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Abstract. We study the exclusive semileptonic D meson 
decays D ~ K + n + l + v. For  this we develop the general 
formalism for the joint angular distribution of the charged 
lepton and the K meson and calculate the helicity 
dependent decay widths which determine the full angular 
distribution for several models with K*(892) and 
K*(1430) intermediate state with nonresonant back- 
ground terms calculated from chiral Lagrangians. 

1 Introduction 

In the past the experimental and theoretical study of 
weak semileptonic decays of hadrons has provided very 
important information on the structure of the weak 
current, in particular on its quark structure and on its 
dependence on the quark mixing parameters. Weak 
semileptonic decays of mesons containing heavy quarks 
are of special interest for extracting information on the 
quark mixing parameters connecting heavy and light 
quarks. To obtain these parameters from measured 
branching ratios, lepton spectra or other observables of 
D and B meson decays we need theoretical input in the 
form of weak current matrix elements between the initial 
D or B meson and possible final hadron states. It is clear 
that the accuracy of such determinations of the weak 
mixing parameters, in particular of Vbc and Vb,, depends 
on the correctness of the theoretical model used to 
calculate the weak current matrix elements. Therefore it 
is very important to study these models in such cases 
where the quark mixing parameter is known, in order to 
test these models, and, when they fail, to gain insight for 
their improvement. The decay of D mesons to strange 
states is such a case since the fact that Vcs is almost equal 
to unity is rather well known. To confront models with 
a meaningful test it is not sufficient to compare only the 
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branching ratio and the lepton spectrum with experimen- 
tal data but rather one must make more detailed tests of 
as many observables as possible. One such possibility is 
to calculate the angular correlations in the semileptonic 
decay D-- .  Krdv ,  where l may be either an electron or a 
muon, which arise from lepton-hadron correlations and 
the angular distribution of the KTt system in its center 
of mass frame. The D ~ Krclv decay is dominated by the 
K*(892) intermediate state but may have contributions 
also from Kg partial waves other than J P =  1-.  It is the 
purpose of this paper to investigate several models which 
contain more than just the K*(892) resonance and 
calculate the complete differential partial decay width 
concerning lepton and final meson angles. The angular 
structure of this partial decay rate is quite similar to K~4 
decay which was studied quite extensively many years 
ago [1]. In contrast to K ~ rcnlv we have two pseudoscalar 
mesons with unequal masses in the final state. 

The quark model is generally considered to give a 
reasonable description of the semileptonic decays of 
heavy quarks, both inclusively [2] and exclusively [3 6]. 
Quark model calculations agreed reasonably well with 
the rates for the decays like D ~ K l v  and with the polar- 
ization of the final vector meson in the decay B ~ D*lv .  
Recently it became apparent, however, that in the decay 
of the D meson: D ~ K * l v ~  K r d v  there is disagreement 
between the quark model results and the experimental 
data. First, the measured polarization of the K* does not 
agree with the prediction of the quark model. Theoreti- 
cally the decay widths for transversely and longitudinally 
produced K* are almost equal [7 9]. The experiment 
shows, however, that the K* is dominantly in a longi- 
tudinal state [10]. Second, in the quark model the decay 
channels D ~ K * e v  and D---, K e y  have comparable rates 
[7-9]  whereas experimentally the rate of D---, K * e v  is a 
factor of two smaller than the rate for D ~ K e y  [10-11]. 

Of course it is always possible to fit these experimental 
data by an adjustment of parameters like overlap 
integrals for D ~ K l v  and special form factor fits in 
D --. K *  lv [7, 8, 12]. But the important issue is: are drastic 
changes of the original quark model calculations neces- 
sary or will a fine tuning of the final state hadronization 
details fit the data? In principle modifications of the 
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theoretical input can come from two sources. First, the 
quark model form factors obtained from wave function 
calculations may differ from the usual results [3--5]. This 
will modify the predictions for D ~ K l v  and D ~ K * l v .  
Second; there may be contributions of other partial waves 
than the intermediate K* in D ~ Krdv. These other partial 
wave contributions may originate from nonresonant 
contributions based on contact terms and off-shell contri- 
butions in other channels than Krt, as for example a D* 
term in the Drt channel. Another possibility is that 
j e = 0 +  and/or 2 + and/or additional 1- (with larger 
masses) resonances in the Kn channel, although resonat- 
ing at higher energies, interfere with the dominant K* 
terms. It will be difficult to detect such additional terms 
from rates or electron spectra alone. Since their contribu- 
tions to the various helicity states of the virtual W (or 
weak current) will differ from those of the K* terms it is 
of interest to study the joint angular distribution of the 
K (or ~) meson and the lepton l -+. This will permit the 
detection of additional K z  partial waves and/or back- 
ground terms and will also help to determine the relative 
signs and form factors of the dominant K* intermediate 
state [12-14]. 

A model for the nonresonant background contribution 
has been developed recently by two of us and J. Cline 
[7]. In this work weak transition amplitudes of the D 
meson to two pseudoscalar mesons have been written 
down which have the same structure concerning transi- 
tions to resonant vector meson states as the usual quark 
model approaches [3-6],  but have in addition the 
constraints arising from low-energy theorems codified in 
the chiral Lagrangian [15]. The low-energy constraints 
lead to additional terms which produce the nonresonant 
background underneath the dominant resonant contri- 
bution. For the additional resonances at higher masses 
we shall make an ansatz for a scalar resonance at 
m = 1.429GeV [16] with an arbitrary parameter  for its 
strength. 

In Sect. 2 we derive the complete formula of the 
differential decay distribution for D ~ Krcev and present 
the partial wave expansion of the occurring helicity 
amplitudes�9 Section 3 contains the weak currents for the 
model of the K* resonance with background and 0 § 
contribution from which the form factors needed for 
calculating the angular correlation coefficients are 
derived. In Sect. 4 we present our numerical results for 
the coefficient functions of the lepton angular correlation. 
Here we study the influence of the background terms and 
the 0 § contribution. In Appendix A we collect some 
material for deriving the angular distribution and in 
Appendix B we consider modifications for the case that 
the charged lepton mass is nonzero whibh are relevant 
for D ~ Knl~v decays. 

2 Semileptonic decay angular distribution 

Following earlier work [15] we write the total semi- 
leptonic decay rate as 

2G~I V.I 2 . d3k d3k ' 
F -  ~ ( 2 ~  J~" HU~lu" (1) 

Zko 2k o 

with the lepton tensor 

lu, = kuk' + k' kv - k'kguv + ie.wpk~k 'p (2) 

and the hadron tensor 

Hu~ = ~X Id3p2 d 3 p 3  1 
2p2o 2p3o (2X) 6 0(4)(pl  - -  q - P2 - P3) (3) 

(D(pl)lJ*u(q)lX(pz, t~ (X(p2,  P3)] Jv(q) lD(pl) ) .  

