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We consider integrable Hamiltonian systems whose N conserved charges generate a U(1)" sym-
metry group. We promote this global symmetry to a local one by adding appropriate gauge fields.
The resulting action is supplemented by a (0+ 1)-dimensional Chern-Simons term. The model is
used to study certain aspects of semiclassical quantization in ordinary quantum mechanics, in par-
ticular the origin of the Maslov index. It turns out that a consistent (semiclassical) quantization of
the model requires the coefficients of the Chern-Simons term to be integer or half-integer. This pa-
rameter quantization implies the well-known semiclassical quantization rules for the action vari-
ables J;, which coincide (by a kind of Gauss-law constraint) with the coefficients of the Chern-
Simons term. Typically the gauged U(1)" symmetry is free from local anomalies, but it can suffer
from a global Z,-type anomaly. Using a phase-space formalism, the (bosonic) fluctuations around a
fixed classical trajectory are governed by a (0+ 1)-dimensional, Dirac-like operator coupled to a
gauge field which assumes values in the Lie algebra of Sp(2X), the structure group of the tangent
bundle over phase space. Because of I1,(Sp(2N))=Z, the space of gauge transformations decom-
poses into topologically inequivalent sectors, thus giving rise to the possibility of global anomalies.
The Z, anomaly manifests itself in a nonzero Maslov index yu, in the semiclassical quantization
prescription J,=n; + %,u,-, n,€Z. In the Hamiltonian formulation the anomaly is controlled by the
Atiyah-Patodi-Singer index theorem, and in the Lagrangian formulation the Morse index theorem
plays an analogous role. One finds that the Maslov indices u, are related to the winding numbers
for I1,(Sp(2N)) of a set of one-parameter families of symplectic matrices constructed out of the

Jacobi fields around the classical trajectories.

1. INTRODUCTION

The purpose of this paper is to give a new interpreta-
tion of the Maslov indices appearing in the Einstein-
Brillouin-Keller semiclassical quantization conditions.! >
It is well known that for every integrable Hamiltonian
system these conditions are given by

Ji=(n;+iu)#, (1.1)
where J; is the ith action, n; EZ is the corresponding
quantum number, and the even integers u, are the
Maslov indices. (We do not consider here the Maslov in-
dices entering the phase shifts of WKB wave functions,
which can be both even and odd.) If u; =0 mod4, the ac-
tion is quantized in integer units of #, whereas if u, =0
mod2 in half-integer units. It has long been known that
the integers u; have a deep topological and cohomologi-
cal meaning: Arnol’d® related them to the topology of a
Grassmannian consisting of Lagrangian planes, and
Littlejohn and Robbins® interpreted them as winding
numbers in the Sp(2N)-group manifold, to mention only
two approaches. We are going to derive Eq. (1.1) from a
special kind of Chern-Simons field theory, or, to be more
precise, its (0+ 1)-dimensional version, henceforth re-
ferred to as Chern-Simons quantum mechanics. Doing
this we will be able to interpret a nonvanishing Maslov
index (mod4) as the expression of a global gauge anoma-
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ly, which has many features in common with Witten’s Z,
anomaly of a single Weyl fermion coupled to a SU(2)
Yang-Mills field® and with the parity-violating anomalies
in odd dimensions.””® In the former case one has to
study the behavior under gauge transformation of the
partition function for a Weyl fermion. Formally this par-
tition function equals the square root of the partition
function for a Dirac fermion, which is known to admit a
gauge-invariant definition. It turns out, however, that its
square root cannot be defined in a gauge-invariant way.
The reason is that, because of I1,(SU(2))=Z,, there ex-
ists a “large,” topologically nontrivial gauge transforma-
tion that cannot be continuously deformed to the identi-
ty. Spectral flow arguments show that this large gauge
transformation changes the sign of the square root and
this gives rise to a global anomaly. (There are no local
ones.) We shall see that the ‘““Maslov anomaly,” which is
present when the J; are quantized in half-integer units of
#, has a very similar origin. Very schematically the argu-
ment is as follows. We consider a completely integrable
Hamiltonian system with N degrees of freedom. (We as-
sume N finite throughout.) By definition this system
possesses N conserved quantities J;, which are in involu-
tion: {J;, J,}=0. Excluding the nonperiodic cases, these
conserved quantities (or ‘“‘charges”) generate a global
symmetry group U(1)V. We shall gauge this symmetry by
introducing (0+ 1)-dimensional gauge fields A;(¢),
i=1,...,N. Since in 0+ 1 dimensions there can be no
gauge-invariant kinetic term for A;, the only term con-
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taining A4; (beyond the minimal coupling to the *“‘matter”
system) we can add to the action is a Chern-Simons
term'"12 of the simple form 3, k,-fdt A;(t), where the
k;’s are constants. The gauge field A4; always can be
gauged to zero, but nevertheless it has an important
consequence. Very much like the time component of a
four-dimensional Yang-Mills field, it acts as a Lagrange
multiplier for the Gauss-law constraint. In the case at
hand its analogue involves the coefficients k; of the
Chern-Simons term: J; =k;. This means that in a theory
defined by a fixed set of constants {k;, i =1,...,N} only
those classical trajectories are allowed for which the ac-
tion variables J; equal k;. In a semiclassical quantization
of this theory the gauge invariance of exp(iS) imposes
severe restrictions on the admissible classical back-
grounds. All gauge fields can be classified by a set of in-
teger winding numbers {z;,, i =1,...,N}. The gauge in-
variance of the exponential of the multivalued classical
action requires that k;, and hence J;, is quantized in in-
teger units of #: J,=n#, n; EZ. Taking one-loop quan-
tum effects into account, one has to study the behavior
under gauge transformations of a fluctuation determinant
(or rather its square root) and as we shall see, because of
the anomaly already alluded to, this object is not neces-
sarily gauge invariant. When it changes its sign under a
large gauge transformation, this means that the naive
quantization rule J;=n;# is modified by a nonvanishing
Maslov index. In this sense the term ;% in Eq. (1.1) ap-
pears as a quantum-mechanical renormalization of the
coefficients in the Chern-Simons term. The quantum
effects, which give rise to this renormalization, are the
fluctuations around the classical trajectories on which the
semiclassical (or ‘“‘one-loop,” or ‘“WKB”’) approximation
is based. They behave like a bosonic matter field. Similar
renormalization effects in higher-dimensional theories are
well known. Redlich’ has shown that three-dimensional
fermions contain a Chern-Simons term in their effective
action; i.e., they give rise to a renormalization of the bare
coefficient of the Chern-Simons term in the gauge field
sector. (This can be generalized to arbitrary odd dimen-
sions.®>?) Furthermore, in Witten’s recent work on
Chern-Simons theory and the Jones polynomial,'® a simi-
lar renormalization effect due to the fluctuations of the
gauge field itself has been studied.

This paper is organized as follows. In Sec. II we define
our model, and in Sec. III we discuss its invariance under
“small” and “large” gauge transformations. In Sec. IV
we perform its semiclassical quantization and show how a
global anomaly, if it really occurs, would be related to the
Maslov index. The actual computation of the anomaly is
deferred to the subsequent sections. In Sec. V this is
done for the prototypical example of a one-dimensional
harmonic oscillator, and in Sec. VI for the general case.
Section VI contains the main results of this paper. The
general case is solved there by reducing it to a system of
uncoupled oscillators. The discussion heavily relies on
various topological properties of the symplectic group
Sp(2N). To the extent they are needed here, they are re-
viewed in the Appendix. In Sec. VII we relate the
“Maslov anomaly” to the Atiyah-Patodi-Singer and to
the Morse index theorems.
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II. CHERN-SIMONS QUANTUM MECHANICS

We consider a completely integrable Hamiltonian sys-
tem* (M,y,w0,H), where M,y is the 2N-dimensional
phase space, i.e., a symplectic manifold with symplectic
two-form @, and where H is the Hamiltonian. Local
coordinates on JM,, are denoted as ¢% a=1,...,2N,
and the two-form o is written as

0=1lw,d¢" Nde" . 2.1)

[For simplicity we shall assume that w,, can be chosen in
its ¢%-independent canonical form* everywhere. Then, if
N =1, for instance, ¢"=(p,q), ®,,=—w,=+1.] By
definition the system has N conserved quantities J;(¢?),
i=1,...,N, which are in involution:

(H,J,}=03,Hw"d,J,=0,

(2.2)
{Ji:J;1 Ean,-w”babJj =0.
The Poisson bracket is defined in terms of the matrix w“,
the inverse of w,,:
=8¢ . (2.3)
The action of our system reads (in first-order form)
! .
§= [ Tdr[14°(1)0g,$ (1)~ H($ ()] . (2.4)
1

Variation with respect to ¢“(¢) yields Hamilton’s equa-
tions

¢ 1) =w™d,H($(1)) . 2.5)

Our attitude will be to consider the action (2.4) as
defining a (0+ 1)-dimensional field theory with base space
R (or S! for closed trajectories, see below) and “target
space” JM,y. The conserved ‘‘charges” J; generate

infinitesimal symplectic diffeomorphisms (canonical
transformations) on /!, in the usual way:
N
86°= 3 €w™d,J,(¢°) . 2.6)

i=1

Here the €, are constant parameters. Correspondingly, a
path on M, y, #%(t), transforms as

8¢°%(1)=¢€,0"0,J,(¢(1)) , 2.7)

where summation over i is understood from now on. Up
to a surface term (which will be irrelevant later on) the
action (2.4) is invariant under this transformation:
8S =0. According to the general theory,*!* these trans-
formations form a symmetry group U(1)"XR™ with
n+m=N. In the following we shall only consider
periodic systems with m =0, i.e., systems with the sym-
metry group U(1)Y, for which the classical trajectories
@%(2) lie on invariant N tori characterized by the numeri-
cal value of J;(¢%(t))=const.

