QCD CORRECTIONS TO HEAVY QUARK PRODUCTION IN HADRON-HADRON COLLISIONS

W BEENAKKER * and W.L VAN NEERVEN
Insthut Loremiz Unu ersith of Letden, P OB 9506, 2300 RA Leiden The Netherlands
R MENG** and G.A sCHULER***
II Insulut far Theoretsche Phw k Uhicrsitat Hamburg, W-2000 Hamburg 50. Geman

J SMITH
Invetute for Theorethal Phsts, State Unte ersty of New York at Siom Brooh, NY 11794-3840. USA

Recerved II June 1990
(Revised 7 September 1990)

Abstract

We investagate the OCD correctuons to the cross section and single-partacte incluswe differental distributions tor $\mathrm{p}+\overline{\mathrm{p}} \rightarrow \mathrm{O}(\overline{\mathrm{O}})+\mathrm{X}$ where Q and $\overline{\mathrm{Q}}$ are heavy quarks We cakculate the order $\alpha_{\text {, }}$ corrections to the parton reaction $q+\bar{q} \rightarrow \mathbf{Q}+\bar{Q}$ which involves the computation of the virtual glaon contrihutions and the soft and hard contributions from the reaction $\mathrm{q}+\overline{\mathrm{q}} \rightarrow \mathrm{O}+\overline{\mathrm{Q}}+\mathrm{g}$ The contributions trom the channels $\mathrm{g}+\mathrm{q}(\overline{\mathrm{q}}) \rightarrow \mathrm{Q}+\overline{\mathrm{Q}}+\mathrm{q}(\overline{\mathrm{q}})$ are also calculated Including the order α_{S} corrections to $g+g \rightarrow \mathrm{Q}+\overline{\mathrm{Q}}$ from our previous paper we give exact results tor the order α_{s}^{3} cross sections and single-pariticle imelunve differental distritutions for the production of t and b quarks in pø collisons at energer presently avalable at the CERN SpīS and the Fermiab tevatron Reculss for fulure pp colliders are also presented Finally we compare the results of the simple approximations to the order α_{s} corrections with the exact results

1. Introduction

The subject of this paper is heavy flavour production in singie-particle inclusive hadron-hadron processes

$$
\begin{equation*}
\mathrm{H}_{1}+\mathrm{H}_{2} \rightarrow \mathrm{Q}(\overline{\mathrm{Q}})+\mathrm{X} \tag{1.1}
\end{equation*}
$$

[^0]where $H_{\text {, }}$ denote the hadrons, $\mathrm{Q}(\overline{\mathrm{Q}})$ the heavy quarks such as c, b and t and X stands for any hadronic final state. In lowest order the hedvy flavour production is deveribed by the following parton-parton processes [1]
\[

$$
\begin{equation*}
q+\bar{q} \rightarrow Q+\bar{Q} \tag{1.2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\mathrm{g}+\mathrm{g} \rightarrow \mathrm{Q}+\overline{\mathrm{Q}} \tag{1.3}
\end{equation*}
$$

The first and second process are known as quark-antıquark anmihilation and gluon-gluon fusion, respectively Recently the order α_{S} corrections to (12) and (1.3) have been calculated [2,3]. These include all the virtual corrections to (12) and (1.3) as well as the contributions from the bremsstrahlung reactions

$$
\begin{gather*}
\mathrm{q}+\overline{\mathrm{q}} \rightarrow \mathrm{Q}+\overline{\mathbf{Q}}+\mathrm{g}, \tag{1.4}\\
\mathrm{~g}+\mathrm{g} \rightarrow \mathrm{Q}+\overline{\mathbf{Q}}+\mathrm{g}, \tag{1.5}\\
\mathrm{~g}+\mathrm{q}(\overline{\mathrm{q}}) \rightarrow \mathrm{Q}+\overline{\mathbf{Q}}+\mathrm{q}(\overline{\mathrm{q}}) . \tag{1.6}
\end{gather*}
$$

The work reported here is part of a series of papers. In ref. [4] we presented the calculation of the order α_{5} QCD corrections to the heavy flavour production cross wections and single-particle inclusive difterential distributions from the gluon-gluon channel (1.3) and our result, agreed with those published in ref [2] We have now completed the calculations for the other two channels (12) and (1.6), and therefore finislied a completely independent calculation of the exact order a, corrections to (1. D).

There are several reasons for dong thas Theoretical predictions for reaction (1.1) are used to set limsts on the mass of the top quark [5-7] They are also used to understand lepton signah from $b(\bar{b})$ semileptonic decays, yelding both experimental distributions for $b(\bar{b})$ production [8], as well as backgrounds in the search for new physics. These experimental tests confirm the pledietive power of perturbative OCD. Finally the contibutions from (1.3) give us mformation on the behaviour of the pluon structure function, which plays an important role in predicting dross sections for future acelerators It is therefore very important to know that the complete order α, corrections to (12) and (13) have been calculated correctly.

Our results tor the corrections to the parton-parton cross sections (1.2) and (1,3) agree numerically with those reported in ref. [2]. Hence we also agree with their predletions for hadron-hadron tross sections. We have also checked numeitcally that both calculation ngere on the single-partede inclumive differential spectra of the heavy quark in rapidity and transverse momentum in the perton witifon collatoms. We would like to thank P. Nason is his help in making
these checks There are. however, small differences between some of our results and those in ref [3] for the hadron-hadron differential spectra. These are not caused by differences at the parton-parton level and will be commented on in due course. Since the details of the work in refs. $[2,3]$ have never been published we have written up our calculation in some detail so that it complements the write-up in ref. [4].

The paper is also a continuation of an investigation begun in ref [9], which was a study of simple approximations to the complicated formulae for the higher order corrections The reason for such work can be summarized as follows First, the actual calculations of the various distributions in heavy flavour production [2-4] show that the order $\boldsymbol{\alpha}_{\mathrm{S}}$ corrections are large. It is now common to describe QCD corrections by a so-called K-factor which in this case ranges from 2-3 depending on which heavy flavour is produced. Since the order α_{5} calculation is so involved it is unlikely that exact corrections beyond this order will be computed. Second, some approximations and their resummations are used in current Monte Carlo programs [10-12] A comparison between the exact and apprcsimate distributions gives an indication of the usefulness of these programs.

The construction of approximate formulae will clearly only be successful if the theoretica! and experimental uncertanties are so large that the differences between the exact and the approximate corrections will hardly be distinguishable. Further, the approximation hos to contain all terms which dominate the order α_{S} correction Moreover, it has to be generalized to higher orders. This approach works very well in the case of the Dretl-Yan vector boson production $p+\bar{p} \rightarrow V+$ X [13], in radiative W-boson production $p+\bar{p} \rightarrow W+\gamma+X$ [14] and in direct photon production $p+\bar{p} \rightarrow \gamma+X$ [15]. However, in the case of heavy flavour production this approach does not work so well as far as the total cross sections are concerned [9] This can mannly be attributed to the fact that me latter case the K-factor on the parton level shows too much structure contrary to what ue observed for the three processes mentioned above. The reason for this will be explaned below

A thorough analysis reveals that the corrections to (1.2) and (13) are dominated by the following production mechanisms [3,9] initial state soft gluon bremsstrahlung (ISGB), flavour excitaion (FE) and glur , i spliting (GS) The first mechanasm (ISGB) accounts for the threshold behaviour whereas the latter two explan the high-energy behaviour of the parton-parton cross section A fourth mechanism is represented by the final state quark fragmentation (FSQF). Howe ver if turns out that the latter is rather small for the whole range of energies and we will not discuss it anymore. Initial state gluon bremsstrahlung occurs in precesses (14) and (1.5) whercas gluon splitting and flavour excitation show up in (1.5) and (16). Howeve the above mechanisms fail to explain the behaviour of the parton-parton cross section at medium energes [9], for instance $\eta=s / 4 m^{2}-1$ values $0.1<\eta<$ 10 , where m denotes the heavy quark mass and \sqrt{s} is the total parton-parton cm .
energy. In this region all parton cross sections show a dip which can even become negative. Unfortunately this region gives very important contributions to the hadronce total cross section when the parton cross section is convoluted with the total parton flux The consequence is that in most cases the approximate order α_{S} hadronic cross section exceeds the exact one by $20-40 \%$ [9] in this paper we examine the difterential distributions to see whether one gets reasonable agreement between the exact and approximate expressions in specific regions of phase space. This is possible since we have completed our independent calculation of the order α, corrections to (1.2) and (13)
The paper is organized as follows. In sects. 2 and 3 we present the calculation of the OCD process (1.6) and corrections to reaction (12) which mvolves the computation of the cross section for the channel (14). We follow the procedure in ref. [4] In sect 4 we perform the mass factorizations on the cross sections in two different schemes, $1 \mathrm{e} . \overline{\mathrm{MS}}$ and DIS. Sect 5 is devoted to a discussion of the parton-parton cross sections and differential distributions. It is at this stage that we can check our results with the plols in ref [2] and with results from their computer program. In seet 6 we present our exact results for the heavy quark differential distributions in the reaction (1.1) and compare them both with those obtained from the approximations given in ret. [9] as well as the exact tesults in ref [3]. Detaib, and long formulae will be presented in appendices \mathbf{A}, \mathbf{B} and \mathbf{C}.

2. Radiative corrections to the quark-antiquark reaction

The nomentum assignment of the lowest order process as given in (12) will be denoled by

$$
\begin{equation*}
\mathrm{q}\left(k_{1}, \quad \overline{\mathrm{q}}\left(k_{2}\right) \rightarrow \mathrm{Q}\left(p_{1}\right)+\overline{\mathrm{O}}\left(p_{2}\right)\right. \tag{21}
\end{equation*}
$$

Unless stated otherwise we assume the heavy antiquark to be detecied The graph which contributes to the Born amplitude is shown in fig I. For the kinematical variables we choose

$$
\begin{align*}
& 1=2 k_{1} \cdot k_{2}, \quad t_{1} z_{1}-m^{2}=\left(k_{2}-p_{2}\right)^{2}-m^{2}, \\
& u_{1}, u-m^{2}=\left(k_{1}-p_{2}\right)^{2}-m^{2} . \tag{array}
\end{align*}
$$

 those of the heavs qualk:

Since the cross sections for the Born process and its radative corrections have to be evaluated in n-dimensions the algebra was performed by using the program FORM* The square of the Born amplitude summed over the intual and final spins can be written as

$$
\begin{equation*}
\sum M^{\mathrm{B}} M^{\mathrm{B} *}=4 g^{4} N C_{\mathrm{F}} A_{\mathrm{OED}} \tag{2.3}
\end{equation*}
$$

where N refers to the gauge group $\mathrm{SU}(N), C_{\mathrm{F}}=\left(N^{2}-1\right) / 2 N$ is the colour factor corresponding to the fundamental representation of the quarks and $A_{\text {QED }}$ stands for the QED analogue of the process in (21). It is given by

$$
\begin{equation*}
A_{\mathrm{QED}}=\frac{t_{1}^{2}+u_{1}^{2}}{s^{2}}+\frac{2 m^{2}}{s}+\frac{\epsilon}{2} \tag{2.4}
\end{equation*}
$$

with $\epsilon=n-4$ Notice that like in the gluon-gluon fusion process (see ref. [4]) the ϵ terms are mass independent Averaging over the initial quark/antiquark spins and colours we find that the result for the Born cross section in n-dimensions can be expressed as follows [4]

$$
\begin{equation*}
s^{2} \frac{\mathrm{~d}^{2} \sigma_{\mathrm{q} \overline{\overline{4}}}^{(0)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}=\frac{1}{4} K_{\mathrm{q} \overline{4}} \frac{\pi S_{\epsilon}}{\Gamma(1+\epsilon / 2)}\left(\frac{t_{1} u_{1}-s m^{2}}{\mu^{2}}\right)^{\epsilon / 2} \delta\left(s+t_{1}+u_{1}\right) \sum M^{\mathrm{B}} M^{\mathrm{B} *} \tag{2.5}
\end{equation*}
$$

where $K_{\mathrm{q} \overline{4}}=N^{-2}$ is the colour average factor for two quarks in the intial state The mass parameter μ in eq. (2.5) originates from the dimensionality of the gauge couphng constant g in n-dimensions. The constant $S_{c}=(4 \pi)^{-2-\epsilon / 2}$ ongmates from the n-dimensional integration over the solid angle and the remaining factor comes from the two-particle phase space integral.

The virtual corrections to the differential cross section in eq (2.5) require the calculation of the Feynman diagrars shown in fig 2 The ultraviolet (UV), infrared (IR) and the collinear or mass (M) singularities which appear in the graphs are regularized by n-dimensional regularization In order to distinguish the quarks which show up in the internal fermion loop from the produced heavy flavours, we indicate the first ones by the mass m_{f}. For the internal gluon propagator we have chosen the Feynman gauge. The computation of the virtual amplitude M^{V} has been done as follows For the Lorentz algebra we used the program FORM*. The Feyhman integrals which contan loop momenta in the

[^1]

0

b

e

h

k

m

Fig 2 The order α_{5}^{2} Feyman didgrams for the virtual correction to the redction $q\left(k_{1}\right)+\overline{\mathbf{q}}\left(k_{2}\right) \rightarrow$ $\mathrm{O}\left(p_{1}\right)+\overline{\mathrm{O}}\left(p_{2}\right)$
numerator have been dealt with using an adapted version of the reduction program of Passarmo and Veltman [16]. This progrim has been extended (see ref [17]) to account for the IR and M singularites. In this way we could reduce all the Feynman integrals to a set of elementary integral, which are listed in appendix A of ref [4] The virtual cross section is obtaned from the interference term between the virtual and the Born amplitude Summing over the initial and final quark/antiquark spins this terms will be denoted by

$$
\begin{equation*}
\sum\left(M^{\left.\mathrm{v}^{\mathrm{V}} M^{\mathrm{B} *}+M^{\mathrm{B}} M^{\mathrm{V}^{*}}\right)=g^{\mathrm{h}}\left[N C_{\mathrm{F}}^{2} V_{\mathrm{F}}+N C_{\mathrm{A}} C_{\mathrm{F}} V_{\mathrm{A}}+N C_{\mathrm{F}} V_{\mathrm{f}}^{\prime}\right], ~}\right. \tag{26}
\end{equation*}
$$

where $C_{A}=N$ is the colour factor corresponding to the adjoint representation of the gluon The three contributions to the interference term, i.e. $V_{\mathrm{F}}, V_{\mathrm{A}}$ and V_{f}, stand for the abelian (QED), the non-abulian and the fermion loop parts respectively In the last contribution the sum over all flavours is implicitly understood The expressions for V_{1} and V_{A} are so lengthy that they will not be given here. However they can be casily reconstructed from the reduced virtual plus soft cross section which is obtained after performing renormalization and mass factorization The expression for V_{1} can be derived from (2.11) and (212) below

The virtual unrenormalized cross section becomes

$$
\begin{align*}
\left(s^{2} \frac{\mathrm{~d}^{2} \sigma_{\overline{4} \overline{9}}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{i}}\right)^{\mathrm{V}}= & \frac{1}{1} K_{4 \overline{9}} \frac{\pi S_{\epsilon}}{\Gamma(1+\epsilon / 2)}\left(\frac{t_{1} u_{1}-s m^{2}}{\mu^{2} s}\right)^{\epsilon / 2} \\
& \times \delta\left(s+t_{1}+u_{1}\right) \sum\left(M^{\mathrm{V}} M^{\mathrm{B} *}+M^{\mathrm{B}} M^{\mathrm{V} *}\right) \tag{2.7}
\end{align*}
$$

where $K_{\mathrm{q} \overline{9}}$ is defined below (25) Using the same shorthand notation as in eq. (26) we can split the virtual cross section as follows

In the explicit expression for the virtual cross section we observe single and double pole terms of the type $\epsilon^{-i}(i=1,2)$ which are due to $U V$, IR and M singularities. Double pole terms only appear when IR and M singularities councide The latter show up in the F part of the virtual cross section only Moreover this part contains all the M singularities and has no UV divergences related to coupling constant renormalization. These divergences can only be attributed to the A and f part. UV divergences related to mass renormalization appear at the external fermion legs of the Feynman graphs contributmg to the F and A part These two parts aiso contain all IR divergences. The UV divergences are removed by renormalization Since the cross section is a renormalzation group invariant we can limit ourselves to mass and coupling constant renormalization. Starting with mass renormalization we choose the on-shell renormalization scheme This can be achieved by replacing the bare mass in the Born cross section by the renormalized mass

$$
\begin{equation*}
m_{\mathrm{b}} \rightarrow m\left\{1+\frac{g^{2}}{16 \pi^{2}} C_{\mathrm{F}}\left(\frac{6}{\epsilon}+3 \gamma_{\mathrm{E}}-3 \ln 4 \pi-4-3 \ln \frac{\mu^{2}}{m^{2}}\right)\right\} \tag{2.9}
\end{equation*}
$$

For the coupling constant renomalization we allow ourselves more freedom as long as we limit ourselves to gauge invariant subtraction schemes. In the first instance we choose the $\overline{\mathrm{MS}}$ scheme which can be achieved by replacing the bare coupling constant in the Born cross section by the renormalized one

$$
\begin{equation*}
g_{\mathrm{b}} \rightarrow g\left(\mu_{\mathrm{R}}^{2}\right)\left\{1+\frac{\alpha_{\mathrm{S}}\left(\mu_{\mathrm{R}}^{2}\right)}{g_{\mathrm{n}} \boldsymbol{g}^{2}}\left\{\frac{2}{E}+\gamma_{\mathrm{E}}-\ln 4 \pi+\ln \frac{\mu_{\mathrm{R}}^{2}}{\mu^{2}}\right){\beta_{0}}_{\}},\right. \tag{2.10}
\end{equation*}
$$

with $\beta_{0}=11 N / 3-2 n_{\mathrm{f}} / 3$ where n_{f} is the number of flavours in the internal fermion loop. Furthermore we have used $g^{2}\left(\mu_{R}^{2}\right) \equiv 4 \pi \alpha_{S}\left(\mu_{R}^{2}\right)$, where μ_{R}^{2} stands for the coupling constant renormalization scale. The renormalized virtual cross
section is now given by
where mass renormalization in the first term of the r.h s of the above equation is alfeady implicity understood. The fermion loop contribution to the renormalized virtual cross section in (2.11) tor $\geqslant \geqslant 4 m_{f}^{2}$ is given by

$$
\begin{align*}
& \left.-\sqrt{1-\frac{4 m_{1}^{2}}{s}}\left(1+\frac{2 m_{1}^{2}}{s}\right) \ln x_{1}\right] s^{2} \frac{d^{2} \sigma_{49}^{(\theta)}}{d t_{1} d u_{1}}, \tag{2}
\end{align*}
$$

whete the summation is taken over the lipht (L) and heavy (H) quark contributions 406I

$$
\begin{equation*}
x_{1}=\frac{1-\sqrt{1-4 m_{1}^{2} / 4}}{1+\sqrt{1}-\frac{m_{1}^{2} / 4}{2}} \tag{2.13}
\end{equation*}
$$