V~s denotes the Kobayash i -Maskawa  matrix element for 
the transition from charm to strange quarks. The 
momenta  correspond to the process 

Pl  --*P2 + P3 + k + k'  (4) 

where P2 and P3 are the momenta  of the K and n, 
respectively, k is the electron momentum, k' is the 
neutrino momentum, q = k + k' the momentum transfer 
to the lepton system and m~ the mass of the decaying D 
meson. In the following we shall neglect the mass of the 
electron. Effects of a finite lepton mass which are of 
interest for the decay into muons will be considered 
separately in Appendix B. 

The full differential decay distribution d F  is a function 
of five configuration variables. If these variables are 
properly chosen the dependence on two of these variables 
is quite explicit and can be factored out. This follows 
from the factorization of the lepton tensor as we shall 
see below. The situation is completely analogous to the 
treatment of K~, decay many years ago [1]. The essential 
dynamical effects are contained in certain form factors 
which can depend at most on the remaining three of the 
five variables. To derive this dependence on the lepton 
variables we express the lepton tensor in terms of nine 
independent basis tensors L~( i  = U, L, T, V, F, I, P, A, N) 
which are defined in terms of polarization tensors 

LPu~ = eu(q, p)e*(q, ~r). (5) 

In (5) the eU(q, 2) are the polarization vectors of the virtual 
W (or lepton current) with polarization 2 = + 1,0, s. The 
polarization vectors are specified in the rest system of 
the virtual W: q = 0, where eU(q, +_ 1) = ~ (0, 1, ~ i, 0)/x/2, 
e"(q, 0) = (0, 0, 0, - 1), e"(q,s)=q~'/x/fq 2, q" = (q~ 0, 0, 0). 
The scalar (zero) helicity component  of the I47,2 = s, 
contributes only if the lepton mass is nonvanishing. It is 
included in (5) for application in Appendix B. For 
p, a = _+ 1,0 the tensor L, , (p ,  tr) has no time components. 
In the system q = 0 and for vanishing lepton mass, luv 
has also only space components, #, v = 1, 2, 3. The lepton 
tensor is hermitean l.. = I t . Therefore it can be expressed 

�9 / z v  / ~v  

in terms of nine independent basis tensors as follows 

2 
2q (1 / ( u ) L i  I ( L )  1 L(T)  ~_ I I ( v )  + (F) j-- I l (I) 

~T .uv 

+ leLW) + IAL~ ) + luLlS)}. (6) #v 

The basis tensors are simple matrices in #, v = 1,2, 3. They 
are written down in Appendix A and are expressed in 
terms of the polarization tensors (5) 

LW)=L + + + L -  - L ( v ) = ( L + ~  ~ + L - ~ 1 7 6  
L~L)= L oo L m = ( L + ~  + L ~ - L - ~ 1 7 6  
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L(T)=(L + - + L -  +)/2 L (m = ( L + ~  ~ + L  ~  - L - ~  
L (v) -= (L + - -- L -  +)/2i L (A) = (L + o + L o + + L o + L o- )/4 

L ~e~ = L + + -- L -  - .  (7) 

The coefficient functions le, lL, lr, etc. are easily calculated 
in terms of the angles 0 and )~ which specify the lepton 
momenta  k and k' in the current rest system q = 0 with 
respect to the coordinate system shown in Fig. la  and 
described later�9 In terms of these angles we have 

k" = k~ sin 0 cos Z, sin 0 sin Z, cos 0) (8) 

and k'" = q" - k", k ~ = x/-~/2. The coefficients lv, lL, lr, 
etc. are written down later as functions of 0 and Z- The 
dependence on q2 together with a common normalization 
factor h~is been factored out already in (6). The decom- 
position (6) allows us to replace the tensor product l"~H,~ 
by the coefficient functions lv, lz, lr, etc. and helicity 
structure functions H i which depend on the polar 
angle of the K meson 0* and the (Kn)-invariant mass 
squared sz3 = ( P 2  + P 3 )  2. The H i are: 

H~ ~ L t~  u~ (i = U, L, T, V, F, I, P, A, N). (9) gv 

With these definitions we obtain for the differential decay 
distribution with respect to q2, cos 0 and Z: 

2 n d 3 F  G21Vcsl2q 2 (ml--~/q2)2 +1 
- S I dq2dcosOdx 96(2r05m 3 ('~+'~)~ -1 

-d cos O*x/~2Xl"*H, ,  (10) 

where 

l,,,H .~ = lvHv + lLHL + lrHT + IvHv 

+ leHe + l lHl + lpHe + IAHA + lNHN (11) 

with 

l v = ~(1 + COS 2 0)  

IL = 3 s in2  0 
4 

l T  = 3 sin2 0 cos 2Z 
4 

lv = -- 3 sinZ 0 sin 2)~ 
4 

le -- 3 cos 0 
4 

and 

H v = H  ++ + H - -  

3 
I e = sin 20 sin X 

3 
l~ - sin 20 cos Z 

3 
lN = sin 0 sin )~ 

3 
I a - -  sin 0 cos X 

H e - i ( H + ~  HO+ H-O : 4 -  - + - H ~  

H L = H 0o 

HI 1 +o - H -  - H  ~  = ~(H + H ~ + o 

t + -  + )  H r  = ~(H + H -  

HA =l~(H+~ + H~ + H - O + H O - )  

(12) 

Hv = - ~ ( H  + - - H -  +) 

H N = - i ( H + O _ _ H  o+ ~ - _  - - H - ~  H ~  

H e = H  + + - H  - .  (13) 

It follows from (10) and (11) that the dependence on the 
electron angles factors out completely and is given by 
the simple coefficients in (12). If the complete angular 
dependence could be measured, all nine structure 
functions d3Fi could be determined: 

2 2 2 
d3Fi = G/Vcsl q , , f a2XHi  (14) 

dqZdsz3dcosO 96(2~)5m~ 

where i = U, L, T, V, F, I, P, A, N so that the fully differen- 
tial decay distribution is: 

2r~dSF = S" I i d3Fi (15) 
dq2d cos Odzdsz3d cos 0* '7' dqZds23 d cos 0* 

with the lepton coefficients given in (12). As mentioned 
earlier the dependence on the lepton angles 0 and )~ is 
completely trivial and factors out. The dynamics of the 
decay is contained in the structure functions Hi. They 
depend on s23,cos 0* and q2. In (10) and (14) we defined 

