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We stu~, the 4-component q~4 model in 4 dimensions in the broken phase where the 
Goldstone modes dominate the finite size effects. Chiral perturbation theory relates the 
quantities measured at non-vanishing external source and in a finite volume to the low energy 
pan, meters _v (the field expectation value) and F (the pion decay constant) defined at infinite 
volume in the limit of vanishing external source. We analyze high statistics Monte Carlo data for 
the field expectation value and the Goldstone propagator by means of such expansions and we 
find very gtmd agreement with the theoretically expected functional behaviour. It is possible to 
identify, non-leading terms in the finite volume expansion and determine corresponding scale 
parameters. We also explore some alternative methods applicable at vanishing external source. 
Our analysis demonstrates that in a situation where the light Goldstone bosons control the 
dynamics of the system at large distances one may determine the infinite volume, zero external 
source quantities from finite volume simulations in a theoretically controlled way. 

1. Introduction 

Many recent non-perturbative studies of the Higgs mechanism in the standard 
model concentrated on the investigation of the O(4)-symmetric scalar sector in the 
broken symmetry phase, following a suggestion of Dashen and Neuberger [1]. This 
simplification is supported by the observation [2] that weakly coupled gauge fields 
do not change the non-interacting character of the ~4  theory. (For recent reviews 
on these subjects cf. refs. [3-6].) However, for heavy Higgs bosons the effective 
renormalized quartic coupling may be large and a non-perturbative control of the 
scalar sector is essential. 

Non-perturbative analytic investigations of the scalar sector either in the conti- 
nuum using a momentum cut-off [7] or on the hypercubic lattice [8], as well as 
several numerical Monte Carlo studies on hypercubic lattices [9-13] find that, 
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actually, the scalar sector is not strongly interacting and that the Higgs boson mass 
cannot exceed the upper bound m n < 640 GeV. This result may depend on the 
adopted regularization scheme and therefore an investigation of the scalar field 
theory on various types of lattices is required [14-17]. Methods for comparing the 
results obtained by means of different regularization schemes are being developed 
[4, 16-18]; they require calculations of high precision in a region of the coupling 
parameter space where the universal asymptotic scaling associated with the ("triv- 
ial") gaussian fixed point sets in. 

All Monte Carlo results are obtained on lattices with finite size and have to be 
extrapolated to infinite volume. This requires a detailed analytic understanding of 
the volume dependence in order to allow a reliable extrapolation. In the symmetric 
phase of the O(4)-symmetric ~4 theory the finite size effects could be controlled 
[19] by means of lattice perturbation theory [20]. in the phase with the sponta- 
neously broken 0(4) symmetry the finite size effects are of two types: 

(i) Long range correlation associated with the small mass of the Goidstone 
bosons; 

(ii) Finite size effects from the massive component (Higgs boson, here called the 
or-particle) where the correlation length associated with its mass, ~:~ = I /M~, is 
comparable with a characteristic lattice size L. 
Both effects coexist and may lead to a very complex dependence of various 
observables on the lattice size. The understanding of the second one certainly 
requires, as a first step, a good control of the finite size effects caused by the 
Goldstone bosons alone*. 

This is the reason why in this paper we concentrate on the finite size effects 
related to the Goldstone bosons under the condition that the finite size effects 
caused by the or-particle are negligible, 

1 
Mo.>> - - .  ( 1 . 1 )  

L 

In studies of some models in statistical mechanics [23,24], of chromodynamics 
[25-28] and of the Higgs sector [29] it has been argued that the Goldstone boson 
related finite size effects are of a universal character, determined by the symme- 
tries of the dynamics in terms of a few low energy constants and by the geometry of 
the finite system. Here, we use the theory of these finite size effects as developed 

* We note that at present the finite size effects of the Goldstone bosons, which are the would-be 
longitudinal components of the massive gauge bosons when the gauge coupling is switched on, 
cannot be avoided by including the gauge fields, though some reasonable estimates for the upper 
bound on the Higgs boson mass have been obtained in the SU(2) lattice Higgs model [21]. Indeed, 
considerable finite size effects have been observed in the lattice Higgs models even at relatively 
large gauge coupling [22] and their theoretical control is not yet in sight. 
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in an effective lagrangian approach [25-28,30]. The effective lagrangian has the 
same symmetry as the original system but is simple enough to allow a systematic 
perturbative expansion. In systems of finite size L this amounts to an expansion in 
powers of L -2. The expansion is reliable because the interaction between the 
Goldstone modes is weak at low momenta. 

