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Abstract. We study the exclusive semileptonic D meson
decays D —» K 4+ m + [ + v. For this we develop the general
formalism for the joint angular distribution of the charged
lepton and the K meson and calculate the helicity
dependent decay widths which determine the full angular
distribution for several models with K*(892) and
K¥(1430) intermediate state with nonresonant back-
ground terms calculated from chiral Lagrangians.

1 Introduction

In the past the experimental and theoretical study of
weak semileptonic decays of hadrons has provided very
important information on the structure of the weak
current, in particular on its quark structure and on its
dependence on the quark mixing parameters. Weak
semileptonic decays of mesons containing heavy quarks
are of special interest for extracting information on the
quark mixing parameters connecting heavy and light
quarks. To obtain these parameters from measured
branching ratios, lepton spectra or other observables of
D and B meson decays we need theoretical input in the
form of weak current matrix elements between the initial
D or B meson and possible final hadron states. It is clear
that the accuracy of such determinations of the weak
mixing parameters, in particular of V. and V,,, depends
on the correctness of the theoreticai model used to
calculate the weak current matrix elements. Therefore it
is very important to study these models in such cases
where the quark mixing parameter is known, in order to
test these models, and, when they fail, to gain insight for
their improvement. The decay of D mesons to strange
states is such a case since the fact that V,; is almost equal
to unity is rather well known. To confront models with
a meaningful test it is not sufficient to compare only the
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branching ratio and the lepton spectrum with experimen-
tal data but rather one must make more detailed tests of
as many observables as possible. One such possibility is
to calculate the angular correlations in the semileptonic
decay D — Knlv, where I may be either an electron or a
muon, which arise from lepton—hadron correlations and
the angular distribution of the K= system in its center
of mass frame. The D — Knlv decay is dominated by the
K*(892) intermediate state but may have contributions
also from Kr partial waves other than J* =17 It is the
purpose of this paper to investigate several models which
contain more than just the K*(892) resonance and
calculate the complete differential partial decay width
concerning lepton and final meson angles. The angular
structure of this partial decay rate is quite similar to K,
decay which was studied quite extensively many years
ago [1]. In contrast to K — nnlv we have two pseudoscalar
mesons with unequal masses in the final state.

The quark model is generally considered to give a
reasonable description of the semileptonic decays of
heavy quarks, both inclusively [2] and exclusively [3-6].
Quark model calculations agreed reasonably well with
the rates for the decays like D — Klv and with the polar-
ization of the final vector meson in the decay B — D*[v.
Recently it became apparent, however, that in the decay
of the D meson: D - K*lv— Krlv there is disagreement
between the quark model results and the experimental
data. First, the measured polarization of the K* does not
agree with the prediction of the quark model. Theoreti-
cally the decay widths for transversely and longitudinally
produced K* are almost equal [7-9]. The experiment
shows, however, that the K* is dominantly in a longi-
tudinal state [10]. Second, in the quark model the decay
channels D — K*ev and D — Kev have comparable rates
[7-9] whereas experimentally the rate of D— K*evis a
factor of two smaller than the rate for D — Kev [10-11].

Of course it is always possible to fit these experimental
data by an adjustment of parameters like overlap
integrals for D— Kiv and special form factor fits in
D— K*Iv{7,8,12]. But the important issue is: are drastic
changes of the original quark model calculations neces-
sary or will a fine tuning of the final state hadronization
details fit the data? In principle modifications of the
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theoretical input can come from two sources. First, the
quark model form factors obtained from wave function
calculations may differ from the usual results [3--5]. This
will modify the predictions for D— Klv and D— K*v.
Second; there may be contributions of other partial waves
than the intermediate K * in D — Knlv. These other partial
wave contributions may originate from nonresonant
contributions based on contact terms and off-shell contri-
butions in other channels than Kn, as for example a D*
term in the Dn channel. Another possibility is that
JP=0% and/or 2% and/or additional 1~ (with larger
masses) resonances in the Kz channel, although resonat-
ing at higher energies, interfere with the dominant K*
terms. It will be difficult to detect such additional terms
from rates or electron spectra alone. Since their contribu-
tions to the various helicity states of the virtual W (or
weak current) will differ from those of the K* terms it is
of interest to study the joint angular distribution of the
K (or m) meson and the lepton [*. This will permit the
detection of additional Kn partial waves and/or back-
ground terms and will also help to determine the relative
signs and form factors of the dominant K* intermediate
state [12-14].

A model for the nonresonant background contribution
has been developed recently by two of us and J. Cline
[7]- In this work weak transition amplitudes of the D
meson to two pseudoscalar mesons have been written
down which have the same structure concerning transi-
tions to resonant vector meson states as the usual quark
model approaches [3-6], but have in addition the
constraints arising from low-energy theorems codified in
the chiral Lagrangian [15]. The low-energy constraints
lead to additional terms which produce the nonresonant
background underneath the dominant resonant contri-
bution. For the additional resonances at higher masses
we shall make an ansatz for a scalar resonance at
m=1429GeV [16] with an arbitrary parameter for its
strength.

In Sect. 2 we derive the complete formula of the
differential decay distribution for D — Knev and present
the partial wave expansion of the occurring helicity
amplitudes. Section 3 contains the weak currents for the
model of the K* resonance with background and 0*
contribution from which the form factors needed for
calculating the angular correlation coefficients are
derived. In Sect. 4 we present our numerical results for
the coefficient functions of the lepton angular correlation.
Here we study the influence of the background terms and
the 0* contribution. In Appendix A we collect some
material for deriving the angular distribution and in
Appendix B we consider modifications for the case that
the charged lepton mass is nonzero which are relevant
for D — Knuv decays.

