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We present new data for O (4) and O (8) a-models generated in cluster simulations at large correlation length. Together with 
results for O (3) they are analyzed with the conclusion that asymptotic scaling sets in earlier with growing n. There is good agree- 
ment with recently proposed exact results for m/A~g, in particular when a resummation technique is used and 3-loop terms are 
included in the data analysis. 

O (n)  nonlinear a-models in D = 2 dimensions are 
o f  special interest to particle physicists due to their 
similarities with QCD. They are used as a laboratory 
to study methods and problems to probe cont inuum 
behavior in asymptotically free theories on the lat- 
tice. With the advent  o f  cluster algorithms [ l ] and 
their adaptation to O ( n )  a-models [2 ] it has become 
possible to perform high precision numerical simu- 
lations relatively close to the continuum, i.e. with 
correlation lengths up to (9 (100) lattice spacings on 
systems up to C(10002). The extraordinary effi- 
ciency of  cluster algorithms for a-models is due to the 
absence o f  critical slowing down, and further gain re- 
sults f rom the use o f  variance reduced ( " improved" )  
observables [ 3 ]. In this letter we employ these sharp- 
ened tools to investigate asymptotic scaling in the 
n = 4 and n = 8 models. A detailed study of  the case 
n = 3 has been conducted in ref. [ 3 ]. While scaling 
between physical long range quantities was found to 
hold to the expected degree (see also ref. [ 4 ] ) ,  
asymptotic scaling (AS) with the bare coupling was 
not found for the 0 ( 3 )  model even at correlation 
lengths around 100. The latter result was confirmed 
qualitatively and quantitatively by ref. [ 5 ] for the 
standard nearest neighbor action. These authors 
demonstrated that AS holds to a better approxima- 
tion when they use a variant action or when they in- 
directly go to even larger correlation lengths by a 
Monte Carlo renormalization group technique. 

There are arguments [ 6 ] that problems with AS for 
the standard lattice action could be due to a singular- 

ity at complex fl, which is relatively close to the real 
axis for n = 3 and recedes from it for larger n. We took 
this as a motivat ion to produce high precision data 
for n--  4, 8. Only after our numerical calculations had 
been completed, we were informed of  the analytic re- 
sults [ 7 ] for the mass gap of  O (n)  models using Bethe 
ansatz and the exact S-matrix. It will, of  course, be 
particularly interesting to compare numerical data 
with these numbers. Earlier cluster simulations for 
0 ( 4 )  have been performed in refs. [8,9] using the 
many-cluster variant of  the algorithm, while the pres- 
ent data have been produced with the even more ef- 
ficient single cluster algorithm. Also in ref. [ 8 ] the 
authors quoted the data on their largest lattices and 
inverse couplings as unreliable due to metastability. 
Indeed, our results are at variance with ref. [ 8 ] for 
one o f  those data points while there is perfect agree- 
ment  for all others ,1. Our new data are compiled in 
table 1 and table 2. 

The simulations were carried out on periodic 2-di- 
mensional lattices o f  T sites in euclidean time and L 
sites in space direction. Spins residing on the sites 
consist o f  n-component  real unit vectors. The inverse 
coupling fl refers to the standard nearest neighbor ac- 
tion, and E is the average nearest neighbor correla- 
tion followed by the magnetic susceptibility Z. Fur- 
ther details and definitions can be found in ref. [ 3 ]. 
The correlation length ~ has been determined by fit- 

#~ This discrepancy persists even if we extrapolate [ 10] the point 
in question L = 256, fl= 2.8 to L = co leading to ~x = 80.3. 
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Table 1 
Simulation results for the O (4) model. 
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T L fl E Z ~ zint~ 

128 128 2.1 0.60081(5) 161.48(17) 10.446(17) 0.26(1) 
128 128 2.2 0.62261(4) 267.63(38) 13.993(25) 0.30(1) 
128 128 2.3 0.64198(2) 448.65(43) 18.887(22) 0.41(1) 
256 256 2.4 0.65946(4) 766.5(1.6) 25.63(7) 0.27(1) 
256 256 2.5 0.67518(3) 1313(3) 34.85(9) 0.35(1) 
512 256 2.6 0.68931(2) 2243(3) 47.16(10) 0.31(1) 
512 512 2.7 0.70220(1) 3910(7) 63.98(15) 0.30(1) 

1024 512 2.8 0.71398(2) 6713(20) 86.07(37) 0.28(1) 

Table 2 
Simulation resultsforthe O(8)model. 