The first application of this theory [~ ,  26] has been made in the context of the 
study of finite size effects in QCD with light quarks, whose low energy properties 
are determined by the chiral SU(2)o SU(2)---0(4) symmetry [31]. Therefore we 
refer to this approach here as "'chiral perturbation theory", too. A comprehensive 
description can be found in several recent papers [27, 28,30]. Its low order terms 
depend only on two parameters v and F, which in QCD have the physical 
meaning of the quark condensate and of the pion decay constant, respectively. 

in this paper we want to test numerically the applicability and accuracy of chiral 
perturbation theory for finite size effects in the scalar sector of the electroweak 
theory. In particular, we want to determine the low energy constants ,Y and F with 
good precision, in the present context these correspond to the vacuum expectation 
value of the scalar field and to F=~/V~, where Z is the wave function 
renormalization constant. The knowledge of F is required for a perturbative 
calculation of the vector boson mass in the standard model. We do not study the 
mass M,, of the o-particle here, because the control of the finite size effects for 
this quantity requires methods beyond the effective lagrangian approach (for some 
results in this direction cf. [ 13]). 

The present work is a continuation of our systematic application of chiral 
perturbation theory for a control of finite size effects in the numerical study of the 
0(4) @4 theory, initiated in ref. [11] and continued in ref. [32]. Related work has 
been done also by Hel|er and Neuberger [33]. We extend the promising results of 
ref. [32] by taking into account one additional order of the chiral perturbation 
expansion and by including more data closer to the phase transition as well as 
some data obtained on asymmetric lattices. Some of these results have been 
reported in a preliminary form in ref. [34]. 

The notation for the model is clarified in sect. 2. In sect. 3 the finite size effects 
due to Goldstone modes are discussed qualitatively and, following refs. [25,30], 
two types of expansions are introduced together with the expected domains of 
validity. The relevant expressions for the field expectation value and the Goldstone 
correlation function in both domains are given. Sect. 4 is concerned with the 
numerical method. Here we give an account of our data and discuss the error 
analysis and checks on the consistency of the data. 

The results for a non-vanishing external source (sect. 5) are organized, according 
to the presentation in sect. 3, into parts on the field expectation value and the 
Goldstone boson propagator. Sect. 6 deals with results obtained for a vanishing 
external source for the susceptibility in a hypercubic geometry and the propagators 
in a cylinder geometry, utilizing ideas presented recently [26, 28,34, 35]. 
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2. The model and the low energy constants at infinite volume 

The lattice regularized action for the scalar sector of the standard model is 
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4 

S = - 2 r  E E t O ; ~ L ,  
x ~ A  tz = ! x ~  A x ~ , l  x ~ . t  

where K, ,~ >/0 are the bare hopping and quartic coupling parameters, respectively. 
The field has four real components ~ "  with a = 0, 1,2,3. It is convenient to 
introduce the external source J which allows a proper definition of spontaneous 
symmetry breaking. Its use is of crucial importance in chiral perturbation theory. 
The normalization of the field and the external source used in the continuum is 
obtained by the rescaling 

J 
¢"  -- 2q~-~t0", j - (2.2) 

The non-perturbative investigation of the scalar sector of the electroweak theory 
is of most interest at A = ~ where the renormalized quartic coupling has the 
largest value for a fixed Me [8, 9, 11]; the upper bound on the Higgs boson mass is 
obtained for this value of A. For tests of the chiral perturbation theory this choice 
of A should be as good as any other. Therefore we have performed all our 
calculations for infinite A, for which the model (2.1) is described by the action 