2 Semileptonic decay angular distribution
Following earlier work [15] we write the total semi-
leptonic decay rate as
2 2 d3 3
= 2GelVel” (dkdk H*l,
m(2n)* 2k, 2k,

(1

with the lepton tensor

Ly=kKk, + k;‘kv —k'kg,, + isumﬁk"k”‘ 2)
and the hadron tensor
d*p,dp; 1

H. = s — g —p. — 3
uv ;j2p20 2p30(27r)6 (P1—9—p2—P3) (3

(DI DI X (P2, P3)> <X (P2, P3) T )| D(P 1))

V.. denotes the Kobayashi-Maskawa matrix element for
the transition from charm to strange quarks. The
momenta correspond to the process

p1—op2+pstk+k 4

where p, and p, are the momenta of the K and =,
respectively, k is the electron momentum, k' is the
neutrino momentum, g = k + k' the momentum transfer
to the lepton system and m, the mass of the decaying D
meson. In the following we shall neglect the mass of the
electron. Effects of a finite lepton mass which are of
interest for the decay into muons will be considered
separately in Appendix B.

The full differential decay distribution d I is a function
of five configuration variables. If these variables are
properly chosen the dependence on two of these variables
is quite explicit and can be factored out. This follows
from the factorization of the lepton tensor as we shall
see below. The situation is completely analogous to the
treatment of K,, decay many years ago [1]. The essential
dynamical effects are contained in certain form factors
which can depend at most on the remaining three of the
five variables. To derive this dependence on the lepton
variables we express the lepton tensor in terms of nine
independent basis tensors LO(i= U, L, T,V,F,I,P,A,N)
which are defined in terms of polarization tensors

Ly7 =9, p)e¥ (9, 0). )

In (5) the £#(q, A} are the polarization vectors of the virtual
W (or lepton current) with polarization A= + 1,0,s. The
polarization vectors are specified in the rest system of
the virtual W:q = 0, where £4(g, + 1) = F (0,1, F i,0)/\/2,
£(q,0)=(0,0,0, — 1), (g, =0¢"/a’ ¢"=(g"0,0,0)
The scalar (zero) helicity component of the W,i=s,
contributes only if the lepton mass is nonvanishing. It is
included in (5) for application in Appendix B. For
p,6 = + 1,0 the tensor L, (p, ¢) has no time components.
In the system q =0 and for vanishing lepton mass, 1,
has also only space components, p, v = 1,2,3. The lepton
tensor is hermitean I, = I . Therefore it can be expressed
in terms of nine independent basis tensors as follows
29 o) W LD L LW 4 [ LE 4 L0
luv=T{IULm, + I LD+ 1 L)+ L L)+ e LD+ L LS

+1pL® 4+ L + L L. (6)

The basis tensors are simple matrices in u, v = 1,2, 3. They
are written down in Appendix A and are expressed in
terms of the polarization tensors (5)

LO=L* 4L~ LO=(L*O— [0 + L7°—[°7)/4i
L(L):LOO L(I)=(L+0+LO+_L~O__LO—)/4
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LYV=(L* " =L 2 L=+ +L °+1°7)/4
P=p* L. )

The coefficient functions [y, I;, I1, etc. are easily calculated
in terms of the angles 6 and y which specify the lepton
momenta k and k' in the current rest system q =0 with
respect to the coordinate system shown in Fig. la and
described later. In terms of these angles we have

k* = k°(1,sin 6 cos y, sin #sin ¥, cos 6) 8)

and k'*=g* —k*, k° = \/41‘2/2. The coefficients Iy, 1,17,
etc. are written down later as functions of 8 and y. The
dependence on g2 together with a common normalization
factor hds been factored out already in (6). The decom-
position (6) allows us to replace the tensor product [**H ,,
by the coefficient functions Iy,!;,l, etc. and helicity
structure functions H; which depend on the polar
angle of the K meson 6* and the (Kn)-invariant mass
squared 5,3 = (p, + p;)%. The H; are:

H,=L%H* (i=U,LT,V,F,1,P,A,N). (9)

With these definitions we obtain for the differentiai decay
distribution with respect to q*,cos 6 and :

2nd3Ilr G;“/ |2q2 (m1—+q2)2 1
= N ds
dg*dcosOdy  96(2n)°m> (ma+ms) 23 _jl
dcos0*/a, XI"'H,, (10)

where
LLH* =lyHy+ 1, H +1;H + 1, H,
+leHpg+ I H +1,Hp+ 1, H,+ I Hy (11)

with
l 3 (1+ cos? 6) l sin 26 sin
= — = X
778 ’ 2ﬁ
3
[, =Csin?0 I =-— sin 20 cos
L 4 I 2ﬁ
3., 3o
I ==sin”Ocos 2y Iy=-——sinfsiny
4 2
3., 3.
I, =—-sin“Osin2y l,=———sinfBcosy
4 2
3
lp=—-cos @ (12)
4
and
Hy=H*"*+H ~

HF:;(H+O_HO+ +H—0_HO~)

H =H

H=YH*°+H°* —H °—H°)
HT:%(HﬂLA +H™ ")
Hy=XH"°+H°* +H °+H°")
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Hy=—(H'"—H"")

HN=_}E(H+0 _H0+ _H—O + HO—)

Hp=H**—H ~. (13)

It follows from (10) and (11) that the dependence on the
electron angles factors out completely and is given by
the simple coefficients in (12). If the complete angular
dependence could be measured, all nine structure
functions d*I"; could be determined:

d31—'i . G§‘|Vcs|2q2\/ a2XH
dq*ds,ydcos 0 96(2n)°m;

where i=U,L,T,V,F,1,P, A, N so that the fully differen-
tial decay distribution is:
2nd®I a3r;

=y 2i s
dg*dcos 8dyds,d cos 0* Z,: dq?ds,,d cos 0* (13)

(14)

i

with the lepton coefficients given in (12). As mentioned
earlier the dependence on the lepton angles 6 and y is
completely trivial and factors out. The dynamics of the
decay is contained in the structure functions H;. They
depend on s,5,cos 0* and ¢°. In (10) and (14) we defined

