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Braids naturally arise as topological objects in the discussion of statistics 
in quantum mechanics of indistinguishable pointlike particles moving in a 
(2+l)-dimensional space-time. Conversely, they also play a role as algebraic 
invariants in the discussion of superselection rules in (1 + 1)-dimensional alge- 
braic quantum field theory. Here we show how Abelian braid statistics in (1 + 1) 
dimensions may be interpreted geometrically by introducing the concept of 
antiparticles, thus clarifying the connection between the two approaches. 

1. INTRODUCTION 

Recently, there has been some interest in particles or objects living in 
low-dimensional worlds and obeying some unusual statistics different from 
Bose and Fermi and also not being simply "para." Originally, these statistics 
were formally introduced into a simple mechanistic toy model invented by 
Leinaas and Myrheim (1977) and the relation to Artin's braid theory was 
clarified in a fundamental paper by Wu (1984). That braid groups are also 
relevant for (3 + 1)-dimensional models was seen by Ringwood and Wood- 
ward (1981, 1982). The physical motivation to study braid statistics comes 
mainly from solid-state physics, namely from the investigation of the frac- 
tional quantum Hall effect, which effectively presents a two-dimensional 
problem, and high-Tc superconductivity, which possibly is also related to 
some kind of two-dimensionality. We conjecture that certain topological 
aspects of the quark confinement problem are also deeply related to the 
existence, or better the nonexistence, of certain nontrivial (say many- 
dimensional non-Abelian) irreducible representations of the braid group 
associated with certain 2-manifolds. 
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Since the old days of two-dimensional conformal quantum field theory 
it has been implicitly known that braids, knots, and links are the essential 
structures which should be understood as a prerequisite to a classification 
theory for these models. That some pathological (from today's perspective: 
braidlike) structures are essential for the understanding of the superselection 
structure of all low-dimensional relativistic quantum field theories was rather 
implicitly recognized in the fundamental work of Doplicher et al. (1969a, b, 
1971, 1974; see also Doplicher and Roberts, 1972), which was triggered by 
a paper of Borchers (1965) and supplemented by an important exposition 
of Buchholz and Fredenhagen (1982). 

The clear distinction between Fermi and Bose becomes obsolete in 
certain cases, as is well known from certain (1 + 1)-dimensional models. A 
famous example is the Coleman-Mandelstam duality between the massive 
Thirring model and the sine-Gordon equation (Coleman, 1975; Mandelstam, 
1975). Another milestone in the study of this phenomenon was an unpub- 
lished paper of Lehmann and Stehr (1976). But only recently Polyakov 
generalized this mechanism to (2+ 1)-dimensional gauge theories with a 0 
term, where a dynamical interpolation between Fermi and Bose is observed 
(Polyakov, 1988). 

Fundamental excitations which are neither fermions nor bosons were 
named anyons by Wilczek (1982). Typically, these are bound states of 
charges and magnetic flux tubes in (2+l)-dimensional gauge theories. 
Fractional-statistics quasiparticles are studied in the fractional quantum 
Hall effect problem and analogous structures occur as excitatiolas of the 
resonating valence bond state, possibly the ground state of the new supercon- 
ductors (Anderson, 1987). The symmetry of a many-anyon wave function 
is sufficiently described by the property that an exchange of two particles 
changes its phase by a factor exp iO not necessarily being +1 or -1.  

One important point is that in all theories where kinematic superselec- 
tion rules occur which are parametrized by a continuous parameter, one 
can dynamically change the sector by continuously deforming the parameter. 
Expressed in other words, this means that kinematic properties may be 
shuffled over to dynamic properties. Exactly this is done when we introduce 
a fictitious vector potential to reinterpret fractional-statistics particles as 
charged vortices. Such a procedure cannot be performed if we have discrete 
kinematic superselection rules such as in the Bopp-Haag spin model (Bopp 
and Haag, 1950; Haag, 1952) or in higher-dimensional statistics models 
(Tscheuschner, 1987, 1989, 1990b). This is the very reason why the notion 
of fractional statistics in field theory is a little bit sloppy. 

Thouless and Wu (1985) showed that particles living on a 2-sphere 
allow for discrete kinematic superselection sectors, thus giving a quantiz- 
ation rule for the 0 parameter for these "anyons on the 2-sphere." However, 
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if antiparticles are included, the statistics reduces to the ordinary Bose-Fermi 
alternative. In a recent paper Einarsson (1990) discussed the fractional 
statistics on a torus and remarked that the fractional quantum Hall effect 
with periodic boundary conditions fits nicely in this picture. He came up 
with the interesting result that fractional statistics on a torus is consistent 
only with multicomponent wave functions. 