X = , ~ 2 3  Iql-- x/s2323 [ px [-- 2a/2(m21, $ 2 3 ,  q2)/2 and x/~2 = 

21p  21/N//$2323 = 2[ P3 [ /N~323 = 21/2($23,  m2 ,  tr/2)/$23 �9 They a r e  
related to the momenta  of the D and the K meson in the 
KTz rest system P = P2 + P3 = 0 (we use P = P2 + P3 in the 
following). The structure functions Hi can be calculated 
from the decomposition of the hadronic matrix element. 
This has an axial-vector and a vector part  with the 
following structure 

Ju =- (PE,P3[Au + VuIPl ) 

- 1 - l [ f ( P 2 + P 3 ) u + Y ( P z - P 3 ) u + r q  u 

ih �9 ] 
+ ~22 ~,~t~q (P2 + P3)~(P2 -- P3) ~ �9 (16) 

The first three terms come from the axial-vector part, the 
last term from the vector part. The dimensionless form 
factors f ,  y, r and h are functions of the invariant variables 
sz3,q 2 and of 0". The term proportional  to r does not 
contribute for vanishing lepton mass since q"l,v = 0. The 
ansatz (16) is the most general one. This means that the 
decay distributions are known if the complex functions 
f , 9  and h are given. The next step is to express the 
structure functions Hi in (13) by the functions f ,  9 and h. 
For  this purpose we calculate the helicity projections of 
the currents, e*(q,p)J" for p = + 1,0 in the coordinate .# ~ 
system P = 0, 1.e. in the K~ rest system. For  this we need 
the polarization vectors of the virtual W in this system, 
which are obtained through a boost from the polarization 
vectors in the W rest system. The coordinates in the 
K~ rest system are chosen in such a way that the z-axis 
is along the momentum P in the rest system Pl = 0 
(see Fig. l a) and that the K momentum lies in the  
x-z-plane with positive x component.  The angle 0* is 
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a} D rest frame b} K * rest frame c) (Iv } c.m frame 

I ~ f -  . . . .  I 
K ix 

K ~' D _ 

Fig. 1 a-e. Direction of momenta in various frames a D rest frame, 
b 0* in (KTt) c.m. frame, e 0 and ~( in (Iv) c.m. frame 

specified in the Kr~ rest frame (see Fig. lb) which is 
obtained from D and W rest frames by boosts along the 
momentum P, i.e. p~ = (P20, I P2 ] sin 0", 0, I p2lcos 0") with 
p20=(s23 +m2-m~)/(2x/s2323) and ]pzl = x/s2323x/~z/2. 
The azimuthal angle Z is the angle between the W---,ev 
decay plane and the plane defined by the vectors P2 and 
113 in frame (a) or (b) of Fig. 1.0 is the polar angle of the 
charged lepton with respect to the z-axis chosen along 
the Ks  momentum in the current rest frame where the 
x-z plane is chosen as the virtual W decay plane with 
k x > 0 (see Fig. lc). Then the boosted W polarization 
vectors have the following form: 

1 
e(q, +)u = T- ~ (0, 1, T i, 0) 

#2 
u 1 

e(q,O) = ~ q 2 ( ] q [ , 0 , 0  , _qO) 

e(q,s) u - , / ~  q - - - ( q ~  0, --Iql) (17) 

with Iq l=lPl l=X/~3z3  where p ~ = ( P l o , 0 , 0 , - I p l l )  
and qo = Pq/x/s2323, Pq 2 = =(ml- -s23--q2) /2 ,  Plo qo+  
x/~23, and the helicity projections of J ,  in the system 
P = 0 are: 

F 0 = e*(q, O),J" 

1 m2 - -  m3 gx/~zPq cos 0* - X f +  - -  g +  
m I $23 

F+=e*(q,+--)uJU= + - ~ [  hmX~l 
_ mix/2  g +  sin 0". (18) 

The projection e*(q,s),J" is not needed. It will be given 
in Appendix B for calculating lepton mass effects. The 
functions Fa (2 = 0, + 1) are the helicity amplitudes in the 
frame P = 0. They have the following partial wave 
expansion: 

F~ = ~ ( 2 j  + 1)dJz,o(O*)F~ a. (19) 
J 

We have dJo,o(O) = Pj(cos 0) and d~ 1,o = 4- sin 0P)(cos Off 
x / ~  + 1). This means that the expansion of F o starts 
with j = 0  whereas for F+I the lowest partial wave is 
j = 1. The partial wave amplitudes F~, which depend only 
on s23 and q2 have the final state interaction phases 6j 
for I = 1/2 K s  scattering. The phase shifts depend on the 

single variable Sz3. The main contribution to Fz comes 
from the intermediate state K*(892) resonance which is 
purely elastic. It will be considered in more detail in the 
next section. If we restrict the expansion (19) to s- and 
p-waves only then the form factors g and h are inde- 
pendent of 0* whereas f is at most linear in cos 0". The 
s-wave is resonant at x/~23 = 1.429GeV yielding the 
K*(1430) state which also decays dominantly into Krt. 
It has a rather large width of (0.287 + 0.023) GeV. From 
threshold the phase shift 6o grows monotonically with 
energy until it reaches 90 ~ near the resonance mass [17]. 
In all helicity cross sections Hi which involve F o, i.e. 
HL, HF, Hi, H A  and HN (see (13)), we expect strong inter- 
ference terms between j =  0 and j = 1 contributions. 
Therefore these cross sections would be ideal for studying 
the phase difference 60 - 61 in isodoublet K s  scattering. 
Other resonances that might contribute are K*(1415), 
which however decays dominantly into K ' n ,  and 
K*(1430) with j = 2. 

To facilitate the evaluation of the partial cross sections 
proportional to Hi for particular models, which will be 
done in the next section, we exhibit the dependence of 
the Hi on the form factors f , g  and h. Substituting the 
expressions for F~ given in (18) into the general formulas 
(13) we obtain 

ihl X2 
B e = e l  IglZ + m 4 /I 

1 I 
HL =~z._5._.z X f  + CEgl z 

q ml 

-' ( H T = ~ C 1  ]g] 2 Ihl 2X2"] 

- X  
Hv=~_2 C13{h*g} 

m 1 

X 
He = ._.2 C33{h*[Xf + C2g]} 

m 1 

H, = C 3 ~ { g * [ X T  + C2g] } 

2Xc19~{g*h } 
H p  ~-- . . .2 

m 1 

X C3~l{h, EXf + C2g] } H A  ~ .. .2 
m 1 

H N = C33{g*Xf} (20) 

where 9~ and ,3 denote real and imaginary part and where 
we defined 

C 1 = a 2 s 2 3  s in  2 0* 
2 

m 1 

2 q2 
C 2 = K X + N ~ a 2  m l  - $ 2 3 -  c o s 0 *  

2 

C a - ax/~2s23 sin O* 

2 m 2 m 2 

$23 

(21) 
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We notice that as long as we restrict the partial wave 
expansion (19) to s- and p-waves the cross sections 
Hv, Hr, Hv and He depend on 0* only through the 
characteristic multiplicative factor sin20 * and give 
information on the JP= 1- states only. All the other 
cross sections involve s-p interference. Obviously HL, H~ 
and Ha depend on the s-p phase shift difference in the 
form cos(6 o - 6 1 )  whereas HF and HN are proportional 
to sin(6 o -- 61). 