X =/5231a] = /523|ps| = 1'*(m}, 523,472 and \/a, =
2195 1/y/525 = 21P3l/</523 = A/*(523,m3, m2)/s,;. They are
related to the momenta of the D and the K meson in the
Krrestsystem P =p, + p; = 0(we use P = p, + p; in the
following). The structure functions H; can be calculated
from the decomposition of the hadronic matrix element.
This has an axial-vector and a vector part with the
following structure

JuE<p23p3|Au+ Vy|p1>

1
=— [f(Pz +P3)e +9(p2 —P3), 14,
1

ih
+;;l'58uvaﬁqv(p2 +p3)(p2 "Pa)ﬁ:|- (16)
1

The first three terms come from the axial-vector part, the
last term from the vector part. The dimensionless form
factors f, g, r and h are functions of the invariant variables
53,9 and of 6*. The term proportional to r does not
contribute for vanishing lepton mass since ¢*I,, = 0. The
ansatz (16) is the most general one. This means that the
decay distributions are known if the complex functions
f.g and h are given. The next step is to express the
structure functions H; in (13) by the functions f,g and h.
For this purpose we calculate the helicity projections of
the currents, ex(g, p)J* for p= 11,0 in the coordinate
system P =0, i.e. in the K7 rest system. For this we need
the polarization vectors of the virtual W in this system,
which are obtained through a boost from the polarization
vectors in the W rest system. The coordinates in the
K rest system are chosen in such a way that the z-axis
is along the momentum P in the rest system p;, =0
(see Fig. ta) and that the K momentum lies in the
x—z-plane with positive x component. The angle 8* is
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a) D rest frame ¢) {lv)cm. frame

X X - X
I P
I\
K 1YY
K* D o* ! X o
T
t

Fig. 1 a—c. Direction of momenta in various frames a D rest frame,
b 6* in (Kn) c.m. frame, ¢ # and y in (Iv) c.m. frame

b} K* rest frame

specified in the Kn rest frame (see Fig. 1b) which is
obtained from D and W rest frames by boosts along the
momentum P, i.e. p4 = (p,,, |p,|sin 6*,0,[p,{cos 6*) with
P20 =523+ m3 —m3)/2/523) and |p,| = /s;3\/az/2.
The azimuthal angle y is the angle between the W —ev
decay plane and the plane defined by the vectors p, and
ps in frame (a) or (b) of Fig. 1. 8 is the polar angle of the
charged lepton with respect to the z-axis chosen along
the Kn momentum in the current rest frame where the
x—z plane is chosen as the virtual W decay plane with
k. >0 (see Fig. Ic). Then the boosted W polarization
vectors have the following form:

1
g, £y =F—(©0,1, F4,0)

/2

1
S(q’ 0)“ = ‘(IqL 07 O, - qo)
Je
1 1,
3(‘155)“2 q”: (q ’0,0,_|(I|) (17)

JE VP
with [q]=|p,| = X/\/s23 where p4=(p;0,0,0, —|p;])
and qo = Pq/\/s23, Pqg=(mi—5,3—4%)2, pro=qo+
5,3, and the helicity projections of J, in the system
P =0 are:

Fo=¢*(q,0),J*

1 m§ —ms
= X{ f+ g )+ g/a,Pqcos*
mi/q> 523

Fy=g(g, 1),J" = + Y2203 [g + hf]sine*. (18)
mlﬁ my

The projection £*(g, s),J* is not needed. It will be given

in Appendix B for calculating lepton mass effects. The

functions F, (A =0, + 1) are the helicity amplitudes in the

frame P=0. They have the following partial wave

expansion:

Fr= Y (2j + D] o(0%)F), (19)

We have d{,,O(H) = P,{cos ) and d’, 1.0 = FsinfP’(cos B)/
~/ j(j+ 1). This means that the expansion of F, starts
with j =0 whereas for F, the lowest partial wave is
Jj=1.The partial wave amplitudes F, which depend only
on s,; and g have the final state interaction phases 9,
for I =1/2 Kn scattering. The phase shifts depend on the

single variable s,;. The main contribution to F; comes
from the intermediate state K*(892) resonance which is
purely elastic. It will be considered in more detail in the
pext section. If we restrict the expansion (19) to s- and
p-waves only then the form factors g and h are inde-
pendent of 8* whereas f is at most linear in cos 8*. The

s-wave is resonant at ./s,;=1.429GeV yielding the
K$¥(1430) state which also decays dominantly into K.
It has a rather large width of (0.287 + 0.023) GeV. From
threshold the phase shift 6, grows monotonically with
energy until it reaches 90° near the resonance mass {17].
In all helicity cross sections H; which involve F,, ie.
H,,H. H,; H, and H (see (13)), we expect strong inter-
ference terms between j=0 and j=1 contributions.
Therefore these cross sections would be ideal for studying
the phase difference 3, — &, in isodoublet K=z scattering.
Other resonances that might contribute are K*(1415),
which however decays dominantly into K*r, and
K#*(1430) with j=2.

To facilitate the evaluation of the partial cross sections
proportional to H; for particular models, which will be
done in the next section, we exhibit the dependence of
the H; on the form factors f,g and h. Substituting the
expressions for F, given in (18) into the general formulas
(13) we obtain

Hy=C,|| |2+|h|2X2
v==01119g "

1

1
2.2
my

—1 |h|? X2
HT=2C1<19|2“ "

1

Hy= 5 51Xf+Cygl?