Now we try to promote the transformation (2.7) to a
local symmetry, where “local”” means that the parameters
€, are allowed to depend on time. For time dependent ¢;
the action (2.4) is not invariant under (2.7), however. The
variation 8S picks up an additional term ¢;(¢)J;(¢%(¢)). It
can be compensated by coupling the “matter field” $°(¢)



to a U(1)" gauge field 4,(¢),i =1, ..., N, in the following
way:

t .
Sol#, A,1= [, "dt[36%w,d "~ H (6= 4,0 (8*1))] |

(2.8)

The action S is invariant under the local gauge transfor-
mation

8¢°(1)=¢,(1)0%d,J,(¢%(1)) ,
8A;(1)=¢(1) .

(2.9)

Usually one would try to add to Eq. (2.8) a gauge-
invariant kinetic term for A;. Clearly, in 0+1 dimen-
sions, a term such as F,,F*" in Yang-Mills theory does
not exist, and the only term which can be added to S con-
taining the gauge field alone, is the (0+ 1)-dimensional
Chern-Simons term!!1215

H
Sesl A 1=k, [ “dr 4,(1) . (2.10)
1
This term is gauge invariant provided ¢,;(t,)=¢;(z,)=0.
A priori, the k;’s are arbitrary real constants. The model
we shall discuss in the following is defined by

S[¢% 4;1=So[¢% A;1+Scs[ 4]

= [dt[1¢°w ¢ —H — 4,(J,—k)] .  (2.11)
For brevity we shall refer to it as ‘“Chern-Simons quan-
tum mechanics.” (Note that in Refs. 15 and 16 this term
has a slightly different meaning.)

In order to understand the physical consequences of
gauging U(1)" let us first look at the classical equations of
motion belonging to the action (2.11). Varying ¢%(t) we
obtain a modified form of Hamilton’s equation,

¢ (1) =w™,(H + A,J;)[¢(1)] (2.12)
and the variation of A4;(t) yields
Ji(d%(t)) =k, . (2.13)

The interesting point is Eq. (2.13). We shall see that, us-
ing the appropriate boundary conditions, it is always pos-
sible to gauge A; to zero, so that Eq. (2.12) reduces to the
ordinary canonical equation of motion. On the other
hand, Eq. (2.13) still requires to admit only those solu-
tions of Hamilton’s equations, for which the conserved
numerical value of J; equals the coefficient of the Chern-
Simons term k;. Thus different sets of constants {k;]}
define different Chern-Simons theories. The set of their
classical solutions is the subset of solutions for the origi-
nal theory (2.5) at fixed action J; =k;. Stated differently,
the level surfaces of J;(¢°) induce a foliation of phase
space by N tori which are invariant under the Hamiltoni-
an flow; the classical Chern-Simons theory defined by
{k;} deals only with the classical trajectories on the torus
Ty(k;)={¢EM,y,J;(¢)=k;}. Since J; is conserved,
{H,J;}=0, a classical trajectory which starts on a given
torus always will remain on this particular torus.

From the above remarks it is clear that A4; is not a
dynamical field but acts only as a Lagrange multiplier for
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the constraint (2.13). In this respect it plays the same
role as the time component of a (four-dimensional, say)
Yang-Mills field, which is the Lagrange multiplier for the
Gauss-law constraint. Despite the fact that these fields
can be gauged away, the respective constraints neverthe-
less have to be imposed on the ‘“physical’’ subspace.

We remark that Dunne, Jackiw, and Trugenberger15
have already discussed a special model of the type (2.11),
where a rotational symmetry has been gauged.

III. CLASSICAL SOLUTIONS AND “LARGE”
GAUGE TRANSFORMATIONS

Later on we shall quantize the model (2.11); in particu-
lar we shall consider the ‘partition function”
Z =Tr(e "'T). In path-integral language it is given by
an integral over all closed trajectories. Since we shall em-
ploy a semiclassical approximation, we have to know all
closed classical trajectories of period T. They will serve
as ““background fields” for the one-loop approximation.

In the following it proves convenient to use action-
angle (AA) variables (J;,0;) as coordinates on phase
space. From a generic coordinate system, ¢“, on /M,y we
can make a canonical transformation (a symplectic
diffecomorphism) to the new conjugate pair (J;,0;) which
is defined in the wusual way.4 The actions {J;,
i=1,...,N} fix a certain torus on J,y, namely,
{pEM,y, Ji(¢)=const=J;}, and the angles O, fix a
point on that specific torus. [The coordinate J; should
not be confused with the function J;(¢°).] Since we are
considering integrable systems, the AA coordinates are
well defined even globally. In terms of the new coordi-
nates the solutions of Hamilton’s equation (2.5) simply
read

Ji(t)y=Jy;, 6;(1)=0y +w;(Jyt (3.1
with the frequencies
0H 55 (J)
(Jy)=—77— . .
Cl),( 0) aJI j:JO (3 2)

Here H,, =H 4 (J;) is the Hamiltonian in the new coor-
dinates; it is related to the original one by

HaalJ,(6)1=H (4% . (3.3)

Furthermore, (J;,0,,) are the AA coordinates of the ini-
tial point ¢3=¢“(t =0) of the trajectory. Since the angle
variables are defined only modulo 27, the solution (3.1)
gives rise to a closed trajectory of period T if there are in-
tegers p; € Z such that

o,(J)T=2mp,, i=12,...,N . (3.4)
In general, for fixed values of {p;} and T, this relation
will hold only for isolated values of J, i.e., for isolated
initial points ¢j. Generic initial conditions lead to trajec-
tories which never close. Thus, in AA variables, all
closed classical solutions are of the form

0,(1=6,+ T p,t .

Ji()=Jy, T

(3.5)
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As expected, they remain on the torus 7y (J;) for all
t >0. In fact, they can be used to define a homology
basis {y;, i =1,...,N} of one-cycles on their respective
torus: the loop y; is obtained by putting p; =95,;.

Let us now investigate in more detail the gauge trans-
formations introduced in the previous section. To be as
general as possible, let ¢°(¢)=(J,(¢),0,(1)), t €[0,T1], be
an arbitrary closed path on Jil,y with period T, possibly
“off shell,” i.e., not necessarily a solution of Hamilton’s
equation. The fact that this path is closed, ¢*(0)=¢* T),
again implies that there are integers p; € Z such that

0,(T)—0,(0)=27p,, i=12,...,N .

1

(3.6)

(Note that, for “off-shell” paths, J; may depend on ¢, of

1]
course.) Since from now on we shall consider closed

paths [contributing to Tr(e ~'#7), say], the “field theory”
defined by
T .
Sole% 4;1= fo dt(1¢°0,¢"—H — A4,J;) ,
Sesl4,1=k, [ 'dt 4,(1) e
1=k, t At
CS[ 1] iJy i

can be visualized as a theory of maps from the circle S’
to the symplectic “target space” M,,. In AA variables
the first part of the action becomes

SO[J,-,G[,A‘.]=fOsz{J,(t)é,(z)—HAA[Ji(t)]

and the gauge transformations (2.9), acting on the loop
(J;(2),0,(2)), read

AJ;(t)=0, AO;(t)=¢,(1),
AA(1)=¢,(1) .

(3.9

Their effect is to shift the angles in a time-dependent way
and to leave the actions untouched. With the symbol A,
instead of 8, we indicate that we have in mind not only
infinitesimal transformations, but also iterations of such.
In fact, action (3.8) is invariant under an even larger class
of transformations, namely, the topologically nontrivial
or “large” ones which cannot be continuously deformed
to the identity. They arise as follows. Let us assume the
parameter €; changes between ¢ =0 and ¢t=T by an
amount 27N,;. Then, for the gauge-transformed trajecto-
ry (J(2),0;(1)), t €[0, T], the relation (3.6) is changed to

0/(T)—0,(0)=2m(p,+N,)=2mp, . (3.10)

Since we require that the new trajectory is again closed,
N, must be integer; the allowed gauge functions have to
obey

€(T)—€,(0)=27N,, N,EZ . (3.11)

By definition, transformations with WN;=0 are called
“small” or topologically trivial since they can be obtained
by iterating infinitesimal ones. Transformations with
N;78- are- said to be “large” or topologically nontriviak
They change the number of revolutions which the angle
variables perform between t =0 and ¢t =7. Clearly it is
not possible to continuously interpolate between two

M. REUTER 42

closed paths with different p;’s (staying in the space of
closed path).

Condition (3.11) has an important consequence for the
space of gauge fields A4;(z) over which the (quantum)
theory will be defined. First we note that, using only
small gauge transformations, every A;(#) can be
transformed into a time-independent form A;, which is
explicitly given by!!