4 

x ~ A  # = 1 x ~ A  

In this non-linear tr-model the critical point is for J = 0 at r = rc = 0.3045(7)[ll]. 
At infinite volume, 0(4) symmetry is spontaneously broken for sufficiently large 

x. In this phase 

( ~ ! )  =.~;  (~o~) = 0  (i= 1 ,2 ,3) .  (2.4) 

Here the spectrum of the theory contains three massless Goldstone bosons 
corresponding to the excitations in the 0(4) directions a = i = 1,2,3. Therefore, 
the correlation functions do not fall off exponentially at large distances, but with 
an inverse power of the distance. Specifically, the Goldstone boson two-point 

function i j (~.,.~y) satisfies 

lira 4'r/" 2 IX y l 2 (  i j - ~ , ~ o : , )  = Z 6  i j .  
I x - y l  - ~  

(2.5) 
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The quantity Z is the wave function renormalization constant and the renormal- 
ized fields are ~.~./J-Z. 

The model contains six currents, all conserved at J = 0, whose charges generate 
the group 0(4). The corresponding Ward identities strongly constrain the be- 
haviour of the correlation functions at large distances. In fact, the asymptotic 
behaviour of all the Green functions associated with the currents and with the 
fields q~ is determined by the two low energy constants ,Y and F [31]. The first of 
these constants is the vacuum expectation value of the scalar field, defined in eq. 
(2.4). The second one specifies the matrix elements of the axial currents A~(x)= 
q~-~0~,q~°-~°O~,q~ -i (in Minkowski space) between the ground state and single 
Goldstone boson states 

(0 IA~(0)lrr k ( p )  ) = i6i~p, F. (2.6) 

In analogy with QCD, the constant F is often referred to as the pion decay 
constant. The low energy constants Z, .~ and F are related through 

,Y = FV~-. (2.7) 

For J > 0 the Goldstone boson mass M~ has a non-vanishing value which in the 
lowest order of chiral perturbation theory is 

2: 
M 2~ = j  F2 . (2.8) 

In higher orders of the chiral perturbation theory some further low energy 
constants A_,, A~: and A M are required [30]. They are the scale parameters 
determining the logarithmic dependence of .~, F and M~ on j. 

3. Finite volume effects due to Goldstone bosons 

3.1. SCALES OF THE FINITE SIZE EFFECTS AND THE RESTORATION OF SYMMETRY 

Let us now consider the model (2.1) in a finite volume 

V - t 3 t t  ==-t4, ( 3 . 1 )  

where L, and L, are of the same order of magnitude and L is the characteristic 
size of the system. At finite volume spontaneous symmetry breaking cannot occur. 
The properties of the field expectation values and correlation functions are 
qualitatively different: at finite volume, the Goldstone bosons generate large finite 
size effects, even if the volume is large. This confronts Monte Carlo calculations 
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with a problem of principle: to determine the properties of the system at infinite 
volume from the measurements performed at finite volume. 

In some of our earlier studies of the model (2.1) at J = 0 [9, 11] we determined 
the absolute value of the field, normalized to the volume, for each configuration 
separately and estimated ,Y by the expectation value*, 

1 
-~ Y'.~p~'. (3.2) 

X 

Similar techniques have been used also in refs. [10,33]. The reliability of this 
method will be tested in this paper and is currently also under analytic investiga- 
tion [35]. 

The constant external source j breaks the 0(4) symmetry explicitly, in analogy to 
a constant external magnetic field. In chiral perturbation theory, for small values 
of j, the qualitative properties of the system at large volume are controlled by the 
j-dependent part uo of the classical action of a configuration with a "magnetiza- 
tion" ,Y, 

U o = . ~ j L  4 . (3.3) 

If this parameter is small compared to 1, then the expectation value of the field is 
small and the correlation functions are approximately O(4)-symmetric. 

For j fixed and growing volume, we eventually reach the region u o >> 1, where 
the expectation value of the field approximates the infinite volume value. The 
external source provides a continuous interpolation between these two qualita- 
tively different domains of small and large symmetry breaking [23, 24]. 