In the next section we shall present the form factors 
f ,  g and h for several models including the simplest one, 
which has only the K*(892) as intermediate Kn state. 

3 Resonance model with background 

From the available experimental data it is not yet clear 
that the K*(892) resonance is the only contribution in 
D O and D + decays to the KMv final state. MARK III  
reports for the ratio of resonant to nonresonant contri- 
bution in D O decays the number 4.0/1.9 and in D + decays 
2.9/1.3 [11] whereas in the E691 experiment these 
numbers are 1.7/0.3 and 4.5/0.3 [18]. Thus the E691 
experiment finds far less nonresonant background than 
the MARK III  collaboration. It is hoped that the other 
partial decay rates if measured will give better data on 
the nonresonant terms than the total decay rate. 

To get an idea how the other partial decay rates 
dF~(i = U, L, T, etc.) look like we shall investigate a model 
that consists of the K*(892) intermediate state, where the 
finite width is fully taken into account, and an additional 
background term which is motivated by an effective chiral 
Lagrangian approach including a Wess-Zumino  term. 
This model is described in detail in earlier work [7]. 
From this we can read off the form factors f,  y and h for 
this particular model which are then substituted into (20). 
To clarify the notation we shall repeat the main formulas 
from [7]. 

For the hadronic form factors f ,  g, h for the transition 
to two pseudoscalar mesons we consider, to be specific, 
the process D + ~ K - + g  + + e  + + v .  The effective 
Lagrangian approach yields the following expression for 
J ,  which is valid at threshold and in the limit of SU(4) 
chiral symmetry [15] 

j 2x/2e ~ ,  i2x/2 
U = --2 ~3 , v . f l P 3 P z P l  G v ( q  2) + ~ ( 2 p 3  + P l  - -  P2)  v 

J r ~  

�9 Fg.vGA(q 2) quq~ (22) L q2 __ m2j  

where Gv and G,4 describe the q2 pole behaviour of the 
weak vector and axial-vector current. The q,,q, term does 
not contribute for vanishing lepton mass. We now add 
renonance terms in the two-body pseudoscalar channels. 
The vector current Vu(J, = Vu + A,) is given by 

2x/2e v~ P~-P~"P 1 v . -  " p 

�9 m , , . - -  

l~D, - -  S 13. 2 _ imr ,  F FI'IK, - -  S 2 3 

(23) 

and the axial-vector part  Au is 

i2x/2 m2 * -- imK, F 
a u -  3F,~ (IV--IfA)(P3--Pz)u + IfamZK,--S23--imK. F 

F 
" [ ( P 3  - -  PZ)u + /<(P3 + P2)u 

F2a(0) r , 
+ FA(O ) PluI_P~ [P3 -- P2) + RPl (P2 

.4, } + I V  2 (Pl +P3) ,  GA 
/~O* - -  S13 

with 
2 2 

s 1 3 = m 1 + m 3  

+ p3)] 1 
(24) 

- - ( ( $ 2 3  + mE--q2)(Sz3+2s23 m~--m~) x/a22X cos 0 " )  

2 - -  /,?/2 
/~ __ m 2  

2 (25) 
m K .  

In (22), (23) and (24) F ,  is the pion decay constant 
2 2 F~=0 .18GeV.  The terms proportional to m z - m  3 are 

needed for the correct spin projection of the intermediate 
vector state. In (23) and (24) the parameters fv  and f a  
decouple the resonance enhancement of the K* from 
the low energy behaviour. Without them, i.e. for f v l  = 
fa I = 1, relations between different coupling constants 
evolve which are in disagreement with experiment (for 
more discussion on this point see [19]). fv  and fa 
parametrize the possibility that this decoupling is 
different for vector and axial-vector currents�9 I stands for 
overlap integrals for the transition D ~ K *  which are 
assumed to be equal for the vector and the axial-vector 
current. I v and I a have been introduced to account for 
chiral symmetry violations of the contact term and the 
D* exchange term�9 They will be specified in the next 

V.A section in such a way that they approach I b = 1 in the 
chiral symmetry limit�9 Then in this limit (23) and (24) 
reduce to (22) when s13 and sz3 are evaluated at soft 
threshold s13 = sz3 = 0 and m I = m2 = m3 = 0 for any 
value of the parameters fv  and fa .  We have not modified 
the D* pole term in the same way as the K* pole with 
threshold and pole enhancement decoupled and also have 
not included the term to ensure the correct spin projection 
for a vector particle. The D* pole is off-shell and becomes 
essentially part  of the contact term. Since s13 depends on 
0* it contains all partial waves in the Kn channel. The 
D* pole terms along with terms proportional to 
(IV'A--Ifv,A) d e s c r i b e  our nonresonant background 
contributions which are motivated by chiral symmetry 
and crossing symmetry�9 We note that the term propor- 
tional to F2 A are irrelevant at the threshold point. The 

A A form factors F~, F z and F v are the transition form factors 
for D-~K*ev in zero-width approximation. They are 
defined in the previous paper [7] and are identical to the 
notation of [6]. We can relate them to fv,  fa, I and the 
coupling constant for the decay K *~ --. K -  n + as follows: 

2 4mK, l 
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f v = r~2 FZ~ x f  29 g'~ "+ F~Fv (O) 
m2 i (26) 

where gg,or-~+ is related to the K* width via 

p2 _ ; . (mL,  m 2) 
4m~, (27) 

The F~(0), F~(0) and FV(O) are adjusted to the values as 
used by K6rner and Schuler [6] who matched the spin 
properties of the mesonic transitions to the free quark 
decay transitions at q2 = 0 which yields 

F~(O) = I ( m  I + mK, ) 

-21  
FA(O) = R12 - -  

1TI 1 -~- l~K, 

21 
FV(O) -- R v -  (28) 

lql  I -}- W / K . "  

The overlap factor I stands for deviations from the 
matching to the free quark model and is not in this work 
assumed to be universal for all three form factors. Thus 
we include the relative strength factors g ,2  and R V. A 
value for these overlap factors will be specified later 
together with our assumptions on the q2 behaviour of 
Gv(q 2) and GA(q 2) in (23) and (24). Finally we mention 
that actually there is no reason to multiply the contact 
term, i.e. the first two terms in (23) and the first and the 
last term in (24) with the same q2 dependent form factors 
Gv and G A as the terms describing the D ~ K* transition. 
We shall make this assumption, however, for lack of 
better knowledge. 