In the care that: am? we have the replatement

$$
\begin{equation*}
\sqrt{1-\frac{\sin }{1}} \ln x_{1} \rightarrow-2 \sqrt{\frac{4 m_{1}^{1}}{1}-1} \arctan \left(\frac{1}{\sqrt{4 m_{1}^{2} / s-1}}\right) \tag{2,14}
\end{equation*}
$$

Pheriden the ustual MS sheme we can choose another one [2,3], This scheme in siven by the premeripition that in the limit of smatl momenta the heavy quarks in the fermion lowe ure decoupled This can be achieved by subtracting the heavy lermion bop at tero external momenta. In this case we get

$$
\begin{align*}
& \left.+\sum_{i=1}^{m i n} \frac{m_{1}^{7}}{\mu_{\mathrm{N}}^{2}}\right] w^{\frac{d^{2} \sigma_{49}^{(1)}}{d t_{1} d t_{1}}} . \tag{2.15}
\end{align*}
$$

0

b

c

d

e

Fig 3 The order $g{ }^{3}$ Feynmas diagrams contributing to the amplifude for the gluon bremsstrahilung process $\mathrm{q}\left(k_{1}\right)+\overline{\bar{q}}\left(k_{2}\right) \rightarrow \mathrm{g}\left(k_{3}\right)+\mathrm{O}\left(\rho_{1}\right)+\overline{\mathrm{O}}\left(p_{2}\right)$ The graphs for the processes $\mathrm{g}\left(k_{1}\right)+\overline{\mathrm{q}}\left(k_{2}\right) \rightarrow \overline{\mathrm{q}}\left(k_{3}\right)+$ $\mathcal{Y}\left(p_{1}\right)+\overline{\mathrm{Q}}\left(p_{2}\right)$ and $\mathrm{g}\left(k_{1}\right)+\mathrm{q}\left(k_{2}\right) \rightarrow \mathrm{q}\left(\bar{k}_{3}\right)+\mathrm{Q}\left(p_{1}\right)+\overline{\mathrm{Q}}\left(p_{2}\right)$ can be obtaned vid crossing

Notice that the limit $m_{1} \rightarrow 0$ in the sum over the light flavours is well defined The latter renormalization scheme implies that the heavy flavours do not contribute to the evolution of the running coupling constant From now on we will suppress the scale dependence of the coupling constant and refer to it as g or α_{s} instead of $g\left(\mu_{R}^{2}\right)$ or $\alpha_{S}\left(\mu_{R}^{2}\right)$

Next we have to calculate the real gluon bremsstrahlung corrections to the lowest order process (12) The gluon bremsstrahlung cross section is given by the following process

$$
\mathrm{q}\left(k_{1}\right)+\overline{\mathbf{q}}\left(k_{2}\right) \rightarrow \mathrm{g}\left(k_{3}\right)+\mathrm{Q}\left(p_{1}\right)+\overline{\mathbf{Q}}\left(p_{2}\right)
$$

The five Feynman diagrams which contribute to the amplitude $M^{\mathbf{R}}$ dre shown in fig 3. In the calculation of these diagrams we introduced the following ten kinematical invariants [4]

$$
\begin{array}{ll}
s=\left(k_{1}+k_{2}\right)^{2}, & u_{1}=\left(k_{1}-p_{2}\right)^{2}-m^{2}=u-m^{2}, \\
s_{3}=\left(k_{3}+p_{2}\right)^{2}-m^{2}, & t^{\prime}=\left(k_{2}-k_{3}\right)^{2}, \\
\varsigma_{4}=\left(k_{7}+p_{1}\right)^{2}-m^{2}, & u^{\prime}=\left(k_{1}-k_{3}\right)^{2}, \\
s_{5}=\left(p_{1}+p_{2}\right)^{\prime}=-u_{5}, & u_{6}=\left(k_{2}-p_{1}\right)^{2}-m^{2}, \\
t_{1}=\left(k_{2}-p_{2}\right)^{2}-m^{2}=t-m^{2}, & u_{7}=\left(k_{1}-p_{1}\right)^{2}-m^{2},
\end{array}
$$

where $k_{1}+k_{2}=k_{3}+p_{1}+p_{2}$. The invariants s, t_{1} and u_{1} were already used in the calculation of the Born graphs (2.2) and the virtual graphs. Since we are considering a two-to-three body process only five of the invariants are linearly independent. The square of the amplitude was calculated in n dimensions up to order ϵ^{2} $(e=n-4)$ in order to account for the IR and M singularities which show up in the
real gluon cross section. We checked algebraically that the $n=4$ part of the square of the matrix element agrees with the expression found in ref [18] The square of the amplitude will be denoted by

$$
\begin{equation*}
\sum M^{\mathrm{R}} M^{\mathrm{R} *}=g^{\mathrm{F}}\left[N C_{\mathrm{F}}^{2} R_{\mathrm{F}}+N C_{\mathrm{A}} C_{\mathrm{F}} R_{\mathrm{A}}\right] \tag{2.18}
\end{equation*}
$$

Here the summation over initial and final spins/polarizations is implicitly understood. The colour factors C_{F} and C_{A} were already defined in (2.3) and (26). Averaging over the intial spins and colours the cross section can be written in the following form (see appendix B in ref [4]),

$$
\begin{equation*}
\left(s^{2} \frac{d^{2} \sigma_{414}^{(1)}}{d t_{1} d u_{1}}\right)^{R}=\frac{1}{8} K_{44} \frac{s_{6}^{2} \mu^{-\epsilon}}{\Gamma(1+\epsilon)}\left(\frac{t_{1} u_{1}-s m^{2}}{\mu^{2} s}\right)^{\epsilon / 2} \frac{s_{4}^{1+\epsilon}}{\left(s_{4}+m^{2}\right)^{1+\epsilon / 2}} \int \mathrm{~d} \Omega_{n} \sum M^{\mathrm{R}} M^{\mathrm{R}_{*}}, \tag{2.19}
\end{equation*}
$$

with $s_{4}=s+t_{1}+\mu_{1}$ and $\mathrm{d} \Omega_{n}=\sin ^{1+\epsilon} \theta_{1} \mathrm{~d} \theta_{1} \sin ^{\epsilon} \theta_{2} \mathrm{~d} \theta_{2}$. Analogous to the virtual cross section we can decompose (2.19) into

$$
\begin{equation*}
\left(d \sigma_{4 \vec{a}}^{(1)}\right)^{R}=\left(d \sigma_{4 \overrightarrow{4} I}^{(1)}\right)^{R}+\left(d \sigma_{4 \overrightarrow{4} A}^{(1)}\right)^{R} \tag{220}
\end{equation*}
$$

In ordep 6 compute the real gluon cross section we follow the procedure as autlined in ref. [4. 19]. To the purpone we split the eross secton into a hard gluon $(.,-j)$ and a sof gluon $\left(s_{4}<d\right)$ part. The parameter J is chosen in such a way that it can be neglected with respect to mass terms like m^{2} and the kinematical invarianis s, f_{1} and u_{i}. Starting with the hard gluon correction we can neglect the lerms in the matrix element seuared which are proportional to ϵ^{2}. This is because the hard collinear divergences only provide us with single pole terms $1 /$ e In order th perform the angutar integrations the expression for $\Sigma M^{R} M^{R}$ n has to be partally fractioned so that the whole angular dependence can be attributed to only two lactors containing the angular ierms. This procedure is extensively described in seef. 4 and appendix C of ref. [4]. The hard gluon-parion cross sections become

$$
\begin{aligned}
& *\left\{-\frac{1}{u_{1}}\left(\frac{u_{1}^{2}+\left(s+t_{1}\right)^{2}}{s_{4}\left(*+r_{1}\right)}\right)\left(\frac{t_{1}^{2}+\left(1+t_{1}\right)^{2}}{s^{2}}-\frac{2 m^{2}\left(v+t_{1}\right)}{u_{1}}+\frac{6}{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
\left(s^{2} \frac{\mathrm{~d}^{2} \sigma_{\mathrm{q} \overline{\mathrm{q}, \mathrm{~A}}}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)^{\mathrm{H}}=\left(\frac{1}{2}\right)^{5} \frac{\alpha_{\mathrm{S}}^{3}}{\pi} K_{\mathrm{q} \overline{4}} N C_{\mathrm{A}} C_{\mathrm{F}} \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{4} R_{\mathrm{A}}\right) \tag{222}
\end{equation*}
$$

The amplitudes squared R_{F} and R_{A} can be obtaned from expression (10) in ref [18] The pole terms originating from $t^{\prime-1}$ and $u^{\prime-1}$ which appear in the ϵ^{\prime} ($t=0,1$) parts of the matrix element are presented between the curly brackets of expression (2.21) Notice that $\left(\mathrm{d} \sigma_{9 \overline{9}}^{(1)}\right)^{H}$ does not have collnear divergences This feature has also been obsened for $\left(d_{q_{q}}^{(1)}\right)^{V}$ [see eq. (2.8)]

Finally we have to calculate the sofi gluon cross section The soft gluon amplitude can be obtaned from the matrix element in (2.18) by applying the eikonal approximation. In the limit when the gluon momentum k_{3} in (2 16) gets soft the kinematical invananis in the two-to-three body process become

$$
\begin{array}{llll}
s_{3} \rightarrow 0, & s_{4} \rightarrow 0, & t^{\prime} \rightarrow 0, & u^{\prime} \rightarrow 0, \\
u_{5} \rightarrow-s, & u_{6} \rightarrow u_{1}, & u_{7} \rightarrow t_{1}, & \tag{223}
\end{array}
$$

while the other invariants remain unaltered. The soft matrix element M^{s} can be written in the same form ds in (2 18)

$$
\begin{equation*}
\sum M^{s} M^{s^{*}}=g^{\mathrm{t}}\left[N C_{\mathrm{F}}^{2} S_{\mathrm{F}}+N C_{\mathrm{A}} C_{\mathrm{F}} S_{\mathrm{A}}\right] \tag{224}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{\mathrm{F}}=16\left[\frac{s}{t^{\prime} u^{\prime}}+\frac{2 t_{1}}{t^{\prime} s_{3}}+\frac{2 t_{1}}{u^{\prime} s_{4}}-\frac{2 u_{t}}{t^{\prime} s_{4}}-\frac{2 u_{1}}{u^{\prime} s_{3}}+\frac{\left(s-2 m^{2}\right)}{s_{3} s_{4}}-\frac{m^{2}}{s_{7}^{2}}-\frac{m^{2}}{s_{4}^{2}}\right] A_{\mathrm{OED}} \tag{225}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\mathrm{A}}=8\left[-\frac{s}{x^{\prime} u^{\prime}}-\frac{t_{1}}{t^{\prime} s_{7}}-\frac{t_{1}}{u^{\prime} s_{4}}+\frac{2 u_{1}}{t^{\prime} s_{4}}+\frac{2 u_{1}}{u^{\prime} s_{3}}-\frac{s-2 m^{2}}{s_{3} s_{4}}\right] A_{\mathrm{OED}} \tag{2.26}
\end{equation*}
$$

The soft gluon cross section is obtaned from the expression

$$
\begin{align*}
\left(s^{2} \frac{d^{2} c_{4 G}^{(1)}}{d f_{1} d u_{1}}\right)^{v}= & \frac{1}{3}
\end{align*} K_{41} \frac{s_{1}^{2} \mu^{-\epsilon}}{\Gamma(1+6)}\left(\frac{t_{1} u_{1}-s m^{2}}{\mu^{2} s}\right)^{6 / 2} \delta\left(s+t_{1}+u_{1}\right) .
$$

Performing the integrals over the angles and the invariant s, we get

$$
\begin{align*}
& \times\left[\frac{16}{e^{2}}+\frac{8}{\epsilon} \ln \frac{m^{2}}{I_{1} u_{1}}+2 \ln ^{2} \frac{\mathrm{sm}}{i_{1} u_{4}}+4 \mathrm{Li}_{2}\left(1-\frac{4 m^{2}}{I_{1} I_{1}}\right)+\frac{4\left(s-2 m^{2}\right)}{\sqrt{s^{2}-4 m^{2}}}\right. \\
& x\left\{-\frac{2}{6} \ln x-\ln x+2 \mathrm{Li}_{2}(x)+2 \mathrm{Li}_{2}(-x)-\ln ^{2} x\right. \\
& +2 \ln x \ln \left(1-x^{2}\right)=\zeta(2) \\
& =\frac{6}{6}+\frac{32}{2} \ln \frac{t_{1}}{n_{1}}-\ln \ln x \ln \frac{t_{1}}{n_{1}} \\
& \left.16 L_{1}\left(1-\frac{w_{1}}{w_{1}}\right)+16 L_{1}\left(1-\frac{t_{1}}{u_{1}}\right)+64(2)\right]= \tag{2.28}
\end{align*}
$$

$$
\begin{aligned}
& x\left\{=\frac{2}{-2} \ln x+2 L i(x)+2 \operatorname{Ln}(-x)-\ln x^{3} x+2 \ln x \ln \left(1-x^{2}\right)-6(2)\right\}
\end{aligned}
$$

$$
\begin{align*}
& \left.-6 L_{i}\left(1-\frac{i_{1}}{n i_{i}}\right)+6 L_{i}\left(1-\frac{u_{1}}{\mu_{i}}\right)\right] \text {. } \tag{2.29}
\end{align*}
$$

$\mathbf{w h}$
and the common factor F defined by

$$
\begin{align*}
F\left(s, t_{1}, u_{1}\right)= & \frac{1}{16 \pi} g^{6} \frac{S_{\epsilon}}{\Gamma(1+\epsilon / 2)} \\
& \times \exp \left(\frac{\epsilon}{2}\left(\gamma_{\mathrm{E}}-\ln 4 \pi\right)\right)\left(\frac{t_{1} u_{1}-s m^{2}}{\mu^{2} s}\right)^{\epsilon / 2}\left(\frac{\Delta^{2}}{\mu^{2} m^{2}}\right)^{\epsilon / 2} A_{\mathrm{OED}} \tag{2.31}
\end{align*}
$$

In the above expressions $\zeta(2)=\pi^{2} / 6$ and γ_{E} is the Euler constant $\mathrm{Li}_{2}(x)$ is the dilogarithmic function as defined in ref. [20] Note that all differential cross sections are proportional to the Born cross section This is in contrast with what we observed in the gluon-gluon fusion process (1.3) (see ref. [4]). Addition of the renormalized virtual contribution (2.11) and the soft contribution (227) leads to the cancellation of the IR singularities present in both of them The left-over collinear divergences from the initial state gluon radiation are responsible for the single pole terms. The latter can be removed by mass factorization as will be shown in sect. 4. Finally we want to comment on the cross sections calculated above All expressions except for the fermion loop contribution in eq. (2.15) are asymmetric under interchanging t_{1} and u_{1}. This is in contrast with our findings for the gluon-gluon fusion process which is symmetric in i_{1} and u_{1}. In the case of the virtual cross section this asymmetry can be traced back to the interference between the Born and the box graphs In the real gluon cross section it can be attributed to the interferences between initial and final state gluons. In the abelian (QED) part of the above process this phenomenon is known as forward-backward asymmetry or charge asymmetry. It is caused by interference between $C=+$ and $C=-$ states, where C denotes charge conjugation.
Notice that the above cross sections have been presented for the case that only the heavy antiquark is detected. Here the variables t_{1} and u_{1} denote the square of the four-momentum transfer of the detected heavy antiquark with respect to the incoming light antiquark and quark respectively [see eq, (2.17)]. The cross sections in the case that the heavy quark is detected can be clerived in an analogous way The expressions are related to those obtained for the heavy antiquark as will be shown in sect 4

3. The (mnit)guark-quan subprocess

The matrix element $M_{\text {wil }}$ of the antiquark-gluon process

$$
\begin{equation*}
u\left(k_{1}\right)+\bar{q}\left(k_{2}\right) \rightarrow \bar{q}\left(k_{3}\right)+O\left(p_{1}\right)+\bar{O}\left(p_{2}\right) \tag{3.1}
\end{equation*}
$$

can be obtained irum the amplitude calculated for the quark-antiquark reaction
(2.16), ie. $M^{\mathbf{R}}$ via crossing. The latier can be achieved by multiplying $\Sigma M_{\mathrm{R}} M_{\mathrm{R}}^{*}$ with an overall minus sign and interchanging $k_{1} \leftrightarrow-k_{\text {, This implies that the }}$ invariants listed in eq. (2.17) which appear in the squared amplitude $\Sigma M_{89} M_{89}^{*}$ are obtained from those present in $\Sigma M_{R} M_{R}^{*}$ in eq . (2.18) via the following replacements

$$
\begin{equation*}
s \leftrightarrow t^{\prime}, \quad s_{7} \leftrightarrow u_{1}, \quad s_{4} \leftrightarrow u_{7} . \tag{3.2}
\end{equation*}
$$

whereas the other invariants reman unchanged The expression for $\sum M_{\mathrm{gq}} M_{\mathrm{gq}}$ 娄 can ugain be decomprosed in its colour parts like in eq. (2.18):
where one has summed over all initial and final spins and/or polarzations. In computing the differential cross section one has to bear in mind that in n dimensom the gluon has $n-2$ degrees of freedom. This one has to implement in the crobs section when one averages over the inital gluon polarization. Therefore for each glum in the mitiad state one gets a factor $(1)^{-2}$) ' Instead of $1 / 2$. This is very importunt if we have to deal with non-diagonal processes in which the parton npliting funetions (aee sect. 4) are non-diagonal. In this case the reduced cross wethon have wither one gluon more or one gluon less that the original parton frowns. When the number of gluons in the initial state of the cross sections montioned above are the wane then one can extract an identical overall fictor Hence it does not matter if one takes the timit $n \rightarrow 4$ betore or after the mass
 de $e_{\text {en }}^{\text {(it }}$ have the same numbers of gluons (here two) in the inital wate. The antiquark-gluon ditterental, cross sinfon is therefore given by

$$
\begin{align*}
& \times \frac{b_{4}^{l^{2}}}{\left(n_{4}+m^{2}\right)^{1+1 / 2}} \int \mathrm{~d} \Omega_{n} \Sigma M_{49} M_{4}^{*} . \tag{3.4}
\end{align*}
$$

 the thilial glum poliafiation. Sine there twe mu glumin in the final state once
 part of the buthis elenent muared. The partial fractioning proceeds in tho sume

cross sections.