The relevance to the quark confinement problem comes from the 
following observation: As emphasized in Tscheuschner (1987, 1989), point- 
particle models are nothing but toy models for moving localized morphisms 
in quantum field theory. To create states carrying a gauge charge, we have 
to define field operators and morphisms, respectively, which are localized 
in a spacelike cone. On the sphere at infinity such a cone looks like a 
two-dimensional ball; thus, the essential topology of the problem is reduced 
to the topology of the configuration space of indistinguishable ball-like 
objects moving on a sphere. But we have to take into account the existence 
of  conjugated charges on the one hand (e.g., by introducing a configuration 
space of positive and negative objects) and the non-Abelian structure of 
the charges on the other. The latter problem will be considered elsewhere. 
It is expected that one gets a braid-group-theoretic relation to the t 'Hooft  
algebra (quarks with gluon strings added as some kind of "spherical" 
non-Abelian anyons). 

In a recent paper Fredenhagen et al. (1989) try to classify all low- 
dimensional statistics in the spirit of algebraic quantum field theory. They 
generalize the anyon concept to objects obeying non-Abelian braid statistics 
in the framework of algebraic quantum field theory. They were named 
plektrons by Fredenhagen and RSmer. On the level of configuration spaces, 
the possibility of objects obeying non-Abelian braid statistics was discussed 
in Tscheuschner (1987, 1989) and it was conjectured that an interweaving 
between strange statistics and spin quantum numbers leads to what may be 
called "para-spin-statistics." 

It may be possible that all those concepts may have some relevance in 
condensed matter physics in the near future, since in low-dimensional 
theories statistics-changing phase transitions may occur. Remember that 
the concept of symmetry (breaking) is intimately related to the description 
of the phases of a physical system on the one hand and to the notion of 
charge on the other, the latter being dual to the notion of statistics in some 
sense. One should not forget that the question of the relevance of supersym- 
metry is equivalent to the existence problem for certain phase transitions! 
This is the philosophy of the Polyakov-Wiegmann school in the investigation 
of (2+ 1)-dimensional magnetic systems (see, e.g., Wiegmann, 1988). 

Unfortunately, the relations between the mathematically involved 
superselection structure analysis of algebraic quantum field theory and the 
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mechanistic approach only using configuration spaces, where adiabatic 
Berry-type changes of  the particle localization smoothly change the phase 
of  the wave function, remain somewhat  unclear. The former heavily relies 
on relativity and field theory, the latter is more intuitive and supports 
geometrical imagination. We think that the topological spin-statistics corre- 
lations visible in certain models (Balachandran et al., 1990; Sorkin, 1988; 
Tscheuschner,  1987, 1989, 1990a, b) provide good examples for the fact that 
the f ramework of  axiomatic quantum field theory is rather narrow, since 
they refer neither to relativity nor to field theory. But even the notion of 
statistics a lone- -of ten  associated with the causal topology of  Minkowskian 
space - t ime- -may  be far more general. Our main objective is to show that 
the configuration approach i s - - in  some sense - -more  general than the alge- 
braic approach.  But we think it may be useful to extract all structures out 
of  the algebraic approach that are "topologically interesting." 

Here we restrict ourselves to Abelian statistics (fermions, bosons, 
anyons) and show that even in (1 + 1)-dimensional models a simple descrip- 
tion, which is based on configuration spaces, is possible. As a by-product  
a simple graphical technique is introduced, which shows what is happening 
topologically in algebraic quantum field theory. 

2. A N O M A L O U S  STATISTICS OF FIELDS 

As is well known, the spacelike commutat ion relations of  two field 
operators in quantum field theory look like 

~.tl I//2 = E"  ~/2t]/1 ( 1 )  

where the indices 1, 2 indicate two relatively spacelike disjoint localization 
regions. The value of the statistics parameter  is e = +1 for the Bose case, 
e = - 1  for the Fermi case. This formula may be generalized to 