In order for the finite size effects to be controlled by the symmetry properties of 
the model, two conditions should be satisfied: 

(i) First, as expressed by the inequality (1.1), the box must be large compared to 
the Compton wavelength M~ ~ of the tr-particle. 

(ii) Second, the mass of the Goldstone bosons should be small compared to M~, 
which can be expressed, by means of eq. (2.8), as an upper limit on the magnitude 

of the external source 

M 2 << M 2, i.e. j << M 2 F 2 / , , Y .  (3.4) 

Thus if the volume is large and if the source is small, the dominant dependence 
of the expectation values and correlation functions on I /and on j is determined by 
the low energy constants ,Y and F which characterize the asymptotic behaviour of 
the correlation functions at infinite volume [23-25]. Further parameters enter only 
in higher orders of the chiral perturbation expansion [30]. 

* in refs. [9, 1 I] the quantity ~" has been denoted M". 
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Fig.  I. Lines of constant M,,/M= in the ,:-j plane. The dashed line is a line M=L = ! o n  a 104 lattice. 
The regions below labove) the dashed line are t h e / / ( / )  domains for L = !. 

Let us illustrate the meaning of the condition (3.4): in fig. 1 we show in the ~:-j 
plane the lines of constant ratios M=/M, ,  = 1/3 and 1/10 (solid lines), as obtained 
from the scaling laws [36] for M,, and ,v with the coefficients fixed by the data. In 
the regions below the upper (lower) line chiral perturbation theory is expected to 
be applicable with reasonable (excellent) reliability. In practice the condition (3.4) 
turns out not to be very stringent, because even for ratios M~/M,~ < 1 the 
non-leading terms in the expansions can be quite small, indicating a good conver- 
gence. However, this has to be checked in each case individually, in particular in 
the vicinity of the critical point. To provide such practical insights is one of the 
motivations of our study. 

The effects of the o-particle should be local if the conditions (1.1) and (3.4) are 
met. The expectation values and correlation functions at distances t satisfying 

1 
t >> z",",' (3 .5 )  

can then be expanded systematically in powers of 1 /L.  The detailed properties of 
the expansion depend on the ratio L/s%, where s% = 1/M~ denotes the Compton 
wavelength (correlation length) of the Goldstone bosons. 

Sizeable finite size effects are expected both for ~:~ > L and for ~:~ < L. Then 
two types of large volume expansion within the chiral perturbation theory at finite 
volumes can be performed [25,27,28]. We shall denote these expansions by the 
l e t t e r s / / a n d  7" which simultaneously denote the domains of their applicability*: 

* In the terminology of ref. [26],//is the region controlled by the ~-expansion, while 7 is covered by 
the p-expansion. 
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//:  This domain is characterized by small symmetry breaking. It is the region 
where the symmetry is restored. Here, 

M~L S 1. (3.6) 

The inequality (3.4) is then satisfied automatically on account of eq. (1.1). The 
finite size effects are large here. The expansion is in powers of L -2 keeping the 
total magnetic energy u 0, eq. (3.3), fLxed. Thus j is treated as a quantity of the 
order O(L-4) .  I n / / t h e  correlation length ~:~ grows as L 2 for L - ,  z [cf. eq. (2.8)]. 

7 ": In this region j is still small, although larger than i n / / .  Finite size effects are 
smaller than i n / / .  It is characterized by 

M~.L > 1 (3.7) 

and, of course, by the inequality (3.4). A typical range observed is MJM= >_. 5-10. 
Here the symmetry is not restored. The expansion in powers of L -2  in that 
domain keeps fixed 

l" = . Y j L 2 / F  2 = M ~ L  2 . (3.8) 

For large u 0 the results of the expansion / / should  smoothly go over into those 
of the expansion 7 .  There is an overlap of the regions of validity of both 
expansions around M~L = 1; in our study we find the overlap region to be 

! 
_< M,~ L < 1. In fig. 1 the dashed line indicates where the / / -  and Z=regions in the 

K-j plane meet for L = 10. 
In subsects. 3.2-3.4 we list those results of expans ions / / and  7 which we are 

going to use in this paper. 