From (23) and (24) we can read off the expressions 
for the functions f,• and h for the resonance and 
background model. They are: 

f=iK~(l fARes(K*)IYc+F~(O)~~/~o [ + -a/ARes(D*)) 
F1 (0) J 2 

g = - - i K I ( [ I A - - I f A ] +  I f A Res(K *) +12Iab Res(D*) ) 

h = iK2([I v - I fv  ] + I fv  Res(K*) + I v Res(D*)). (29) 

Here we have defined 

K1 --2xf2mIGA 
3F~ 

2F3~ 2 

Bo = P~(P3 - P2) + Pl(P2 + Pa)~. (30) 

The resonance terms are defined as follows: 

2 imK, FK * Res(K*) = mK* - -  

m2, - -  $ 2 3  - -  irnx, r r ,  
2 

Res(D*) = mw (31) 
/ , / , /2 .  - -  S I  3 " 

Since 

2 q2 S 2 3 _ m K  ,2 
Bo=  --N/a2X cosO* + • ml + (32) 

2 $23 

we note that on the basis of (18) and (19) the terms 
proportional to Res(K*) contribute at resonance only 
to the p-wave amplitude in Fo, as it should be. So far 
any s-wave term in F 0 can come only from the term 
proportional to Res(D*) in f.  

It is well known that there are other resonant Kn states 
at higher masses which could interfere with the dominant  
K*(892) resonance. In order to test such a possibility we 
consider a contribution from the K~(1430) resonance, 
which decays dominantly into K~t with a rather large 
total width F = 0.287 GeV. The matrix element of the 
weak current between the D meson and the K* is 
unknown. Such a resonance can only contribute to f.  
For this additional resonance term we make the ansatz 

f ~ f  + iKl[ - -e l fA  + elfa Res(K)] 

- ~lfA + eIfA Res(K))  (33) 

where the param6ter ~ measures the strength of this 
resonance compared to the dominant K*(892) resonance 
and 

2 im K FK 
Res(K) -- mK -- (34) 

2 -- imr FK" m K - -  $ 2 3  

We shall calculate the partial cross section for several 
values of e and also look at the 823 spectrum of the 
integrated semileptonic decay width. Of course other 
resonance contributions could be introduced. If they have 
higher spins then we need more than one parameter  to 
parametrize their contribution. 

All our formulas and the results in the next section 
are for (I+vt) emission. The (l-~l) emission case is 
obtained by changing the sign of le, lN and l A in (15) and 
changing the sign of the form factor h in (20). Therefore 
the angular coefficients of the CP-odd terms, V, F and N 
change sign. These are the odd terms proportional to 
sin Z and sin 2Z in the X distribution, which cancel if the 
decays of D a n d / )  are averaged, 

4 Numerical results 

For illustrative purposes, we will present numerical 
results choosing input parameters for two basic cases. 
The first is suggested by a recent result reported for the 
ratio of longitudinal to unpolarized transverse decay 
[21]. The second is for the quark model parameterization 
of K6rner and Schuler [6]. No experimental cuts have 
been made. Complete results are given only for the first 
case. These numerical results are only to illustrate the 
variations one can expect from various models; we are 
not attempting to fit data or claim a superiority of one 
set of input parameters over another. Current data is too 



crude to distinguish among the sets. Only better data 
combined with acceptance corrections and a sophisticated 
fitting procedure will nail down the models. 

We assume the following q2 behaviour o f G  v and G a 

G v ( q 2 )  = m~ ,  
2 q 2  

rn D~ - -  

GA(q2)  _ m~,  (35) 
2 2" 

m o .  ~ --  q 

Furthermore we define 

2 __ ( m ~  _ m r  _ m~)2 I v = too* 

m2, 

2 - ( t oo  m r - m ~ )  ~ I~  = mD* 
mg ~ (36) 

If the factors IV 'n and Gv, a are combined we obtain the 
following form factors of the contact terms and the D* 
exchange term 

d v ( q  2) - m2*~ - (m o - m r - rn~) z 

mE, _ q2 

2 da(q2) _ mo,  ~ - (mD -- m r  --  m~) z 
2 __ q2 (37) 

m D* a 

I v'A have the property that they are equal to one for 
m o =  mK = rn~ = 0. Independent of the pseudoscalar 
masses, the form factors of the contact terms in (37) 
approach unity at the q2 threshold q 2  = (m D _ m r  _ m~t)2 
where the recoiling final two-meson system is at rest. 

The parameters are choosen as follows: 

mD = ml = 1.8693 GeV 

mr - m2 = 0.4937 GeV 

rn~ = m3 = 0.13957 GeV 

inK, = 0.8921 GeV 

roD, = 2.010 GeV 

mD, ~ = 2.113 GeV 

mD5 = 2.54 GeV 

F K, = 0.0513 GeV 

mr; = 1.429 GeV 

F r ;  = 0.287 GeV 

F~ = 0.180 GeV 

I =0.5 

R 1 2 = 0  

R v = 1.86. (38) 

Except for the last four input numbers all others are 
taken from the Particle Data Group tables [16]. We have 
chosen R12 = 0 and R v = 1.86 in order to reproduce a 
new value for the ratio of the longitudinal to the un- 
polarized transverse decay rate [20], which differs 
somewhat from the earlier published value [10]. I = 0.5 
accounts for the correct absolute value of the semileptonic 
decay rate into K n e v  [18]. For the form factor mass in 
the axial-vector current we used the recently measured 
value [21]. 
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First we show our results for the integrated partial 
decay rates. For this we have integrated the decay 
distributions d 3 F i  in (14) for i = U , L , T , V , 1 , P , A , N  

over the meson angle 0",s23 and qZ. The result for the 
five models, namely i) the model with a pure K*(892) 
resonance (in zero-width approximation and with the full 
width taken into account), ii) the model with the D* pole 
term added to the full width model, iii) the model with 
D* and all other contact terms added (e = 0) and iv) and 
v) the model with the additional s-wave resonance (K~) 
term added for two strength parameters e = -  1 and 

= + 1 are collected in Table 1. All rates are for the sum 
of both final charge states, i.e. for D o decays DO--+ 
K -  n~ + v and D o ~ / ( ~  e + v. Therefore the formulas in 
Sect. 2 have been multiplied by 1.5. The partial rates 
I v ,  F v  and F N obtained from the imaginary part of the 
product of amplitudes f, g and h vanish for the pure 
resonance model. Furthermore in this model the inte- 
grands of F a and F 1 have the factor sin 20*. Therefore 
they vanish after integration over the total 8" range. 
We see this is the case for the K* model in zero-width 
approximation. In the model with the full width taken 
into account we obtain small values for FA a n d / ' i  since 
they have small off-mass-shell terms proportional to 
s23 - m2, included in (20) with f, g and h as given in (29). 
The factor sin20* is also present in F v  and FN. To 
remedy this drawback we have calculated also moments 
of sin20* for F v ,  F ~ , F  a and FN, i.e. we integrated 
sin 2 0 * d a  F i ( i  = F ,  I ,  A ,  N) .  The results for these moments 
are denoted F sin20* etc. in Table 1. We see now that 
I sin 28* and A sin 28* are not zero or very small for the 
pure resonance model. 