T L fl E Z ~ ~.t~ 

128 128 4.0 0.54366(4) 54.03(3) 5.461(5) 0.421(5) 
128 128 4.6 0.60389(4) 149.33(13) 9.884(13) 0.46(1) 
128 128 5.2 0.65126(4) 430.55(63) 18.042(33) 0.71(2) 
256 256 5.8 0.68890(3) 1288.9(2.4) 33.41(8) 0.63(2) 

ring the falloff  o f  space averaged ( 0 - m o m e n t u m )  
correlations to the cosh-behavior appropr ia te  for t ime 
per iodic i ty  ~2. The fi t t ing window in t ime  was chosen 
self-consistently f rom 2~ to T/2 resulting in negligi- 
ble systematic  effects f rom eigenvalues o f  the t ransfer  
mat r ix  beyond  the mass gap. As for finite L effects, 
we checked that  ext rapola t ions  to L = o o  with the 
me thod  o f  ref. [ 10 ] never  move our  ~ values by  more  
than the stat ist ical  error  ~3. Finally,  Pint,x is the inte- 
grated autocorre la t ion  time for the suscept ibi l i ty  in 
units of  steps per  spin [ 11,2 ]. While  values for Z and  

come from cluster es t imators  [ 3 ], E and zi,t,x are 
more  advantageously  const ructed f rom the s tandard  
expressions in terms of  spins ~4. The  da ta  for Zint,x on 

a2 In ref. [ 8 ] the euclidean propagator at small momentum is 
used to define the mass (second moment definition). Al- 
though different from our definition, which gives the mass gap 
equivalent to the pole location, this difference is expected to 
be small. Indeed, it is invisible when comparing table 1 and 
ref. [81. 

~3 Except forfl=2.6, which moves to ~x=47.34. 
a4 This has been discussed by Niedermayer in ref. [ 12 ]. His 

"improved improved estimator" for shirt distance quantities 
cannot be immediately transcribed to the single cluster method, 
but where we use our results for E in the data analysis, their 
errors are completely negligible. This is unfortunately not quite 
true for data from ref. [ 3 ] where cluster estimators were used 
exclusively, and E is not as accurate as it could have been. 

s imilar  lattices ( same T/L) suggest a dependence  on 
L/~ only (as in the XY model  [ 13] ) which means  
complete  absence o f  crit ical slowing down in the in- 
tegrated autocorre la t ion  t ime of  a typical  long dis- 
tance quantity.  All  errors in the tables were es t imated  
by b inning  with 128 bins. 

We now come to the analysis o f  our data. Asymp-  
tot ic  f reedom predicts  a crit ical poin t  at fl--,oo. The 
correlat ion length is expected to diverge with an es- 
sential  singulari ty in 1/fl such that  the mass gap 
m = ~ -  1 tends to a constant  mul t ip le  of  the per turba-  
t ive scale 

AL = e x p [  --2ztfl/(n-2) ] [2rtfl/(n--2) ] 1/(n-2) ( 1 ) 

composed  of  the universal  1- and  2-loop coefficients 
o f  the Ca l l an -Symanz ik  fl-function. This behavior  is 
what  is called AS, m ~- CAL. For  the a-models  also the 
3-loop term of  the lattice fl-function is known [ 14 ] ~5, 
which predicts  the leading devia t ion  f rom constancy 
for the rat io  m/AL. Therefore,  using ins tead of  AL the 
corrected 

~5 It has recently been confirmed in an independent calculation 
by Weisz and Ltischer [ 15 ]. 
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0 . 4 8 6 + 0 . 0 8 9 ( n - 2 )  ) 
A ( f l ) = A L  1+ 2~r(n-2)f l  +(9(f l -2)  ' 

(2) 

should result in C ~- m / A  (fl) converging better or, re- 
spectively, already at lower fl and ~. It is, however, 
also clear from (2) that further corrections are essen- 
tially inverse powers of In ~, and that it therefore may 
require enormous values for ~ to "see" such an 
asymptotic expansion hold. In figs. 1-3 data are 
shown for n=  3, 4 and 8. The conventional Ah--g has 
been introduced by converting 