A}=leOsz A1) . (3.12)
The integral on the right-hand side (RHS) of Eq. (3.12) is
invariant under small gauge transformations, but under a
large one with parameters NV;70 it changes as

AZ,»=277T.N,~ . (3.13)
This means in particular that if 4, is not an integer mul-
tiple of 27 /T, A;, or A;, respectively, cannot be gauged
to zero.!! Since, we would like to recover the standard
Hamiltonian equation of motion from Eq. (2.12) by going
to the 4;=0 gauge, we require that A; is indeed restrict-
ed in this way:

27

Z-=~T—Z,-, z,€Z .

t

(3.14)

Thus the space of allowed gauge fields A, (over which the
path integration will be performed later on) is subject to
the condition

Jlar a0=2mz, (3.15)
with z; an integer. This means that now also the gauge
fields fall into distinct topological classes which are
characterized by integers z;. Under a small gauge trans-
formation, the topological class does not change, but un-
der a large one the z;’s are shifted:

zj=z;+WN; . (3.16)

Later on we shall see that it is this kind of transformation
which gives rise to the “Maslov anomaly.”

By construction the action S, of Eq. (3.8) is invariant
under infinitesimal gauge transformations. It is easily
verified that it is also invariant under large transforma-
tions. The Chern-Simons term

T
Scsl 4i1=k; [ 'dt 4,(0), (3.17)
on the other hand, is invariant only under small gauge
transformations. Under large ones it changes according
to

Scsl A/ 1=Scs[ A1+ 27k, N, (3.18)

If we want to base a consistent quantum theory on the
multivalued action S =S;,+S-g we have to make sure
that exp(iS) is a gauge-invariant functional of 4;.'? This
is indeed the case if k; is chosen integer. By an argument
of tins kimd we sirait derive tire semiclassical quantization
conditions later on.

Finally let us consider the special class of closed paths
on JM,, which are solutions of the classical equation of
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motion (2.12) for some A4;(t). A gauge transformation
maps a solution ¢¢(¢) of this equation for some A4;(¢) on a
solution @%(¢) of a similar equation with A; replaced by
A;+¢€;. In AA variables it reads

j:cl(t)zo »
2 (3.19)
S/ ;cl(t):w[(J0)+ At(t)+€,([)
and its solution is given by
Ji,cl(t):-]o[
(3.20)

0! ,(1)=6,y+w,(Jy)t + fordt’A,-(t’)-i-e,-(t)—e,-(O) .
If A, obeys (3.15), Eq. (3.20) implies that

Fa(T)—0] 4(0)=2m(p, +z,+N;), (3.21)

where the p,’s are defined as in Eq. (3.4). They are the
numbers of revolutions of a classical solution if 4;=0.
Adding, as in Eq. (3.19), a gauge field of topological class
{z;} changes these numbers from p; to p;+z;. (We ob-

M= [ Dgcexp |+ [ [t 19%0,6 —H($) = 4118k} |

Eventually we would like to compute the partition func-
tion of the complete theory by also integrating over A;.
Since the partition function (or rather its Minkowski-
space analogue) is the trace of the time evolution opera-
tor, the boundary conditions for the integration over
¢°=(p;,q;) are periodic boundary conditions in
configuration space ¢;(0)=g;(T). Furthermore, in any
phase-space path integral'”!® over the circle S' one has
to identify p,(0) with p,(T) and to integrate over this
variable. Hence we must evaluate (4.1) for periodic
boundary conditions ¢%(0)=¢* T) in phase space. We
shall study only the semiclassical, or one-loop approxima-
tion T'V[ 4] of T[4]: T[A]=[1+0#IT'V[4]. To
perform this approximation we decompose a general path
¢°(¢) into a classical part ¢Z|(t) and a quantum fluctuation
x%(e):

@)= (1) +x°(¢) . (4.2)

Both ¢¢; and x“ are periodic with period T. The trajecto-
ry ¢¢ is supposed to be a solution of the modified canoni-
cal equation of motion

6 &4(1)=wd, H (1)), 4.3)
where
FH(P)=H (¢°)+ A, J;($%) . (4.4)

We quantize the theory (3.7) for an arbitrary, but fixed,
set of constants {k;}. [Later on we shall see that con-
sistency requires k; assume (half-)integer values only, but
for the time being they are not restricted in any way.]
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serve again that for noninteger z; the trajectories would
not close.) If, on top of that, the trajectory is gauge
transformed the revolution numbers are changed from
pitz top;+z;+N,.

IV. SEMICLASSICAL QUANTIZATION

In this section we describe the basic argument which
leads to the derivation of the semiclassical quantization
condition (1.1) from our Chern-Simons model. In the
next section we shall apply this method to the one-
dimensional harmonic oscillator as a simple example.
Treating more complicated systems along these lines re-
quires a rather technical discussion of the topology of the
Sp(2N)-group manifold, which we defer until Sec. VI.

We now attempt the quantization of the theory defined
by the gauge-invariant action S, supplemented by the
multivalued Chern-Simons term Scg. All fields are
defined on [0, T'] and are supposed to be periodic. Let us
ask whether the gauge invariance present at the classical
level is still intact at the quantum level. To this end we
define the “effective action” I'[ 4;] by integrating out the
“matter field” ¢“:

4.1

f

Since the classical equation of motion for 4; (the “Gauss
law”’) requires that J;(¢3(2))=k;, we use only those ¢’s
as backgrounds, whose actions equal the fixed constants
k;. This means that we consider only those classical tra-
jectories which lie on the torus:

Ty(k)={dEMyy|T()=K;} . 4.5)

If, in Eq. (4.1), we also integrate over the gauge field we
get a 8 function 8[J;(#)—k; ], which means that also the
quantum paths are on Ty(k;). Because then
J(¢*)=J (¢%)=k;, we have to make sure that the quan-
tum fluctuation y? is tangent to Ty(k;); i.e., we restrict
the allowed )’s by the requirement y“d,J;(¢,)=0. In-
serting the decomposition (4.2) into Eq. (3.7) we find to
quadratic order

Sol¢% 4;1=So[ ¢, 4,1+ Salx* 8% Ai]+O(X3) ,

where S; describes the dynamics of the small fluctuations
X%

(4.6)

T
Salx’, 0% 4,1 =4 [ 'di X043, — 3,3, F(S5(0) "

T ~
=4[ di o, —MOEX . @D

In the second line of (4.7) we introduced the matrix-
valued field

M(1)%, = 0%d,3, H(o (1))

=0%d,3,(H + A,J)[d4(1)] - (4.8)
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Correspondingly the gauge transformations (2.9) decom-
pose in the following way:

864(1)=€,(1)0™d,J,(dy(1)) ,

Sx()=¢;(t )M, ()%, x%(1) , (4.9)
8A,(1)=¢,(t),

where
M ()%, =0°d,0,J;(d(2)) . (4.10)

Note that under the (symplectic) diffefomorphism generat-
ed by the J;’s the fluctuations “ transform like elements
of the tangent space T,/M,y, rather than as coordinates
on JM,y. The transformations (4.9) induce the following
transformation of M:

SM(1)=0,(e,M,)+[e; M, M] . (4.11)

Using the quadratic action (4.6), the one-loop effective
action I'"'"'[ 4] is given by (we put %=1 from now on)

+il[8,, 4]

e D e , 4.12)
c.c.t.
where § =S+ S5 and
efr[¢C|,A]:f@XeiSﬁ[X’¢cl’A] ) (4.13)

Here 3 . denotes a formal sum over all closed classical
trajectories ¢¢) of period T on the torus Ty(k;). Now we
determine the allowed values of k; by requiring gauge in-
variance of exp(iT'"'[ 4]). Let us consider a large gauge
transformation of the topological class {V;} and let us
replace in Eq. (4.12) the field A by its gauge transform
A

oM = s efS[da;l,A'Hif‘[asé‘,A']

c.c.t.

iQmk N, +AT) iS[6,, A}+il (8, 4]
e .

=Y e (4.14)
c.c.t.

In the first line we have changed from the “summation
variable” ¢ to ¢;. In the second line we exploited that
Sg is strictly gauge invariant, Sy[¢’, 4']=S,[¢, 4], but
that Sg changes by an amount 27k, N;. Furthermore we
allowed also for a possible change of the quantum action

AT =1[¢,, 4'1—Fo,, 4] . (4.15)

A priori we do not know AF. It has to be determined
from the functional integral (4.13) which, since Sq is
quadratic, is formally given by

if'[d,, 4]
e

=det 1/2[3,—M(1)] . (4.16)

It will be our main task in the following sections to in-
vestigate the behavior under gauge transformations of
this object. Here we anticipate the result already. It
turns out that AT" depends only on the W,’s, but not on
the details of ¢, or A4:
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Af=—%u,¢\/i . 4.17)
The constants u, are even integers which we shall relate
to certain winding numbers on the group manifold of
Sp(2N). Requiring (4.14) to coincide with (4.12), we are
led to the following conditions for the gauge invariance of
exp(iTM):

exp[2mi (k; — 1 )N ]=1 .
It implies that k; — 1y, must be integer:

ki=n+iu;, n€Z . (4.18)
Because of the “Gauss law” constraint, k; equals the ac-
tion J; of the classical trajectories around which we ex-
panded. Therefore Eq. (4.18) translates into the require-
ment that we may expand only around those classical tra-
jectories for which

Jilg)=n+1tu;,, n€Z . (4.19)
Only if J; is quantized in this way can we maintain gauge
invariance at the quantum level. Equation (4.19) is the
well-known semiclassical quantization condition.»>!
Obviously the topological numbers p; coincide with the
Maslov indices. In our treatment they arise from a
quantum-mechanical anomaly: despite the fact that the
classical action Sy is gauge invariant, the associated
quantum action [ is gauge invariant only under small
gauge transformations with W, =0, but changes under
large ones. This is exactly what usually is called a global
anomaly.%!! To be precise, it is a Z, anomaly (as the one
studied by Witten®) since, given that y; is always even,
exp(iAT') can be only +1 or —1. In view of Eq. (4.16)
this means that there can be large transformations under
which the square root of det(d, — M) changes its sign.