As we shall comment upon again below, the angular 
distribution in the hadron angle 8" has the simple form 
1 + c~cos 2 8" only in the pure K* resonance model in 
narrow width. In this kind of model, to which data are 
usually fit, the ratio of longitudinal to transverse un- 
polarized decay rate is: 

F L / F  v = (1 + ~)/2. (39) 

For this reason we quote the value of (1 + a)/2 as well 
as F L / F  v in our numerical results. 

Now let us compare the results of the various models 
as given in Table 1. In all models the longitudinal 
decay rate F L is dominant. This has its origin in our 
choice F~ = 0 (see (38)). In fact we have fixed I, Rx2 and 
R v so that we agree with recent preliminary data of 
experiment E691, which yields F L / F V  = (1.80 +_ 0 .50  ) 
[20]. The experimental partial semileptonic widths 
F ( D  + ~ K * ~  + v) = (2.85 _+ 0.54) x 10-14 GeV and 
F ( D  ~ ~ K* - e + v) = (2.62 _+ 0.56) x 10-14 GeV (nonreso- 
nant background (0.32 _+ 0.25) x 10-14 GeV and 
(0.31 _+ 0.22)x 10-14GeV, respectively) [18] agree with 
our results, since we adjusted 1 = 0.5. Depending on the 
model the nonresonant background is between 6% and 
36%. The zero-width model deviates from the full width 
model by approximately 10% in agreement with earlier 
findings [7]. This is also true for the asymmetries 
(T, I sin 20", P, A sin 28*) in Table 1. Since the additional 
K*(1430) resonance makes a contribution only in the 
amplitude f, the decay rates F v,  F r and Fp must be equal 
for the three models with varying s-wave (e = 0, _+ 1). All 
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Pure K* resonance Incl. D* res. Background, and K ores. 

Zero width Full width ~ = 0 e = - 1 e = + I 

U + L 3.153 2.857 3.173 3.334 3.305 4.098 

(1 + 7)/2 1.79 1.78 1.52 1.46 1.19 1.20 

L/U 1.79 1.80 1.96 2.00 1.97 2.69 

U 1.132 1.020 1.071 1.112 1.112 1.112 

L 2.021 1.837 2.102 2.222 2.193 2.986 

T -0.392 --0.355 -0.325 -0.317 -0.317 --0.317 

V 0. 0. -0.079 -0.111 -0.111 -0.111 

F 0. 0. 0.076 0.082 0.085 0.080 

F sin 20* 0. 0. 0.054 0.072 0.075 0.070 

1 0. 0.009 -0.025 -0.008 -0.023 0.010 

I sin 20" 0.496 0.446 0.439 0.447 0.447 0.446 

P 0.778 0.697 0.712 0.671 0.671 0.671 

A 0. 0.004 -0.086 -0.122 --0.061 -0.183 

A sin20* 0.225 0.202 0.187 0.173 0.178 0.169 

N 0. 0. 0.137 0.150 0.064 0.235 

Nsin20* 0. 0. 0.015 0.015 0.015 0.014 

Table 1. The total decay width 
Fv+L( = U + L) and the partial decay 
width F i in units of 10-~4GeV, the ratio 
1-'r/Fv( = L/U) and the parameter ~ for 
various choices of input parameters in the 
model with I =0.5, R12 =0, Rv = 1.86 

par t ia l  decay rates, where f is present ,  i.e. FL, I v ,  FI,  FA 
and F N (and their  momen t s  with sin 20*) change  when 
e is varied. Those  angu la r  coefficients which do  not  vanish 
for the pure  resonance  mode l  are no t  changed  apprec iab ly  
when b a c k g r o u n d  terms are added  as is seen by 
compar ing  the results in the lines for U, L, T, I sin 20",  P 
and A s in20*.  Mos t  interest ing are  those angu la r  co- 
efficients which vanish for the pure  resonance  model ,  
since they involve imag ina ry  parts ,  i.e. F v, F v and F N, 
and which, wi thout  interference of several K n  par t ia l  
waves with different s t rong in terac t ion  phases  are signals 
for CP viola t ion  [1]. The larger  ones, i.e. F v and  FN, are 
app rox ima te ly  5% c o m p a r e d  to Fv+ L. This means  any 
CP viola t ion  in the decay D - , K * l v  must  be very large 
if it should  be visible in these a symmet ry  parameters .  
Since we ra ther  expect  that  CP viola t ing ampl i tudes ,  if 
they exist at  all, are  only a very small  fract ion of  the CP 
conserving cont r ibut ions ,  it is hopeless  to detect  direct  
C P  viola t ion  in asymmetr ies  for semileptonic  D decays  
to K n  final states. 

In o rde r  to get more  in format ion  how the var ious  
asymmetr ies  depend  on input  parameters ,  in pa r t i cu la r  

on the form factors F A and  F v, we made  an add i t iona l  
eva lua t ion  for the canonica l  values in (28), i,e. for 
R 1 2 - - - - R  V =- 1. The results are exhibi ted  in Table  2. We 
kept  I = 0.5, in o rde r  to make  the compar i son  of  the 

results in Tables  1 and 2 easier. The  m a j o r  changes  occur  
in the ra t io  L/U.  This is direct ly  connec ted  with the 
increase of R12. Second P is reduced,  which is re la ted  
to the reduc t ion  of  Rv. As was men t ioned  earl ier  tha t  if 
the pure  resonance  mode l  is the correct  one, the da t a  of  
E691 prefer the parameters ,  which were used in Table  1. 
F o r  the o ther  more  compl ica ted  models  which include 
b a c k g r o u n d  con t r ibu t ions  of  var ious  kinds  a new fit to 
the d a t a  must  be made,  since in the analysis  of the d a t a  
only pure  resonance  con t r ibu t ions  were assumed,  

Of  course we get more  in format ion  on the difference 
of our  five models  by look ing  at  d i s t r ibu t ions  of  the 
Fi(i = U, L, T etc.) in the remain ing  var iables  $23 , 0* and  
q2. Since we canno t  plot  the dependence  on  all the three 
var iables  s imul taneous ly  we decided to show only one 
d is t r ibu t ion  in s23, namely  the one of  Fv+ L and  var ious  
q2 dis t r ibut ions .  To  limit the n u m b e r  of  figures we have 
done  this only  for the models  with pa rame te r s  as in 

Table  1. The  results of  the m23 = x ~ z 3  d i s t r ibu t ion  are  
exhibi ted in Fig. 2a, b. There  we show the invar ian t  mass  
d i s t r ibu t ion  dFu+L/dmz3 for the five models ,  pure  
K*,  K* + D*, K* + D* with ~ = 0, + 1 for c ompa r i son  in 
logar i thmic  and  in l inear  scale. In all models  the decay 
rate away  from the K* peak is a lmos t  two orders  of 
magn i tude  smal ler  than  at the peak  and  p re sumab ly  still 
compa t ib le  with the publ i shed  mass d i s t r ibu t ions  of E691 



Pure K* resonance Incl. D* res. Background, and K* res. 