$$
\begin{align*}
& \left(s^{2} \frac{d^{2} \sigma_{84}^{(1)},{ }_{F}}{d t_{1} d u_{1}}\right)=\frac{1}{2} \alpha_{\mathrm{S}}^{3} K_{\mathrm{ga}} N C_{\mathrm{T}}^{2} \frac{1}{(4 \pi)^{\epsilon / 2}} \frac{1}{\Gamma(1+\epsilon / 2)}\left(\frac{l_{1} u_{1}-s m^{2}}{\mu^{2} s}\right)^{\epsilon / 2} \\
& \times\left[\left\{\frac{2}{\epsilon}+\gamma_{E}-\ln 4 \pi+\ln \frac{s_{4}^{2}}{\mu^{2}\left(s_{4}+m^{2}\right)}\right\}\right. \\
& \times\left\{\frac{s+t_{1}}{u_{1}^{2}}\left(\frac{s_{4}^{2}+\left(s+t_{1}\right)^{2}}{\left(s+t_{1}\right)^{2}}\right)\left(\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{-t_{1}\left(s+t_{1}\right)}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right)\right. \\
& \left.-\frac{1}{t_{1}} \frac{s_{4}^{2}+t_{1}^{2}}{\left(s+u_{1}\right)^{2}}\left(\frac{\left(s+u_{1}\right)^{2}+u_{1}^{2}}{s^{2}}-\frac{2 m^{2}\left(s+u_{1}\right)}{s t_{1}}\right)\right) \\
& -\frac{s+t_{1}}{u_{i}^{2}}\left(\frac{s_{4}^{2}+\left(s+t_{1}\right)^{2}}{\left(1+t_{1}\right)^{2}}\right)\left(-2+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right) \\
& -\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{t_{1}\left(s+t_{1}\right)^{2}}-\frac{s_{1}^{2}+t_{1}^{2}}{t_{1}\left(s+u_{1}\right)^{2}} \\
& \left.+\frac{2 s_{4}}{\left(s+u_{1}\right)^{2}}\left(\frac{\left(s+u_{1}\right)^{2}+u_{1}^{2}}{s^{2}}-\frac{2 m^{2}\left(s+u_{1}\right)}{s t_{1}}\right)\right] \\
& \left(\frac{1}{2}\right)^{5} \frac{\alpha_{s}^{3}}{\pi} K_{k 4} N C_{1}^{2} \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{1 \prime} R_{w a} \mathrm{r}\right)^{\text {tmilc }} \text {, } \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
& s K_{49} N C_{\Lambda} C_{r} \frac{1}{(4 \pi)^{* / 2}} \frac{1}{\Gamma(1+\varepsilon / 2)}\left(\frac{1_{1} H_{1}-s m^{2}}{\mu^{2} s}\right)^{1 / 2} \\
& \times\left\{\left\{\frac{2}{\epsilon}+\gamma_{\mathrm{t}}-\ln 4 \pi+\ln \frac{s_{4}^{2}}{\mu^{2}\left(s_{4}+m^{2}\right)}\right\}\right. \\
& \times\left\{\frac{1_{1}\left(s+t_{1}\right)^{2}}{s^{2} I_{1}^{2}}\left(\frac{s_{1}^{2}+\left(s+f_{1}\right)^{2}}{\left(s+t_{1}\right)^{2}}\right)\left(\frac{f_{1}^{2}+\left(s+t_{1}\right)^{2}}{-I_{1}\left(s+f_{1}\right)}+\frac{4 m^{2}}{I_{1} u_{1}}\left(1-\frac{m^{2} s}{f_{1} H_{1}}\right)\right)\right\} \\
& \left.\frac{t_{1}\left(s+t_{1}\right)^{2}}{\sqrt[4]{4} m^{2}}\left(\frac{s^{2}+\left(s+t_{1}\right)^{2}}{\left(1+t_{1}\right)^{2}}\right)\left(-2+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} t_{1}}\right)\right)-\frac{t_{1}^{2}+\left(1+t_{1}\right)^{2}}{s^{2}\left(s+t_{1}\right)}\right] \\
& +\left(\frac{1}{2}\right)^{5} \frac{a_{3}^{2}}{\pi} K_{44} N C_{A} C_{F} \frac{A_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} P_{44}, \mathrm{~A}\right)^{\text {inme }} . \tag{3.6}
\end{align*}
$$

Natice that dreat contains pole terms of the type $t^{\prime-1}$ as well as u^{-1} whereas in dareth only poles of the type $t^{\prime \prime \prime}$ appear. Like in the quark-antiquark subprocess the above cross sections are nol symmetric under $t_{1} \leftrightarrow \omega_{1}$, Note that in the above expressions the variablew f_{1} and u_{1}, tre the square of the four-momentum transfer of the heavy antiquark with respect to the light antiquark and gluon respectively If the light untiquark in the initial state is replaced by the light quark the above expremsions will change. However we will show explicitly in sect. 4 that $\mathrm{d} \sigma_{\mathrm{gu}}\left(f_{1}, u_{1}\right)$ and $d o_{u f}\left(l_{1}, u_{1}\right)$ are related to cach other. A similar relation holds if the heavy antiquark in the final state is replaced by the heavy quark.

4. Mass factorization

The various parton cross sections which have been computed in the previous wectoons still contain initial state collinear (M) divergences. These singularities have to be removed via mass factorization. The collinear-singular parton cross section da \boldsymbol{a}_{1} can be uriten to all orders in α_{4} as

$$
\begin{align*}
& \times s^{2} \frac{d^{2} i_{m}\left(\hat{H}_{1} i_{1}, \hat{n}_{1}, Q^{2}\right)}{d \hat{i}_{1} d \hat{i}_{1}} . \tag{4.1}
\end{align*}
$$

where $l=x_{1} x_{2} f_{2} i_{1}-x_{1} t_{1}, A_{i}=x_{2} H_{i}$. The I_{i} are the spliting functions which have been caleulated up to order al and can be found in the literature [21]. They contwin the collinear sinuularities indieated by and further depend on the mass factorization wale \boldsymbol{Q}^{t}, which is of the order of $, t_{t}, u_{1}$. The parameter μ^{*} is an aftefact of n damensional regularization because in this method the gauge coupling constant g gets d dimension. The reduced crows sections d $\dot{\sigma}_{i w i}$ have no collinear divergences and are therefore finite in the limit $\varepsilon \rightarrow 0$. They further deperd on the factorization scale Q^{2} and the variables $\hat{A}_{1} f_{1}, f_{1}$. For convenience we have set the dacturization wale equal to the renormallation weate μ_{f}^{3} in eq. (4.1). Like the I_{11}^{\prime}
 Up to tim ofder in $\mathrm{n}_{\mathrm{m}} . I_{i}$, take the following form

$$
\begin{equation*}
\Gamma_{n}^{*}\left(x, Q^{2}, \mu^{2}, e\right)=\delta_{11},(1-x)+\frac{\alpha_{s}}{2 \pi}\left[P_{1}(x) \frac{2}{\epsilon}+f_{11}\left(x, Q^{2}, \mu^{2}\right)\right] \tag{4.2}
\end{equation*}
$$

whare P_{i} denotes the Altareli- Parmi apliting hunctions [22]. The funetions f_{i}

the function f_{z} gets the form

$$
\begin{equation*}
f_{i f}^{\mathrm{MS}}\left(x, Q^{2}, \mu^{2}\right)=P_{\theta}(x)\left(\gamma_{\mathrm{E}}-\ln 4 \pi+\ln \frac{Q^{2}}{\mu^{2}}\right) \tag{4.3}
\end{equation*}
$$

whereas in DIS $f_{i j}$ is determined by the parton cross section in the corresponding deep inelastic lepton-hadron scattering process. Starting with the quark-antıquark annihulation process we get the following expressions

$$
\begin{equation*}
P_{49}(x)=C_{\mathrm{F}}\left[\rho(1-x-\delta) \frac{1+x^{2}}{1-x}+\delta(1-x)\left(2 \ln \delta+\frac{3}{2}\right)\right], \tag{4.4}
\end{equation*}
$$

and (cf $[19,23])$

$$
\begin{aligned}
f_{\mathrm{qq}}^{\mathrm{DIS}}\left(x, Q^{2}, \mu^{2}\right)=C_{\mathrm{F}}[\theta(1-x-\delta) & \left\{\frac{1+x^{2}}{1-x}\left(\ln \frac{1-x}{x}-\frac{3}{4}\right)+\frac{9}{4}+\frac{5}{4} x\right\} \\
+ & \left.\delta(1-x)\left\{\ln ^{2} \delta-\frac{3}{2} \ln \delta-\frac{9}{2}-2 \zeta(2)\right\}\right]
\end{aligned}
$$

$$
\begin{equation*}
+f_{49}^{\overline{M S}}\left(x, Q^{2}, \mu^{2}\right) \tag{4.5}
\end{equation*}
$$

The pole at $x=1$ has been regulated by adopting the convention in ref [19]. The parameter δ enables us to distinguish between soft $(x>1-\delta)$ and hard $(x<1-\delta)$ gluons It is related to the quantity Δ which appears in the soft gluon factor in (2.31) via mass factorization Up to order α_{S} the reduced parton cross section has been computed in the following way

$$
\begin{aligned}
& s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{49}^{(1)}\left(s, t_{1}, u_{1}, Q^{2}\right)}{\mathrm{d} t_{1} \mathrm{~d} u_{1}} \\
& =s^{2} \frac{\mathrm{~d}^{2}\left(\sigma_{\mathrm{q}}^{(1)}\left(s, t_{1}, u_{1}, \mu^{2}, \epsilon\right)\right.}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\int_{0}^{1} \frac{0 x_{2}}{A_{2}}\left[P_{q 0}\left(x_{2}\right) \frac{2}{\epsilon}+f_{4 q}\left(x_{2}, Q^{2}, \mu^{2}\right)\right] s^{2} \frac{\mathrm{~d}^{2} \sigma_{49}^{(i)}\left(x_{2} s, i_{1}, x_{2} u_{1}\right)}{\mathrm{d} t_{1} \mathrm{~d} \hat{u}_{1}}\right\} . \tag{4.6}
\end{align*}
$$

Using the Born cross section d $\sigma_{99}^{(1)}$ in eq. (2.5) and the parton cross section d $\sigma_{94}^{(6)}$
in sect. 2 we get the following results. Like $\mathrm{d} \sigma_{9 f}^{(1)}$ the reduced parton crobs section d $f_{\text {ula }}^{(1)}$ can be split into a virtual plus soft $(V+S)$ and a hard gluon (H) part. The virtual plus soft glaton part of the reduced cross section can be written as

The expressions for $\left(d \hat{\sigma}_{44}^{(1, F}\right)^{v+5}$ and $\left(d \hat{\sigma}_{94, A}^{(1)}\right)^{v+h}$ are rather long and will be prevented in appendix A They can be split into a symmetric and an antisymmetric part with respect to the interchange of t_{1} and u_{1}. The surn and difterence of these two parts represent the production cross sectoms tor a detected heavy antiquark and a detected heavy quark, respectively.

The fermion loop contribution $\left(\mathbf{d} \hat{\sigma}_{4 \overline{4}}^{(1)}\right)^{V}$ does not need any mass factorization and hence its result can be found in eq. (2 i5) Notice that like in the gluon-gluon fusion process the F part of the virtual plus soft cross section behaves near threshold (e.c. $s \rightarrow 4 m^{2}$) as $\pi^{2} / 5$ where $s=\sqrt{1-4 m^{2} / s}$ This mples that the total parton cross section goes to a constant in the threshold limit. This ettect can be attributed to the Coulomb singularity caused by the exchange of massless gauge bowons between massive fermions and orginates from the vetcex correction graph in fis. 20 .

The hard gloon reduced eroxs section is equal to the sum of the following parts [xeceg. 1220)

$$
\begin{aligned}
& \times\left\{-\frac{1}{H_{1}}\left(\frac{u_{1}^{2}+\left(5+t_{1}\right)^{2}}{u_{1}\left(1+t_{1}\right)}\right)\left(\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{s^{2}}-\frac{2 m^{2}\left(s+t_{1}\right)}{u_{1}}\right)\right\} \\
& \left.\left.-\frac{4}{u_{1}\left(1+t_{1}\right)}\left(\frac{t_{1}^{2}+\left(t+t_{1}\right)^{2}}{v^{2}}-\frac{2 m^{2}\left(1+t_{1}\right)}{u_{1} t}\right)\right]+\left(t_{1} \rightarrow u_{1}\right)\right]
\end{aligned}
$$

can be found in our Fortran program and are avallable upon request Like in the virtual plus soft (reduced) cross section (see appendix A) the second term in eq. (48) and expression (49) can be split into a symmetric and an antisymmetric part. In the case that the heavy antiquark is detected we have

$$
\begin{align*}
& \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} R_{\mathrm{F}}\right)_{\bar{O}}^{\mathrm{t} n \mathrm{I}_{4}}=S_{\mathrm{OOF}}\left(s, t_{1}, u_{1}\right)+A_{\mathrm{OOF}}\left(s, t_{1}, u_{1}\right), \tag{4.10}\\
& \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{4} R_{\mathrm{A}}\right)_{\bar{O}}=S_{\mathrm{QQA}}\left(s, t_{1}, u_{1}\right)+A_{\mathrm{OOA}}\left(s, t_{1}, u_{1}\right), \tag{411}
\end{align*}
$$

where $S_{\mathrm{OOF}}, S_{\mathrm{OOA}}$ are symmetric whereas $A_{\mathrm{OOF}}, A_{\mathrm{OOA}}$ are antisymmetric with respect to the interchange of t_{1} and u_{1} Here t_{1} and u_{1} denote the square of the four-momentum transfer of the detected heavy antiquark with respect to the incoming light antiquark and quark respectively If we detect the heavy quark in the final state the production cross sections for the latter are given as follows. The first part of the expression (48) remains unchanged The second part of (48) becomes

$$
\begin{equation*}
\frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n}, R_{\mathrm{r}}\right)_{\mathrm{O}}^{\text {tinte }}=S_{\mathrm{OOF}}\left(s, t_{1}, u_{1}\right)-A_{\mathrm{OOr}}\left(s, t_{1}, u_{1}\right), \tag{4.12}
\end{equation*}
$$

and expression (4.9) now reads

$$
\begin{equation*}
\frac{s_{4}}{\varsigma_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{4} R_{\mathrm{A}}\right)_{\mathrm{O}}=S_{\mathrm{OOA}}\left(s, t_{1}, u_{1}\right)-A_{\mathrm{OOA}}\left(s, t_{1}, u_{1}\right) \tag{4.13}
\end{equation*}
$$

It is clear from the above remarks that the expressions (412) and (413) can be derived by interchanging t_{1} and u_{1} in (410) and (411), where in the definitions of t_{1} and ${ }^{\prime}$, the role of the heavy antiquark is now taken by the detected heavy quark Finally we want to mention that replacement of the heavy antiquark by the heavy quark is the same as miterchanging the role of the incoming light quark and light antiquark with respect to t_{1} and π_{1}.