- X
Hy =—C,J{h*y}
my
D, G
Hp= ?C3\5{h*[Xf+ ng]}
1
H;=C,R{g*[Xf + C,g]}

2X
szﬁcl‘ﬁ{g*h}

HA=%csm{h*[Xf+ Crql}
1
Hy = C33(g*Xf) (20)

where R and J denote real and imaginary part and where
we defined

azs “
C, = —fsm2 o*
my

2 2
C,=xX+, /az%:’—qcos()*

C;= @sin 0*
V' 2q my

2 .2
=2 T My 1)

S23



We notice that as long as we restrict the partial wave
expansion (19) to s- and p-waves the cross sections
Hy,Hy,H, and Hp depend on 6* only through the
characteristic multiplicative factor sin”f* and give
information on the J* =1~ states only. All the other
cross sections involve s—p interference. Obviously H,, H,
and H, depend on the s—p phase shift difference in the
form cos(d, — &,) whereas Hy and H, are proportional
to sin(dy — J4).

In the next section we shall present the form factors
f,¢ and h for several models including the simplest one,
which has only the K*(892) as intermediate Kn state.

3 Resonance model with background

From the available experimental data it is not yet clear
that the K*(892) resonance is the only contribution in
D° and D* decays to the Knlv final state. MARK III
reports for the ratio of resonant to nonresonant corttri-
bution in D° decays the number 4.0/1.9 and in D* decays
29/1.3 [11] whereas in the E691 experiment these
numbers are 1.7/0.3 and 4.5/0.3 [18)]. Thus the E691
experiment finds far less nonresonant background than
the MARK III collaboration. It is hoped that the other
partial decay rates if measured will give better data on
the nonresonant terms than the total decay rate.

To get an idea how the other partial decay rates
dI'(i=U,L,T,etc)look like we shall investigate a model
that consists of the K*(892) intermediate state, where the
finite width is fully taken into account, and an additional
background term which is motivated by an effective chiral
Lagrangian approach including a Wess-Zumino term.
This model is described in detail in earlier work [7].
From this we can read off the form factors f, g and 4 for
this particular model which are then substituted into (20).
To clarify the notation we shall repeat the main formulas
from [7].

For the hadronic form factors f, g, h for the transition
to two pseudoscalar mesons we consider, to be specific,
the process D* K™ +7nt +e* +v. The effective
Lagrangian approach yields the following expression for
J, which is valid at threshold and in the limit of SU(4)
chiral symmetry [15]

2/2 i2,/2

J,= RTF?rguvaﬂP;PZP’; Gy(g®) + ?F"(zps +p;—p2)
9.4,
.|:gquA(q2) ) £ 2:| (22)
q — Mg

where G, and G, describe the g2 pole behaviour of the
weak vector and axial-vector current. The g,g, term does
not contribute for vanishing lepton mass. We now add
renonance terms in the two-body pseudoscalar channels.
The vector current V,(J, =V, + A,) is given by

22

1
Vu = ;E-};‘E Euvaﬂp;;paz!pllj i GV

m2, mi,—im,, I
'{1:‘5 _l_)s +(1:_1fv)+1fv7u*f}
D* 13

My, — S5 —imy,

(23)
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and the axial-vector part A4, is

i2,/2 m2, —imy. I
A,= -1 —pa)t+1 RrK
u 3F, {( b fa)(ps Pz)u fa m12<* —Spa—img T
'[(Ps - Pz)y +R(ps + Pz)u
F3(0) R ]
+ —p)+R +
FT(O)Plu[Pl(l% p2) p1(p2 + p3)]
v Mg,
+1y— (P14 P30 Gu (24)
My — Sy
with

— 2 2
Syz3=mi+m;

B <(323 +m} —g*)(sy3 +m3 —m3) _ \/an cos 0*>

25554

2 2
m; —m3

e="2" 25)
M.

In (22), (23) and (24) F, is the pion decay constant
F,=0.18GeV. The terms proportional to m; —m? are
needed for the correct spin projection of the intermediate
vector state. In (23) and (24) the parameters f, and f,
decouple the resonance enhancement of the K* from
the low energy behaviour. Without them, i.e. for f,I =
fal =1, relations between different coupling constants
evolve which are in disagreement with experiment (for
more discussion on this point see [19]). f, and f,
parametrize the possibility that this decoupling is
different for vector and axial-vector currents. I stands for
overlap integrals for the transition D— K* which are
assumed to be equal for the vector and the axial-vector
current. I} and I have been introduced to account for
chiral symmetry violations of the contact term and the
D* exchange term. They will be specified in the next
section in such a way that they approach I}* =1 in the
chiral symmetry limit. Then in this limit (23) and (24)
reduce to (22) when s,; and s,, are evaluated at soft
threshold s,,=s5,;=0 and m, =m,=m,; =0 for any
value of the parameters f, and f,. We have not modified
the D* pole term in the same way as the K* pole with
threshold and pole enhancement decoupled and also have
not included the term to ensure the correct spin projection
for a vector particle. The D* pole is off-shell and becomes
essentially part of the contact term. Since s, ; depends on
6* it contains all partial waves in the Kz channel. The
D* pole terms along with terms proportional to
(I, —1f, ,) describe our nonresonant background
contributions which are motivated by chiral symmetry
and crossing symmetry. We note that the term propor-
tional to Fj are irrelevant at the threshold point. The
form factors F{, F4 and F” are the transition form factors
for D— K*ev in zero-width approximation. They are
defined in the previous paper [7] and are identical to the
notation of [6]. We can relate them to fy, f,,I and the
coupling constant for the decay K*® - K~ n* asfollows:

— 3\/591_(*01('1:* FWFIIQ(O)
fa= ;
dmg. 1
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72 F2 /2ggug- o+ F F¥(0)

f,= 26
v ey (26)
where gg.ox- .+ is related to the K* width via
Anl . mi,
Jrrog -+ = T3
p
2 _ Mmg,m3,m) @7

2
dmg,

The F{(0), F4(0) and F¥(0) are adjusted to the values as
used by Korner and Schuler [6] who matched the spin
properties of the mesonic transitions to the free quark
decay transitions at g% =0 which yields

FH0) = I(m, + mg.)