For our derivation of the quantization conditions the
multivaluedness of the action S =S, +S-g was essential:
under a gauge transformation it changes by 2wk;N;.
Well known examples of multivalued actions include the
particle in a monopole background,'? topologically mas-
sive gauge fields in three dimensions®® and the Wess-
Zumino-Witten term in four dimensions.?! To obtain a
consistent quantum theory one has to require that
exp(iS) is single valued. This leads to a quantization of
the coefficients in front of the respective topological
terms: the charge, the mass of the gauge field, and the
number of colors, respectively. In precisely the same way
our model yields the quantization condition J;=n;
(without one-loop corrections yet) for any quantum sys-
tem. Thus, in a sense, Chern-Simons quantum mechanics
unifies the two different notions of ‘‘quantization” en-
countered usually, namely, on one side, parameter quant-
ization as described above, and on the other quantization
in the sense that observables may have a discrete spec-
trum.

Our strategy in deriving (4.19) was to expand the path
integral around the classical trajectories on a fixed torus
Ty(J;) and to ask for which values of J; a sensible loop
expansion (with a gauge invariant I''V)[ 4]) is possible. 4
priori Eq. (4.19) only tells us that the action values of the
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trajectories generated by #(A)=H + A;J; have to be
quantized. However, under a gauge transformation
A;— A}, ¢5—¢4 the actions do not change,
Ji(¢%4)=J,($%). Hence the classical solutions generated
by #(A) and #(A') are on the same torus Ty(J;).
Looking at Eq. (4.14), we always may perform a small
gauge transformation, which is free of any anomaly, to
transform A; to its time-independent form A. If A4 is
quantized according to (3.14) we have #H(A)=H
+(27/T)z;J; and the associated frequencies are

_ 0Han 27 27
w;= —

T, T TAETT

—(p;,+z); (4.20)

i.e., the only effect of the 4,J; term in # is to shift the
frequencies. Therefore the spaces of closed trajectories
generated by #(A) and by H, respectively, coincide.
This allows us to interpret Eq. (4.19) in the usual way,
namely, as a condition on the trajectories generated by H
rather than by #.

V. THE HARMONIC OSCILLATOR

In this section we compute the anomaly term AT for a
one-dimensional harmonic oscillator. This simple exam-
ple does not only serve illustrative purposes; in fact, in
Sec. VI we shall see that, by a series of topological argu-
ments, the computation of AT for an arbitrary system
can be reduced to that for a set of uncoupled oscillators.

Now let us specialize to N =1, ¢*=(p,q), a =1,2, and

H=1¢¢"=L(p*+4q°) . (5.1)
The path integral for [ becomes
e’ﬁ[A]=fﬂ)(exp éfOZﬂdt Xowq, [0, —M12x¢ (5.2)
with

H={1+A40)}Q=—i{1+ A(t)}o, (5.3)

and its formal solution is

e/ TlAl=det 1723, +i{1+ A (D)}0,] . (5.4)

Since in the present case the only conserved quantity is
J=H itself, Eq. (4.8) essentially degenerates to the Hes-
sian of H multiplied by 1+ A (¢) where A4 (¢) is the gauge
field for a single U(1) group associated with energy con-
servation. In Eq. (5.3) we also introduced the notation
Q=0 '=(0"). For a two-dimensional phase space and
canonical coordinates @ and its inverse can be expressed
by the Pauli matrix 0,: w=io,, Q= —io,. In Eq. (5.2)
we put T =27, since the classical trajectories of (5.1) are
all 27 periodic.

First we have to study the eigenvalue problem of the
anti-Hermitian operator

D=3,+i{l+ A(1)}o,=d, +iB(1)o, (5.5)

on the space of periodic functions. [Recall that the path
integral (5.2) is defined with periodic boundary condi-
tions: y“(0)=x%2m).] Itis a simple task to solve
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DFIt)=i\) Fl(1),

with F, (1 +27)=F, (t). One obtains the following set of
complete, orthonormal functions on [0,27]:

Al ER (5.6)

Sfa(e)
Fl(t)=—= .
( infa | (5.7)
where
— 1 . . 4 ’ ’

Fan=a—exp [inge —in [ dr'B (1 )] . (5.8
The F’s are eigenfunctions of both D and o,:

o, F)=nF], n==1. (5.9
Also note that

[ atF ) (OF ] (1)=8,,,8,, (5.10

0

and

(FI)*=F_], . (5.11)
The eigenvalues are given by
M =m4n— [TdtB(), meZ, n=+1. (.12)

27 Yo

Note that this spectrum is symmetric around zero, and
that under a gauge transformation A'=A4+¢,
€(2m)—el(0)=27AN, it is mapped onto itself:
AMlA'1=A) W[ A]. If the field A (¢) is “quantized”

according to Eq. (3.15), the eigenvalues become

AlL=m +n(l+z), (5.13)

where 27z = fé’dr A (t). We observe that for integer z’s

the spectrum contains two zero modes: namely,
{n=+1,m=—(1+2)} and {n=—1,m =1+z}. In this
case the determinant in (5.4) vanishes and [ is not
defined for these fields 4 (7). Therefore we shall not im-
pose the condition (3.15) on the arguments of [ A]in the
following. We shall compute F[A] for arbitrary gauge
fields and perform the limit z —integer only at the very
end. One finds that AT, contrary to [, is well defined
even for integer values of z. (Actually it is even indepen-
dent of z.)

In principle we could compute the determinant in (5.4)
by regularizing the product of the eigenvalues (5.12).
This has been done in Ref. 11 already, where also various
physically inequivalent regularization schemes are dis-
cussed. Here we are going to compute AT by a spectral
flow argument®3!! which avoids the necessity of intro-
ducing an explicit regularization, and which has a natural
connection to the Atiyah-Patodi-Singer index theorem.??
[This latter aspect will be discussed in Sec. VII.] We start
by expanding the integration variable y“(¢) of Eq. (5.2) in
terms of the complete set (5.7):

S S lFI). (5.14)

nN=*l m=—x

Since y is real, Eq. (5.11) implies that the coefficients c,}
are constrained by (c,7)*=c_" . In order to reexpress
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the path-integral measure Dy we have to find a set of in-
dependent ¢’s. We choose this set as {c;!|m =0, n=+1
and m > 1, n==x1} if [2"dt B(:)>0 and as {c,|m =0,
n=—1 and m21,9==%1} if f(z)"dtB(t)<0. By this
choice, the ¢,1’s which serve as independent integration
variables are related to positive eigenvalues A),. Thus, in-
serting the expansion (5.15) into the path integral (5.2)
and expressing the dependent c,!’s by the independent
ones, we find

efﬁ{A]z H

{m,nlA]l >0}

—inAT |c] |2

Jdeldei*e . (5.15)

where also Egs. (5.6), (5.9), and (5.10) have been used.
What we actually would like to know is not f itself but
the difference

AR=P[4'1-F[4]=F[4 +e]-T[ 4], (5.16)

where €(t) is a gauge transformation of winding number

N:

e(2m)—e(0)=27N . (5.17)

We introduce a one-parameter family of gauge poten-
tials 4,(¢) interpolating between A (t) and A'(¢) as s runs
from minus to plus infinity:

A ()= A(t)+g(s)é(t), s€E(—ow,+ o). (5.18)

Here g(s) is an arbitrary smooth function with
gls=—w)=0 and g(s=+ow)=1. Hence A4__(1)
=A(t)and 4, ()= A'(t). We can determine AT from
the flow of the eigenvalues A], =A] (s) as the parameter s
is varied. Inserting (5.18) into the spectrum (5.12) one
finds that

}‘Z(S)z}"i +17g(s)./V(0) .

We observe that as s runs from — o to + «, the m-index
of the eigenvalues with n=+1 (p=—1) is shifted to
m +WN (m —N). What is important for the determina-
tion of A are the eigenvalues crossing zero for some
value of s. From Eq. (5.19) we can infer that for a gauge
transformation with N >0 there are N eigenvalues with
n=+1 which are negative for s— — o« and which be-
come positive for s — + «. There are also N eigenvalues
with 7= —1 which cross zero in the opposite direction;
i.e., they are positive for s — — o and become negative
for s— + «. For a gauge transformation with /<0 the
pattern is reversed: There are |A| zero crossings of ei-
genvalues with 7= +1 which go from positive to nega-
tive values, and | V]| zero crossings of eigenvalues with
1n=—1 which go from negative to positive ones. This in-
formation is sufficient to determine Af. Performing the
integration in Eq. (5.15) yields

(5.19)

efr[AS]: I—I 27 e "ilm/2m

(5.20)
A (s)

'm,'ql}»Z,(S)>0|

Now we have to investigate how I'[ 4,] changes as s is
varied from —c to + . This causes the following
change AT in the effective action:
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M e i

eif[A+‘°]—)\:’"(+ac)>0
if[4_ —ilw/2)n °
RLERM I

K,""l'oc)>0

e:AFE

(5.21

The products of the eigenvalues A], () cancel in the
above ratio, since 4, , and A4 _, are related by a gauge
transformation and we remarked already that the spec-
trum (5.12) is gauge invariant. A nonzero AT can occur
only if the number of factors of exp[—i(w/2)n] is
different for s = — « and s =+ . This number is deter-
mined by the eigenvalues crossing zero. Writing
T T

Af=—Tv=—T(v,—

> > v,) (mod2m)

we have, in obvious notation,

vi=No. {p=+1, # }—No. {n=+1, \\ },
(5.22)
v,=No. {p=—1, 7 |—No. {n=—-1, \\ },

where No. {y=+1, ~ | denotes the number of eigen-
values with n= +1 crossing zero from below, etc. From
the discussion following Eq. (5.19) we know that v;=WN
and v,= —W, so that v=2WN. Hence our final result is

Al =— %ZN (mod27) . (5.23)

Comparing (5.23) and (4.17) we read off that the Maslov
index is =2, so that the quantization condition (4.19)
indeed gives the correct energy spectrum E,=n +1.
Note that AT is independent of the gauge field A (2).
Therefore, by continuity, we may assume that (5.23) is
also correct for gauge fields obeying the condition (3.15)
for integer z.