3.2. FIELD EXPECTATION VALUE FOR SMALL SYMMETRY BREAKING 

In the domain ~'/the expectation value of the field (q~!,!)v. j is given by a series in 
1 / L  2 with coefficients which are non-trivial functions of the product jL 4. Introduc- 
ing the quantity 

3 /3~ 
u = u o 1 +  2 ~  2 ff~ 

3 ( 1 In(AML))+O(L-6)] (3.9) 
8 F 4 L  4 f 1 2 _  2fl  2 4'tr 2 

the first two terms in this series may be written in the form [25,27,30] 

u2 (u) 
(q~.~!)V, j ' -  jL 4 -I- 2p2~-'~'j + O ( L - * ) ,  (3.10) 
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1 /2(u) 
)7(u) = , (3.11) 

u 6 ( u )  

3 [  I i n ( A , . L ) ]  (3.12) p_, ffi t h  + _ 

and l l(u) and l ,(u) are the standard modified Bessel functions. The values of the 
coefficients/~n and/~2 depend on the shape of the periodic box. For a symmetric 
h vpercube, L,  = L+, 13 n = 0.14046 and/~2 = -0.0203; values for some other shapes 
may be found in ref. [30] and in table 3. The finite size scaling formula for the 
su.~ceptibility conjectured in t e l  [29] is a special case of eq. (3.10), obtained by 
taking the derivative with respect to j at j = 0. 

Up to corrections O( I / L  2) the quantity u is the control parameter uo, eq. (3.3), 
and is thus of order O(1) i n / / .  The corrections O(L -4) in (3.9) and (3.10) contain 
the additional scales A,- and A u. Note that they appear here and in later 
expressions in logarithmic form only. These correction terms turn out to be very 
small in the analysis of the data for (~p!,!)u<~ obtained deep in the phase of broken 
symmetry. Close to the phase transition these terms are not negligible. However, 
their contribution is too small to allow a reliable determination of the scales even 
with the available high statistics. We point out that all the observables v F, A,  
and A u are quantities defined in infinite volume and for vanishing external 
s o u r c e .  

In eq. (3.10), the leading term contains the quantity u rather than u0; strictly 
speaking, this formula is the result of an expansion at fixed u. One may of course 
transform it into an expansion at fixed u 0 by inserting (3.9) and expanding T/(u) 
around % to order L-4. The difference is however of order L-6  which is beyond 
the accuracy of this formula and therefore does not have any noticeable conse- 
quences in the numerical analysis. 

3.3. GOLDSTONE CORRELATION FUNCTION FOR SMALL SYMMETRY BREAKING 

We denote the correlation function of the fields q~!,! and q~!, by G,r and G~, 

" " "  y ) ,  ~Xg)'?V.j 

( i k q~, ~Pv )v.j = G~( x - y)t~ ik 

(3.13) 

(3.14) 

respectively. 



A. Hasenfratz et ai. / Goldstone bosons 

For the Goldstone boson component we define the susceptibility 
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1 
= U G . ( x ) .  (3.15) 

X E A 

The 0(4)  symmetry relates a~. to the expectation value of the field 

1 
a.:,. jL 4 (~P!,!)v.i. (3.16) 

We analyze the correlation function G~(x) by integrating over the spatial 
3-volume at fixed t: 

l 
G~.(t) = ~ ~G=tx ,  t ) .  (3.17) 

In the domain # this function can be expanded in powers of L -2 fixing both 
u o =XjL 4 and t /L.  We analyze the data for G~.(t)on two levels of precision, on 
which the t-dependence is determined including the O(L-'-) and O(L -4) terms of 
the expansion # ,  respectively. 