FO =Ry
21
FY(0)=R, . (28)
my + Mg,

The overlap factor I stands for deviations from the
matching to the free quark model and is not in this work
assumed to be universal for all three form factors. Thus
we include the relative strength factors R, and R,. A
value for these overlap factors will be specified later
together with our assumptions on the g% behaviour of
Gy(gq*) and G 4(g?) in (23) and (24). Finally we mention
that actually there is no reason to multiply the contact
term, i.e. the first two terms in (23) and the first and the
last term in (24) with the same g* dependent form factors
Gy and G 4 as the terms describing the D —» K * transition.
We shall make this assumption, however, for lack of
better knowledge.

From (23) and (24) we can read off the expressions
for the functions f,g and h for the resonance and
background model. They are:

f=iK, (ff,, Res(K*)[f% + ;%BO] + %1;} Res(D*))

g=—iK, ([I;‘—If,,] +1If, Res(K*)+%I{,’ Res(D*))

h=iK,([IV — If, ]+ Ify, Res(K*) + I Res(D*)).  (29)

Here we have defined

K1=2 2m; G,
3F,
2m3G
K, = _\[_IJ
g 2F37?
By =p1(p3 — p2) + p1(p2 + p3)K. (30)

The resonance terms are defined as follows:
> .
Mg — imgd

2

Res(K*) = :
Mix = Sp3 — My Iy,

Res(D*) = M (1)

My — S¢3

Since

Mm% + S5 — > So3 — M2,
By= — /a,X cos 0% + &1 223 il 23S & (3
23

we note that on the basis of (18) and (19) the terms
proportional to Res(K*) contribute at resonance only
to the p-wave amplitude in F,, as it should be. So far
any s-wave term in F, can come only from the term
proportional to Res(D*) in f.

It is well known that there are other resonant K states
at higher masses which could interfere with the dominant
K*(892) resonance. In order to test such a possibility we
consider a contribution from the K%(1430) resonance,
which decays dominantly into Kz with a rather large
total width I" = 0.287 GeV. The matrix element of the
weak current between the D meson and the KF is
unknown. Such a resonance can only contribute to f.
For this additional resonance term we make the ansatz

f—f+iK,[—elf,+elfRes(K)]

. wl ., F30 3 4 *
=1K1<IfARes(K )[K+F§‘(O)Bo]+21b Res(D*)

—elf +elf, Res(K)> (33)

where the parameter ¢ measures the strength of this
resonance compared to the dominant K*(892) resonance
and

2 .
my —imgl g

Res(K) = (34)

5 : .
mi — 8,3 — imgl g

We shall calculate the partial cross section for several
values of ¢ and also look at the s,; spectrum of the
integrated semileptonic decay width. Of course other
resonance contributions could be introduced. If they have
higher spins then we need more than one parameter to
parametrize their contribution.

All our formulas and the results in the next section
are for ({*v,) emission. The (/”v,) emission case is
obtained by changing the sign of I, [y and I, in (15) and
changing the sign of the form factor h in (20). Therefore
the angular coefficients of the CP-odd terms, V, F and N
change sign. These are the odd terms proportional to
sin y and sin 2y in the y distribution, which cancel if the
decays of D and D are averaged.

4 Numerical results

For illustrative purposes, we will present numerical
results choosing input parameters for two basic cases.
The first is suggested by a recent result reported for the
ratio of longitudinal to unpolarized transverse decay
[21]. The second is for the quark model parameterization
of Korner and Schuler [6]. No experimental cuts have
been made. Complete results are given only for the first
case. These numerical results are only to illustrate the
variations one can expect from various models; we are
not attempting to fit data or claim a superiority of one
set of input parameters over another. Current data is too



crude to distinguish among the sets. Only better data
combined with acceptance corrections and a sophisticated
fitting procedure will nail down the models.

We assume the following g* behaviour of G, and G,

My
Gylg’)= %
mf,; q°
-
s (9)
mi. —q

Furthermore we define

2
_mp,—(mp —mg — )

2
My

mp, — (mp —mg — m,)?

(36)

2
th‘

If the factors I}°* and G, , are combined we obtain the
following form factors of the contact terms and the D*
exchange term

-~

m3, — (mp —myg —m,)?
GV(q2)= Dt ( D K 1[)

m,’_?,; —q°
f)a;‘ —(mp — mg —m)*
mf,,g — g
I}* have the property that they are equal to one for
mp=mg=m,=0. Independent of the pseudoscalar
masses, the form factors of the contact terms in (37)
approach unity at the g* threshold g% = (my, — my —m_)?
where the recoiling final two-meson system is at rest.
The parameters are choosen as follows:
mp=m; = 1.8693 GeV
mg =m, = 0.4937 GeV
m, =my=0.13957 GeV
mg. = 0.8921 GeV
mD* = 2.010 GCV
mp, =2.113 GeV
mp, =2.54GeV
Iy, =0.0513GeV
mys = 1429 GeV
Iy =0.287GeV

~ m
G4(q*) =

(37)

F,=0.180GeV
=05
R,=0
R, = 1.86. (38)