~bl �9 �9 �9 tPN = e,~(1 ' ' '  N ) -  ~- ' (1)  " " " ~b~-'(N) (2) 

where the mapping  o - ~  e~(1 �9 �9 �9 N)  constitutes a unitary and, in our case, 
one-dimensional  representation of the symmetric group ~N characterized 
by the multiplication law 

e~2~,(1 . . .  N ) =  e~(~r~-'(1) �9 . .  cr~-l(N))e~,(1 �9 "" N )  (3) 

The arguments of  the e 's  in the braces look a little bit strange. In fact, they 
may be omitted here. They should indicate that, e.g., e~(1 �9 �9 �9 N )  is compat-  
ible only to a field operator  product  of  the form tPl �9 �9 �9 ~PN on the left-hand 
side of  the commutat ion relation. Behind this notation stands the intertwiner 
calculus of  algebraic quantum field theory, which will not be elaborated 
here in detail. 
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In case o f  anyonic  statistics, we have to write 

6162  ~--- E21 " 6//26//1 (4) 

and keep in mind  that  e21 # ex2, since now the statistics parameter  is an 
arbitrary phase factor. This means that the p roduc t  6162 is multiple-valued, 
i.e., a double  exchange of  the fields alters its value by a factor  s122 # 1. 

The "mult if ield" commuta t ion  relations in the anyonic  case look like 

6 1 ' '  " 6 N  = eb (1  " ' "  N ) "  6~(b)-l(1) "" "6~r(b)-l(N) (5)  

where b is an element o f  the full braid group BN of  the Eucl idean plane 
R 2 and 7r:BN--> XN is the natural  h o m o m o r p h i s m  onto the N-d imens iona l  
symmetr ic  group.  Here b ~ eb (1  �9 " " N )  defines a unitary one-dimensional  
representat ion of  the braid group that is characterized by the mult ipl ication 
law 

eb2b,(1 " ' "  N ) =  eb2(rr(b,)-l(1) . . "  o r ( b l ) - l ( N ) ) s s , ( 1  . . .  N )  (6) 

b e BN may  be written as a product  o f  generators cr I �9 �9 �9 crN 1, and it is 
easy to see that  

6 1 " ' "  6 ( i - - 1 ) 6 i 6 i + 1 "  " " 6 N  = e~,(l" �9 �9 N ) 6 ,  " " " 6 ( i - 1 ) 6 i + , 6 , "  " " 6 N  (7) 

Notice that  is n o t  allowed to omit the arguments  in the braces o f  the 
e parameter  in case of  anyonic  statistics. Hence,  e21 is an abbreviat ion 
for e~,(12). 

Let us return to the simplest form of  commuta t ion  relations only 
containing two field operators.  For  simplicity, let us assume that the 6 ' s  
are unitary. Then we may  also write 

By defining 

and 

we get 

61626i-1671 = e2, " 6 2 6 (  1 (8) 

3',(" ) :=  61(" )671 (10) 

6,(U2,)  = e2," U2, (11) 

U2~ may be interpreted as a charge transfer opera tor  shifting 61 to 02,  i.e., 

02 = U21~/-r (12) 

The t ransformat ion 61(" ) = 4'1(" )61 ~ looks like a similarity t ransformat ion 
in the field algebra and is professionally called an i n n e r  a u t o m o r p h i s m  o f  

U21 : :  62{//11 (9)  
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AB =BA 
Fig. 1. Two observables A and B localized in spacelike disjoint regions. 

the field algebra. Notice that, whereas the fields in general are not observ- 
ables, the charge transfer operators U2~ are, since they describe nothing but 
bilocal currents. Thus, 71(" ) is an outer automorphism of the observable 
algebra. 

To summarize, the statistics parameter is a quantity that can be defined 
in terms of localized morphisms and bilocal observables. In other words, 
the field algebra is an extension of the algebra of observables, and, 
mathematically speaking, it is the great merit of Doplicher, Haag, and 
Roberts (DHR) to have formulated a Galois-type theory for these C*- 
algebra extensions. 

Let us briefly review the early work of DHR and graphically represent 
the main operations: Without loss of generality we are working in a fixed 
time slice and consider all operations in the space of perception. 

An observable A localized in a ball-like region is represented by a 
circle. Now locality says that two observables localized in spacelike disjoint 
regions commute. This is visualized in Figure 1. 

Localized morphisms are visualized as "fat" circles. If a localized 
morphism 7 is localized in a region having a nonempty intersection with 
the support of the observable A, then, generally, it will act nontrivially: 
7(A) # A. This case and, in addition, the trivial case 7(A) = A are depicted 
in Figure 2. 