The above derivation of the ‘“Maslov-anomaly” closely
follows the method of Ref. 6. Now let us also compare
our approach to the discussion of Elitzur et al.!! (See
also Jackiw'? and Dunne, Jackiw, and Trugenberger.'®)
These authors compute determinants such as
Z|[ Al=det[d,—iA ()] resulting from a fermionic in-
tegration. Diagonalizing o, in Eq. (5.4) we see that
exp(il') is precisely the inverse of Z[A4] provided
Z[A)=Z[— A]. Elitzur et al.'' show that there are
two competing symmetries which one can try to maintain
when one regularizes the determinant: namely, gauge in-
variance and invariance under the ‘“‘charge-conjugation”
A(t)—— A(z). At the quantum level these two sym-
metries are mutually exclusive and, depending on the reg-
ularization scheme, one can keep only one of them as an
intact symmetry. The regularization scheme implicitly
adopted using the spectral flow method is the one
respecting the 4-—>— A symmetry at the expense of
gauge invariance. Why should one make this choice
rather than the other one? The answer is as follows:
Looking at an equation such as (3.20) we see that A (¢)
has the character of a frequency. Hence changing the
sign of A(z) is basically the same as switching from a
clockwise to a counterclockwise revolution around the in-
variant torus. Therefore, if we do not want to distinguish
a particular direction on the torus, we have to preserve
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the 4 —— A symmetry. This unavoidably leads to the
gauge anomaly of .

VI. THE GENERAL CASE

One might argue that our previous discussion of the
Maslov index is a very complicated and indirect way to
derive the + 1 in the spectrum of the harmonic oscillator.
However, as we shall show in this section, the determina-
tion of AT for an arbitrarily complicated (integrable) sys-
tem can be reduced to this much simpler problem. In
this section we shall make use of some properties of
Sp(2N) listed in the Appendix, to which the reader might
turn at this point.

The object we have to study is

eif[M]zfﬂxel'Sﬁ[x,M]
with periodic boundary conditions x(0)=x(T), where

sﬂ[x,M]=gf0Tdt YL (O[3, —M(D1Exbt) . (6.2)

(6.1)

Here we have indicated that Sy and f depend on ¢¢, and
A; only through M 9, see Eq. (4.8). To stress the simi-
larity between (6.2) and the action of a (0+ 1)-dimensional
fermion we introduced the “dual” ¥,=x’v,,. Because
the integration in (6.1) is only over those fluctuations
tangent to Ty(J;), we may simplify the form of M as fol-
lows. Inserting Eq. (3.3) into the definition (4.8) and us-
ing Eq. (3.2) we have

M), =0*{w,(J)+ A,(1)}0,0.J;

e o OHpaJ)
+o aCJjWain » (6.3)

where J; and its derivatives are evaluated along ¢Z(2).
The condition x“d,J; =0 implies that the last term of this
expression does not contribute when we insert (6.3) into
(6.2). Therefore we shall ignore it from now on. If fur-
thermore the frequencies ; obey (3.4) and the gauge
fields are of the time-independent form (3.14), we may re-
place (6.3) by

_2r

M(t)%, T (p; +2;)0%9,0.J;(d4(1)) . (6.4)

Now let us check the gauge invariance of the classical
action Sy. To this end we consider an arbitrary one-
parameter family of periodic symplectic matrices:
{S(2)|tE€[0,T], S(t)ESP(2N), S(0)=S(T)}. It is easy
to verify that Sy is invariant under the transformation

X' ()=S(t)x() ,

M'()=S()M()S (1) '+S()S ()"

which is reminiscent of a Yang-Mills gauge transforma-
tion for a matter field ¥ and a gauge field M. (Since w is
preserved by a symplectic transformation, ¥ transform as
X'=xS ). Letting

S(t)=I,y+€,(t)M;(1)+0 (€?)

(6.5)

(6.6)

with M, defined as in Eq. (4.10), we reproduce the
infinitesimal transformations of y and M in Egs. (4.9) and
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(4.11). The matrix (4.6) is symplectic because M, is the
product of Q=o' with the Hessian of J; and therefore
M, Esp(2N). Actually Sy is invariant under a much
bigger class of transformations because not all transfor-
mations of the form (6.5) can be obtained by iterating
infinitesimal ones. In the Appendix we have explained
that, because of I1,(Sp(2N))=Z, the periodic, symplectic
matrix functions S(¢) fall into equivalence classes, each
of which is characterized by the number of times the
respective path winds around the ‘“hole” in the Sp(2N)
group manifold. By Eq. (A15) we can assign a unique
winding number w = W[S(1)] to every S(1), i.e., to every
gauge transformation. Only topologically trivial, or
“small” transformations with w =0 can be obtained by
iterating infinitesimal ones, but not the “large” transfor-
mation with w+0.

The nontrivial first homotopy group of Sp(2N) has im-
portant consequences also for the M’s, which have the
character of Sp(2N)-gauge fields. Since M(¢)Esp(2N)
for all t€[0,T], we can exponentiate them to obtain a
one-parameter family of group elements:
[larstan ] .

0

S(1)=T exp (6.7)

If M is given by (6.4), i.e., linear in J;, the matrix function
3(t) is periodic: 2(0)=Z2(T). (For a proof see Ref. 5.)
This allows us to associate with each function =(t),
and thus with each M(z), a winding number
W[M(t)]=W[Z(¢t)]. In this way the space of Sp(2N)-
gauge fields decomposes into a set of sectors with topo-
logically inequivalent fields. [The term Sp(2N)-gauge
field is a slight abuse of language, since what was actually
gauged is only its U(1)Y subgroup. As for the properties
of f[M ] this is irrelevant, however.] We note that under
a gauge transformation (6.5) the function 2(¢) behaves as

S(t)=Texp

Jdrisms 4857

=S()Z(1)S(0)7! (6.8a)

which in higher dimensions is characteristic of a parallel
transport or holonomy operator. From the second and
the last of Eqgs. (A16) we infer that

WM ()]=W[3'(1)]
=W[S()]+W[S(1)]

=W[M]+W[S(1)] . (6.8b)

This shows that we can change the topological class of M
by a large gauge transformation, but not by a small one.
We easily can write down representatives of gauge trans-
formations and sp(2N) fields with a given winding num-
ber. As we explained in the Appendix, the normal form
of a gauge transformation with winding number w is
given by

S, (t)=exp[QB,(1)], (6.9a)

where the function f3 is arbitrary except for the boundary
condition

w

Bu(T)=B,(0)=27— . (6.9b)
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Similarly, by means of a small gauge transformation, 3(¢)
of Eq. (6.7) can be brought to the form

2(t)=exp[QBw0(t)]

=exp Uo’dt'nﬁwou')] (6.10)

for some function Bwo obeying the boundary condition
(6.9) with wo=W[2(¢)]=W[M(t)]. From Eq. (6.10) we
conclude that the normal form of a sp(2N) field M with
winding number w,, is given by

M, (=08, (1) . (6.11)
A particularly convenient choice for B, is a function
which interpolates linearly between f3,,(0) and 3,,(T):

_ 2T w

BLt)=——1t

6.12
TN ( )

In this case M becomes time independent. Using the nor-
mal forms (6.9) and (6.11) we also can easily check Eq.
(6.8b) explicitly: given as sp(2N) field M of topological
class w, the transformed field has

wo=wyt+w . (6.13)

Symplectic matrices of the simple form (6.8) result
from the equation of motion of the Jacobi fields for Ham-
iltonians which are quadratic in phase-space coordinates.
[See Eqgs. (A19) and (A20) of the Appendix.] This allows
us to reduce the discussion of the global anomaly of any
system to the corresponding one of a set of harmonic os-
cillators. Let us first look at possible local anomalies of
['[M], however. Because Sy is gauge invariant,
Salx’sM '1=S4[x,M], the functional (6.1) is invariant
provided we can absorb the change of M by a corre-
sponding change of the integration variable Y, i.e., if we
no not pick up a nontrivial Jacobian. For the
infinitesimal transformation (6.6) this means that we
should have

Sy ()

det
8Xb( t' )

=det{[82 +e,(M;(1)818(t —1")]

=1. (6.14)

Naively one would expect this to be true, since the deter-
minant of finite-dimensional symplectic matrices equals
unity. However, in particular in field theory (N — o),
we know that such naive arguments might not survive
the regularization and renormalization procedure, which
can give rise to the well-known chiral, conformal, gravi-
tational, etc. anomalies. In our case such a (local) anoma-
ly would spoil the conservation laws J;, =const at the
quantum level. In the following we shall assume that Eq.
(6.14) holds; i.e., we consider only such systems (for N
finite in particular) for which the above-mentioned local
anomalies do not appear. Only for them are all J;’s con-
served in the quantum theory, which is necessary, of
course, for the semiclassical quantization condition to
make any sense.