White going rom the MS to the DIS scheme one has to add the following expressions to (47) and (48)

$$
\begin{align*}
& \left.\left.+\frac{2}{2} \ln \frac{\Delta}{x+t_{1}}+\frac{\ddot{2}}{2}+2 \zeta(2)\right)+\left(t_{1} \leftrightarrow u_{1}\right)\right] A_{\mathrm{OED}} \delta\left(s_{4}\right), \tag{4.14}
\end{align*}
$$

with $A_{\text {OED }}$ defined in eq (2.4) and

$$
\begin{align*}
\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{q} \bar{q} \mathrm{~F}}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{DIS}}^{\mathrm{H}}= & \left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{oq} \mathrm{~F}}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\overline{\mathrm{MS}}}^{\mathrm{H}}+\frac{1}{2} \alpha_{\mathrm{G}}^{7} K_{\mathrm{a} \mathrm{\bar{a}}} N C_{F}^{2} \\
& \times\left[\frac{1}{u_{1}}\left\{\frac{u_{1}^{2}+\left(s+t_{1}\right)^{2}}{s_{4}\left(s+t_{1}\right)}\left(\ln \frac{s_{4}}{-u_{1}}-\frac{3}{4}\right)+\frac{9}{4}-\frac{5}{4} \frac{u_{1}}{s+t_{1}}\right\}\right. \\
& \left.\times\left\{\frac{t_{1}^{2}+\left(s+t_{1}^{2}\right)}{s^{2}}-\frac{2 m^{2}\left(s+t_{1}\right)}{s u_{1}}\right\}+\left(t_{1} \leftrightarrow u_{1}\right)\right] \tag{415}
\end{align*}
$$

respectively
As has been mentioned before the (anti)quark-gluon subprocess is a non-diagonal one Therefore, one has to be careful with the gluon polarization average factor which is $(n-2)^{-1}$ in n-dimensions. To render the cross section for the (anti)quark-gluon process in sect 3 finte we need the following splitting functions

$$
\begin{align*}
& P_{\mathrm{gq}}(x)=C_{\mathrm{F}}\left[\frac{1+(1-x)^{2}}{x}\right] \tag{4.16}\\
& P_{\mathrm{qg}}(x)=T_{\mathrm{f}}\left[x^{2}+(1-x)^{2}\right] \tag{417}
\end{align*}
$$

with $T_{\mathrm{f}}=1 / 2$ In the DIS scheme we have the following expressions [19, 23]

$$
\begin{gather*}
f_{\mathrm{Eq}}^{\mathrm{D}^{\prime \mathrm{s}}}\left(x, Q^{2}, \mu^{2}\right)=f_{\mathrm{gq}}^{\overline{\mathrm{MS}}}\left(x, Q^{2}, \mu^{2}\right), \tag{418}\\
f_{\mathrm{qg}}^{\mathrm{DIS}}\left(x, Q^{2}, \mu^{2}\right)=T_{\mathrm{f}}\left[\left\{x^{2}+(1-x)^{2}\right\} \ln \frac{1-x}{x}+8 x(1-x)-1\right]+f_{\mathrm{qg}}^{\mathrm{MS}}\left(x, Q^{2}, \mu^{2}\right) \tag{4.19}
\end{gather*}
$$

Noine that $f_{\mathrm{by}}^{\mathrm{DIS}}$ cannot be directly calculated in deep inelastic lepton-hadron scattering However, other choices for $f_{\mathrm{g} 9}$ are possible, e.g one can choose it in sucha widthat the momentum sum rule is satisfied (see refs $[2,24]$ and appendix B). The expression for f_{pq} differs from the usual one quoted in the literature [19,23]. In the latter the factor $1 / 2$ was used instead of $(n-2)^{-1}$ for the gluon polarization. It turns out that this does not affect the final results given in refs. [19, 23]. The reduced parton cross section for the gluon-an quark subprocess is
given by

$$
\begin{aligned}
& s^{2} \frac{d^{7} \hat{\sigma}_{\mathrm{gq}}^{\mathrm{in}}\left(\mathrm{~s}, \mathrm{H}_{1}, \mu_{\mathrm{i}}, Q^{2}\right)}{d r_{1} d \mu_{1}}
\end{aligned}
$$

$$
\begin{align*}
& \times\left[P_{\mathrm{qg}}\left(x_{1}\right) \frac{2}{\epsilon}+f_{\mathrm{qg}}\left(x_{1}, Q^{2}, \mu^{2}\right)\right] \hat{s}^{2} \frac{d^{2} \sigma_{\alpha \bar{q}}^{(\beta)}\left(x_{1} s, x_{1} t_{1}-\mu_{1}\right)}{d t_{1} d u_{1}} \\
& \left.+\int_{0}^{1} \frac{\mathrm{~d} x_{2}}{x_{2}}\left[P_{8 q}\left(x_{2}\right) \frac{2}{\epsilon}+f_{\mathrm{k}}\left(x_{2}, Q^{2}, \mu^{2}\right)\right] \sin ^{2} \frac{\mathrm{~d}^{2} \theta_{\mathrm{gF}}^{(\theta)}\left(x_{2}, s, t_{1}, x_{1} u_{1}\right)}{\mathrm{d} t_{1} \mathrm{~d} \tilde{u}_{1}}\right] \tag{+20}
\end{align*}
$$

The Born cross sections $d \sigma_{q \overline{9}}^{(4)}$ and d $\sigma_{\text {位 }}^{*(1)}$ are given by expression (2.5) and

$$
\begin{align*}
s^{2} \frac{\mathrm{~d}^{2} \sigma_{\mathrm{kz}}^{(6)}}{\mathrm{d} t_{1}} \mathrm{~d} u_{1} & =\alpha_{\mathrm{S}}^{2} K_{\mathrm{kq}} N \frac{\pi}{(4 \pi)^{\epsilon / 2}} \frac{1}{(1+\epsilon / 2)^{2} \Gamma(1+\epsilon / 2)}\left(\frac{t_{1} u_{1}-s m^{2}}{\mu^{2} s}\right)^{* / 2} \\
& \times\left[C_{\mathrm{F}}-C_{A} \frac{t_{1} u_{1}}{s^{2}}\right] B_{\mathrm{QED}} \delta\left(\mathrm{~s}+t_{1}+u_{1}\right) \tag{4.21}
\end{align*}
$$

where the factor $(I+\epsilon / 2)^{2}$ arises from the polarization average tactor in n dimensions and

$$
\begin{equation*}
B_{\mathrm{QED}}=\frac{t_{1}}{u_{1}}+\frac{u_{1}}{t_{1}}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)+\epsilon\left(-1+\frac{s^{2}}{t_{1} u_{1}}\right)+\epsilon^{2}\left(\frac{s^{2}}{4 t_{1} u_{1}}\right) \tag{422}
\end{equation*}
$$

The gluon-antiquark reduced cross section is equal to the sum of the followng expressions:

$$
\begin{align*}
& \left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{gaF}}^{(\mathrm{E}} \mathrm{F}}{\mathrm{~d} t_{\mathrm{I}} \mathrm{~d} u_{1}}\right)_{\overline{\mathrm{MS}}}=\frac{1}{2} \alpha_{\mathrm{S}}^{3} K_{\mathrm{gq}} N C_{\stackrel{\mathrm{F}}{2}}^{2}\left[\left\{\ln \frac{s_{4}^{2}}{m^{2}\left(s_{4}+m^{2}\right)}+\ln \frac{m^{2}}{Q^{2}}\right\}\right. \\
& \times\left\{\frac{s+t_{1}}{u_{1}^{2}}\left(\frac{s_{\frac{7}{2}}^{2}+\left(s+t_{1}\right)^{2}}{\left(s+t_{1}\right)^{2}}\right)\left(\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{-t_{1}\left(s+t_{1}\right)}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right)\right. \\
& \left.-\frac{1}{t_{1}} \frac{r_{1}^{2}+t_{1}^{2}}{\left(s+u_{1}\right)^{2}}\left(\frac{\left(s+u_{1}\right)^{2}+u_{1}^{2}}{s^{2}}-\frac{2 m^{2}\left(s+u_{1}\right)}{s t_{1}}\right)\right\} \\
& +\frac{s+t_{1}}{u_{1}^{2}}\left(\frac{s_{4}^{2}+\left(s+t_{1}\right)^{2}}{\left(s+t_{1}\right)^{2}}\right)\left(\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right)-\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{t_{1}\left(s+t_{1}\right)^{2}} \\
& \left.+\frac{2 s_{4}}{\left(s+u_{i}\right)^{2}}\left(\frac{\left(s+u_{1}\right)^{2}+u_{1}^{2}}{s^{2}}-\frac{2 m^{2}\left(s+u_{1}\right)}{s t_{1}}\right)\right] \\
& r\left(\frac{1}{2}\right)^{5} \frac{\alpha_{5}^{3}}{\pi} K_{\mathrm{Eq}} N C_{\mathrm{F}}^{2} \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} R_{\mathrm{g} \overline{\mathrm{q}} \mathrm{~F}}\right)^{\text {inite }}, \tag{4.23}
\end{align*}
$$

and

$$
\begin{align*}
s^{2}\left(\frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{g} \pi, A}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{Ms}}= & \frac{1}{2} \alpha_{\varsigma}^{3} K_{\mathrm{kq}} N C_{A} C_{\mathrm{F}}\left[\left\{\ln \frac{s_{4}^{2}}{m^{2}\left(t_{4}+m^{2}\right)}+\ln \frac{m^{2}}{Q^{2}}\right\}\right. \\
& \times\left\{\frac{t_{1}\left(s+t_{1}\right)^{2}}{s^{2} u_{1}^{2}}\left(\frac{s_{4}^{2}+\left(s+t_{1}\right)^{2}}{\left(s+t_{1}\right)^{2}}\right)\left(\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{-t_{1}\left(s+t_{1}\right)}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right)\right\} \\
& \left.+\frac{t_{1}\left(s+t_{1}\right)^{2}}{s^{2} u_{1}^{2}}\left(\frac{s_{4}^{2}+\left(s+t_{1}\right)^{2}}{\left(s+t_{1}\right)^{2}}\right)\left(\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right)-\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{s^{2}\left(s+t_{1}\right)}\right] \\
& +\left(\frac{1}{2}\right)^{5} \frac{\alpha_{S}^{7}}{\pi} K_{\mathrm{gq}} N C_{A} C_{\mathrm{F}} \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} R_{\mathrm{Eq} \Lambda} \Lambda\right)^{\text {linutu }} \tag{4.24}
\end{align*}
$$

The expresstons for ($)^{\text {tinnc }}$ are too long to be presented here. They can be found in our computer program

Like in the quark-antıquark subprocess the last terms of eqs (423) and (4.24) can be split into a symmetric and an antisymmetric part with respect to t_{1} and u_{1} For the gluon-antiquark reaction we get

$$
\begin{align*}
& \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} R_{\mathrm{ga} \text { I }}\right)_{\overline{\mathrm{O}}}^{\text {timate }} S_{\mathrm{COO}}\left(s, t_{1} \mu_{1}\right)+A_{G, \mathrm{OH}}\left(s, t_{1}, u_{1}\right), \tag{425}\\
& \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} R_{\mathrm{Ba}} \wedge\right)_{\mathrm{O}}^{\mathrm{tman}}=S_{\mathrm{GOA}}\left(s, t_{1}, u_{1}\right)+A_{G O A}\left(s, t_{1}, u_{1}\right), \tag{426}
\end{align*}
$$

where $S_{\mathrm{GOH}}, S_{\mathrm{GON}}$ are symmetric whereas $A_{\text {GOI }}, A_{\text {GON }}$ are antisymmetric with respect to the interchange of t_{1} and u_{1} Here t_{1} and u_{1} denote the squares of the four-momentum transfers of the outgoing heavy antiquark with respect to the light incoming antiquark and the gluon respectively. Analogous to the gluon-antiquark reaction the matrix element tot gluon-quark seattering can be obtained from the one calculated for the quark-antiquark process (2.16) via crossing, i.e $h_{7} \leftrightarrow-k_{3}$ and adding an overall minus sign to the square of the amplitude

This implies that the invariants listed in eq. (2.17), which appear in the squared amplitude $\Sigma M_{\text {e4 }} M_{\mathrm{tt}}^{*}$, are obtained from those present in $\Sigma M^{\mathrm{R}} M^{\mathrm{R} *}$ in eq (2.18) via the following replacements, $s \leftrightarrow u^{\prime}, \nabla_{3} \leftrightarrow I_{1}, s_{4} \leftrightarrow u_{6}$ Notice that in the gluon-quark subprocess t_{1} and u_{1} denote the momentum transfers of the heavy antiquarl. with respect to the gluon and the light quark respectively.

The gluon-quark cross seetuon can be obtained from the gluonmantiquark one by interchangeng t_{1} and $u_{\text {I }}$ in the first parts of expressions (123) and (4.24). The
second parts of these equations can be written as [see eqs (4.25) and (4 26)]

$$
\begin{align*}
& \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} R_{\mathrm{gq}, \mathrm{~F}}\right)_{\overline{\mathrm{O}}}^{\mathrm{finte}}=S_{\mathrm{GOF}}\left(s, t_{1}, u_{1}\right)-A_{\mathrm{GOF}}\left(s, t_{1}, u_{1}\right), \tag{427}\\
& \frac{s_{4}}{s_{4}+m^{2}}\left(\int \mathrm{~d} \Omega_{n} R_{\mathrm{gq} A}\right)_{\overline{\mathrm{O}}}^{\text {fimte }}=S_{\mathrm{GOA}}\left(s, t_{1}, u_{1}\right)-A_{\mathrm{GQA}}\left(s, t_{1}, u_{1}\right) \tag{428}
\end{align*}
$$

If the final state heavy antiquark is replaced by a heavy quark the cross sections for the latter process can be derived from the former via the relation

$$
\begin{align*}
& \left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{g} \overline{\mathrm{q}} \rightarrow \mathrm{Q}}=\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}^{(t)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{gq} \rightarrow \overline{\mathrm{C}}}, \tag{429}\\
& \left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{gq} \rightarrow \mathrm{Q}}=\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{gq} \rightarrow \overline{\mathrm{Q}}}, \tag{430}
\end{align*}
$$

where in the defimtions of i_{1} and u_{1} the role of the heavy antiquark is now taken by the detected heavy quark

The reduced cross sections in the DIS scheme are given by

$$
\begin{align*}
\left(s^{2} \frac{\mathrm{~d}^{2} o_{\mathrm{ga}}^{(1)} \mathrm{F}}{\mathrm{~d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{DIS}}= & \left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{E} \overline{\mathrm{G}, \mathrm{~F}}}^{(\mathrm{F}}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\overline{\mathrm{MS}}}+\frac{1}{2} \alpha_{\mathrm{S}}^{3} K_{\mathrm{g} 4} N C_{\mathrm{F}}^{2}\left[\frac { 1 } { t _ { 1 } } \left\{\frac{s_{4}^{2}+t_{1}^{2}}{\left(s+u_{1}\right)^{2}} \ln \frac{s_{4}}{-t_{1}}\right.\right. \\
& \left.\left.-\frac{8 t_{1} s_{4}}{\left(s+u_{1}\right)^{2}}-1\right\}\left\{\frac{\left(s+u_{1}\right)^{2}+u_{1}^{2}}{s^{2}}-\frac{2 m^{2}\left(s+u_{1}\right)}{s t_{1}}\right\}\right] \tag{431}
\end{align*}
$$

Before finsshng this section we would like to stress that the part of the matrix element leading to the asymmetry in t_{1} and u_{1} never contributes to the collnnear divergences. This holds for the collinear divergences in the inital state ($1 / \epsilon$ poles) as well as in the final state (when $m \rightarrow 0$) Smee the first parts of eqs (4.8), (423) and (424) are remants of the initial state collinear divergences they will be unaltered (apart tron the $t_{1} \leftrightarrow u_{1}$ interchange) when the quarks are replaced by antiquarks irrespective of whether this occurs in the initial or the final state. The same applies to the extra terms needed to go from the MS to the DIS scheme [see eqs. (4 14), (4.15) and (4.31)].

5. Partun-parton cross sections

Before presenting the results for the hadronic distributions we first discuss the parton-parton cross sections and compare them with those already presented in
the fiterature [2]. The total cross section is defined by

$$
\begin{equation*}
\dot{\sigma}_{i,}\left(s, m^{2}\right)=\int_{1,1 / 2}^{(1+0 / 2} \mathrm{d}\left(-t_{1}\right) \int_{-m^{2} / t_{1}}^{1+t_{1}} \mathrm{~d}\left(-u_{1}\right) \frac{\mathrm{d}^{2} \hat{\sigma}_{j}\left(s, t_{1}, u_{1}, Q^{2}\right)}{\mathrm{d} l_{1} \mathrm{~d} u_{1}}, \tag{array}
\end{equation*}
$$

where $\bar{s}=s \sqrt{1-4 m m^{2} / s}$. When we have a gluon in the tinal state we follow the procedure in ref. [4] and split the cross section in a hard (H) and a virtual plus soft $(V+S)$ part. The latter is obtanned from the expressions in eqs. (2.15), (4 7) and (A.1), (A.2) by removing the $\ln \mathrm{J} / \mathrm{m}^{2}$ terms. These terms are added to the hard cross section so that the latter will become independent of $\ln \Delta$ when $\Delta \rightarrow 0$ It we exclude the fermon loop contribution we can express the perturbative expansion of the parton-parton cross section in terms of scaling tunctions [2], 1 e

$$
\begin{equation*}
\hat{\sigma}_{i j}\left(\delta, m^{2}\right)=\frac{\alpha_{j}^{2}}{m^{2}}\left[f_{i j}^{(i)}(\eta)+4 \pi \alpha_{\zeta}\left\{f_{i j}^{(1)}(\eta)+\bar{f}_{i j}^{(\prime)}(\eta) \ln \frac{Q^{2}}{m^{2}}\right\}\right], \tag{5.2}
\end{equation*}
$$

where $f_{i}^{\prime \prime \prime}(\eta), f_{i}^{\prime \prime 1}(\eta)$ stand for the Born contribution and the order α_{s} correction respectively and $\eta=s / 4 m^{2}-1$. The lunction $f_{\eta}^{(1)}(\eta)$ shows up if the mass factorization scale Q^{2} devales from the heavy flavour mass m^{2}. Since the fermon loop contrihution deperd, on the internal havour mass m_{1} it cannot be expressed as a waling function in η. However if one chookes a renormalization sheme where the heavy flovour quarks are decoupled in the limit of mall mementa sealing will be restored provided the following conditions are satistied.

Plirt, all flavours lighter than the produced one are taken to be light quarks and thetr mawe in wel cqual totero. Second, the sum over the internal heavy flavours in eq. 12.15 only includes the contribution of the quark which is produced in the final Ahate
 quantity has been split in a hard and a virtual plus woft gluon pat. The fermion loop contribution has been included in the .irtual part where we have chosen tour hght flavours and one heavy quark (this holds tor bottom pair production). From fie 4 we infer that iar $\eta<0.01$ the order α_{4} correction dominates the aroth order one, bearing in mind that tor the cooss secton $f_{\text {fil }}^{(l)}(\eta)$ has to be multiplied by 4 w α_{4}. This offece can be utibuted to the wot glen terms of the type $s_{4}^{-1} \ln ^{\prime} s_{4} / m^{2}$ which ate prekent in the had gluon part of the cross sections in eqs. $(4,8)$ and $(4,9)$, Atother (eature is that the functwn $f_{49}^{(1)}(\eta)$ becomes negative in the region $0.7 \& 7 \times 20$. This regien is very impotant for the hadrone cross section ds we have mentioned in sect. I.