( ~ ~  y{A)4= A 

Fig. 2. 

Q y(A)=A 
A localized automorphism y acting nontrivially, resp. trivially, on a localized 

observable A. 
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Fig. 3. An inner morphism 0-21 transporting Yl to Y2 and the associated unitary U21. 

An inner morphism o-2~(.)= U 2 1 ( ' ) U ~ ,  which shifts a localized 
automorphism 3'1 to 3'2 (where 1, 2 label the support  region), is represented 
by an arrow pointing from 3'l to 3'2. The corresponding unitary is a local 
observable localized in a region containing the supports of Yl, 3'2 and an 
arbitrary invisible string connecting both. This is shown in Figure 3. 

Now we are able to represent the proof  of  the first of three important 
lemmata by D H R  graphically! 

The first one states that for any pair of  spacelike disjoint regions 1, 2 
the associated automorphisms commute: 

3'1Y2 = 3'23'1 (13) 

This can be immediately read off from Figure 4. YlY2 = Y2Yl means that for 
any local observable A we have y l T 2 ( A )  = y 2 T I ( A ) .  Since A is localized in 

U11, 

Vl"Y2(A) = 'y2'Yl (A) 
Fig. 4. Two relatively spacelike disjoint localized automorphisms commute. 
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some region, we may think of Yl and Y2 as automorphisms which are 
obtained by applying inner automorphisms tr22, and o" 11, on automorphisms 
Yr and Yz, respectively; the latter are chosen to be localized outside the 
support of  A. On the other hand, the supports of Ulr  and U22, may be 
chosen to be mutually spacelike disjoint, such that, because of  y v ( A ) =  

y z ( A )  = A and Yv(U22,) ~ -  U22', 3'2'(Ull') = Ul1', we have yly2(A) = 3'23'1(A). 
The second one states that if for any spacelike disjoint regions 1, 2 we 

have 3'2(" ) =  o'2171(" ) =  U213"1(" )U i l  I , then we will get 

3'1(U21) = E21 U21 (14)  

where e is a complex phase (Figure 5). This lemma immediately follows 
from the commutativity law 3"ly2=3"2yl, which also may be written 
3"1o'213"1 = o-213'13'1. Canceling the 3'1 on the right, we get a relation like 

3'1(U21)""" 3'1(U21) -1=-- U21" �9 �9 U211 (15) 

proving the lemma. It is also easy to see that 

--1 (16) E 2 1  ~ E712 

U21 

U31 
Fig. 5. Definition of  the statistics parameter e21 and its independence of its arguments. 
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Furthermore,  we have (Figure 5) 

E31U31 = ' y l ( U 3 1 )  = ") / l (U32U21)  = U32"YI(U21 ) = E21U32U21 = E21U31 ( 1 7 )  

Thus, e2a neither depends on the first index nor on the second. 
The third lemma of D H R  states that in at least two space dimensions 

we have 

821 = 1312 = e211 = +1 (18) 

Figure 6 visualizes this and shows also that in one space dimensions the e 
parameter  still depends on the ordering of the indices! Hence, in general, 
we have 

821 "7 g: E12 , D = 1 (19) 

The whole analysis may be repeated for field operators carrying charges 
which are localizable only in a spacelike cone. This was done by Buchholz 
and Fredenhagen (1982) for theories in which massless excitations are 
absent. The main result is that this worse localization effectively reduces 
the dimensionality of the statistics problem by one, i.e., to get the Bose-Fermi 
alternative we need at least three space dimensions. 

To conclude, in 2+  1 space-time dimensions there do not exist local 
field operators 0(x)  that obey anyonic commutat ion relations. Field 
operators which generate charges to which we associate anyonic statistics 
are localized in a spacelike cone. They should be expressed in terms of a 
local field with a (Chern-Simons) gauge string attached: 

~b(x, x~, ~ )  = ~b(x) �9 exp ie A~ ( x )  dx ~ (20) 

where ~ is a path from x to x~, the latter being a point on the boundary 
sphere S~ at spacelike infinity. 

Fig. 6. How to deform e21 into e12. 
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3. CONFIGURATION AND QUASICONFIGURATION SPACES 

In quantum mechanics the full braid group enters the discussion in 
form of  the fundamental group 

BN = qTI(CN(R2)) (21) 

of  the configuration space CN(R 2) of N noncoinciding indistinguishable 
particles moving in the Euclidean plane (Wu, 1984). 