Except for the last four input numbers all others are
taken from the Particle Data Group tables [16]. We have
chosen Ry, =0 and R, =1.86 in order to reproduce a
new vaiue for the ratio of the longitudinal to the un-
polarized transverse decay rate [20], which differs
somewhat from the earlier published value [10]. I =0.5
accounts for the correct absolute value of the semileptonic
decay rate into Knev [18]. For the form factor mass in
the axial-vector current we used the recently measured
value [21].
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First we show our results for the integrated partial
decay rates. For this we have integrated the decay
distributions d3I"; in (14) for i=U,L, T,V,I,P,A,N
over the meson angle 0*,s,, and ¢>. The result for the
five models, namely i) the model with a pure K*(892)
resonance (in zero-width approximation and with the full
width taken into account), ii) the model with the D* pole
term added to the full width model, iii) the model with
D* and all other contact terms added (¢ = 0) and iv) and
v) the model with the additional s-wave resonance (K¥)
term added for two strength parameters ¢e= —1 and
¢ = + 1 are collected in Table 1. All rates are for the sum
of both final charge states, ie. for D° decays D°—
K~ n°*vand D° - K°n~ e v. Therefore the formulas in
Sect. 2 have been multiplied by 1.5. The partial rates
Iy, I'; and I'y obtained from the imaginary part of the
product of amplitudes f,g and h vanish for the pure
resonance model. Furthermore in this mode] the inte-
grands of I, and I'; have the factor sin26*. Therefore
they vanish after integration over the total 6* range.
We see this is the case for the K* model in zero-width
approximation. In the model with the full width taken
into account we obtain small values for I", and I'; since
they have small off-mass-shell terms proportional to
5,3 — mg. included in (20) with f, g and h as given in (29).
The factor sin20* is also present in Iy and I . To
remedy this drawback we have calculated also moments
of sin260* for Iy, I,,I", and Iy, ie. we integrated
sin20*d3I'(i = F,I, A, N). The results for these moments
are denoted Fsin20* etc. in Table 1. We see now that
I'sin 26* and A sin 20* are not zero or very small for the
pure resonance model.

As we shall comment upon again below, the angular
distribution in the hadron angle 6* has the simple form
1 +acos®0* only in the pure K* resonance model in
narrow width. In this kind of model, to which data are
usually fit, the ratio of longitudinal to transverse un-
polarized decay rate is:

/Ty =(1+a)2. (39)

For this reason we quote the value of (1 + «)/2 as well
as I', /Iy in our numerical results.

Now let us compare the results of the various models
as given in Table 1. In all models the longitudinal
decay rate I, is dominant. This has its origin in our
choice F4 =0 (see (38)). In fact we have fixed I, R,, and
Ry, so that we agree with recent preliminary data of
experiment E691, which yields I, /Iy =(1.80+ 0.50)
[20]. The experimental partial semileptonic widths
I'(D* —» K*e™v)=(2.85+0.54) x 10714 GeV and
T(D°—>K* e*v)=(2.62+0.56) x 10~ 1*GeV (nonreso-
nant background (0.32+0.25) x 107'*GeV  and
(0.31 +0.22) x 10~ 1*GeV, respectively) [18] agree with
our results, since we adjusted I = 0.5. Depending on the
model the nonresonant background is between 6%, and
36%. The zero-width model deviates from the full width
model by approximately 10% in agreement with earlier
findings [7]. This is also true for the asymmetries
(T, Isin20*, P, Asin 20*) in Table 1. Since the additional
K%(1430) resonance makes a contribution only in the
amplitude f, the decay rates I, I ;7 and I, must be equal
for the three models with varying s-wave (¢ =0, +1). All



334

Table 1. The total decay width

Pure K* resonance Incl. D* res. Background, and K : res. Iy,o(=U+L)and the partial decay
Zero width  Full width e=0 e=—1 e=+1 ?iij;}—l{}{:z;?)it:n(g tll?e_;)‘;gi:;’t;?:c rt%trio

U+L 3.153 2.857 3.173 3.334 3.305 4.098 ;?;ii(:ljs\;g?i;e =S (()), gll}{’ltti i(i)fa;{r:,e: rlsglg the

1 +a)2 1.79 1.78 1.52 1.46 1.19 1.20

L/U 1.79 1.80 1.96 2.00 1.97 2.69

U 1.132 1.020 1.071 1.112 1.112 1.112

L 2021 1.837 2.102 2222 2.193 2.986

T —0.392 —0.355 —0.325 —-0317 -0317 —-0317

Vv 0 0. —-0.079 —0.111 —-0.111 —o0.111

F 0 0 0.076 0.082 0.085 0.080

Fsin 26* 0. 0. 0.054 0.072 0.075 0.070

I 0. 0.009 —0.025 —0.008 —0.023 0.010

I'sin26* 0.496 0.446 0.439 0.447 0.447 0.446

P 0.778 0.697 0.712 0.671 0.671 0.671

A 0 0.004 —0.086 —-0.122  —0.061 —0.183

Assin 20* 0.225 0.202 0.187 0.173 0.178 0.169

N 0. 0 0.137 0.150 0.064 0.235

N sin 20* 0. 0. 0.015 0.015 0.015 0.014

partial decay rates, where f is present, i.e. I'y, I'r, I}, I,
and I'y (and their moments with sin 26*) change when
¢is varied. Those angular coefficients which do not vanish
for the pure resonance model are not changed appreciably
when background terms are added as is seen by
comparing the results in the lines for U, L, T, I sin 20*, P
and Asin260*. Most interesting are those angular co-
efficients which vanish for the pure resonance model,
since they involve imaginary parts, i.e. Iy, I and Iy,
and which, without interference of several Kn partial
waves with different strong interaction phases are signals
for CP violation [1]. The larger ones, i.e. Iy, and I'y, are
approximately 5% compared to Iy, ;. This means any
CP violation in the decay D — K*[v must be very large
if it should be visible in these asymmetry parameters.
Since we rather expect that CP violating amplitudes, if
they exist at all, are only a very small fraction of the CP
conserving contributions, it is hopeless to detect direct
CP violation in asymmetries for semileptonic D decays
to K= final states.