At threshold the virual plus soft pitece contans a large contribution from the π^{2} terms diseused below eq. (4.7. Thin term originates from the Coulomb • Ingulurity

Fig 4 The quark-antıquark scaling functions from our exact order α_{s}^{7} calculations in the $\overline{\mathrm{MS}}$ scheme $f_{4 \overline{1}}^{(1)}$ and $f_{44}^{(1)}$ are defined in eq (52) and ploted ds solid lines versus $\eta=\left(s-4 m^{2}\right) / 4 m^{2}$ The soft plus virtual controbutions $f_{49}^{[}[\mathrm{S}+\mathrm{V}]$ (see sect 5) with $\log 1 / \mathrm{m}^{2}$ terms removed is represented by the dashed line The sum of the hard and the $\log \lambda / m^{2}$ conimbutions $f_{44}^{4}[\mathrm{H}]$ is represented by the dath-doited lone
parton-parton cross section can be exactly calculated from the expressions given in eqs (A 1) and (A. 2) because there exists a one-to-one correspondence between the
 $\rightarrow 4 m^{2}$ we obtain

$$
\begin{align*}
& \left.\hat{\sigma}_{4 \overline{4}}\left(5, m^{2}\right)\right|_{\mathrm{MS}}=\pi \alpha_{幺}^{2} K_{\mathrm{q} \overline{4}} \frac{1}{s}\left[N C_{\mathrm{F}} \beta+\frac{\alpha_{\mathrm{S}}}{\pi} N C_{\mathrm{i}}^{2}\left\{\frac{\pi^{2}}{2}+2 \beta \ln ^{2}\left(8 \beta^{2}\right)\right.\right. \\
& \left.\left.\quad-8 \rho \ln \left(8 \beta^{2}\right)-2 \beta \ln \frac{Q^{2}}{m^{2}} \ln \left(4 \beta^{2}\right)\right\}+\frac{\alpha_{\mathrm{S}}}{\pi} N C_{\mathrm{A}} C_{\mathrm{F}}\left(-\frac{\pi^{2}}{4}-\beta \ln \left(8 \beta^{2}\right)\right\}\right] \tag{53}
\end{align*}
$$

with $\beta=\sqrt{1-4 / m^{2} / \mathrm{s}}$ In the case of $\mathrm{QCD}(N=3)$ the above expression agrees with that given in eq (2.6) of ret [2] It describes the threshold behaviour of $\hat{\sigma}_{\mathrm{q} \bar{q}}$ very well for values of $\eta<0,001$. Notice that the large corrections near threshold can be resummed since the leading part exponentiates like $\exp \left(2 \alpha_{5} C_{F}\left(\ln ^{2} 8 \beta^{2}\right) / \pi\right)$, cf. ref. [25]. In tıg 5 we show the difference in the behaviour of $f_{q \overline{4}}^{(1)}$ in the $\overline{M S}$ and the DIS schemes. Adopting the DIS scheme still yields a negative contribution in $0.7<\eta<20$. Moreover we also ploted the mass factorization part $\bar{f}_{4 / 4}^{(1)}$ in (5.2) In

Fig 5. The exacl resulis for the quark-antiquark kalong functions in the XS acheme The dilference

 except for the π^{2} term mentioned above which does not whow up here. The threshold behaviour of the contribution of $\int_{49}^{(1)}$ to the cross section has already been shown in eq (5.3). The difference between the DIS and the MS scheme for $s \rightarrow 4 m^{2}$ is given loy
which agrees with eq (40) in ref. [2] provided the same limit has been taken.
In fig 6 we have made simular plots for the gluon-quark reaction. Here we used the DIS scheme as defined in appendix B, which implements the momentum sum rule for the gluon structure functions. We will continue to use this scheme for all the resulth in this article. We have however checked that the ditterence between the two DIS sechemes mentioned in the text is extremely small in this channel. The
 attributed to the gluon splating and flavour excitation mechanisms (see refs, [3, ', in the gluon-quark channel. This eftect can be explained by the exchange of a gluon in the t-channet of the subprocess $q+g \rightarrow q+s^{*}$ where $\mathrm{g}^{*} \rightarrow \mathbf{0}+\boldsymbol{O}$ (gluon spliting) and $\mathrm{p} \rightarrow \overline{\mathrm{q}}+\mathrm{q}^{*}$ where $\mathfrak{q}^{*}+\overline{\mathrm{q}}=\mathrm{Q} \neq \overline{\mathrm{Q}}$ (flavour excitation), Bonh subpro-

Fig 6 The exact results for the gluon-quark or gluon-antiquark scaling functions $f_{\mathrm{kq}}^{(1)}[\overline{\mathrm{MS}}], f_{8 q}^{(1)}$ and the difference $f_{\mathrm{g}}^{\mathrm{d}}$ [DIS] - $\left.f_{\mathrm{kd}}^{41} 4 \mathrm{MS}\right]$ where the momentum sum rule is imposed
also show the difference $f_{\mathrm{gq}}^{(1) \mathrm{DIS}}-f_{\mathrm{gq}}^{(1) \overline{\mathrm{Ms}}}$ which turns out to be very small. Notice that in our case $f_{\mathrm{E}}^{(1) \mathrm{DIS}}-f_{\mathrm{kq}}^{(1) F I S}$ is derived from the deep inelastic Wilson coefficient in eq. (4.19) (see also eq. (4.20) in ref [3]) and not from (3.7) of ref [2]. We remark that the parton-parton cross section $\sigma_{\mathrm{gq}}^{(1)}$ which is positive before mass factorization becomes negative when the collmear divergences are subtracted (see the region $002<\eta<2$ in fig 6) Like in the $\mathbf{q} \overline{\mathrm{q}}$ annihilation process this region is very mportant for the hadrome cross section

The functions $f_{i j}, \bar{f}_{1,}$ have already been presented in ref [2] and they agree with ours. To further check that there are no differences between the two calculations at this level we have also computed the rapidity distribution of the heavy quark and antiquark We obtained the subroutines listed in the appendix of ref. [3] from P. Nason and linked them to our own Monte Carlo programs. The comparison has been made in the case where the differenital distributions are calculated in the $\overline{\mathrm{MS}}$ scheme The transitions from the MS to the DIS scheme as expressed in eqs (4 14), (4.15), (431) and appendix B have only been checked analytically. They agree with those presented in sect 4 of ref. [3]. The results for the rapidity disinbution of the heavy antiquark in the reaction $k_{1}+k_{2} \rightarrow \overline{\mathbf{Q}}+X$, where k_{1} and k_{2} represent the incoming partons, are given in fig. 7 for $\sqrt{s}=100 \mathrm{GeV}, m_{\mathrm{b}}=5$ $\mathrm{GeV} / \mathrm{c}^{2}$ and $n_{\mathrm{f}}=\mathrm{S}$. The rapidity y is defined to be positive when the momenta of k_{1} and \bar{Q} ate parallel. At $\sqrt{s}=100 \mathrm{GeV}, m_{\mathrm{b}}=5 \mathrm{GeV} / c^{2}$ the $q \bar{q}$ contribution becomes very small so that we have multiplied the $q \bar{q}$ contsbution in this plot by a

Fig 7 The exact order as parton-parion diferental cross section in the rapidity of the outgong
 incoming partons and we use $\mu_{\mathrm{R}}=Q=m_{1}=5 \mathrm{GeV} / \mathrm{c}^{2}, \sqrt{s}=100 \mathrm{GeV}, n_{i}=5$ and a constant $a_{4}=025$
factor of 30 . to make it more visible. The asymmetry in the rapidity distribution in the qü channel is clcarly seen in this plot. There is obviously a much larger asymmetry in the qg and $\bar{q} g$ channels As expected the gg contribution is symmetric. These tests show numerical agreement between the two calculations at the tevel of three significant places.

6. Hadron-hadron cross sections

The hadronic reacion in which heavy flavours are produced will be denoted by

$$
\begin{equation*}
\mathrm{H}_{1}\left(p_{1}\right)+\mathrm{H}_{2}\left(P_{7}\right) \cdots \mathrm{O}\left(p_{1}\right)\left(\overline{\mathrm{O}}\left(p_{2}\right)\right)+\mathrm{X} \tag{61}
\end{equation*}
$$

where H_{1} and H_{2} represent the incoming hadrons and X stands for all the final hadronie stater which we sum over so that the above process is inclusive with poxpect to the outgoing hadrons. Since we have calculated the corrections to the single-pariticle inclusive reaction only, the $\mathrm{Q}\left(p_{1}\right)$ or the $\widetilde{\mathrm{Q}}\left(p_{2}\right)$ is detected. Analogous to the parion variables $s^{\prime} t_{1}$ and u_{1}, we miroduce the following invariants

$$
\begin{array}{ll}
S=\left(P+P_{1}\right)^{2}, & T_{0}=\left(P_{2}-p_{1}\right)^{2} \cdots m^{2}, \\
T_{0}=\left(P_{1}+P_{1}\right)^{2} \cdots m^{2}, & U_{0}=\left(P_{1}-P_{1}-P_{1}\right)^{2}-m^{2}
\end{array}
$$

Here S denotes the collider c.m. energy squared whereas T_{Q} and U_{Q} stand for the square of the four-momentum transfers of the detected heavy quark \mathbf{Q} with respect to the hadrons H_{2} and H_{1}, respectively. If the heavy antiquark $\overline{\mathbf{Q}}$ is detected then $T_{\overline{\mathrm{O}}}$ and $U_{\overline{\mathrm{O}}}$ are the square of the four-momentum transfers of the detected heavy antıquark with respect to the hadrons H_{2} and H_{1} respectively. The single-particle inclusive hadronic cross section is given by

$$
\begin{equation*}
S^{2} \frac{\mathrm{~d}^{2} \sigma\left(S, T_{1}, U_{1}\right)}{\mathrm{d} T_{1} \mathrm{~d} U_{1}}=\sum_{i, j} \int_{v_{1-}}^{1} \frac{\mathrm{~d} x_{1}}{x_{1}} \int_{x_{2}^{2}-}^{1} \frac{\mathrm{~d} x_{2}}{x_{2}} H_{u}\left(x_{1}, x_{2}, Q^{2}\right) s^{2} \frac{\mathrm{~d}^{2} \hat{o}_{t}\left(s, t_{1}, u_{1}, Q^{2}\right)}{\mathrm{d} t_{1} \mathrm{~d} u_{1}} \tag{6.3}
\end{equation*}
$$

where Q^{2} represents the factorization scale which has been set equal to the renormalization scale μ_{R}^{2} The vamables T_{1} and U_{1} stand for $T_{\mathrm{Q}}, U_{\mathrm{Q}}$ or $T_{\overline{\mathrm{Q}}}, U_{\overline{\mathrm{Q}}}$ depending whether the \mathbf{Q} or the $\overline{\mathbf{Q}}$ is detected. The hadronic kinematical variables S, T_{1} and U_{1} are related to the partonic analogues s, t_{1} and u_{1} as follows

$$
\begin{array}{llll}
s=x_{1} x_{2} S, & \\
t_{1}=x_{2} T_{1} ; & u_{1}=x_{1} U_{1} \quad \text { if } k_{1}=x_{1} P_{1} ; & k_{2}=x_{2} P_{2} \\
t_{1}=x_{1} U_{1} ; & u_{1}=x_{2} T_{1} \text { if } k_{1}=x_{2} P_{2}, & k_{2}=x_{1} P_{1}, \tag{6.4}
\end{array}
$$

where k_{1}, k_{2} are the incoming parton momenta as defined in eqs (216) and (31). The above relations are derived for $\overline{\mathbf{Q}}$ but they also apply to Q since in the latter case the role of p_{2} in t_{1} and u_{1} is taken over by p_{1}. If $t_{1}=x_{1} T_{1}$ and $u_{1}=x_{2} U_{1}$ then the lower boundaries x_{1} - and x_{2-}^{k} are defined by

$$
\begin{equation*}
x_{1-}=\frac{-U_{1}}{S+T_{1}} ; \quad x_{2-}^{*}=\frac{\Delta-x_{1} T_{1}}{x_{1} S+U_{1}} \tag{6.5}
\end{equation*}
$$

where the cut-off parameter Δ, cf. eq. (227), is only relevant it the hard gluon cross section is computed. After integration over x_{2} one obtains $\ln ^{\prime} \Delta / m^{2}$ terms which have to be cancelled against the corresponding terms appearing in the soft plus virtual gluon cross section This happens for instance in the reaction $g+g \rightarrow$ $\mathrm{Q}(\overline{\mathrm{Q}})+\mathrm{X}$ or in $\mathrm{q}+\overline{\mathrm{q}} \rightarrow \mathrm{Q}(\overline{\mathrm{Q}})+\mathrm{X}$ calculated up to the first order $\mathrm{m} \alpha_{\mathrm{s}}\left(Q^{2}\right)$. Here $\alpha_{s}\left(Q^{2}\right)$ now denotes the running coupling constant. The quantity $H_{i,}$ in eq (6.3) is the pioduct of the scale-dependent parton distribution functions. It is given by

$$
\begin{equation*}
H_{i}\left(x_{1}, x_{2}, Q^{2}\right)=f_{t}^{H_{1}}\left(x_{1}, Q^{2}\right) f_{t}^{\mathrm{H}_{2}}\left(x_{2}, Q^{2}\right) \tag{6.6}
\end{equation*}
$$

In the case of the gg subprocess the combination of the parton distribution functions is very simple (see e.g. eq. (7.4) in ref. [4]) However for the qā or gq($\overline{\mathbf{q}}$)
subprocesses one has to be careful about the asymmetry in t_{1} and u_{1} appeaning in the corresponding parton-parton cross sections. If the heavy quark is detected the cross section (6.3) takes the following form

$$
\begin{aligned}
& \mathrm{d} \sigma_{\mathrm{II}_{1} \mathrm{II}_{2} \rightarrow \mathrm{O}}\left(S, T_{\mathrm{Q}}, U_{\mathrm{O}}\right)=\int_{\lambda_{1}-}^{1} \frac{\mathrm{~d} x_{1}}{x_{1}} \int_{\mathrm{r}_{2}^{*-}}^{1} \frac{\mathrm{~d} x_{2}}{x_{2}}\left[f_{\mathrm{g}}^{\mathrm{IL}_{1}}\left(x_{1}\right) f_{\mathrm{g}}^{\mathrm{H}_{2}}\left(x_{2}\right) \mathrm{d} \hat{\sigma}_{\mathrm{gg} \rightarrow \mathrm{Q}}\left(x_{2} T_{\mathrm{Q}}, x_{1} U_{\mathrm{Q}}\right)\right. \\
& +\sum_{4, \bar{q}}\left\{f_{\mathrm{q}}^{\mathrm{H}_{1}}\left(x_{1}\right) f_{\overline{\mathrm{q}}^{1}}^{\mathrm{I}_{2}}\left(x_{2}\right) \mathrm{d} \hat{\sigma}_{\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{Q}}\left(x_{2} T_{\mathrm{Q}}, x_{1} U_{\mathrm{Q}}\right)\right. \\
& \left.+f_{\overline{4}}^{\mathrm{II}}\left(x_{1}\right) f_{\mathrm{q}}^{\mathrm{IH}}\left(\mathrm{r}_{2}\right) \mathrm{d} \hat{\mathrm{G}}_{4 \overline{4} \rightarrow \mathrm{Q}}\left(x_{1} U_{\mathrm{Q}}, x_{2} T_{\mathrm{Q}}\right)\right\} \\
& +\sum_{\mathfrak{q}}\left\{f_{\mathrm{g}}^{\mathrm{HI}_{1}}\left(x_{1}\right) f_{\mathrm{q}}^{\mathrm{H}_{2}}\left(x_{2}\right) \mathrm{d} \hat{\sigma}_{\mathrm{gq} \rightarrow \mathrm{Q}}\left(x_{1} U_{\mathrm{O}}, x_{2} T_{\mathrm{q}}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{\overline{\mathrm{a}}}\left\{f_{\mathrm{g}}^{\mathrm{H}}\left(x_{1}\right) f_{\overline{\mathrm{q}}}^{\mathrm{H}_{2}}\left(x_{2}\right) \mathrm{d} \hat{\mathrm{~g}}_{\mathrm{Eq}}^{\mathrm{q}} \rightarrow \mathrm{Q}\left(x_{2} T_{\mathrm{O}}, x_{1} U_{\mathrm{Q}}\right)\right. \\
& \left.\left.+\int_{\pi}^{H H_{1}}\left(x_{1}\right) f_{\mathrm{g}}^{\mathrm{H}}\left(\lambda_{2}\right) \mathrm{d} \hat{\pi}_{\mathrm{ai} \rightarrow \mathrm{O}}\left(x_{1} U_{0}+t_{2} T_{Q}\right)\right\}\right] \tag{67}
\end{align*}
$$

In this equation we have suppressed all vartables not relevant for the asymmetry The formula for the case that the heavy antiquark is detected can be obtaned from cq. (6.7) by an overall replacement $\mathbf{Q} \rightarrow \overline{\mathbf{Q}}$ Notice that $\mathrm{d}_{i, 0}\left(t_{1}, u_{1}\right) \neq$ $\mathrm{d} \hat{o}_{i j}, \tilde{0}^{\left(t_{1}, u_{1}\right)}$ which implies that the differentral hadronic cross section for detected heavy quarks differs from that obtanned for detected heavy antiquarks I he - .tal hadronic cross sections are however the same

From the differential cross section in eq (6.3) one can derive experimentally tore interesting distributions like $\mathrm{d}^{2} \sigma / \mathrm{d} y \mathrm{~d} p_{1}$ or $\mathrm{d}^{2} \sigma / \mathrm{d} x_{\Gamma} \mathrm{d} p_{1}$. Here y denotes rapidity, p_{t} the transverse momentum and $x_{F}=p_{1} / p_{1}$ max is the longitudinal womentum fraction of the oulgoing heavy flavour with respect to the incoming hadron in the hadron-hadion t.an latile.

Before discussing the results we would like to make a comment on the numerical stability of our computer program and the correctness of the boundaries listed in eq. (6.5) As one can infer from (51) and (63) there are two different ways to obtain the total hadronic cross section. The first one proceeds via the total parton cross section in eq (5.1) by convoluting it with the total parton-parton flux (see eq. (7,14) In ref, [4]), The second one in given by the double differential cross sect!, ir. eq, $(6,7)$ via integrations over T_{1} and U_{1}, where the boundiaries of T_{1} and U_{1} are
given by the hadronic analogues of the partonic ones in eq. (5.1). Both computations have to yield the same result. This we checked in the following way. Take a simple expression for the two-to-three body matrix element of the parton-parton process As an example we took $|M|^{2}=1, s_{4}^{-1}, s_{4}^{-1} \operatorname{In}\left(s_{4} / m^{2}\right)$. First we checked analytically that both procedures to compute the hadronic cross section lead to the same result providied one takes a simple form for the parton distribution functions (e.g $f(x)=1$ or $f(x)=x$). This serves as a check on the correctness of the boundaries Moreover we also compared the analytic result with the numerical one and we found agreement within less than 1%, which seems to us sufficient for phenomenological purposes. Further we could also compare the analytically calculated distributions for the smple examples given above with the numerical ones and perfect agreement was obtained Finally we checked that if the physical distributions presented in the subsequent part of this section are integrated over the whole phase space they agree with the total hadronc cross section determined by the first method For our numerical results we expressed the hadronic differenthal cross sections as convolutions of the parton-parton differential cross sections with the parton flux functions, cf ref [4]. Then the order of the integrations was inverted to leave the p_{1} and/or the y integration to the last The three-dimensional integral for the $S+V$ piece was always, converted into a four-dimensional integral so that it could be directly added to the four-dimensional integral for the hard part, and the sum computed by Monte Carlo In that way we could easily project out all physicaliy relevant distributions Detaled discussions and formalisms for calculating various distributions will be presented in appendıx \mathbf{C}.