In general we define 

C N ( M )  := {s c M I card s = N} (22) 

with a suitable topologization, such that C N ( M )  is a (dim M ) .  N- 
dimensional differentiable manifold. For higher-dimensional spaces of  per- 
ception we have 

~ N = ~ ( CN( R "~3) ) (23) 

Since in quantum mechanics, kinematic topological superselection sectors 
are classified by the character group of the fundamental group of the 
configuration space, we have a continuum of kinematic quantizations 
labeled by the elements of 

BN = U(1) = {e i~ (24) 

This is opposed to the higher-dimensional case, where we have 

~N = Z2 = {Fermi, Bose} (25) 

Adopting a nonstandard analysis philosophy, we are allowed to think of 
the configuration space as the manifold of configuration eigenstates: 

Q = {Iq)(q[} (26) 

The manifold of configuration (bra-) eigenvectors forms a U(1)-bundle 
Q --> ~ Q, symbolically written 

Q = {(q[} (27) 

Thus, a closed loop in the configuration space Q induces a holonomy phase 
shift in the fiber parallel-transported along the loop. There are two types 
of holonomy: One that can be expressed by curvature (Berry's phase) and 
the other that is due to the torsion or twist of the bundle. Conventional 
statistics is associated to the latter type, anyonic statistics to the former. 

Configuration space models are not restricted to be viewed as models 
for particles (i.e., eigenstates of the mass operator), but they may provide 
an approach to more complicated objects moving in the space of perception 
such as rigid balls, kinks, structured strings, etc. For instance, they may be 
naturally imbedded in a kink field-theoretic configuration space and thus 



Geometrical Meaning of Braid Statistics 263 

give a first approximation to kink statistics. It is our aim to find a universal 
field-theoretic configuration space, i.e., a manifold that may be obtained 
from imposing physical goodness conditions on the Grassmann manifold 
of all pure states in a Hilbert space (Tscheuschner, 1987, 1989). 

We think it is a good idea to consider--as a zeroth approximation-- 
quasi-configuration spaces of moving localized automorphisms for the fol- 
lowing reason: Products of spacelike disjoint localized y's stand in the same 
relation to the products of the corresponding ~'s as the ]q)(q]'s to the Iq)'s 
do! Let tOo = I~)(fll denote the vacuum state. Let us relate 

quantum mechanical toy models ~ algebraic QFT 

Q = {IXl " " " XN)(X1 " " " XN[} <'-> Quasi  = {tOo o ,)tl �9 �9 �9 "YN} ( 2 8 )  

Q = { ( x l "  �9 �9 XNI}<-> Quas i  = {(~'~[t~l " �9 �9 r  

For simplicity we assume that all 3~'s are equivalent with respect to rigid 
translations. Then, if the space of perception has at least three dimensions, 
any exchange loop in Q---CN(R 3) is naturally mapped in a homotopy- 
preserving fashion onto an exchange loop in the corresponding quasi- 
configuration space Quasi of localized automorphisms (Figure 7). Thus, the 
e parameter is the holonomy phase for the exchange of two identical field 
operators. The only assumption that has been made is the continuity of the 
"moving phase" of the field operators. 

This interpretation will no longer hold if we go down to two space 
dimensions. As shown in the preceding section, the DHR statistics parameter 
may take only two values; in the configuration space picture, however, we 
get a continuum of holonomy phases labeled by the elements of U(1). 

Tscheuschner (1987, 1989, 1990a, b) proposed that the appropriate 
configuration space to emulate the statistics structure of (D + 1)-dimensional 
relativistic field theory is not CN (R~ but the configuration space C~(R D) 

/,,,// i/ 

Fig. 7. E x c h a n g e  of  iden t ica l  par t ic les  versus exchange  of  ident ica l  au tomorph i sms ,  
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Fig. 8. 

r ~  J 

A pair-creation-annihilation obstruction not homotopic to a simple particle trajectory. 

of noncoinciding indistinguishable positive and noncoinciding indistin- 
guishable negative pointlike particles of total charge N moving in R D that 
is defined by 

CN(RD) := {(S, t ) c  RD xRDIcard  s - c a r d  t = N } / -  (29) 

where s, t are finite subsets and the equivalence of two elements of {- �9 �9 } 
is give by 

(s, t) ~ (s ' ,  t ') :r s \ t  = s ' \ t '  and t \ s  = t ' \ s '  (30) 

Thus, the configuration space C ~ ( M )  is topologized in such a way that 
particles of the same charge sign never collide, while pairs of particles 
carrying opposite charges may be created or annihilated. Moreover, it is 
topologized that a simple pair-creation-annihilation obstruction that inter- 
rupts a one-particle trajectory cannot be deformed to a simple trajectory 
(see Figure 8). 