On the O(L-2)  level one has 

where 

(l) 
G=(t) =a°(u) + b°(u)h,(~r) + 0  ~-~ , (3.m) 

~2 
b°(u)  = f ~ 2 [ l -  7/(u)], (3.19) 

r=t/L,. (3.20) 

Eqs. (3.16) and (3.10) give 

It 2'1~ ( / . / )  
(3.21) 

a ° ( u ) =  ( j L 4 ) 2  • 

For consistency, we use here u = uo(1 + 3flt/2F2L 2) when working at the O(L -2) 
level. 
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On the O(L -4) level the integrated propagator (3.17) has the form 

L? b u)h.(,) + ( + 
"9 

u)h2('r) + dw( u)h3( I")] 

1 (,) 
+ ~e,~[~(v) - 1] + 0 ~ . (3.22) 

In the large volume expansion at fixed t /L  short range contributions such as those 
of the form G(t)¢xL-3exp(-M,, t )  generated by the exchange of a o--particle 
manifest themselves only at order L -4 through the term e~#(~r). In the region 
t >> M,~-~, this term does not contr ibute-  the t-dependence of the propagator is 
governed by the exchange of Goldstone bosons. At order L -2, only single particle 
exchange contributes, giving rise to a parabolic time dependence. The exchange of 
two Goldstone bosons manifests itself at order L -4, through the functions h2(~') 
and h3(~-). At the accuracy we are considering here, the coefficients of the time 
dependent contributions involve the constants F and 2; only, 

+ 
2P22; 2 

F 4 V  
(3.23) 

b_:(u) = b ° ( u ) ( l  + 
t3,) 

L2F2 + O ( L - 4 ) ,  (3.24) 

2;2 
¢~(u) = ~ - [ 1  + (2 +//2)'0(/./)] + O(L-2) ,  (3.25) 

3 2;2 
d,r(U) - 2 F 4 r/(u) + O ( L - 2 ) ,  (3.26) 

but the constant term ( a ~ - e J V )  receives the contribution of order L -4 from 
the logarithmic scales A,z, A r.,A M (for the explicit expression, see ref. [30]). 
However, since our data analysis concentrates on the t-dependence of G~(t), we 
do not need the constant term to this accuracy here. 

The functions hi(r), i = 1,2, 3, arise from the spatial integral over the propaga- 
tor associated with the non-zero momentum modes. On the interval 0 < t < L I they 
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are given by 

- , 

_. I 

cosh[q,,(½ -~')1 }2 

+ .~o 2q,,sinhq,,/2 , (r>O) 

(3.27) 

(3.28) 

(3.29) 

where n = (n~, n2, n 3) are  integers which do not vanish simultaneously and 

q. = 2zr LL--~' Inl. (3.30) 

At 7 = 0, h3(0) is defined [30] such that the integral of h3(~-) over the interval 
0 < ~- < 1 vanishes, as it does for h I and h 2- 

For large volumes and small sources, the correlation function G~(z) must show a 
parabolic time dependence generated in leading order chiral perturbation theory 
by a one-Goldstone exchange. The contributions of O ( I / L  4) to the correlation 
functions have been calculated by evaluating the chiral perturbation series to the 
next order [30]. These Goldstone pair contributions are controlled by the same two 
constants ,~, F which determine the leading terms. They consist of 

(i) short-range contributions represented by a ~-function at t = 0 (mod L,), 
(ii) non-parabolic terms generated by the exchange of a pair of Goldstone 

bosons, 
(iii) a change of the coefficient a~ which turned out to be unimportant 

numerically, and 
(iv) a change from b~ to b~, which plays an important role in the data analysis. 

3.4. F I E L D  E X P E C T A T I O N  V A L U E  B E Y O N D  T H E  S Y M M E T R Y  R E S T O R A T I O N  D O M A I N  

In the domain ~ one should switch to the 1 / L  2 expansion at fixed c, eq. (3.8). 
One may write this expansion in powers of M 2, eq. (2.8), as from (3.8) we have 
j at 1 / L  2. For the scalar field expectation value one gets [25] 

( = 
3 

2F2gl(M,~) 
3 M~ 

16Tr2F 2 M 2 In ~ + O(M 4) , ( 3 . 3 1 )  