Let us now check the invariance of I'[M ] under large
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gauge transformations. Because of its assumed invari-
ance under small transformations, it is sufficient to study
f[M ] for sp(2N) fields M which, by a small gauge trans-
formation, are already brought to the standard form
(6.11). This means that ['[M] actually can depend only
on the topological class W[M ]=w,, i.e., F[M]=(w,).
By the same argument we may assume without any loss
of generality that also the gauge transformation S(¢) is
given by the normal form S, (¢) of Eq. (6.8) for some
w#0. Therefore our task is to determine the gauge vari-
ation

Af=T[M'1-T[M]

=fw,+w)—Fw,) , (6.15)

where we used (6.13) in the last line. From Egs. (6.1),
(6.2), and (6.11) we obtain formally
iy , .
e =det™1[3,— 0B, (1], (6.16)

where the function Bwo is arbitrary except for the bound-

ary conditions (6.9b). Since we are using canonical coor-
dinates in JU,, the matrix Q is block diagonal:
Q:dlag[ ‘iaz, -'io'z, ..

., —io,] . (6.17)

Here o, denotes the Pauli matrix again. Inserting (6.17)
into (6.16) we see that the determinant factorizes into
determinants of ‘“smaller” operators with a 2 X2 matrix
structure:

iFlw,)
e =

det M?[3,+iB,, (1)o,] . (6.18)

This functional is precisely the Nth power of exp(i['[ 4])
for the one-dimensional harmonic oscillator provided we
identify

Bu, D=1+ 4(1) . (6.19)

[See Eq. (5.4).]
correspondence

Integrating (6.19) in ¢ we find the

T
+—
z 2

Wy = N, (6.20)

where Egs. (3.15) and (6.9b) have been used. From (6.20)
we conclude that the gauge transformation w,—wy+w
amounts to z—z+tw/N, ie., to N=w/N, in the
language used previously. In Sec. V we determined the
gauge variation AT of the effective action for a single
harmonic oscillator. According to Eq. (5.23) it is given
by Af'=—7N. (The minus sign is a convention; AT is
defined only mod2w.) Using this information we can
write down the gauge variation of the new functional
(6.18):

AT=N(—7N)=—7w . (6.21)
The additional factor of N coming from (6.18) cancels
against the corresponding factor contained in WN. Thus
we have derived the very important result that

AT=—7W[S(1)] (mod27) . (6.22)



42 MASLOV INDEX IN CHERN-SIMONS QUANTUM MECHANICS

It implies that exp( iAf)=+1 or —1 depending on
whether the winding number of the gauge transformation
is even or odd. In particular we see that under a gauge
transformation with an odd-winding number the square
root of the determinant in (4.16) changes its sign, whereas
formally the determinant as such is invariant. Picking a
particular sp(2N) field M, we are free to define the sign of
det'’?[3,—M] in an arbitrary way for this particular
field. Once this is done, there is no further freedom, how-
ever. Then we have to define the path integral (6.1) to
vary smoothly as M is varied. This means that, in ab-
sence of local anomalies, the path integral is invariant un-
der small gauge transformations of M. However, con-
tinuously interpolating between M and M ' (which is ob-
tained from M by a large gauge transformation) we find
that the sign of the square root can change. At this point
it is important to note that sp(2N) fields M(¢) with
different values of w, are not separated in field space by
any singularities, so that they can be deformed into each
other smoothly. However, the point is that for the inter-
polating field configurations the number w,= W [M(¢)] is
not defined, since by exponentiating them according to
(6.7) we find that = is not a closed path on Sp(2N) in gen-
eral: 3(0)7Z(T). For the special case of the one-
dimensional harmonic oscillator from Sec. V this means
that the path Z(¢) closes only if the gauge field A4 (¢) is
“quantized” in the sense of Eq. (3.15) with integer z.

— ~, ] T ~
det” '[9, =M= [ Dy Dx*exp |5 [ 'dt ¥ 0,8, — M 12x¢

The basic observation is that for a complex field, the path
integral on the RHS of Eq. (6.23) can be regularized
gauge invariantly by a kind of Pauli-Villars regularization
because it is possible to write down a gauge-invariant
“mass term” for a (fermionic) regulator field:

AX* 0, XP=2i AXi0, X" . (6.24)

Here A denotes the mass of the regulator term.

Now that we have derived the global anomaly (6.22) we
would like to relate it to the Maslov indices y,; appearing
in the semiclassical quantization condition (1.1). This
can be done as follows. Let us consider sp(2N) fields
M(t) of the form (6.4) with integer values for p; and z;.
Exponentiating them as in Eq. (6.7) we obtain a periodic
3(¢t) and we can assign the winding number
W[Z(t)]=W[M(1t)] to it. Using (A24) from the Appen-
dix we know that is given by

WIM(t)]=(p;, +z,)w, , (6.25)
where
w, =W |exp ETE [ dr'o*a,3.9,(81)) (6.26)

is the winding number associated with the Jacobi matrix
S;(2) of the one-cycle ¥, on the torus Ty(J,), i.e., 1'(¢) is

cl
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[Compare also Eq. (6.20).] Nevertheless it is meaningful,
and very important even, to study the effective action
['[ 4] also for A’s which do not yield an integer value of
z and interpolate between gauge fields with integer z’s.
[Compare our spectral flow argument and in particular
Eq. (5.18).]

The situation described here is very similar to Witten’s
global anomaly® of a Weyl fermion interacting with an
external SU(2) gauge field. For the partition function
Zpirac =detD of a massless Dirac fermion Pauli-Villars
regularization is available so that it can be defined in a
gauge-invariant way. On the other hand, the partition
function for a Weyl fermion is Z ., =(detD )!”2, and the
sign ambiguity of the square root gives rise to the global
anomaly. The nontriviality of II,(SU(2))=Z, guaran-
tees that there exist large gauge transformations also in
this case. The analogy with semiclassical quantization is
clear: the fluctuations y? around a classical trajectory
effectively behave like a “Weyl fermion,” whereby the
fact that y“ is a commuting field is of minor importance.
Also in our theory we can give a general argument of
why exp(Zif), i.e., the fluctuation determinant itself
rather than its square root, always can be defined gauge
invariantly.”> The reason is that the determinant itself
represents the inverse partition function of the “squared”
theory containing two fields x{ and x§ or, equivalently,
one complex field Y= yx{+ixs:

(6.23)

f

the trajectory generated by J; which winds around the ith
homology cycle precisely once, but not around all the
others. Let us assume that we specify a (large) gauge
transformation by choosing a set of integers {V;}. Let us
apply this transformation to the pair ( 4;,¢¢) where ¢ is
generated by #=H + A;J,=H + (27 /T)z;J;,. From the
discussion following Eq. (3.21) it is clear that if the old
trajectory ¢ (t) has had the characteristic integers p; +z;,
then for the new one, ¢,(t), they are changed to
p; tz;+WN,, ie., the new trajectory executes N; addition-
al revolutions around y;. Consequently, if M (M ') is the
sp(2N) field computed from ¢ (4,), then Eq. (6.25)
yields

WM '1=(p;,+z,+Nw, . (6.27)

Inserting (6.25) and (6.27) into (6.8b) we conclude that the
winding number of the gauge transformation we have
performed is given by

WIS()]=Nw;, . (6.28)

Inserting this into Eq. (6.22) we find, for the anomaly,

3

AT =—Z(Quw,)N, . (6.29)

™ |

This result was anticipated in Sec. IV already where it
was used to derive the semiclassical quantization condi-
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tions. In fact, comparing Egs. (4.17) and (6.29) we see
that the Maslov index u; equals twice the winding num-
ber w;:
w=2w; . (6.30)
This is the second very important result of this section.
It was first derived by Littlejohn and Robbins® who used
a completely different method. It states that basically the
Maslov index is a classical object: We simply determine
the classical paths ¢! generated by the “Hamiltonian”
J;, construct the associated Jacobi matrix S;(¢) fom Eq.

(A21), and finally compute w;, = W [S;(#)].

VII. ATIYAH-PATODI-SINGER
AND MORSE INDEX THEOREMS

In this section we reconsider the global anomaly from
the point of view of index theorems. We shall use a
slightly degenerate version of the Atiyah-Patodi-Singer
index theorem,?%? namely, the one for a (0+1)-
dimensional Dirac operator, in order to determine the
spectral flow of the operator D considered in Sec. V.
Furthermore we shall see that, upon going over from the
Hamiltonian to the Lagrangian path integral, our global
anomaly has a natural relation to the Morse index
theorem.?*!” Strictly speaking, one could avoid this dis-
cussion since the spectrum of D is known explicitly, but
we present it here in order to show the close relationship
between the Maslov anomaly and the global SU(2) anom-
aly® and also the parity-violating anomaly in odd dimen-
sions® where the same techniques were used. Moreover,
the Morse index theorem allows us to reformulate the
anomaly in terms of the conjugate points along classical
trajectories in configuration space.