In this sectoon we are particularly interested in those hadronic reactions where the parr $\left(\mathrm{H}_{1} \mathrm{H}_{2}\right.$) stands enther for ($p, \overline{\mathrm{p}}$) or (p, p) with p and $\overline{\mathrm{p}}$ denoting the proton and antiproton respectively At the end of the section we will, however give some results for pion-nucleon collisions

In our previous paper [9] we examined the exact results for total hadronic rross sections and compared them with simple approximate formulae, namely initial-state gluon bremsstrahlung (ISGB), gluon splitting (GS) and flavour excitation (FE) The analytic results for these approximations were presented in sect 2 of ref [9], some of them are used in present Monte Carlo simulations of heavy flavour production. We found that the basic mechansms mentioned above yielded values for the hadronic cross sections which were too large since they did not incorporate correctly the structure found in the parton-parton cross section However we were able to add appropriate fudge factors which made the results acceptable Now that we have calculated all the order $\alpha_{5}^{3}\left(Q^{2}\right)$ corrections to the differential distributions we can examine the agreement between the exact p_{t}, y plots and those derived from the approximate formula mentioned above In all cases we incorporate in the approximate formulae the fudge factors explaned in sect. 4 of ref. [9].

We remind the reader that although the parton distribution functions and the idduce jarton cross scctions in eq (6.7) have to be determined in the same
scheme (e.g $\overline{\mathrm{MS}}$ or DIS), the hadron-hadron cross sections still depend on the chosen factorization scale Q^{2} This is because the parton distribution functions are resummed in all orders of perturbation theory via the renormalization group equation whereas the corrections to the parton-parton cross sections are only calculated to first order in $\alpha_{S}\left(Q^{2}\right)$. Since the lowest order cross section for heavy flavour production is already of order $\alpha_{s}^{2}\left(Q^{2}\right)$, the order $\alpha_{s}\left(Q^{2}\right)$ corrected result will heavily depend on the choice of the factorization (reiormalization) scale. This phenomenon is characteristic for all pure QCD cross sections To make a comparıson with the results of $[2,3,28]$ we choose the renormalization scheme for the running coupling constant where all the heavy fermions are decoupled in the limit when the momenta entering the fermion loop contribution go to zero, cf. eq (2 15) The results for the reduced parton-parton cross sections presented in sect 5 were calculated in both the $\overline{\mathrm{MS}}$ and DIS schemes (where in the latter the momentum sum rule has been imposed, which only affects the gluon-gluon and gluon-(antı)quark partonic cross sections but not the quark-antıquark one) Since the structure functions in the latter scheme are known we will now concentrate on differential distributions for reaction (61) in the DIS scheme.

To be specific we will use set 2 of the DFLM [26] structure functions and the two-loop corrected formula for the runnong coupling constant $\alpha_{\mathrm{s}}\left(Q^{2}\right)$ (see eq (10) in ref. [27] or eq. (54) in ref [9]) with $\Lambda_{4}=2600 \mathrm{MeV}$ and $\Lambda_{5}=173 \mathrm{MeV}$ to generate the curves presented in this section. The factorization scale (which equals the renormalization scale μ_{R}^{2}) is chosen to be $Q^{2}=m^{2}+p_{1}^{2}$ unless stated otherwise. Further like in ref [3] we take the average of the hedvy quark and the heavy antuquark differential cross sections since the difference between them is small for hadron-hadron colliders at large $\mathrm{c} . \mathrm{m}$ energies
First of all to check that our results agree with those in ref [3] we present some results for the production of top quarks in $p \bar{p}$ collisions for the same value of the t mass, namely $40 \mathrm{GeV} / c^{2}$, chosen in that paper. This, of course, is no longer a possible value for the t quark mass since the present limits [5-7] are much larger However it is now clear that the t quark mass is so heavy that it can probably only be produced near threshold at the Fermilab tevatron (if its mass is in the appropriate range). Hence results near threshold are especially important and the situation when the t mass has a value of $40 \mathrm{GeV} / c^{2}$ at the CERN Spps is therefore typical.

The contributions of the gluon-gluon sub-process to the double differentral cross section for eq (6.1) in p_{1} and v with $m=m_{1}=40 \mathrm{GcV} / c^{2}$ and $\sqrt{S}=630$ GeV are shown in fig 8 Here we plot curves for both our exact and approximate calculations at two different rapidity values $y=0$ and $y=11$. Notice that the small difference between our exact results and those of ref. [3] (fig 6) in the low p_{1} region, are either caused simply by numerical problems, or possibly by the imposition of the momentum sum rule in defining the gluon structure functions. If we wwitch off the terms ($B .7$) and ($B .8$) in appendix B then we get exact agreement

Fig 8 The contributuns from the gluon-gluon sub-process to the differential cross section tor $\mathbf{p}+\overline{\mathbf{p}} \rightarrow \overline{\mathbf{Q}}+\mathbf{X}$ at ;wo difterent rapidity values $y=0$ and $y=11$ Our exact results are shown for $\sqrt{S}=630 \mathrm{GeV}$ with $m_{\mathrm{Q}}=40 \mathrm{GeV} / c^{2}$ and $1_{5}=173 \mathrm{MeV}$ We choose the renormalization scale equat to the factonzation scale $\mu_{\mathrm{R}}=Q=\sqrt{m_{\mathrm{O}}^{2}=p_{1}^{z}}$ We also show the results of our approximate calculatıons
with their curves. The dashed curve for the approximate result is 10% too large for small p_{t} at $y=0$ However it is an excellent fit at $y=11$.

The corresponding curves for the quark-antıquark process are shown in fig 9. Here there is excellent agreement with the corresponding exact results in fig. 6 in ref [3] The dashed lines for the approximations are very reasonable in this channel. Finallv in fig 10 we show the contribution from the gluon-antiquark channel which is the srrallest of the three The approximate result is uniformly positive since our approximation is based on a cross section estumate Hence it cannot account for the negative piece of the gluon-antiquark cross section visible in fig. 6 of this paper. Since this channel only contributes a very small term to the total distribi ton this is acceptable

We now turn to the production of $b(\bar{b})$ quarks In figs 11,12 and 13 we show the inclusive differential cross sections in p_{t} for values of $y=0$ and $y=2$ for the channels $\mathrm{gg}, \mathrm{q} \bar{q}$ and $\mathrm{g} \overline{\mathrm{q}}$. We have chosen $m_{\mathrm{b}}=475 \mathrm{GeV} / c^{2}$ and $\sqrt{S}=630 \mathrm{GeV}$ In the gluon-gluon and quark-antiquark channels the approximate results are excellent for small p_{1} but are too large by as much as a factor of two at $y=0$ and $p_{1}=80 \mathrm{GeV} / c$ This is caused by the fact that the exact order α_{S} correction is negative at these large p_{1} values so the Born value is reduced and our positive approximation goes in the wrong direction In the gluon-antiquark channel the approximate results shown in fig. 13 are too small below $p_{t}=15 \mathrm{GeV} / c$ and too

Fig 9 The same as in Ig 8 , but for the quark-antiquark wib-process

 tw our exdat calculatem, and the uper ones to our approximations

Fig It The sume as in fig 8, but for $m_{\mathrm{b}}=475 \mathrm{GeV} / \mathrm{c}^{2} \cdot \sqrt{S}=630 \mathrm{GeV}, 1_{4}=260 \mathrm{MeV}$ and $y=0,2$
large above that value Below $p_{\mathrm{t}} \sim 5 \mathrm{GeV} / c$ the approximate results deviate substantially from the exact ones since the approximations do not account for the negative piece of the gluon-antiquark cross section.

Next we present in fig. 14 the total α_{S}^{3} differential cross sections in p_{1} for values of $y=0,2$ and 3 We have chosen $m_{\mathrm{b}}=4.75 \mathrm{GeV} / c^{2}$ and $\sqrt{S}=630 \mathrm{GeV}$. The curves at $\sqrt{S}=18 \mathrm{reV}$, for $y=0,3$ and 4 are shown in fig. 15 . Note that we have checked that our results agree with the corresponding curves in figs. 11 and 12 of ref [3] which are unfortunately labelled incorrectly The b-quark mass is given as $m_{\mathrm{h}}=5 \mathrm{GeV} / c^{2}$ whereas it should have been listed as $m_{\mathrm{h}}=475 \mathrm{GeV} / c^{2}$

The rapidity plots of the outgong b quark are shown in fig 16 separately for the order α_{ξ}^{2} and order α_{ξ}^{3} contributions at the energies $\sqrt{S}=630 \mathrm{GeV}$ and $\sqrt{S}=18$ TeV. Again to cross check our results with those of ref [3] we give a plot of ther fig. 16 in our fig. 17. This is tor c quark production at $\sqrt{S}=630 \mathrm{GeV}$ and 1.8 TeV , with a mass $m_{c}=15 \mathrm{GeV} / c^{2}$ and scale $Q^{2}=4\left(p_{t}^{2}+m^{2}\right)$. It is clear that the Born result in ref [3] for $\sqrt{S}=18 \mathrm{TeV}$ is too low near $y=0$. Our other curves agree with theirs We remind the reader that results for the production of charmed quarks are very sensitive to the chore of the scale factor Q^{2} and the mass of the c quark.

Next we present in fig. 18 the sum of all contributions, namely the inclusive cross section ior the production of a bottom quark with $\boldsymbol{p}_{1}>\boldsymbol{p}_{\text {min }}$ and a fixed rapidity cut $|y|<1.5$ at $\sqrt{S}=630 \mathrm{GeV}$. In this plot the scale $Q^{2}=m_{\mathrm{h}}^{2}+p_{\mathrm{am}}^{2}$ has been used in the definition of the running coupling constant. We have chosen a central value of

Fig 12 The same ain fig 11, but the quark-antiquark sub-process

Fig. ${ }^{13}$ The seme as in fig 11, but tor the gluon-(anti)quatk sub-process

Fig 14 The differentul cross section of $\mathrm{p}+\overline{\mathrm{p}} \rightarrow \mathrm{b}+\mathrm{X}$ with $m_{\mathrm{b}}=475 \mathrm{GeV} / c^{2}$ and $\mu_{\mathrm{R}}=\mathbf{Q}=$ $\sqrt{m_{\mathrm{h}}^{2}+p_{1}^{2}}$ at $\sqrt{\varsigma}=630 \mathrm{GeV}$ The cross section is shown at different values of rapidty for (1) dashed lines lowest order contribution scaled by an arbitrary factor (2) solid lines full order α_{s}^{3} calculation

Fig is I he sume din fig 14 but with $\sqrt{5}=18 \mathrm{TeV}$

Fige. It The rapidiay distribution for $p+\beta \rightarrow b+X$ with $m_{n}=475 \mathrm{GeV} / 4=\mu_{n}=Q=\sqrt{m_{10}^{2}+p_{1}^{2}}$ at $\sqrt{5}=630 \mathrm{GeV}$ and $\sqrt{s}=1 . \mathrm{A} \mathrm{leV}$. The upper curves refer to the higher energy

 $\mathrm{t}_{1}=3 \mathrm{~m} 0 \mathrm{MeV}$

Fgg 18 The melusve cross section for band/or \bar{b} quak production at $\sqrt{S}=630 \mathrm{GeV}$ versus $p_{\text {min }}$ with $m_{\mathrm{r}}=475 \mathrm{GeV}_{/ \mathrm{c}^{2}}, \mu_{\mathrm{R}}=Q=\mu_{10}=\sqrt{m_{1}^{2}+p_{\text {mif }}^{2}}$. DFLM set 2 with $1_{4}=26 \mathrm{MeV}$ and fixed rapidity (ati $|y|<15$ (solid line exaci result, dotted line result of our approximate calculation) The upper (lower) dathed line is obtaned from the exact order a_{s}^{3} calculation by using $m_{\mathrm{b}}=45$ (50) $\mathrm{GeV} / \mathrm{c}^{2}$. $\mu_{1}=Q=\mu_{11} / 2\left(2 \mu_{0}\right)$ and DFLM set 3 (1) with $1_{4}=360$ (160) MeV The re-analyzed UAI data are also shown
the b-quark mass as $475 \mathrm{GcV} / \mathrm{c}^{2}$. The band bounded by the two dashed lines in fig. 18 is generated by choosing $4.5 \mathrm{GeV} / c^{2}<m_{b}<50 \mathrm{GeV} / c^{2}, 360 \mathrm{MeV}>\mathrm{I}_{4}>$ $160 \mathrm{MeV},\left(m_{\mathrm{b}}^{2}+p_{\min }^{2}\right) / 4<Q^{2}<4\left(m_{\mathrm{b}}^{2}+p_{\min }^{2}\right)$ and DFLM set 3 and DFLM set 1 In this plot we show the re-analysed data from the UA1 group [28]. It is clear that there is very reasonable agreement between theory and experiment

We ako plot in this figure (dotted line) the sum of our approximate formulae as presented in ref. [9]. One sees that our approximate result in fig. 18 is in good agreement with the exact curve at small p_{1} but is about a factor of two larger than our exact result at $p_{\min }=50 \mathrm{GeV} / c$ To better understand the origin of this discrepancy we plot in fig. 19 the individual contributions from the ISGB, GS and FE mechunisms to the tranverse momentum distributimefor lie? Poduchinerfab quark with $m_{b}=475 \mathrm{GeV} / c^{2}$ at $\sqrt{S}=630 \mathrm{GeV}$. We see that the stm ot the Born and the L.SOED part is fine at smonil μ_{1} where the contributions from the GS and FE mechanisms are small. the ISGB past is, however, too big at larger p_{1} where the OS and FE mechanimas are also impotant. The total contribution from the

Fig 1. The transverse momentum distribution tor the production of b quarks $p+\bar{p} \rightarrow b+X$ with
 are shown sepurately
approximation is about a factor of two too large at $p_{1} \quad 50 \mathrm{GeV} / c$ as compared to our exact result. Note that due to our choice of $Q^{2}=p_{t}^{2}+m_{b}^{2}$ all approximate resulty contain contributions from the scale-dependent preces of the α_{5}^{3} correction. which have also been multiplied by the approprate fudge tactors discussed in ref [9]. Given the present experimental error bars one can conclude that a very reasonable fit to the data is to take the sum of all approximate contributions for $p_{1}<10 \mathrm{GeV} / \mathrm{c}$, but only those of the Born cros, section plus the GS and FE contributions above $p_{1}=10 \mathrm{GeV} / c$.

In fig. 20 we how predictions tor b-quark production at the Fermilab collider The parameters are the same as in tig. 18, but we have changed the rapidity cut to $-1.0<y<1.0$ as appropriate for the CDF detector. Notice that our error band is not exactly the same as in fig. 15 of sef. (3) since we do not add up varrous uncertainies in quadrature as they did in theil calculation It will be interesting to see whether these predictions fit the future CDF data

Since one would like to understand whether the α_{s} corrections are describable by a simple K-factor we have plotted in fig 21 the p_{1} distribution for a heavy 1 -quark with a mass of $120 \mathrm{GeV} / c^{2}$ produced in p p collisions at $\sqrt{S}=1.8 \mathrm{TeV}$. In the aituation a K tactor of 14 is mememable at large n, and v value, However it overestimates the curves for small $p_{\text {, }}$ and y. We finalize ibls discussion of heavy quark production at enliders by giving a plot of top quark ances sections for tevatron and future colliders in lis. 22.

Fig 20 The same as in fig 18 , but for $\sqrt{S}=18 \mathrm{TeV}$ and $|y|<1$

We now turn to a short discussion of differential distributions for the production of c and b quarks in fixed target experiments This is a situation where the total c.m. energies are small and the theoretical results are very sensitive to the choice of the mass and the scales. A more complete discussion of these points is given in ref [?] The reason we present our results here is to correct scveral of the plots in the latter paper. We have checked that we agree with the plots for the total cross sections in figs. 22 and 23 of ref. [3]. Also the plots for the p_{4} distributions in figs. 19 and 26 agree with our results We disagree, however, with the plots for the $x_{\mathrm{F}}=p_{\mathrm{L}} / p_{\mathrm{L}, \text { max }}$ distributions. Ore can check the areas under the curves in figs. 18 and 25 of ref [3] are not the same as the areas under the curves in figs. 19 and 26 of ref [3], respectively. In fig. 23 we show the \boldsymbol{x}_{F} distribution for charm production in pp collisions at c.m. energies of $274,38.7$ and 62 GeV Here $m_{\mathrm{c}}=15 \mathrm{GeV} / c^{2}$, the scale is $Q^{2}=4\left(p_{1}^{2}+m_{5}^{2}\right)$, and we have chosen the DFLM structure functions set 2 with $\Lambda_{4}=260 \mathrm{MeV}$. The corresponding results from ref. [3] are in their fig. 18. The x_{F} plots for $\pi^{-} \mathrm{p}$ collisions at $\sqrt{S}=23 \mathrm{GeV}$ are shown in fig. 24. In this case we have used set 1 of the pion structure functions of Owens in ref. [29] Unfortunately the corresponding structure functions used by ref. [3] contaned an error leading to incorrect curves in their fig. 21. This same error also changes their plots of the x_{F} distributions for b-quark production in $\pi^{-} \mathrm{N}$ collistons at $\sqrt{S}=23$

Fug 21 The ditferental cross section tor $p+\bar{p} \rightarrow 1(\bar{t})+X$ wht $\mu_{1}=120 \mathrm{GeV} / \mathrm{c}^{2}$ dnd $\mu_{\mathbf{R}}=Q$ $=\sqrt{m_{1}^{2}+p_{1}^{2}}$ at $\sqrt{S}=18 \mathrm{TeV}$ The cross sectoon is bhown at ditterent value of rapidity for (1) dashed lines lowest order contribution scaled by an arhtrary factor (2) solad lines full order α; calculation

GeV and $\sqrt{S}=30 \mathrm{GeV}$, given in fig. 24 of therr paper The correct distributions are presented in our fig 25 The final curves we present in fig 26 are those for b quark production in pN collisions at $\sqrt{S}=46 \mathrm{GeV}$ and in pp collisions at $\sqrt{S}=62$ GeV. This figure corresponds to tig 25 of ref [3] which also seems to contan errors. To check that our results are the correct ones we have atso computed the cross sections from the parton-parton ciuss sections and they agree with the cross sections from the x_{1} plots