This is due to the fact that configurations in which two or more particles 
and antiparticles, respectively, coincide, have been excluded before impos- 
ing the equivalence relation. However, in at least two space dimensions the 
juxtaposition of two such pair-creation-annihilation obstructions may be 
deformed to a simple trajectory as shown in Figure 9. Thus, we have 
"/7"I(CN(RD->2)) = Z  2 in accordance with the analysis of Doplicher, et al. 
(1969a, b, 1971, 1974). 

Fig. 9. 

js  

t '~ cXj r'~ t ~  

The juxtaposition of two pair-creation-annihilation obstructions homotopic to a simple 
particle trajectory. 
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An important  point which cannot be overemphasized is that when we 
talk about  particles in our configuration space models we do not necessarily 
mean particles in a strict sense, but any sufficiently localized objects in the 
space of perception R ~ These objects may be topological solitons, for 
example,  or localized morphisms. 

Once these objects have an auxiliary internal structure we have to 
specify a rule for the creation and annihilation process. It is shown in 
Tscheuschner (1989a) that the correct choice is intimately related to the 
spin-statistics relation of these objects. In case of  localized morphisms this 
choice must be an ordering convention for the product  of  a morphism and 
its conjugate overlapping during the creation and annihilation process. So 
we have an improved relation between 

improved quantum mechanical toy models*-> algebraic QFT 

Q = {[x~ �9 �9 �9 x~y~- �9 �9 �9 y~)(Xl  �9 �9 �9 x~y]- �9 . .  y ~ l } ~  Quasi 

= {tOo o y ~ . ' '  YN~, . . . .  ~/N'} (31) 

Q = {(Xl"""  x~cy~- ' '"  y s [ } ~  Quas~ 

The possibility of pair creation and annihilation Abelizes any braid in two 
dimensions. This is demonstrated in Figure 10. In one dimension, however, 
exchange braids cannot be defined. Therefore, it is a bit surprising from 
the configuration space point of  view that we encounter braid statistics here. 
However,  at least in the case of  Abelian anyonic statistics we can give it a 
geometrical meaning: By using the fact that antiparticles are allowed to 
go through particles, we introduce so-called quasibraids, which can be 
homotopical ly deformed to an assembly of pair-creation-annihilation- 
obstructed lines. Figure 11 shows a quasibraid similar to the braid depicted 
in Figure 7. 

Note that in one space dimension these obstructions are no longer of 
order two, but of  infinite order. Unfortunately, in one dimension it is not 

rxj [1 x rx.j 

Fig. 10. Abelization of a braid by using pair creation and annihilation. 
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r 

e-i~ I 

e-i0 l 

e iO l 't 

Fig. 11. The quasibraid analogue of Figure 7 and its deformation to an assembly of pair- 
creation-annihilation-obstructed trajectories. 

possible to carry over all these obstructions onto one trajectory. But if we 
impose only those quantizations which treat all particles in such a way that 
they associate the same phase factor exp iO to a, say, right-handed, pair- 
creation-annihilation obstruction, we finally reproduce the anyonic charac- 
teristics. Thus, Abelian braid statistics is possible in one-dimensional systems 
of "particles" and "holes" characterized by a quantum number that has no 
long-range meaning, even in systems that do not admit a Lorentz-covariant 
description. This result may have an application in the theory of quasi-one- 
dimensional systems such as quantum wires and conducting polymers. 

4. CONCLUSION 

One great unresolved problem is how far we may go in extending the 
configuration space of  morphisms while preserving its nontrivial homotopic 
properties. Evidently, we do not have to be afraid of  including all kinds of 
blowing-up and shrinking operations, rotations, etc. But including all quan- 
tum operations, i.e., all inner morphisms or all unitary transformations on 
the level of  the field algebra (not only those which have a geometrical 
meaning), reduces the homotopy down to triviality. Hence, one deep ques- 
tion remains: What are the physical constraints which naturally give us a 
true quantum configuration space (or a family of  such spaces), e.g., a 
topological space of morphisms with the correct topological properties? 
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