In order to get more information how the various
asymmetries depend on input parameters, in particular
on the form factors F ;‘ and FY, we made an additional
evaluation for the canonical values in (28), ie. for
Ry, =R, = 1. The results are exhibited in Table 2. We
kept I =0.5, in order to make the comparison of the

results in Tables 1 and 2 easier. The major changes occur
in the ratio L/U. This is directly connected with the
increase of R,,. Second P is reduced, which is related
to the reduction of R,. As was mentioned earlier that if
the pure resonance model is the correct one, the data of
E691 prefer the parameters, which were used in Table 1.
For the other more complicated models which include
background contributions of various kinds a new fit to
the data must be made, since in the analysis of the data
only pure resonance contributions were assumed.

Of course we get more information on the difference
of our five models by looking at distributions of the
I'y(i=U,L,T etc) in the remaining variables s,5,0* and
g°. Since we cannot plot the dependence on all the three
variables simultaneously we decided to show only one
distribution in s,5, namely the one of 'y, ; and various
g® distributions. To limit the number of figures we have
done this only for the models with parameters as in

Table 1. The results of the m,; = /5,5 distribution are
exhibited in Fig. 2a, b. There we show the invariant mass
distribution dIy,,/dm,, for the five models, pure
K* K*+ D* K* + D* with ¢ =0, + 1 for comparison in
logarithmic and in linear scale. In all models the decay
rate away from the K* peak is almost two orders of
magnitude smaller than at the peak and presumably still
compatible with the published mass distributions of E691
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Table 2. The total decay width

Pure K* resonance Incl. D* res. Background, and K ; res. Ty.u(=U + L) and the partial decay
. . width I'; in units of 10~ '* GeV, the ratio
Zero width  Full width e=0 e=—1 e=+1 I,/Ty(=L/U) and the parameter « for
various choices of input parameters in the

U+L 2.183 1.975 2.385 2.569 2.505 3.368 mode] with I=05,R,,=1, R, =1

(1 +a)/2 1.16 1.17 0.99 0.94 0.95 0.82

L/U 1.16 1.17 1.48 1.52 1.46 230

U 1.009 0.910 0.962 1.019 1.019 1.019

L 1.174 1.065 1.423 1.549 1.485 2.349

T —0.454 —0.410 —0.379 —0363 —0363 —0.363

|4 0. 0 —0.085 —-0.121 -0.121 —0.121

F 0 0 0.044 0.047 0.071 0.024

Fsin 20* 0 0 0.042 0.059 0.061 0.057

I 0. 0.007 —0.028 —0.008 —0.024 0.009

I'sin 20* 0.397 0.358 0.350 0.358 0.358 0.357

P 0.418 0.375 0.389 0.344 0.344 0.344

A 0 0.001 —0.094 —0.141 —-0073 —0210

Asin 20* 0.094 0.084 0.070 0.054 0.058 0.049

N 0. 0 0.136 0.149 0.063 0.234

N sin 260* 0. 0. 0.012 0.014 0.015 0.013

{10]. Further checks would require the application of
cuts and other corrections to our model decay rates which
is beyond the purpose of this paper.

Next we have calculated the g* dependence of the
angular coefficients. We have integrated over s,; and 0*
and have calculated dI";/dq® for all i=U,L, T etc. and
for five models. The results are shown in Fig. 3-15. For
the pure resonance model we also show the curves in
zero-width approximation. Thus there are maximally
six curves in every figure. In some of the plots the pure
resonance model give vanishing assymmetries. In others
the curves for ¢ = 0, + 1 coincide. All dI";/dq* are plotted
in units of 107 '* GeV 1. The integrals under the curves
are equal to the numbers in Table 1. For U, T and V the
curves for ¢ = 0, + 1 coincide since the K} term influences
only the amplitude f as we explained already above.
Those decay distributions which are not zero for the pure
K* resonance model, namely U, L, T, I sin 20*, P, A sin 260*
do not differ qualitatively very much if we compare all
five models. The only exception is dI"; /dg* which shows
strong changes in the behaviour for small ¢* if a K term
with ¢ = 1 is considered. Thus dI"; /dq? can be considered
as good indicator for additional K¥ contributions which
might not be visible strongly enough in the invariant
mass distribution.

At this point we must emphasize that the partial decay
distributions dI; are defined as in (15) on the basis of

the factorization of the # and y dependence in terms of
the factors I, defined in (12). This differs from other
definitions [12—14], where also the dependence on the
meson decay angle is factored out. However, the 0*
dependence is simple and explicit and factorizable only
for the pure K* resonance model (with no off-mass-shell
terms). The models with background (¢ =0, + 1) on the
other hand have a different cos 8* dependence than the
pure resonance model, in particular dI; has not the
characteristic factor cos?0* as the pure K* resonance
model has but has the more complicated cos@*
dependence of the form |a + b cos §*|2. The constant term
lal? contributes with a larger term when we integrate
over cos 8* compared to a term that has the additional
cos? 0* factor. Therefore the K} resonance terms which
mostly contribute to a have a particularly large effect in
dI', /dq* (see Fig. 3). The effect of the 6* independent
term a is also seen quite clearly in Fig. 9 (dI";/dg*) and
in Fig. 12 (dI",/dq?) whereas in Figs. 10 and 13 (I sin 26*
and Asin20*) we see the change of the background
models (=0, +1) compared to the pure resonance
model which has the characteristic factor sin 26* in d* I,
and d*I",. The decay rates which are proportional to
imaginary parts are exhibited in Figs. 6,7,8,14 and 15.
They are definitely nonnegligible. In order to determine
the various coefficients d3I;(i=U,L, T etc) in the
charged lepton angular distribution from experiment a
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combined fit of the 0, x, 0*,s,; and ¢g? dependence must
be performed by which, with sufficient data, all nine
coefficient functions d°I"; in the combined angular
correlation (15) will be obtained.

S Summary and conclusions

We have constructed a complete formalism for analysing
the semileptonic decay of a pseudoscalar meson into two
pseudoscalar mesons, general enough to accommodate
various partial waves in the final hadron channel, as well
as cross channel poles and backgrounds. We also show
how to extend the formalism to the case when lepton
masses can not be neglected.