We conclude our discussion of the heavy quark differental crosh sections in hadron-hadron collisions with the following comments The comparison with the UAI data on b-quark production, cf tig 18, shows the necessty of taking higher order corrections into account. Even though there is still a small uncertanty in the choice of the b-quark mass and the scale for α_{s}, perturbative QCD seems to describe b-quark production rather well The diffeiential cross section is not very sensitive to the chose of the gluon structure functions since the $\mathrm{q} \overline{\mathrm{q}}, \mathrm{gq}$ and gq channels are all important at large p_{1}. Note that we have only used the structure functions provided by DFLM in fig 18 because the parton-parton cross sections were calculated in a modified DIS scheme

The epprovimate formulis for the dilferential cross sections given in sect. 2 of ref. [9] with the fudge factors mentioned the e lead to very seasonable distributions In p_{1} at low p_{1} where the ISGB mechansm is dommant. However they are uniformly too big at lurger p_{1} where the contributons from the GS and FE

Fig 22 Predicted top quark total cross sections at Fermilath pp collider with energy $\sqrt{S}=18 \mathrm{TeV}$, an upgraded Fernulab $\bar{p} \bar{p}$ collider with energy $\sqrt{S}=36 \mathrm{Te} v^{\prime}$ an LHC pp collider with energv $\sqrt{S}=$ 16 TeV and an SSC pp collider with energy $\sqrt{S}=40 \mathrm{TeV}$ The bands are indications of theoretical uncertantues which dre obtamed by using $\mu_{\mathbf{R}}=Q=m_{i} / 2$ DFLM set 3 with $i_{5}=250 \mathrm{MeV}$ and $\mu_{R}=Q=2 m_{1}$. DFLM set 1 with $i_{5}=101 \mathrm{MeV}$
channels are relatively more important This result is consistent with the p_{t} distribution for b-production originally shown in the UAI fit of their data [8] since they only included the Born, GS and FE in their analysis The slope of their prediction for the p_{t} distribution was therefore smaller than that from the exact calculation, since it lacked the ISGB prece necessary to fit the data at low p_{1}

One motivation for this paper was to find if a simple K-factor could be found to account for the higher order corrections. However the total and single-particle inclusive differential cross sections for heavy-quark production show such complicated behaviour that this approach has not been as successful as we had originally hoped. The structure in the parton-parton cross sections seen in the results of [$2,4,9]$ are reflections of integrations over equally complicated structures in the parton-parton differential cross sections

We wuuld like to acknowledge useful discussions with A. Ali, G Ingelman, G Kramer, D E Soper and J. Vermaseren R. Meng would like to thank LAA for

Fig 23. The r_{p} ditiribution of inclusive charm quark production in pp coltivions at c.m energies 274,
 The upper curves refer to higher energies

Fig 25. The x_{F} distribution of b (sold line) and \bar{b} (dashed hne) production in $\pi^{-} \mathrm{N}$ collisions at c m energles of 23 and 30 GeV The parameters dre as in fig 24 but $m_{\mathrm{b}}=475 \mathrm{GeV} / /^{2}$ and $\mu_{\mathrm{R}}=$ $Q=\sqrt{m_{\mathrm{b}}^{2}+p_{t}^{2}}$

 DFLM set 2 with $A_{4}=260 \mathrm{MeV}$.
financial support. The work of J. Smith was supported in part under NSF Grant PHY 89.089495 and in parl by NIKHEF-1I in Amsterdam.

Appendix A

In this appendix we give the results for the virtual plus soft parton cross sections in eq (4.7). The cross sections can be split in symmetric and antisymmetric parts as follows. The F part is equal to

$$
\begin{aligned}
& =\frac{1}{4} \alpha_{y}^{\frac{1}{y}}\left(\mu_{m}^{2}\right) K_{44} N C_{F}^{2}\left[A _ { \text { OED } } \left\{8 \ln ^{2} \delta-8 \ln \delta\left(\ln \frac{t, u_{1}}{\operatorname{sm}^{2}}+1\right.\right.\right. \\
& \left.+\left(s-2 m^{2}\right) 5^{-1} \ln x\right)+\ln \frac{Q^{2}}{m^{2}}\left(-8 \ln \delta+4 \ln \frac{t_{1} \mu_{1}}{m^{4}}-6\right) \\
& +4\left(x-2 m^{2}\right) s^{-1}\left(-3 \ln x-3 \ln ^{2} x+4 \ln x \ln (1-x)\right. \\
& \left.+2 \ln x \ln (1+r)+4 \operatorname{Li}_{2}(x)+2 \operatorname{Li}_{8}(-x)+35(2)\right) \\
& +2 n^{\prime} \ln x+6 \ln \frac{s}{m^{2}}-4 \ln \frac{f_{1} f_{1}}{m^{4}} \ln \frac{s}{m^{2}}+2 \ln \frac{f_{1} f_{1}}{m^{4}} \\
& \left.\left.\ddagger 4 L_{2}\left(\begin{array}{ll}
1 & m^{2} s \\
t_{1} u_{1}
\end{array}\right)-20+8 \zeta(2)\right\}+\delta m^{2} ; \quad \ln x\right] \delta\left(s+t_{1}+u_{1}\right) \\
& +a_{4}^{3}\left(\mu_{4}^{\frac{2}{4}}\right) K_{t+4} N C_{i}^{3}\left[A _ { C O B } \left\{32 \ln \delta \ln \frac{t_{1}}{u_{i}}-16 \ln \frac{t_{1}}{u_{1}} \ln \frac{s}{m^{2}}\right.\right. \\
& \left.-16 \ln x \ln \frac{t_{5}}{u_{1}}-16 \mathrm{Li}_{2}\left(1-\frac{u_{1}}{x t_{1}}\right)+16 \mathrm{Li}_{2}\left(1-\frac{t_{1}}{x u_{1}}\right)\right\} \\
& -4\left(t_{1}-u_{1}\right) s \cdot\left(\min ^{2} \frac{s}{m^{2}}+2(2)\right)+8\left(t_{1}-u_{1}\right) n_{1} \ln \frac{1}{m^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.4\left(f_{1}-u_{1}\right)\right\} \quad f_{1}, s^{2} \cdots-K s m^{2}+8 m^{4}\right)\left(G(2)+\frac{1}{2} \ln ^{2} x+2 L_{1_{2}}(-x)\right) \\
& +\left(8+16 u^{-1}\right)\left(-\ln \frac{-u_{1}}{m^{2}} \ln \frac{s}{m^{2}}+\ln ^{2} \frac{-u_{1}}{m^{2}}+\mathrm{Li}_{2}\left(\frac{u}{m^{2}}\right)\right)
\end{aligned}
$$

Here $\alpha_{s}\left(\mu_{R}^{2}\right)$ denotes the renormalized coupling constant at the renormalization scale μ_{R}^{2}, which will be put equal to Q^{2} in the end as mentioned in sect 6 . For the A part we obtain

$$
\begin{aligned}
& \left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\tilde{q}}^{(1)}, \hat{A}}{\mathrm{~d} t_{1} \mathrm{~d} u_{1}}\right)_{\overline{M 5}}^{\mathrm{V}+\mathrm{s}} \\
& =\frac{1}{4} \alpha_{\mathrm{S}}^{3}\left(\mu_{\mathrm{R}}^{2}\right) K_{\mathrm{q} \bar{\square}} N C_{\Lambda} C_{\mathrm{F}}\left[A _ { \mathrm { QCD } } \left\{4 \ln \delta\left(\ln \frac{t_{1} u_{1}}{s m^{2}}+\left(s-2 m^{2}\right) 5^{-1} \ln x\right)\right.\right. \\
& +\frac{22}{3} \ln \frac{\mu_{\mathrm{R}}^{2}}{m^{2}}+\ln ^{2} \frac{s}{m^{2}}+\left(-\frac{16}{3}+s\left(s-16 m^{2}\right) s_{1}^{-2}\right) \ln \frac{s}{m^{2}}-4 \ln \frac{-t_{1}}{m^{2}} \ln \frac{-u_{1}}{m^{2}} \\
& -2\left(s-2 m^{2}\right) \bar{s}^{-1}\left(-2 \ln x-\frac{3}{2} \ln ^{2} x+4 \ln x \ln (1-x)\right. \\
& \left.+2 \ln x \ln (1+x)+4 \mathrm{LI}_{2}(x)+2 \mathrm{Li}_{2}(-x)+3 \zeta(2)\right) \\
& -s \overline{\bar{s}}{ }^{1} \ln x-\ln ^{2} x-8 m^{2} s_{1}^{-1}+2 s s_{1}^{-2} \bar{s}^{-1}\left(s^{2}-7 m^{2} s+24 m^{4}\right) \\
& \left.\times\left(\zeta(2)+\frac{1}{2} \ln ^{2} x+2 L_{2}(-x)\right)-2 L_{2}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)+\frac{170}{9}-6 \zeta(2)\right\} \\
& -m^{2} s^{-1} \ln ^{2} \frac{s}{m^{2}}+s_{1}^{-2}\left(-s^{2}+12 s m^{2}+16 m^{4}\right) \ln \frac{s}{m^{2}} \\
& +\left(2 s m^{2}-t_{1} u_{1}\right) s^{-1} t^{-1} \ln \frac{-t_{1}}{m^{2}}+\left(2 \operatorname{sm}^{2}-t_{1} u_{1}\right) s^{-1} u^{-1} \ln \frac{-u_{1}}{m^{2}} \\
& -\left(1+2 u s^{-1}\right)\left(-\ln \frac{-u_{1}}{m^{2}} \ln \frac{s}{m^{2}}+\ln ^{2} \frac{-u_{1}}{m^{2}}, \mathrm{Lt}_{2}\left(\frac{u}{m^{2}}\right)\right) \\
& -\left(1+2 t s^{-1}\right)\left(-\ln \frac{-t_{1}}{m^{2}} \ln \frac{s}{m^{2}}+\ln ^{2} \frac{-t_{1}}{m^{2}}+\mathrm{Lt}_{2}\left(\frac{t}{m^{2}}\right)\right) \\
& -4 m^{2} s_{1}^{-2} \bar{s}^{-1}\left(s^{2}-2 s m^{2}+16 m^{4}\right)\left(\zeta(2)+\frac{1}{2} \ln ^{2} x+2 \mathrm{~L}_{2}(-x)\right) \\
& \left.-4 m^{2} \bar{s}^{-1} \ln x-2 m^{2} s^{-1} \zeta(2)+8 m^{2} s_{1}^{-1}\right] \delta\left(s+t_{1}+u_{1}\right) \\
& +\frac{1}{4} \alpha_{5}^{2}\left(\mu_{11}^{2}\right) K_{49} N C_{A} C_{F}\left[A _ { \text { OED } } \left\{-12 \ln \delta \ln \frac{t_{1}}{u_{1}}\right.\right. \\
& \left.+6 \ln \frac{t_{1}}{u_{1}} \ln \frac{s}{m^{2}}+6 \ln x \ln \frac{t_{1}}{u_{1}}-6 \mathrm{Li}_{2}\left(1-\frac{t_{1}}{x u_{1}}\right)+6 \mathrm{Li}_{2}\left(1-\frac{u_{1}}{x t_{1}}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{3}{2}\left(t_{1}-u_{1}\right) s^{-1}\left(\ln ^{2} \frac{s}{m^{2}}+2 \zeta(2)\right)-3\left(t_{1}-u_{1}\right) s_{1}^{-1} \ln \frac{s}{m^{2}} \\
& -\left(3 t_{1} u_{1}-6 s m^{2}\right) s^{-1} u^{-1} \ln \frac{-u_{1}}{m^{2}}+\left(3 t_{1} u_{1}-6 s m^{2}\right) s^{-1} t^{-1} \ln \frac{-t_{1}}{m^{2}} \\
& \left.-3\left(t_{1}-u_{1}\right) s^{-1} \tilde{s}^{-1} s_{1}^{-1}\left(s^{2}-8 s m^{2}+8 m^{4}\right)\left(\zeta(2)+\frac{1}{2} \ln ^{2} x+2\right]{r_{2}}(-x)\right) \\
& -\left(3+6 u s^{-1}\right)\left(-\ln \frac{-u_{1}}{m^{2}} \ln \frac{s}{m^{2}}+\ln ^{2} \frac{-u_{1}}{m^{2}}+\mathrm{Li}_{2}\left(\frac{u}{m^{2}}\right)\right) \\
& \left.+\left(3+6 t s^{-1}\right)\left(-\ln \frac{-t_{1}}{m^{2}} \ln \frac{s}{m^{2}}+\ln ^{2} \frac{-t_{1}}{m^{2}}+\mathrm{Li}_{2}\left(\frac{t}{m^{2}}\right)\right)\right] \delta\left(s+t_{1}+u_{1}\right), \tag{A.2}
\end{align*}
$$

where $A_{\text {OED }}$ and x are defined in eqs. (24) and (2.30), respectively. Further we have used the definitions

$$
\begin{equation*}
s_{1}=4 m^{2}-s, \quad 3=\sqrt{1-4 m^{2} / s}, \quad \delta=\Delta / m^{2}, \tag{A.3}
\end{equation*}
$$

where \triangle is defined below eq. (2.20) [see also eq. (2.27)].
A quick glance at the above formulae reveals that the first term of eqs. (A.1) and (A.2) is symmetric under the interchange of t_{1} and u_{1}, whereas the second term is antisymmetric. The above cross sections hold when a heavy antıquark is detected in the final state. Like in sects 2 and 4 the vartables t_{1} and t_{1} always denote the square of the four-momentum transfer of the detected heavy antiquark with respect to the hight antiquark and the light quark, respectively it we detect the heavy quark in the final state the production cross sections of the latter are given by the same expressons (A.1) and (A.2) provided the plus sign between the symmetric and antisymmetric part is replaced by a minus sign

Notice that the unrenormalized virtual cross section in eq. (2.8) can be secon structed from the reduced virtual plus soft expressions in eqs. (A.1), (A.2) and (2.15) in a straightforward $;$. . First we add the Born cross section folded by the spliting function I_{49} in (4, ' 5) to the above expressions. Then subtract the soft cross mections in eqs. (2.28) (2.29). In this way one obtains the renormalized cross section on the left-hand ade of eq. (211). The unrenormalized one (with respect to coupling constant renormalization) follows from the right-hand side of the last equation. The abeltan (C_{5}^{2}) part has already been calculated earlier in the
 ref. [30]. To recover the OED expression one whould use the spliting function I_{49} where the collinear divergences are regulated by giving the te't partons a small mash (on-shell regularization).

Appendix B

Here we present the formulae needed in case one chooses a DIS scheme where the momentum sum rule is preserved Instead of eq (418) one chooses

$$
\begin{equation*}
f_{\mathrm{gq}}^{\mathrm{DIS}}\left(x, Q^{2}, \mu^{2}\right)=-f_{\mathrm{qq}}^{\mathrm{DIS}}\left(x, Q^{2}, \mu^{2}\right) \tag{B.1}
\end{equation*}
$$

where $f_{q 9}^{\text {Dis }}$ is given in eq. (45). Hence one has to add the following expressions to eqs (4.23) and (424), respectively

$$
\begin{align*}
& \Delta\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{g} \overline{\mathrm{~F}}}^{(1)}}{\mathrm{d} t_{1} \varkappa_{1}}\right)_{\mathrm{DIS}}^{\mathrm{V}+\mathrm{S}}=\frac{1}{2} \alpha_{\mathrm{S}}^{3} K_{\mathrm{gq}} N C_{\mathrm{F}}^{2}\left[\log ^{2}\left(\frac{\Delta}{s+t_{1}}\right)-\frac{3}{2} \log \left(\frac{\Delta}{s+t_{1}}\right)\right. \\
& \left.-\frac{9}{2}-2 \zeta(2)\right] B_{\mathrm{OED}} \delta\left(s_{4}\right), \tag{B.2}\\
& \Delta\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{g} \overline{4}, \mathrm{~A}}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{DIS}}^{\mathrm{V}+\mathrm{S}}=-\frac{1}{2} \alpha_{\mathrm{S}}^{3} K_{\mathrm{gq}} N C_{\mathrm{A}} C_{\mathrm{F}}\left[(\frac { t _ { 1 } u _ { 1 } } { s ^ { 2 } }) \left\{\log ^{2}\left(\frac{\Delta}{s+t_{1}}\right)\right.\right. \\
& \left.\left.-\frac{3}{2} \log \left(\frac{\Delta}{s+t_{1}}\right)-\frac{9}{2}-2 \zeta(2)\right\}\right] B_{\text {OED }} \delta\left(s_{4}\right), \tag{B.3}
\end{align*}
$$

with $B_{\text {OED }}$ defined in eq. (4.22), and

$$
\begin{align*}
& J\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{gq}, \mathrm{~F}}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{DIS}}^{\mathrm{H}}=\frac{1}{2} \alpha_{\mathrm{S}}^{3} K_{\mathrm{Eq}} N C_{\mathrm{F}}^{2}\left[(- \frac { 1 } { u _ { 1 } }) \left(\frac{u_{1}^{2}+\left(s+t_{1}\right)^{2}}{s_{4}\left(s+t_{1}\right)}\right.\right. \\
& \left.\times\left(\log \left(\frac{s_{4}}{-u_{1}}\right)-\frac{3}{4}\right)+\frac{9}{4}-\frac{5}{4} \frac{u_{1}}{s+I_{1}}\right) \\
& \left.\times\left\{-\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{t_{1}\left(s+t_{1}\right)}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right\}\right], \tag{B4}\\
& \Delta\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{8 \overline{4}}^{(0)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{DIS}}^{\mathrm{H}}=-\frac{1}{2} \alpha_{\mathrm{S}}^{3} K_{\mathrm{gq}} N C_{\mathrm{A}} C_{\mathrm{F}}\left[(\frac { t _ { 1 } (s + t _ { 1 }) } { u _ { 1 } s ^ { 2 } }) \left\{\frac{u_{1}^{2}+\left(s+t_{1}\right)^{2}}{s_{4}\left(s+t_{1}\right)}\right.\right. \\
& \left.\times\left(\log \left(\frac{s_{4}}{-u_{1}}\right)-\frac{3}{4}\right)+\frac{9}{4}-\frac{5}{4} \frac{u_{1}}{s+t_{1}}\right) \\
& \left.\times\left\{-\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{t_{1}\left(s+t_{1}\right)}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right\}\right] . \tag{B.5}
\end{align*}
$$