Returning to Sec. V, we consider the spectral flow of
the following one-parameter family of differential opera-
tors, which are reminiscent of (O+ 1)-dimensional Dirac
operators:

D=3, +io,{1+ A,(1)] ,
(7.1)
D,(n)=03,+in{1+ 4,(1)} .

In the first line of (7.1) we inserted the interpolating field
(5.18) into (5.5) and in the second line we replaced o, by
its eigenvalue n==1. (We work in a subspace with fixed
7 from now on.) Now we give a heuristic derivation of
the Atiyah-Patodi-Singer theorem for D, by relating the
spectral flow to the Atiyah-Singer index of a two-
dimensional Dirac operator. Let us define the operators

a

D(n,e)=ien%+D$(n), e=+1 (7.2)

acting on functions depending on both s and ¢, and let us
determine their zero modes :

D(n,e)(s,1)=0 . (7.3)

We make the assumption that 4 (¢) evolves adiabatically
with s. Then, making the ansatz
Y(s,t) =K (s)F(t) (7.4)

in terms of the instantaneous eigenfunctions F;,
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D,F (t)=MAs)F, (1), (7.5)
we obtain the following equation for K (s):
94 enh(s) |K (5)=0 . (7.6)
ds
It has the solution
K (s)=K (0)exp —nefosds’k(s')] . (1.7)

From its behavior for s —+ o« we deduce that, if ne=+1
(ne=—1), there exists a normalizable zero mode only if
A(s') is negative (positive) for s'— — o0 and positive (neg-
ative) for s'— + «. Hence the eigenvalues of D, crossing
zero are in a one-to-one correspondence with the normal-
izable zero modes of D. What we are aiming at is the cal-
culation of the numbers v, and v, defined in (5.22). By
virtue of the above correspondence they can be written as

v;=No. {D(+1,+1)}]—No. {D(+1,-1)},

~ . (7.8)
v,=No. {D(—1,—1)}—No. {D(—1,+1)},

where No. {D(7,€)} denotes the number of normalizable
zero modes of 5(11,6). If we now consider D as a two-
dimensional Dirac operator we can compute v, and v,
from the Atiyah-Singer index theorem. In fact multiply-

ing the two-dimensional massless Dirac equation
(n=0,1)
bY=y"9d,+id,)¥=0 (7.9)

with y° from the left and replacing the chirality operator
ys=—iy! by its eigenvalue 5= +1, one obtains, for a
potential with 4 ,(x#)=0,

(1759, +3y+idy)W=0. (7.10)

The index theorem?’ tells us that the index of B, i.e., the
number of normalizable solutions of Eq. (7.10) with
¥s= +1 minus the number with 7= —1, is given by the
first Chern number of the gauge field:

. S B
indexp=——— [F=-— [d%x 8 4o(x*) . (1.1D

With the identifications x°=:z, x'=s, Vs5=¢€,
Ay=B (t)=1+ A,(t), the Dirac equation (7.10) coin-
cides with the zero-mode equation (7.3) for ﬁ(n= +1,¢€).
Since € coincides with the two-dimensional chirality, the
number v, equals the Dirac index:

_ 1 T o
Vl—;fo dtf‘wdSaSAs(t)
_ 1 rr _
=5 fo di{A, (1)—A__(1)}

1 p7, .

o[ dran=w. (7.12)
Here we used Eq. (5.17) and form (5.18) of the interpolat-
ing field. [Note that since ¢ parametrizes a loop, the to-
pology of the two-dimensional (Euclidean) spacetime is
R'XS'.] In a similar fashion we can put 7s=—e¢ and
Ay=—B(t) in order to compute v, as the index of D.
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One finds v,= —WN. Thus we obtain the same result for
the spectral flow as from the explicit computation in Sec.
V. Moreover we have seen that the “Maslov anomaly” is
related to the index of a particular Dirac operator, which
is well known to be also responsible for the two-
dimensional chiral anomaly. We recall that the above
derivation rests on the validity of the adiabatic hy-
pothesis (for the s dependence) which, in the context of
Witten’s anomaly, has been put into question recently.?®
In this respect we can adopt the point of view that the
calculation of Sec. V confirms the validity of the adiabat-
ic treatment at least for the simple situation considered
here. (See also Ref. 27 for more recent work on global
anomalies.)

In the second part of this section we relate the “Maslov
anomaly” to the Morse index theorem.?*!” The basic
idea is to convert the phase-space path integral (6.1) to a
configuration-space integral by integrating out the
momentum components 7; contained in Y°=(m;,Xx;),
i=1,...,N. This decomposition into coordinates and
momenta entails the following decomposition of the Hes-
sian of #:

Q. (1)=0,0, H(d(1))

B qr) Q) } -
T Q5 () '
Still in first-order form S, =S’ reads
”—f dr [, — Q) — tm, Q7w — 1x,05x; ] .
(7.14a)

Eliminating the momenta by means of their classical
equation of motion we get the second-order forms S'?’:

P=1 [ Tarl(x —0™x),(0™; Q™)

— 1,051
E-f dt x;(DA;x;(1) (7.14b)
where the Hermitian operator A;; has the form
Ay =C0- L L+ . (7.15)
g dr? dt ij

The Cs can be expressed in terms of the Q’s, but this re-
lation will not be important here. When we insert the
first-order action (7.14a) into the path integral (6.1) and
perform the integration on the momenta m;, we obtain
the following path integral over configuration space:

,r[MJ—de ‘”fl)’ t)exp ;ford’xf y%;(0)

(7.16)

In writing down Eq. (7.16) we have indicated explicitly
the integration over the starting and the end point of the
path; the integration 2'x;(t) is over paths with the
boundary condition x;(0)=x"=x,(T). Let us recall
that the zero modes ¢° of the ﬂuctuatlon operator 3, — M,
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(3, —M)iyb(t)= (7.17)

are precisely the Jacobi fields'’
Hamilton’s equation (4.3). [Thls means that if ¢g(¢) is a
solution, then ¢Z(¢)+¢%¢) is another (infinitesimally
close) one.] Similarly, the solution of

A=

are the corresponding Jacobi fields in configuration space,
obtained from * by ignoring the momentum com-
ponents. Let us decompose the paths x;(¢) of Eq. (7.16)
in the following way:

=9;()+y;(t

We require the Jacobi field ¢; to fulfill the condition

¥;(0)=x/"=14,(T), so that y;, has to vanish at the end
points: y;(0)=0=y,(T). Inserting (7.19) into (7.16) we
obtain the path integral

eiro[M]=f§0y(t)exp

to the solution ¢Z(z) of

(7.18)

(7.19)

i T
Efo dty,(DA,;p,(1) | (7.20)

multiplied by a factor involving the classical action of the
Jacobi field (integrated over x.°’). Since this factor is
gauge invariant, f has the same gauge variation as [ :
Af =Af. From (7 20) one obtains

. 2
if[M] 2 i(m/4)sgn(A,)

T , (7.21)
.

=11

where {A,}] denotes the eigenvalues of A acting on a
space of functions y (¢) which vanish for t =0 and ¢ =T.
What determines the gauge variation of (7.21) are only
the exponentials with the signs of the eigenvalues, since
the product over their absolute values always can be
defined gauge invariantly. (This follows, for instance,
from the argument about Pauli-Villars regularization in
Sec. VI.) Let us choose a path Ms(t), SE(—o0,+ ),
which interpolates between M and the gauge-transformed
field M'. As we vary s, some of the eigenvalues
A, =A,(s) of A=A[M,] will cross zero and might give
rise to a change Afo of f‘o. In obvious notation,

Af=—12’~[No. { < }—No. { -2 }] (mod2m) .

(7.22)

At this point Morse theory comes into play. The
operator A=A[M ]=A[¢%(t)] is constructed from a par-
ticular classical trajectory ¢¢(z) in phase space. It is
equivalently represented by a trajectory g.(¢) in
configuration space: A=A[g.(¢)]. (Note that both ¢4
and q.; are periodic with period 7.) The Morse index
theorem?*!” tells us that if {g,(z), tE€[0,T]} is an ex-
tremum of some classical action S, then the index of the
bilinear functional 8°S is equal to the number of conju-
gate points to ¢.(0) (counted with their multiplicity)
along the curve {g,(z), t€[0,T]}. [In general it is not
assumed that g (¢) is closed] In our notation the index
of 828 equals the number of negative eigenvalues of
Alg.]- A given gauge transformation maps ¢, onto ¢
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and correspondingly g, onto ¢g.,. Applying the Morse in-
dex theorem to (7.22) we see that the anomaly is deter-
mined by the number of times the final points g, (7T) and
q.,(T) are conjugate to the initial ones ¢(0) and g.,(0)
when we go once around the full loop:

Af=— %{No‘ [conjugate points along g (#)]

—No. [conjugate points along g/,(#)]} .
(7.23)

This is the alternative representation of the anomaly we
wanted to derive. It shows again that AT can be deter-
mined from purely classical data, namely, by examining
how often the final point g (7T) [which accidentally coin-
cides with the initial point] is conjugate around the loop
to the initial point g4(0). This is easily done for a har-
monic oscillator, say, where g (27) is conjugate to g (0)
of order 2 in the above sense, since the first point conju-
gate to ¢g;(0) appears after half a period already: g ().
On the other hand, the effect of a gauge transformation
with winding number N is to increase the number of re-
volutions from p to p + V. Hence the curly brackets in
(7.23) equals 2N, which yields Af=—7Nin agreement
with (5.23). As it stands, Eq. (7.23) seems to imply that
AT depends on the path g (1) chosen. From our previ-
ous discussion we know, however, that this is not the
case: AT depends only on the (winding number of the)
gauge transformation.

