whereas in the corre- 
sponding expression (31) of the OMS it was + 2. 

The m t dependence of M w is the main source of the m t dependence of R in 
the MOMS. However, it is visible only for larger values of Q2 (as in fig. 9b). For 
low Q2 one can approximate M 4 / ( Q 2 +  M2w )2 by 1: the Fermi model is still a 

good approximation and one remains with the tt decay constant that determines 
the magnitude of the charged current cross section. Indeed, for Q 2 =  103 GeV 2 

the m t dependence of R shown in fig. 9a is completely negligible whereas for 
Q2 _ l04 GeV2 the top mass dependence in the MOMS although rather flat leads 

to a decrease of R_ by about 3% if m t is increased from 50 GeV to m t = 250 
GeV. It is determined by the m t dependence of M 4 in the numerator of the 
charged current cross section. 

We want to point out that the OMS and the MOMS are not two different 
renormalization schemes in the usual sense. In both schemes, the generation of 
counter-terms and the definition of renormalization constants are identical. The 
OMS and the MOMS rather differ in the way the parameters are fixed by 
experimental inputs. When comparing results for R_ (at given values for 

Mz, m t, MH,etc.) for fixed G~ with results for R_ at fixed M w one is actually 
comparing results calculated at two different points in the parameter space, except 
if one chooses exactly that value for M w which results from the solution of eq. (5). 
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TABLE 1 
N C / C C  ratio R_  for electron scattering at x = y  = 0. |  (Q-" - 103 GeV-~). m t - | f~  GeV.  

I29 

ROMS Ro_m R_o~ 
M n (GeV) Mw = 79.4 GeV Mw - ~ . 0  GeV M w  = 80o6 GeV R ~  

10 11.62 10.83 10o~ 10~l  
100 11.53 10.78 10o03 [0.93 
1000 11.35 10.60 9.86 10o~ 

We should briefly mention that there is also a Higgs mass d e p e n ~ ~  in R 5- In 
tables 1 and 2 results are given for m t = 100 GeV. It fo|Io~s ~ the g_'rven 
numbers that the dependence on M~ is small as compared to that on Mw or m r 

We have shown explicit results only for the cross section ratio R_ for electron 
scattering but the discussion applies equally well to positron scat~e~g.  

Finally, we want to mention that the polarization and charge ~ m e t F ~ s  m the 
neutral current reaction, e.g. 

are probably better suited for a possible determination of mt | m r s  m deep 
inelastic scattering via radiative corrections. A _+ is also a ratio of a purely weak 
part (the difference of cross sections for left-handed and right-handed |eptons) and 
a sum of cross sections which is determined essentially by the ~, exchange. In t ~  
case the Z self-energy H z appears as a genuine contribution to the radiat/ve 
corrections instead of the W self-energy. The m t dependent terms ha H z do not 
cancel completely against the factor 1 - - A r  if Gg is used as input but the 
coefficients of mt z in Ar and in H z do not differ much and also in this case one 
finds a weak dependence in the MOMS as compared to a much stronger m t 
dependence in the OMS. With fixed Gu the change of A_  is of order O(10%) if 
m t is varied in the range between 50 and 250 GeV. In the OMS, however, one 

TABLE 2 
N C / C C  ratio R_ for electron scattering at x = 0.2, y = 0.5 (Q2= 104 GeV2). mt = t60 GeV. 

ROMS ROMS R°_ MS 

M n (GeV) M w = 79.4 GeV M w = 80.0 GeV M w = 80.6 GeV R ~  °Ms 

10 0.618 0.584 0.551 0.589 
100 0.615 0.581 0.549 0.591 
1000 0.608 0.575 0.543 0.594 
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does not gain much because the experimental uncertainty of M w does not allow us 
to derive stringent limits on m t. 

7. Conclusions 

We have presented results of a complete calculation of the O(a) electroweak 
radiative corrections to charged-current deep inelastic lepton-proton scattering. 
The corrections can be large of the order of 0(20%) for small x and negative of 
the order of 0 ( - 4 0 % )  for large x and small y and are therefore nonnegligible. 
The comparison with a similar calculation by Bardin et al. has shown agreement 
below the 1% level. This is satisfactory if one bears in mind that the charged 
current scattering at HERA will probably not be an experiment that reaches that 
precision. 

It has been shown that soft photon exponentiation leads to additional correc- 
tions of a few percent. Only for small y this multiple photon effect comes close to 
the expected experimental accuracy. Higher order contributions to the weak 
corrections have not been calculated but estimations in ref. [20] show that for the 
precision that could be reached at HERA they will certainly be negligible. 

We have ~.-,.,u,~a Monte ,,~,~, . . . .  a Carlo integration technique for the evaluation of the 
hard bremsstrahlung contribution. By a suitable choice of variables we could make 
the integrand well behaved. This method will be used in the near future in the 
development of an event generator that simulates charged current scattering at 
HERA including radiative effects. 

The discussion of the l-loop corrections was done with special emphasis on the 
top quark mass dependence of the W self-energy. It was shown that the sensitivity 
on m t is large if a fixed input value for the W boson mass is used. But the 
experimental uncertainty on M w prevents us from using the m t dependence in 
this case to derive limits on the top quark mass. Instead of this one should use a 
formulation of the theory in terms of the/z  decay constant (3,. Then the allowed 

range for m t could be restricted to + 50 GeV if the N C / C C  cross section ratio 
could be measured with a precision of better than + 1% at not too small Qz. 

I would like to thank M. B6hm, J. Bliimlein, W. Hollik, G. Kramer, T. Riemann, 
and G. Schuler for helpful discussions. I am also grateful to G. Hummel for many 
enlightening conversations. 
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