Also the reduced cross sections calculated in the MS scheme for the gluon-gluon fusion process whech are presented in eqs. (6.16) and (6.17) of ref. [4] get modified. Here we choose

$$
\begin{equation*}
\int_{\mathrm{wa}}^{\mathrm{D} \mid \mathrm{L}}\left(x, Q^{\prime}, \mu^{2}\right)=-2 n, 1 f_{\mathrm{Eq}}^{\mathrm{D} \mid \mathrm{s}}\left(x, Q^{2}, \mu^{2}\right) \tag{B.6}
\end{equation*}
$$

Here n_{f}, stands for the number of light flavours and $f_{4 / 8}^{\text {DIS }}$ is given in eq. (4.19). The expressions tn the DIS scheme become

$$
\times\left[\left(-\frac{1}{u_{1}}\right)\left\{-\frac{8 u_{1} s_{4}}{\left(s+t_{1}\right)^{2}}-1+\frac{s_{4}^{2}+u_{1}^{2}}{\left(s+t_{1}\right)^{2}} \log \left(\frac{s_{4}}{-u_{1}}\right)\right\}\right.
$$

$$
\begin{equation*}
\left.\times\left\{-\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{t_{1}\left(s+t_{1}\right)}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right\}+\left(t_{1} \leftrightarrow u_{1}\right)\right] . \tag{B,8}
\end{equation*}
$$

The colour factors appearing in the above expressions are the same as the ones used in ref. [4]:

$$
\begin{equation*}
K_{\alpha 2}=\frac{1}{\left(N^{2}-1\right)^{2}}, \quad C_{0}=N\left(N^{2}-1\right), \quad C_{K}=\frac{N^{2}-1}{N} \tag{B9}
\end{equation*}
$$

Appenaix C

In this appendix we diseus the integrations neeesary for the caleulation of the hadfonle differgntal ind total crows metions. The single particle inclusive hadronic

$$
\begin{align*}
& \left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{kg}}^{(1)} \mathrm{n}}{\mathrm{~d} t_{1} \mathrm{~d} u_{1}}\right)_{\mathrm{DI}}^{\prime \prime}=\left(s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{\mathrm{gs}}^{(1)} \mathrm{o}}{\mathrm{~d} t_{1} \mathrm{~d} u_{1}}\right)_{\overline{\mathrm{MS}}}^{\prime \prime}+\frac{1}{4} \alpha_{5}^{3} K_{\mathrm{gg}} n_{\mathrm{f}} C_{\mathrm{O}}\left[\left(-\frac{t_{1}^{2}+\left(s+t_{1}\right)^{2}}{s^{2} u_{1}}\right)\right. \\
& \times\left\{-\frac{8 u_{1} s_{4}}{\left(s+t_{1}\right)^{2}}-1+\frac{s_{4}^{2}+u_{1}^{2}}{\left(s+t_{1}\right)^{2}} \log \left(\frac{s_{4}}{-u_{1}}\right)\right\} \\
& \left.\times\left\{-\frac{t_{1}^{2}+\left(1+t_{1}\right)^{2}}{t_{1}\left(s+t_{1}\right)}+\frac{4 m^{2} s}{t_{1} u_{1}}\left(1-\frac{m^{2} s}{t_{1} u_{1}}\right)\right)+\left(t_{1} \leftrightarrow u_{1}\right)\right], \tag{B.7}
\end{align*}
$$

cross section reads [cf. eq. (6.3)]

$$
\begin{align*}
S^{2} \frac{\mathrm{~d}^{2} \sigma\left(S, T_{1}, U_{1}\right)}{\mathrm{d} T_{1} \mathrm{~d} U_{1}} & =S \frac{\mathrm{~d}^{2} \sigma\left(S, T_{1}, U_{1}\right)}{\mathrm{d} p_{1}^{2} \mathrm{~d} y} \\
& =\int_{\lambda_{1}-1}^{1} \frac{\mathrm{~d} x_{1}}{x_{1}} \int_{x_{2}-}^{1} \frac{\mathrm{~d} x_{2}}{x_{2}} H_{t j}\left(x_{1}, x_{2}, Q^{2}\right) s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{t,}\left(s, t_{1}, u_{1}\right)}{\mathrm{d} t_{1} \mathrm{~d} u_{1}} \tag{C1}
\end{align*}
$$

The hadronic invariants S, T_{1}, U_{1}, and their partonic analogues s, t_{1}, u_{1} were defined in sect. 6 If $t_{1}=x_{1} T_{1}$ and $u_{1}=x_{2} U_{1}$ then the lower limits x_{1-}, x_{2-} are defined by [see also eq. (65)],

$$
\begin{equation*}
x_{1-}=\frac{-U_{1}}{S+T_{1}}, \quad x_{2-}=\frac{-x_{1} T_{1}}{x_{1} S+U_{1}} \tag{C2}
\end{equation*}
$$

The rapidity and transverse momentum of the produced heavy (anti-)quark are denoted by (the lower case letters) y and p_{1}, respectively The rapidity is defined by $y=\frac{1}{2} \ln \left(T_{1} / U_{4}\right)$ Note that the transverse momentum squared $p_{1}^{2}=t_{1} u_{1} / s-m^{2}$ $=T_{1} U_{1} / S-m^{2}$ is invariant under boosts along the beam direction
Denoting the Born cross sections (12) and (1.3) by the following shorthand notation

$$
\begin{equation*}
s^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{1}^{(0)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}=\delta\left(s+t_{1}+u_{1}\right) \sigma_{t}^{(0)}\left(s, t_{1}, u_{1}\right), \tag{C3}
\end{equation*}
$$

their contributions to the hadronic cross section (C.1) can be written as

$$
\begin{align*}
\left(S \frac{\mathrm{~d}^{2} \sigma\left(S, T_{1}, U_{1}\right)}{\mathrm{d} p_{1}^{2} \mathrm{~d} v}\right)^{\mathrm{B}}= & \int_{r_{1}}^{1} \frac{\mathrm{~d} x_{1}}{x_{1}}\left(-\frac{1}{x_{1} T_{1}}\right) H_{11}\left(x_{1},-\frac{x_{1} T_{1}}{x_{1} S+U_{1}}, Q^{2}\right) \\
& \times \sigma_{i j}^{(i)}\left(-\frac{x_{1}^{2} T_{1}}{x_{1} S+U_{1}} S, r_{1} T_{1},-\frac{x_{1} T_{1}}{x_{1} S+U_{1}} U_{1}\right), \tag{C4}
\end{align*}
$$

with x_{1} - given by (C.2).
The order α_{s} correction to the hadronic cross section is split into a soft plus virtual ($\mathrm{S}+\mathrm{V}$) and a hard (H) gluon piece. The hard gluon piece of the hadronic
cross section reads

$$
\begin{align*}
\left(\frac{\mathrm{d}^{2} \sigma\left(S, T_{1}, U_{1}\right)}{\mathrm{d} p_{1}^{2} \mathrm{~d} y}\right)^{\prime \prime}= & \int_{1_{1}}^{1} \frac{\mathrm{~d} x_{1}}{x_{1}} \int_{r_{i}^{*}}^{1} \frac{\mathrm{~d} x_{2}}{x_{2}} H_{1}\left(x_{1}, x_{2}, Q^{2}\right) \\
& \times\left(\mathrm{S}^{2} \frac{\mathrm{~d}^{2} \hat{\sigma}_{i j}^{(1)}}{\mathrm{d} t_{1} \mathrm{~d} u_{1}}\left(x_{1} x_{2} S, x_{1} T_{1}, x_{2} U_{1}\right)\right)^{\mathrm{H}} \tag{C.5}
\end{align*}
$$

where x_{2}^{*}. is determined by the condition

$$
\begin{equation*}
s_{4}=x_{1} x_{2} S+r_{1} T_{1}+r_{2} U_{1}>\Delta \tag{C.6}
\end{equation*}
$$

which yields

$$
\begin{equation*}
x_{2-}^{*}=\left(\Delta-x_{1} T_{1}\right) /\left(x_{1} S+U_{1}\right) \tag{C7}
\end{equation*}
$$

For the actual integrations it is convenient to change variables from x_{2} to s_{4} with the limits $\Delta<s_{4}<s_{4}^{\max } \equiv x_{1}\left(S+T_{1}\right)+U_{1}$.

$$
\begin{equation*}
\int_{4}^{1} \frac{d x_{2}}{x_{2}}=\int_{1}^{s_{1}+n e x} \frac{d s_{4}}{s_{4}-x_{1} T_{1}} \tag{C.8}
\end{equation*}
$$

The soft plus virtual piece is evaluated with elastic kinematics so that $s_{4}=0$. Thus its contributions are proportional to $8\left(x_{4}\right)$ and can be denoted by

$$
\begin{equation*}
\left(s^{2} \frac{d^{2} \hat{t}_{11}^{(b)}}{d t_{1} d u_{1}}\right)^{v+s}=\delta\left(s+t_{1}+u_{1}\right)\left(\sigma_{1}\right)^{v+s}\left(s, t_{1}, u_{1}, \Delta\right) \tag{C9}
\end{equation*}
$$

The offt plus virtual piece of the hadronic cross section equals

$$
\begin{align*}
\left(S \frac{\mathrm{~d}^{2} \sigma\left(S, T_{1}, U_{1}\right)}{\mathrm{d} p_{1}^{2} \mathrm{~d} y}\right)^{\mathrm{v}+s}= & \int_{x_{1}}^{1} \frac{\mathrm{~d} x_{1}}{x_{1}}\left(-\frac{1}{x_{1} T_{1}}\right) H_{1}\left(x_{1},-\frac{x_{1} T_{1}}{x_{1} S+U_{1}}, Q^{2}\right) \\
& \times a_{1}^{\mathrm{v}+\varsigma}\left(-\frac{x_{1}^{2} T_{1}}{x_{1} S+U_{1}} S, x_{1} T_{1},-\frac{x_{1} T_{1}}{x_{1} S+U_{1}} U_{1}, \Delta\right) \tag{C10}
\end{align*}
$$

In our numerical program we rewrite the $\ln ^{\prime}(J)(t=0,1,2)$ terms in $\left(\sigma_{i}\right)^{v * 4}\left(s_{2}, t_{1}, u_{1}, ~ J\right)$ into integrations over s_{4}

$$
\begin{aligned}
& \left(\sigma_{j}\right)^{v+h}\left(s, t_{1}, u_{1}, \Delta\right)=\sum_{k \rightarrow 0}^{2} \alpha_{k} \ln ^{k}\left(\lambda / m^{2}\right)
\end{aligned}
$$

with certain coefficients α_{k}. In this way the $S+V$ piece and the H piece can directly be added The result is a flat s_{4} distribution for the total order α_{s} corrections $(\mathrm{d} \sigma)^{\mathrm{H}+\mathrm{s}+\mathrm{V}}$ and the lower limit Δ can be put to zero The quantities A_{ℓ} in (C 11) are given by

$$
\begin{align*}
& A_{0}=1, \\
& A_{1}=\ln \left(\frac{s_{4}^{\max }}{m^{2}}\right)-\frac{s_{4}^{\max }-1}{s_{4}}, \\
& A_{2}=\ln ^{2}\left(\frac{s_{4}^{\max }}{m^{2}}\right)-2 \frac{s_{4}^{\max }-\Delta}{s_{4}} \ln \left(\frac{s_{4}}{m^{2}}\right) . \tag{C12}
\end{align*}
$$

The total cross section can be derived by integrating $(\mathrm{d} \sigma)^{\mathrm{B}}$ and $(\mathrm{d} \sigma)^{\mathrm{H}+\mathrm{V}+\mathrm{S}}$ over the variables p_{t}^{2} and y with the appropnate limits

$$
\begin{align*}
& \int_{m^{2}}^{S / 4} \mathrm{~d} m_{1}^{2} \int_{-\left(\cosh ^{-1} \sqrt{S}\right) / 2 m_{\mathrm{r}}}^{\left(\cosh ^{-1} \sqrt{S}\right) / 2 m_{1}} \mathrm{~d} y=\int_{-\frac{1}{2} \ln (1+\beta) /(1-\beta)}^{1 \ln [(1+\beta) /(1-\beta)]} \mathrm{d} y \int_{m}^{\left.S / 4 \cosh ^{2} 3\right)} \mathrm{d} m_{\mathrm{t}}^{2} \\
&=\int_{-1}^{1} \mathrm{~d} x_{\mathrm{F}} \int_{m^{2}}^{S / 4-p_{\mathrm{i}}^{2}} \mathrm{~d} m_{\mathrm{i}} \tag{C13}\\
& \frac{\sqrt{S-4 m^{2}}}{2 m_{1} \cosh y}
\end{align*}
$$

where $\beta=\sqrt{\left(1-4 m^{2} / S\right)}$ and $m_{1}=\sqrt{m^{2}+p_{4}^{2}}$ In each case

$$
\begin{equation*}
T_{1}=-\sqrt{S} m_{1} \exp (y), \quad U_{1}=-\sqrt{S} m_{1} \exp (-y) \tag{C14}
\end{equation*}
$$

The second line in eq (C 13) was used for the x_{F} distributions Here λ_{F} is defined in the (hadronic) c.m. frame, $x_{\mathrm{F}}=p_{\mathrm{L}} / p_{\mathrm{L}}^{\text {max }}$, where the maximal longitudinal heavy quark momentum is given by $p_{\mathrm{L}}^{\text {max }}=\sqrt{S / 4-m^{2}}$ Finally, the rapidity y is related to p_{L} via $p_{\mathrm{L}}=m_{1} \sinh y$

References

[1] M Gluck, IF Owens and E Reya, Phys Rev D15 (1978) 2324,
B L Combridge, Nucl Phys Bl5t (1979) 429
[2] P Naron. S Dawson and R K Ellis, Nucl Phys B303 (1988) 607
[3] P. Nason, S Dawson and R.K Ellis, Nucl Phys B327 (1989) 49
[4] W Beenakker, H. Kuıf, WL van Neerven and J Snuth, Phy, Rev D40 (1989) 54

F. Abe ei al, Phyy Rev Lett 64 (1000) $11^{44}, 147$
[6] K. Eggert. 1989 Int Symposium on Lepton- photon interactions at high energy, Stonford. CA
[7] L. Di Letla, 1989 Int Symposium on Lepton-photon interactions at high energy, Stanford, CA
[B] C Alhajar et al, (UA1 experment) Phys Lett B213 (1988) 405
[9] R. Meng. G.A. Schuler, J. Smith and W.L. van Neerven, Nucl. Phys. B339 (1950) 325
[10] ISAJET: F. Paige and S. Protopopescu, Brockhaven report BNL. 38034 (1986)
[11] EUROJET: A. Ali, B. van Eijk and I. ten Have, Nucl. Phys. B292 (1987) 1
[12] HERWIG: G. Marchesini and B.R. Webber, Cambridge preprint Cavendish-HEP-88/7 (1988); Nucl. Phys. B330 (1990) 261
[13] T. Matsuura, S.C. van der Marck and W.L. van Neerven, Phys. Lett. B21t (1988) 171; Nucl. Phys. B319 (1989) 570.
[14] J. Smith, D. Thomas and W.L. van Neerven. Z. Phys. C44 (1989) 267
[15] A. P. Contogouris, S. Papadopoulos and J.P. Ralston, Phys. Lett. B104 (1981) 70; Phys. Rev. D24 (1982) 1280;
A.P. Contogouris, N. Mebarki and S. Papadopoulos, The dominant part of the higher order corrections in perturbative QCD, McGill preprint:
A.P. Contogouris and S. Papadopoulos. The dominant part of the higher order corrections for the process $\mathbf{q}+\boldsymbol{g} \rightarrow \boldsymbol{y}+\mathbf{q}$, McGill preprint
[16] G. Passarino and M. Veltman, Nucl. Phys. B160 (1979) 151
[17] W.J.P. Beenakker, Electroweak corrections: techniques and applications, Ph.D. thesis, University of Leiden, The Netherlands (1989)
[18] R.K. Ellis and J.C. Sexton, Nucl. Phys. B269 (1986) 445
[19] J. Kubar André and F.E. Paige, Phys. Rev. D19 (1978) 221 ;0

[20] R. Lewin, Polylogarithms and Associated Functions (North-Holland. Amsterdam, 1983)
[21] E.G. Floratos, D.A. Ross and C.T. Sachrajda. Nucl. Phys. B129 (1977) 66 [Erratum B139 (f978) 545], B152 (1979) 493;
A. Gonzales-Arroyo, C. Lopez and F.J. Yndurain, Nucl. Phys. B153 (1979) 161;
A. Gonzates-Arroyo and C. Lopez, Nucl. Phys. B166 (1980) 429;

EG. Floratos, P. Lacaze and C. Kounnas, Phys, Letı. B98, (1981) 89. 285
[22] V.N. Gribov and L.N. Lipatov, Sov. J. Nuct. Phys. 15 (1972) 438, 675:
G. Altarelli and G. Parisi, Nucl. Phys. B12g (1977) 290
[23] G. Altarelli. R.K. Ellis and G. Martinelli, Nucl. Phys. B157 (1979) 46]
[24] A.N.J.J. Schellekens, Perturbative QCD and Lepton Pair Production, Ph.D. thesis, Nijmegen University, The Netberlands (1981)
[25] A.FI. Mueller and P. Nason. Phys. Lett. B156 (1985) 226; Nucl. Phys. B266 (1986) 265
[26] M. Dicmoz, F. Ferroni, E. Longo and G. Martinelli, Z. Phys. C39 (1988) 472
[27] G. Altarclli, M. Diemoz. G. Martinelli and P. Nason, Nucl. Phys. B308 (1988) 724
[28] Tulk by S. McMahon (UAl experiment) at the XXVih Rencontres de Moriond. Les Arcs (March 1990)
[29] J.F. Owens, Phys. Rev. D30 (1984) 943
[30] F.A. Berends, K.J.F. Gacmers and R. Gatmans. Nucl. Phys. B57 (1973) 381: B6.3 (1973) 381:
D. Yu. Bardin, M.S. Bilenky, O.M. Fedorenko and T. Riemann, Dubna Preprinı E2-88-324 (1988)

[^0]: * Supported by the Stuchung F.O.M
 ** Supported by LAA, CERN. Genevd
 "4* Supported by the Bundesmmaterium fur Forschung und Technologe. 05 4HH 92P/3 Bonn. Germany.

[^1]: *The symbolic manipuldion program FORM was written by \mathbf{J} A M Vermaseren at NIKHEF-H Version I 0 of this program and its manual are avalable from the duthor