We have presented numerical results for two models
in the form of the various invariant decay functions,
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integrated over ¢? and the final state hadron mass
distribution. From these all angular correlations can be
constructed. We have also illustrated the g dependence
and the hadron mass distribution for selected decay
functions and moments.

Current data from Fermilab Experiment E691 are
too crude definitively to distinguish between the two
models. The superior fit of our Table 1 compared to
Table 2 does however suggest that the canonical quark
model may have difficulty in describing D — K*ev angular
correlations.

Appendix A: basis tensors

In this appendix we write down the nine basis tensors
LO(i=U,L T,V,F,I,P,A,N), which are defined in (7).
Their space components (u,v = 1,2, 3) are:

w(loo mlooo
=0 1 0 P=—"lo o —1i
00 0 2/2\o 1 o
00 0 1(001
D=0 0 0 =—"|o0o 0 o
0 0 1 22\ ¢ o
(-1 oo 0 i 0
uT>=5(010 P=|_i 0 0
00 0 0 0 0
[0 10 L (00 0
L‘V’:EIOO =" |0 0 —i
00 0 2J2\0o i o
Y 0 0 —i
™=—"1o o0 o 0
2ﬁ(ioo 4o

The four-momenta k and k' are given in (8) in terms of
the angles # and y. With these we write the lepton tensor
in terms of ¢* and these angles. With the help of the
explicit form of the basis tensors given above it is a simple
exercise to calculate the coefficient functions I;, 1,1, etc.
as defined in (6). The result is written in (12).

Appendix B: non-zero charged lepton mass

In this appendix we present the changes that occur when
the mass of the charged lepton is unequal zero. This will
be relevant when the accuracy of the experimental data
improves so that differences between D decays into
electrons and muons become visible.

For m, # 0 the lepton tensor in (6) will depend on the
charged lepton mass. Furthermore we have an additional
polarization vector £%(q, s) "/\F so that the tensors
L7 defined in (5) have also time components. Also the
lepton tensor /,, has time components now. The space
components (/1, v = 1,2, 3) can still be decomposed as in
(6) and the matrices I9(i= U, L, T, etc.) are still in the
form as given in Appendix A. The coefficients I, [, 17,1,

etc. change and are now:

Iy =3(1 — A)(1 4 cos? 8 + A;sin? 0)

(1 —A,)*sin20sin x
2\[

I, =3(1 — A)(sin” 6 + A, cos> 6)

I, = —*—(I—A)251n20005)(
1 2\/—
It =3(1 — A})*sin® @ cos 2y
IN=%(1—A,)sin05inx
2

—3(1 — A,)*sin?Osin 2y

l,= —i(l — A;)sinfBcos y

2
lp=2(1—A))cos @ @1
where 4, = m}/q”. In addition to the tensors (7) we have

now the tensors involving the polarization vector &(g, s).
They are:

L(ss) Lss
L(Ol)_Ls+ Ls— L(IO) L+s L—s

JO = s+ L s~ [P [Fs s

L(SO) — LsO (Os) LOS (42)

The corresponding matrices are:

1 0 00
169 — 0 0 0O
100 00
0 00O
0 0 01 0 00O
0 00O 0 0 0O
(s0) __ (Os):
=100 0 0 L 0000
0 0 0O 1 000
0100 0000
00 00 1 000

(01) _ (10) __

L=v210 6 0 o] P7=V20 00 0
00 00 00 00
0010 00 0O
0 000 00 00O

02) _ (20) _ .

L=V200 0 0 of L V2l 1 00 0
00 00 0 00O

(43}

With the help of these tensors we decompose the lepton
tensor restricted to time components (u and/or v=0) as
follows:

24

=" (Kao L + Kou (L0 + 1)

v

+ Koo (LOP — L) + K o(LEY + LS} (44)



The coefficients K ,, are expressed by the angles 6 and y
and by A;:

Koo=34(1-4))

Koy =Kio=— %Az(l —4)l,

Ko, =- Ko = iAl(l —A)ly

Kos =Ky =A4,(1—A4)lp (45)
where 1, ly,lp are defined in (11), which are the angular
factors for the case m,=0. In addition to H, with
i=U,LTV,F,IP,A N we have now also H; with
i =(ss),(01),(10),(02),(20),(s0),(0s) which are obtained
from (9) by multiplying H,, with the appropriate polar-
ization tensors, i.e.

H(ss) — Hss

H(o1) = - %(Hﬁ - Hs—) H(w) = ‘-%(H“ —H™)

Hy = —3HT +HT) Hgo = HH™+H)

H = H*° Hy=H®. (46)
The tensor product [*'H,, in (10) gets also additional
terms. They are all proportional to A,(1 — A,):

(luvHuv)add.terms
= A1 — A)[H oy + 31+ 14(H1y+ H10)
+ Iy(H 02y + Hzo)) + 1p(H 50y + Hgg) ] 47

where I, 1,,1,, 15,1, are again the angular factors defined
in (11) for m; = 0, so that in (47) the same angular factors
appear as in (11). The matrix elements, of course, are
different. This means that with A, # 0 one has the same
decomposition into angular factors as for 4,=0. The
only difference is that A, dependent terms and additional
structure functions like Hy;, etc. appear.

For calculating these new structure functions we need
the projection of the current matrix element (16) on the
polarization vector ¢&(q, s). This is

F =¢*(q,s),J"
1

2
mi\/4

(Pqf + [kPq+\/a,X cos0*]g+rq®). (48)

Together with (18) it is easy to write down the new
structure functions Hy,, etc. Since we have not used them
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for getting the results of this paper we shall refrain from
giving their explicit expressions. In order to evaluate them
for the model defined in Sect. 3 we need also the function
r in this model. This is:

i/2
F=f— iy/2m, G ,Res(D¥). (49)
3F,
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