.M4 

where 
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g , ( M )  = 

(2) 1 .= dA a,, 

16w 2 
i i  ~/: l l  

(3.32) 

a~ = ( L ~ n  I , L s n  2 , L~n  3, L , n 4 )  . (3.33) 

Formula (3.31) can be used for extracting from the data a value for the 
parameter  in A~. That parameter ,  in turn, can be related to M~, by means of 
renormalized perturbation theory [31,39]. For the renormalized m a s s  M R in the 
renormalization scheme of ref. [31] (appendix B) one finds from a one loop 
calculation 

16w 2 F 2 F 2 
7 7 . (3.34) in M R = In A~ q ,, 3 M2 = in AM + .~ -- 16W2M~ fi 

The physical mass M,r is connected with M R by a one loop order  calculation 

[ ] M,~ = MR 2 l + ~ 16-. 2 (3~'V~- - 13) . (3.35) 

The value of M,r differs from M R only by a few percent in the  perturbative region. 

4. Discussion of  the numerical  data 

Most of our data for the model (2.3) have been obtained for J > 0. Using a 2-hit 
3 standard Metropolis algorithm we have worked on the lattices L s L  , with periodic 

boundary conditions, mainly on symmetric lattices but sometimes also with L t > L s. 

Sampling the path integral at small external field J requires high statistics. We 
typically accumulated (0 .3 -1 )×  106 Metropolis sweeps on all lattices. Our  data 
points with the corresponding values of the parameters  K, J, L s and L t ,  a r e  listed 
in table 1. 

The data for J > 0 have been obtained at 5 values of the hopping parameter:  
K=0.355, 0.330, 0.325, 0.310 and 0.3075, all in the broken phase. Since the 
restriction (1.1) appears to be crucial we give in table 2 approximate values for M,,  

obtained in our earlier [9, 11, 12] and recent [40] calculations for J = 0 at these 
K-points. It is apparent that for the three larger values of K the mass M,r is 
sufficiently large so that the chiral perturbation theory can be reliably tested on 



TABLE 1 
List of the data points with indicated domain ~/~', statistics in megasweeps Msw and the ratio A, 

eq. (4.1). We give for each data point the ~alues of o (~Px)v.j and ,~ determined by means ofeq.  (3.10J 
up to order IlL 2. In most cases where the expansion ? / i s  applicable the coefficients a= and b~. 

determining the first line in the expression (3.22) for the Goldstone correlation function are given 

K J L~ Msw (~p°>v.j a~. 
~ / / t  " j L,  A Y. b~ 

0.355 0.012 8 0.3 0.38871(81) - 
7" 0.0142 8 1.050(48) - - 

0.355 0.008 8 0.3 0.3771(11) - 
f "  0.00949 8 0.945(52) - - 

0.355 0.005 8 0.5 0.3518(19) 0.35 !(21J 
/ /  0.00593 8 0.998(50) 0.4036(19) 0.8941(73) 

0.355 0.004 8 0.3 0.3322(48) 0.350(49) 
# 0.00475 8 1.06(12) 0.3983(50) 0.874(!0) 

0.355 0.003 8 0.5 0.3112(46) 0.316(28) 
/ /  0.00356 8 1.017(81) 0.4005(48) 0.8500(78) 

0.355 0.0029 8 0.84 0.3085(39) 0.314(21) 
# 0.00344 8 1.019(62) 0.4010(40) 0.8505(50) 

0.355 0.002 8 0.501 0.2650(64) 0.277(25) 
/ /  0.00237 8 1.045(94) 0.3970(69) 0.8181(89) 

0.355 0.0015 8 1. 0.2165(81) 0.243(11) 
/ /  0.00178 8 i.124(82) 0.3835(94) 0.790~49) 

0.355 0.00125 8 1.6 0.2 ! 32(84) 0.202( 1 ! ) 
/ /  0.00148 8 0.949(76) 0.409( i O) 0.7872(50) 

0.355 0.001 8 1. 0.1821(96) 0.174(17) 
/ /  0.00119 8 0.96(11) 0.408(12) 0.7708(91 ) 

