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It will be demonstrated that subtle features in the topologization of the configuration space of 
positive and negative objects determine the spin-statistics relation of the associated quantum 
theories. 

I. INTRODUCTION 

In a recent paper, Balachandran ef al. prove a spin-sta- 
tistics theorem for spinning particles moving in an at least 
three-dimensional space R” without using relativity and field 
theory under the assumption that antiparticles exist, which 
respect a CPT-like symmetry.’ The argument was a modifi- 
cation and extension of an approach proposed by the au- 
thor,” namely, the quantum-mechanical conjiguration space 
of noncoinciding indistinguishable positive and noncoincid- 
ing indistinguishable negative point-like particles (see also 
Refs. 3 and 4). 

where s, t are finite subsets and the equivalence of two ele- 
ments of { * * *) is given by 

(s,t) - (s’,t’):(js\t = s’\t’ and t \s = t’\s’. (2) 

Thus the configuration space C ,$ (M) is topologized in such 
a way that particles of the same charge sign never collide, 
while pairs of particles carrying opposite charges may be 
created or annihilated. 

In this type of configuration spaces, particle-antiparti- 
cle pairs may be created and annihilated-in a purely not 
necessarily relativistic quantum-mechanical framework! In 
its original definition “noncoinciding” means, that two par- 
ticles of the same charge must never coincide, whether or not 
an opposite charge is present at the same location. Balachan- 
dran et al. relaxed this restriction and were hence forced to 
interpret the author’s analysis of the quantization on these 
spaces as a spin-statistics theorem for spinless particles (cf. 
Ref. 2). Balachandran et al. were now able to extend this 
proof to spinning particles by attaching a right-handed 
three-bein to each particle in a Bopp-Haag-like fashion2Vs 
and a left-handed one to each antiparticle respecting some 
“mirror rules” for the creation/annihilation process ab- 
stracted from kink theory (cf. Ref. 2). Notice that this ac- 
tion implicitly takes the essential feature of CPT into ac- 
count and thus the line of arguments reminisces of the 
intimate relation between CPT symmetry and the spin-sta- 
tistics correlation.’ 

A finite subset SER” may be thought of as a set of points 
{Xl * + *x,,,). Such a set is an equivalence class of tupels 
(x C(l) *** x,(,,,) ) under the permutation (T of indices being an 
element of the symmetric group 2,. A very important point 
is that there must not be any pair xi, xj of equal points in the 
listing. Or to state this in the language of set theory: All 
members of a set are assumed to be distinct! This is a prereq- 
uisite for the construction of the configuration space of posi- 
tive and negative particles. Although one intuitively expects 
that a configuration of, say, two particles plus one antiparti- 
cle at the same point of R” is nothing but one particle alone, 
this configuration is not a member of C ,$ (R”)! 

In this paper, I will give a motivation for imposing my 
stronger condition of nonconicidence and argue that we in- 
deed need quantum field theory for proving the observed 
spin-statistics correlation. 

II. THE CONFIGURATION SPACES 
The configuration space of noncoinciding indistinguish- 

able positive and noncoinciding indistinguishable negative 
point-like particles of total charge Nmoving in R” is defined 
by 

There are strong mathematical and practical reasons to 
define the configuration space in such a way: The collection 
of all finite subsets s of R” with cardinal number N defines the 
configuration space C,(R”) whose fundamental group is 
the symmetric group 2, in higher (n> 3) dimensions and 
the full braid group B, of the Euclidean plane in two dimen- 
sions. This configuration space is an n x N-dimensional dif- 
ferentiable manifold and may be identified as the space of N 
indistinguishable noncoinciding point-like particles. If we 
add those configurations in which particles collide, then we 
will get singularities, that induce a discontinuity into the 
quantum mechanical phase in the Fermi, resp., anyonic case. 
If we now admit only continuous phases we will automati- 
cally restrict ourselves to bosonic statistics. Borchers states 
that it is this strange ambiguity that provides a central argu- 
ment against the configuration space interpretation of statis- 
tics.’ 

C,J (R”): 

The usual discussion of topological statistics heavily re- 
lies on the manifold structure of the configuration space, 
although an extension to an “orbifold language” might be 
possible in principle. 

= { (s,t) CR”XR”lcard s - card t = N}/-, (1) In our framework we consider the disjoint union 
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C(R”) = mu0 C,(R”), (3) >’ 

which still is a nice space in mathematics (it has the homo- 
topy type of a cw complex), and construct C * (R”) from an 
equivalence relation imposed on the product C(R”) 
xC(R”). 

For the C f ( R”) we proceed in an analogous way. 
Now view the trajectory of a particle as a path in 

C f (R”). By using a bubble created from the “vacuum” and 
assuming that the space of perception is at least three dimen- 
sional we get a worldline containing two pair-creation-anni- 
hiliation obstructions (Fig. 1). Next, consider a worldline 
containing only one pair-creation-annihilation obstruction 
(Fig. 2). This cannot be deformed into a trivial trajectory 
since successively making the creation event approaching 
the annihilation event we finally must arrive at a point where 
the two particles and the intermediate antiparticle coincide, 
a configuration, which is excluded from the configuration 
space by definition. 