A ~ g = A L / x / ~  e x p { n / [ 2 ( n - 2 )  ]}. (3) 

The dashed horizontal lines are the analytic results of 
ref. [7], 

l / ( n - - 2 )  

m ( 8 )  1 (4) 
A~g - F ( l + l / ( n - 2 ) )  " 

The two upper trains of symbols refer to 2- and 3- 
loop AS as just discussed. With the O (3) data taken 
from ref. [ 3 ], we graphically confirm absence of AS, 
while the situation clearly stabilizes toward better ap- 

proximate AS with growing n. 
The two other kinds of symbols in the plots refer to 

a modified data analysis using a resummation tech- 
nique proposed by ref. [ 16 ] which is similar to ref. 
[ 17 ]. The method starts from the perturbative ex- 
pansion of the internal energy ~6 

n - 1  n - 1  
E = I  

4fl 32fl 2 

0 .0075(n -  1) + 0 . 0 0 6 ( n -  1) z 
" 1 -  ( ~  ( ~ - - 4 ) .  

(5) 

Using the first two terms of (5) we define 

n - 1  
f ie= 4(1 - E - - - ~  ' (6) 

which, for fl--,oo, goes over to fl with the right nor- 
malization. It may be used as an alternative bare (i.e. 

~6 Theft-3 term has been computed by M. Liischer, whom I thank 
for communicating it. 
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Fig. 1. Ratio of  mass gap to perturbative scale for the O (3) nonlinear o-model [ 3 ] using 2- and 3-loop asymptotic scaling in two different 
parametrizations. The dashed line is the analytic result [7] eq. (4).  All 3-loop data points contain 2e (statistical) error bars (partly too 
small to be visible). 
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Fig. 2. As fig. 1 for the 0 ( 4 )  model ,  da ta  f rom table  1. 
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Fig. 3. As fig. 1 for the 0 ( 8 )  model ,  da ta  f rom table  2. 
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related to short distance) coupling with the universal 
1- and 2-loop coefficients in its r-function. The 3-loop 
term is easily calculable f rom (5),  (6)  and the results 
in ref. [ 14 ]. I f  we now take E from the data, it in- 
cludes all higher orders and the procedure corre- 
sponds to an infinite resummation.  A scale Ae anal- 
ogous to AL is defined as in ( 1 ) using fie on the right 
hand side, and from (5) it follows that 

AE =AL e x p { z r / [ 4 ( n - 2 ) ] } .  (7)  

Figs. 1-3 show that AS tends to be reached somewhat 
earlier in the fie parametrization with values closer to 
the analytic ones. A few further comments  are in or- 
der: The complete agreement o f  the 3-loop fie data- 
points with the proposed exact mass for n = 4 is prob- 
ably accidental. The next (4-loop) term must  be 
expected to spoil this again somewhat. We rather 
think that using fie and having a family of  curves 
scattering in height gives us a feeling o f  our separa- 
tion from "asympto t i a ' .  A number  o f  heuristic ar- 
guments is given in ref. [ 15 ] why fie may be expected 
to work somewhat better than ft. 

We conclude that asymptotic scaling o f  the mass 
gap is exhibited more closely in the 0 ( 4 )  and rather 
precisely in the O (8)  nonlinear a-models at correla- 
tion lengths o f  (9 ( 10-100) .  At n = 3 it remains futile, 
although the unconverged fie data are not very far 
f rom the analytic result. Overall, and in particular for 
n = 4 ,  8, formula (4)  o f  Hasenfratz and Niedermayer  
[ 7 ] is in good agreement with our data and thus re- 
ceives numerical support. 

I would like to thank the authors o f  ref. [ 7 ] for 
sharing their exciting new results with me prior to 
publication. Hospitality o f  the DESY theory group 
and discussions with Burkhard Bunk, Robert  

Edwards, Martin Liischer, Ferenc Niedermayer  and 
Alan Sokal are gratefully acknowledged. The com- 
putations were carried out on the Cray XMP 216 at 
Kiel University and on the Bielefeld University Con- 
vex C240 and represent a total o f  75 h ( n = 4 )  plus 
23 h (n = 8 ) single processor XMP time. 
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