Zero width Full width ~ = 0 e = - 1 e -  + 1 

U + L 2.183 1.975 2.385 2.569 2.505 3.368 

(1 + ~)/2 1.16 1.17 0.99 0.94 0.95 0.82 

L/U 1.16 1.17 1.48 1.52 1.46 2.30 

U 1.009 0.910 0.962 1.019 1.019 1.019 

L 1.174 1.065 1.423 1.549 1.485 2.349 

T --0.454 --0.410 --0.379 -0.363 -0.363 -0.363 

V 0. 0. --0.085 -0.121 -0.121 -0.121 

F 0. 0. 0.044 0.047 0.071 0.024 

F sin 20* 0. 0. 0.042 0.059 0.061 0.057 

1 0. 0.007 - 0.028 -- 0.008 - 0.024 0.009 

I sin 20* 0.397 0.358 0.350 0.358 0.358 0.357 

P 0.418 0.375 0.389 0.344 0.344 0.344 

A 0. 0.001 -0.094 --0.141 -0.073 --0.210 

A sin 20* 0.094 0.084 0.070 0.054 0.058 0.049 

N 0. 0. 0.136 0.149 0.063 0.234 

Nsin 20" 0. 0. 0.012 0.014 0.015 0.013 
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Table  2. The to ta l  decay width 
FV+L( = U + L) and the partial decay 
width F~ in units of 10-14 GeV, the ratio 
FL/Fv( = L/U) and the parameter ct for 
various choices of input parameters in the 
model with I =0.5, R12 = 1, Rv = 1 

[10]. F u r t h e r  checks would  require  the app l i ca t ion  of  
cuts and  o ther  cor rec t ions  to our  mode l  decay  rates which 
is beyond  the pu rpose  of this paper .  

Next  we have ca lcula ted  the q2 dependence  of the 
angu la r  coefficients. We  have in tegra ted  over  s23 and  0* 
and  have ca lcu la ted  dFi/dq 2 for all i =  U, L, T etc. and  
for five models.  The  results are  shown in Fig. 3-15.  F o r  
the pure  resonance  mode l  we also show the curves in 
zero-width  app rox ima t ion .  Thus  there are max ima l ly  
six curves in every figure. In  some of  the plots  the pure  
resonance  mode l  give vanishing assymmetr ies .  In  o thers  
the curves for ~ = 0, + 1 coincide.  All dFi /dq 2 are p lo t ted  
in units of 10-14 G e V - 1 .  The  integrals  under  the curves 
are equal  to the numbers  in Table  1. F o r  U, T and  V the 
curves for e = 0, + 1 coincide since the K*  term influences 
only the ampl i tude  f as we expla ined  a l ready  above.  
Those  decay  d i s t r ibu t ions  which are no t  zero for the pure  
K*  resonance model,  namely  U, L, T, I sin 20", P, A sin 20* 
do  not  differ qual i ta t ive ly  very much  if we compa re  all 
five models.  The  only except ion is dFL/dq 2 which shows 
s t rong changes in the behav iou r  for small  q2 if a K*  term 
with e = 1 is considered.  Thus  dFL/dq 2 can be cons idered  
as good  ind ica tor  for add i t i ona l  K*  con t r ibu t ions  which 
might  not  be visible s t rongly  enough in the invar ian t  
mass  d is t r ibut ion .  

At  this po in t  we must  emphas ize  that  the par t ia l  decay  
d i s t r ibu t ions  d F  i are defined as in (15) on the basis  of 

the fac tor iza t ion  of the 0 and g dependence  in terms of  
the factors I i defined in (12). This differs f rom other  
defini t ions [12-14] ,  where also the dependence  on the 
meson  decay angle is fac tored out. However ,  the 0* 
dependence  is s imple and  explicit  and  factor izable  only 
for the pure  K*  resonance  mode l  (with no  off-mass-shell  
terms). The models  with b a c k g r o u n d  (e = 0, _ 1) on the 
o ther  hand  have a different cos 0* dependence  than  the 
pure  resonance  model ,  in pa r t i cu la r  dFL has not  the 
character is t ic  factor  cos20 * as the pure  K* resonance  
mode l  has but  has the more  compl ica ted  cos0*  
dependence  of the form [ a + b cos 0* [2. The  cons tan t  term 
[a} 2 con t r ibu tes  with a larger  term when we integrate  
over  cos 0* c o m p a r e d  to a term that  has the add i t iona l  
cos 2 0* factor. Therefore  the K~ resonance  terms which 
mos t ly  con t r ibu te  to a have a par t i cu la r ly  large effect in 
dFL/dq 2 (see Fig. 3). The  effect of the 0* independen t  
term a is also seen quite clearly in Fig. 9 (dF'Jdq 2) and  
in Fig. 12 (dF'A/dq 2) whereas  in Figs. 10 and 13 (I s in20* 
and  A s i n 2 0 * )  we see the change  of  the b a c k g r o u n d  
models  ( 5 = 0 ,  _+ 1) c o m p a r e d  to the pure  resonance  
mode l  which has the character is t ic  factor  sin 20* in d3F1 
and daFA . The decay rates which are  p r o p o r t i o n a l  to 
imag ina ry  par t s  are exhibi ted  in Figs. 6,7, 8, 14 and  15. 
They  are definitely nonnegligible.  In  o rde r  to de te rmine  
the var ious  coefficients daFi ( i=  U , L , T  etc.) in the 
charged  lep ton  angu la r  d i s t r ibu t ion  from exper iment  a 
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combined fit of the 0, Z, 0", $23 and q2 dependence must 
be performed by which, with sufficient data, all nine 
coefficient functions d3Fi in the combined angular 
correlation (15) will be obtained. 

5 Summary and conclusions 

We have constructed a complete formalism for analysing 
the semileptonic decay of a pseudoscalar meson into two 
pseudoscalar mesons, general enough to accommodate 
various partial waves in the final hadron channel, as well 
as cross channel poles and backgrounds. We also show 
how to extend the formalism to the case when lepton 
masses can not be neglected. 