VIII. CONCLUSION

We have shown how Chern-Simons quantum mechan-
ics can be used to explain a nonzero Maslov index as the
manifestation of a global gauge anomaly. Our model can
be considered a ‘“‘dimensional reduction” of the ordinary
quantum theory which “lives” only on a fixed torus
Ty(J;) in phase space. From the requirement that the
one-loop effective action is gauge-invariant (mod2w), we
derive a condition for the k;’s, which (by the Gauss-law
constraint) translates into a condition for the allowed J;’s.
On tori with different actions J; the theory cannot be
defined consistently. Depending on the gauge (non) in-
variance of the quantum correction [, the coefficients k;
have to be either integer or half-integer in order to make
the full one-loop effective action gauge invariant. We
have shown how to express the anomaly and the Maslov
indices in terms of winding numbers on the Sp(2N) group
manifold, thus making contact with previous work of
Littlejohn and Robbins.’
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APPENDIX: THE TOPOLOGY OF
THE Sp(2N) GROUP MANIFOLD

In this appendix we collect a few facts about the sym-
plectic group Sp(2N) which are needed in Sec. VI. We
partly follow Ref. 28 to which we refer the reader for
more information and for detailed proofs.

Symplectic matrices S =(S%,) are defined by the condi-
tion

a=sas’ (A1)
or
w0®=59 85 o | (A2)
where Q=(0)=w ! can be written as
o Iy
Q= —Iy 0 (A3)

with the N XN unit matrix Iy. Symplectic matrices
infinitesimally close the unit matrix are of the form

S=I,x+eQkK , (A4)

where € is a parameter and K is an arbitrary symmetric
matrix. We can construct one-parameter subgroups of
Sp(2N) by

S(t)=exp(tQK) . (AS)

Every symplectic matrix can be written as a product of
such factors for different matrices K. Because of (A4)
there is a one-to-one correspondence between the sym-
metric matrices and the Lie algebra of Sp(2N).

Therefore the dimensionality of Sp(2N) equals the
number of linearly independent symmetric 2N X 2N ma-
trices: dim Sp(2N)=N(2N +1). Despite the fact that K
is symmetric, QK is neither symmetric nor antisymmetric
in general. Let us denote by K, (K;) the symmetric ma-
trices with the property that QK, (QK;) is antisym-
metric (symmetric). Using the polar decomposition
theorem it can be shown?® that every symplectic matrix
can be written as a product of the form

S =exp(QK)exp(QK,) . (A6)

The first factor exp(£2K| ) is a positive definite, symmetric
matrix. These matrices form a N (N +1)-dimensional
subspace, but not a subgroup, of Sp(2N). One can prove
that the topology of this subspace is that of RNV *1),
which means in particular that it is simply connected.
The second factor in (A6), exp(2K,), is an orthogonal
matrix. These matrices form a N -dimensional subgroup.
The general form of a matrix which is both symplectic
and orthogonal reads (in terms of N X N blocks):

X v

exp(QK,)= | _y y (A7)
with

XxXT+yy'=1y, XY"—YVX7=0. (A8)

Condition (A8) implies that the N X N matrix U=X +iY
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is unitary: U€ U(N). In fact, it turns out that the space
of the exp(Q2K,) matrices is isomorphic to U(N). Since
every UEU(N) with detU =exp(ia) can be written as

U =exp

. Qa
IJ_V' UO

for some U, ESU(N), we find that the second subspace is
isomorphic to SU(N)XU(1). Hence topologically we
have

Sp(2N)~RM N DX SU(N)XU(1) . (A9)

Both RY¥ 1 and SU(N) are simply connected, but U(1)
is not, of course: II,(U(1))=Z. Thus

IT,(Sp(2N))=Z (A10)

so that also the Sp(2N) group manifold is not simply con-
nected. To each closed loop on it we can associate a
winding number w € Z which tells us how often this path
“winds around the U(1) factor.” In this sense the group
manifold has a single “hole.” For N =1, for instance, we
have Sp(2)~R2X U(1)~R?XS! which may be visualized
as the solid interior of a two-torus.

Let us now consider a closed path {S(z), t€[0,T],
S(0)=S(T)} on the Sp(2N) manifold. By virtue of Eq.
(A6) we may parametrize it as

S (t)=exp[ QK (1)]exp[ QK ,(1)] . (A11)

Since the space of exp(QK;) matrices is simply con-
nected we can perform a homotopic deformation of S(t)
such that exp[ QK (¢)]=1 for all t€[0,T]. By another
homotopic deformation we can remove from the
remainder the part which lies in the simply connected
SU(N) factor. Finally the nontrivial part of S(¢), which
describes the winding around U(1)~ S is of the form

Iycosp(t)  Iysinf3(t)

S(D=explQB(N)]= —1Iysinf3(t) Iycosf(t)

(A12)
Every closed path is homotopic to a path of this form for
some appropriate function (). Even this function can
be changed by homotopies to some extent. What cannot
be changed is its winding number w which is given by
w = NI where the integer ! determines the change of f3
during one revolution:
B(T)—B(0)=2ml =27 . (A13)
The integer w indicates to which class in IT,(Sp(2N)) a
certain loop belongs. The problem which arises is to find
w=W/[S(t)] for a given curve S(¢) which is not of the
normal form (A12). Littlejohn and Robbins® deviced the
following algorithm. First write S (7) in block form as

A(t)
C(t)

B (1)

S(t)= D (1)

(A14)

and compute the complex function det[ 4 (z)+iB(?)].
Then the winding number W[S(?)] is given by the num-
ber of times det( A +iB) encircles the origin of the com-
plex plane when ¢ increases from t =0to t =7. Hence
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wis(]=6 - L inde 4 (0+iB(1)] .
27i dt
It is easy to apply (A15) to (A12) and to show that indeed
WI[S(t)]=NI=w. The winding number W has the fol-
lowing important properties:’

(A15)

WIS, (D]=W[S,(1)]=S8,(1)~S,(1) ,
W[SoS|()]=WI[S,(1)S,]1=W[S,(1)],
wW[S(t) '1=—w[S()],

WIS, ()S, ) ]=W[S,()]+W[S,(1)] .

(A16)

The first statement is the homotopy invariance of W and
in the second one S, denotes a constant symplectic ma-
trix.

Periodic, symplectic matrix functions S (¢) are natural-
ly encountered in integrable Hamiltonian systems. In
fact, consider an evolution equation

6 (1) =0",G(¢(1)) , (A17)

where G is some generating function (not necessarily H or
#), and use its solution ¢¢(¢) to define the Jacobi matrix

_9¢4(1)

S ()= .
P k0

(A18)

This matrix is built out of the Jacobi fields*!” which de-
scribe the behavior of other classical trajectories close to

alt). The equation of motion for S(z) is obtained by
linearizing (A 17) around ¢4(¢):

[0,8% —M¢,(1)]S°.(1)=0, (A19)
where
M®,(1)=0%d,0,G(d,(1)) . (A20)

The matrices S(t) are elements of Sp(2N) for all ¢,
since in a Hamiltonian system time evolution induces a
symplectic diffeomorphism on /M,,. We can write down
the solution of (A19) with S(0)=1 as

S(t)="Texp If'dt'M(r')] , (A21)
0

where T denotes the time ordering operator. Note that
M (¢) is of the form () times a symmetric matrix and that
it therefore assumes values in the Lie algebra of Sp(2N),
M (t)Esp(2N), for all . Concerning the periodicity of
S(2), it can be seen that even for integrable systems the
ordinary Hamiltonian G=H does not give rise to a
periodic S(¢) in general. (The only exception are Hamil-
tonians which are linear in the actions J;.) The situation
is different if we use one of the action variables J; as the
“Hamiltonian: G =(27/T)J;. Starting from any initial
point, the action J;(¢%) generates a closed-path in phase
space with a period T which depends on the initial point.
It can be shown’ that then also the associated Jacobi ma-
trix is periodic: S(0)=S(T). As mentioned in connec-
tion with Eq. (3.5) already, the functions {J;(¢“)} provide
us with a basis {y,, i =1, ..., N} of one-cycles on the in-
variant tori J; =const. To each cycle we associate the
Jacobi matrix
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t
S,()="Texp fodt'Mi(t')] (A22a)
with M, as in Eq. (4.10), and the winding number
w,=WI[S;(1)] . (A22b)

At this point we should not confuse the number of cir-
cuits some ¢gj(¢) makes around the ith homology cycle of
the invariant torus in /U,y (previously denoted p;) with
the winding number w; of the associated Jacobi matrix
9¢2(£)/99%(0) around the “U(1) hole” in the symplectic
group manifold. By definition y; runs precisely once
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around the torus, but the corresponding S;(¢) can be in
any equivalence class of IT,(Sp(2N)). Using

2
G(¢“)=77TpiJi(¢“), pE€EZ, (A23)
as the Hamiltonian, the corresponding path S,(7) in
Sp(2N) is again closed’ and it has the winding number

WIS, (1)]=pw; . (A24)

The proof makes use of the fact that the flows generated
by different J’s commute and of the properties (A16) of
w.
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