Hence, we can show that the fundamental group of our 
configuration space contains exactly two elements, the non- 
trivial one being of order 2. Pair creation and annihilation 
enables us to cut braidings of trajectories and simplifies the 
fundamental group of a many-point configuration space: 
For instance, in two dimensions, braid statistics goes over to 
conventional statistics as was shown in Ref. 2. Also the pos- 
sibility of parastatistics ceases to exist. But one has to be 
careful in stating that this may be a proof for the nonexis- 
tence of parastatistics in nature. Statistics and charge are 
dual notions implying that the introduction of a quantum 
number which may take only integer values is equivalent to 
the exclusion of parastatistics. If we had introduced configu- 
ration spaces of points to which auxiliary discrete quantities 
are attached, then we would get more complicated spaces 
admitting more general quantizations. This will be discussed 
in Ref. 8. 

Contrary to my approach, Balachandran et al. include 
the coinciding configurations and thus get formally a homo- 
topy between the trivial trajectory and the one which con- 
tains one pair creation and one pair annihilation.’ This tri- 
vializes an exchange loop just giving “a topological 
spin-statistics relation for spinless particles.” I do not know 
how to give such a space a good topological or differential 
structure but there are also physical reasons to prefer my 
stronger noncoincidence condition. For example, my for- 
malism will remain consistent if I lower the number of space 
dimension up to n = 1 reproducing some of the new results 

CL (1 - ‘;:]-I - 1 
FIG. 1. Worldline containing two pair-creation-annihilation obstructions. 

1 I- 1 -I- 4’ , i r 
FIG. 2. Worldline containing only one pair-creation annihilation obstruc- 
tion. 

of algebraic quantum field theory’ as it will be shown in Ref. 
10. 

III. SPIN, STATISTICS, AND FIELD THEORY 

If the particle and antiparticle have got some kind of 
internal structure we will be forced to introduce a detailed 
description for the pair creation process on the one hand and 
for the pair annihilation process on the other. No matter 
what the rules are, it is natural that they have to respect some 
homotopy laws depicted in Fig. 3(a) and (b), namely, one 
law, which admits a creation of a bubble from the “vacuum” 
and another for the mutual extinguishment of a particle and 
an antiparticle trajectory. Under the condition that our 
strong form of noncoincidence holds we are able to show 
that in at least two space dimensions two homotopy classes 
of trajectories exist as in our structureless particle-antiparti- 
cle models. (The one-dimensional case will be discussed in 
detail in Ref. 10.) 

Figures 4 and 5 make the relation to kink theories clear. 
If the annihilation law is defined in such a way that the anti- 
kink approaches the kink from the left, the creation process 
should be defined accordingly. This gives the twist in the 
trajectory containing one pair-creation-annihilation ob- 
struction. It is the very structure of the topology of kinks’ 
(their wordlines are fat strings), which allows to deform any 
topological nontrivial kink trajectory to a “trivial but 27r- 
twisted” one (cf. Fig. 5). 

In general quantum field theory, however, the creation 
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FIG. 3. Homotopy laws. 
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FIG. 4. Relation to kink theories. 
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FIG. 5. Relation to kink theories. 
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FIG. 6. The trivial vacuum bubble (a) and the 
nontrivial vacuum bubble (b). 

-iv \, 

b 

--I- ‘\ VP 
1 

+ vat 

FIG. 7. The nontrivial loop (a) and 
the trivial loop (b). 
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and annihilation law have to be defined algebraically. For 
instance, the pair creation/annihilation of localized unitary 
field operators $/ , , gr 2 must contain an ordering conven- 
tion, such that the loop [let x(t) be continuous; 6,) 8, 
spacelike disjoint; b, = 8, +x(O); 8, = 8, +x(l)] 

id-y, ,y, ,+x(octGl) -Y/,?~, +xo~t~o) -id (4) 
is trivial [Fig. 6 (a) 1, whereas 

- 
id -tyI,y/ , +x(o<t<l) -YP,‘y/, 

=Y~zY,,-tY/,+xclarao,Y/,~id (5) 
is expected to be nontrivial [Fig. 6(b) ] in a suitably defined 
quasiconfiguration space, whereby 

Y/ (-1 =$r (*)ib, (6) 

r/ (*I = 3, (*I$, (7) 
are localized automorphisms of the algebra of observables. 

The analog of the pair-creation-annihilation obstruc- 
tion in the mechanistic models is given by 

Yr I =Yr,Y/2Y~z~Y~,Y/,3//,+X(l>1~0)-*Y/,Y/~3//, 

=Y/j/,Y/* =Y/L-tY/,+X(ISI>O)~Y/,. (8) 
This is a nontrivial 10%~ [Fig. 7(a) 1. Replacing the yf-type 
creation process by a yy-type one, we have a trivial loop as 
easily can be seen [Fig. 7 (b) 1. 

Thus all spin statistics all encoded in the noncommuta- 
tivity of automorphisms with (partially) coinciding sup- 
port. On the level of configuration spaces this noncommuta- 
tivity is contained in the singular structure of the points of 
coincidence. 

IV. CONCLUSION 
Models of particle configuration spaces are nothing but 

toy models for what is going on in quantum field theory. 
They naturally contain a noncanonical structure reflected by 
the ambiguity of the inclusion or exclusion of hidden singu- 
lar points in such a description. But there is an interesting 
feature, which may be helpful: An enlargement of the space 
of configurations only can make a given noncontractible 
loop topologically simpler. Therefore, if we choose the “to- 
pologically softest” mechanistic configuration space that 
may be naturally embedded in a field-theoretically defined 
one, then we will be able to easily answer some questions 
already on the level of these toy models. 
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