We have presented numerical results for two models 
in the form of the various invariant decay functions, 
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integrated o v e r  q2 and the final state hadron  mass 
distribution. F rom these all angular  correlations can be 
constructed. We have also illustrated the q2 dependence 
and the hadron  mass distribution for selected decay 
functions and moments.  

Current  data  from Fermilab Experiment E691 are 
too crude definitively to distinguish between the two 
models. The superior fit of our  Table 1 compared  to 
Table 2 does however suggest that  the canonical  quark  
model  may have difficulty in describing D ~ K * e v  angular  
correlations. 

Appendix A: basis tensors 

In this appendix we write down the nine basis tensors 
L(o ; .~(, = U, L, T, V, F, I, P, A, N), which are defined in (7). 

Their space components  (it, v = 1,2, 3) are: 

L w) = 1 L~F) _ 1 
0 2 x / 2  0 - - 1  

(i ~ i) ~ i) LIL~= 0 L m -  - -  0 0 

0 2 1 0 

I L(T) = _1 1 L ( P ) =  0 

2 0 0 

L(v) = _1 0 L(A) _ 1 0 . 

2 0 2 x f 2  i 

1 0 (40) 
L(m - 2 x ~  0 

The four -momenta  k and k' are given in (8) in terms of 
the angles 0 and Z- With these we write the lepton tensor 
in terms of  q2 and these angles. With the help of  the 
explicit form of the basis tensors given above it is a simple 
exercise to calculate the coefficient functions lv ,  la, l T etc. 
as defined in (6). The result is written in (12). 

Appendix B: non-zero charged lepton mass 

In this appendix we present the changes that occur when 
the mass of the charged lepton is unequal  zero. This will 
be relevant when the accuracy of  the experimental data  
improves so that differences between D decays into 
electrons and muons  become visible. 

For  mz # 0 the lepton tensor in (6) will depend on the 
charged lepton mass. Fur thermore  we have an addit ional 

polarization vector e"(q,s)= q ~ / x / ~  so that the tensors 
L ~  defined in (5) have also time components .  Also the 
lepton tensor l,~ has time components  now. The space 
components  (it, v = 1, 2, 3) can still be decomposed as in 
(6) and the matrices L(i)(i = U, L,  T, etc.) are still in the 
form as given in Appendix A. The coefficients I v,  l L, lT, lv ,  

etc. change and are now: 

I v = 3(1 - Al)(1 + cos 2 0 ~- A I sin 2 0) 

l 3 
F = - -  - -  2"v/2 (1 Al) 2 sin 20 sin 

l L = �88 - At ) ( s i n  z 0 + Az cos z 0) 

3 
11 = - 2x/-2 (1 - Al)  2 sin 20 cos Z 

1T = �88 -- At) 2 sin 2 0 cos 2Z 

l N = . ~ ( 1  - d l )  sin 0 s i n z  
v 

lv = - �88 - Al) 2 sin 2 0 sin 2X 

3 
1 a - -  (1 -- Al)sin 0cos  X 

Ie = �88 -- Al) cos 0 (41) 

where At = m Z / q  z. In addit ion to the tensors (7) we have 
now the tensors involving the polarization vector e(q,s). 
They are: 

L (ss) = L ss 
L (~ = L ~+ - U -  L (10) = L +s - L -s 

L {~ = L ~+ + U -  L (2~ = L +~ + U -  

LIS~ = U ~ L(~ = L ~ (42) 

The corresponding matrices are: 

L(ss)= 0 0 0 

0 0 0 

0 0 0 

0 0 L(Os~= 0 0 0 
L(S~ 0 0 0 0 0 

0 0 ~1 0 0 

 li, ~ il ~ ~ i/ 
/ , (O l )=  0 0 L(lO)= 1 0 0 

0 0 0 0 0 

0 0 ~0 0 0 

~ i /o o l~ ~176 L~O2) 
= = " / 2  - 1 0 0 " 0 0 

0 0 0 0 0 

(43) 
With the help of  these tensors we decompose the lepton 
tensor restricted to time components  (It and/or  v = 0) as 
follows: 

lu, - -  2q 2 t l ( o l ) .  LtXO)~ , -  ~ -  {KooL(uS~ , +  Ko, ,~ .~  - ,v , 

(sO) + K ~ . t L  (~ --  L(Zv ~ + Kso(L(~ ) + Luv )}. (44) 
u k ~  / t v  /~ / t  



The coefficients Ko~ are expressed by the angles 0 and X 
and by Az: 

Koo = 3A~(I -- Az) 

Kot  = Kto = -�88 - A l ) l  A 

Ko2 = -- K2o = �88 -- Az)I u 

Kos = Kso = Al(1 -- At)l P (45) 

where l A, l N, lv are defined in (11), which are the angular  
factors for the case m~=0.  In addit ion to Hi with 
i =  U , L , T , V , F , I , P , A , N  we have now also H i with 
i = (ss), (01), (10), (02), (20), (sO), (0s) which are obtained 
from (9) by multiplying H,v with the appropr ia te  polar- 
ization tensors, i.e. 

H ( ~ )  = H ss 

1 s +  1 + s  - s  H t o l ) = - ~ ( H  - H  s- )  H ( l o ) = - - ~ ( H  - H  ) 
i s+  H ' -  i +s  H t o 2 ) = - ~ ( H  + ) Ht20~=z(H + H  ~-) 

H~so) = H ~~ Hto,) = H ~ (46) 

The tensor product  l""H,.  ~ in (10) gets also addit ional 
terms. They are all propor t ional  to A~(1 - A t ) :  

(lUVHuv)adaA . . . .  
= At(1 -- Al)[H~s,)(l v + �89 + la(Htol) + Htlo )) 

+ IN(Hr ) + Ht2o)) + lv(H~o~ + Hto~))] (47) 

where Iv, IL, IA, IN, Iv are again the angular  factors defined 
in (11) for m~ = 0, so that  in (47) the same angular  factors 
appear  as in (11). The matrix elements, of  course, are 
different. This means that  with A~ :# 0 one has the same 
decomposi t ion  into angular  factors as for Az = 0. The 
only difference is that  A~ dependent  terms and addit ional 
structure functions like Hto~) etc. appear. 

Fo r  calculating these new structure functions we need 
the projection of  the current matrix element (16) on the 
polarization vector ~(q, s). This is 

F~ = e*(q, s)uJ" 

1 x/aEEXCOsO*]g+rq2).  (48) - m l . / a 2 ( P q f +  [xPq  + 

Together  with (18) it is easy to write down the new 
structure functions Hto~) etc. Since we have not  used them 
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for getting the results of  this paper  we shall refrain from 
giving their explicit expressions. In order  to evaluate them 
for the model defined in Sect. 3 we need also the function 
r in this model. This is: 

r = f i x / 2 m l  GAReS(D*).  (49) 
3F~ 
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