0.355 0.0008 8 0.8 O. i 33(13) O. 1495(90) 
/ /  0.000949 8 !. 12(16) 0.378(22) 0.7599(63) 

0.355 0.0005 8 0.5 0.086(16) - 
/ /  0.000593 8 - 0.374(39) - 

0.355 0.002 ! 0 0.5 0.3448(33) 0.353(64) 
/ /  0.00237 10 1.023(90 ) 0.4009(34) 0.888( I O) 

0.355 0.0018 10 0.6 0.3379( 33 ) 0.343( 75 ) 
/ /  0.00214 10 1.02( 10 ) 0.4004(34 ) 0.8768( 91 ) 

0.355 0.0016 10 1.5 0.3361(20) 0.315(35) 
/ /  0.00190 10 0.937(50) 0.4069(20) 0.8615(48) 

0.355 0.0012 10 1.5 0.3130(38) 0.289(43) 
/ /  0.00142 10 0.924(70) 0.4076(39) 0.8547(61) 

0.355 0.0014 10 0.8 0.3189(42) 0.325(44) 
/ /  0.00166 10 1.020(73 ) 0.3999(42) 0.8484(8 ! ) 

0.355 0.00075 10 0.4 0.263( 1 O) 0.237(37) 
/ /  0.000890 10 0.901(96) 0.410( ! 1 ) 0.8161(75) 

0.355 0.002 12 0.3 0.3771(18) 0.36(13) 
/ /  0.00237 12 0.95(10) 0.4036(18) 0.917( i 3) 

0.355 0.00 ! ! 2 0.3 0.3523(38) 0.3 ! ( 11 ) 
/ /  0.00119 12 0.88(10) 0.4080(38) 0.885(12) 

0.355 0.0007 12 0.3 0.3210(86) 0.32(21 ) 
/ /  0.000831 12 0.99(21 ) (I.4007(88) 0.874(19) 

0.355 0.0004 12 0.3 I).255( 15 ) 0.25(13) 
// 0.000475 12 1.00(20) 0.389(17) 0.799(20) 

0.355 0.0003 12 0.3 0.237(17) 0.22(13) 
// 0.000356 12 0.93(23) 0.409(19) 0.792(26) 
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TAm.E 2 

Infinite volume quantities _v, (1~1 >, F, Z, go and g R  ""  M,~/2F2 

K "-." ( l~l )  F z M,, gr 

0.355 0.40361(86) 0 .4{)2  0.4109(12) 0.965(2) 1.09(10) 3.52(70) 

0.330 {}.3027( I !) 0.301 0.3075(16) 0.969(3) 0.92(7) 4.47(62) 

{) .325 0.2769(12) 0.276 {) .28{)7(19)  {).973(5) 0.81(2) 4.16(26) 

0.310 0. ! 643(63) 0.163 0.1668(7 ! ) 0.97( I ) 0.39(2) 2.73(51 ) 

0.3075 0.132(13) 0.128 0.135(14) 0.96(1) 0.29(I) 2.31(63) 

The error of v includes a possible systematic error coming from I / L  4 corrections within the 
frame,york of the # expansion. ( I~-~1 ) has been calculated from the scaling law fit in ref. [12], we omit 
errors as ! / L  4 corrections were not considered there. The wave function renormalization at K = 0.355, 
0.330 and 0.3!~ has been calculated in this paper, while the values at 0.31{) and {).3075 are from our 
earlier work. The scalar mags results from a I / L  z infinite volume extrapolation of the finite volume 
propagator ma~s and a subsequent scaling law fit as described in ref. [12]. 

lattices of available sizes L = 8-16. The two lower r-points lie in the region where 
one would like to estimate the upper bound on the Higgs boson mass, correspond- 
ing in the @4 theory to an upper bound on M,r, i.e. ~ , , - -2-3.  Here some 
deviations from chiral perturbation theory can be expected for small lattices. Of 
course, the onset and the form of these deviations are themselves of interest for 
future applications of chiral perturbation theory, e.g. within QCD calculations, so 
we want to identify them. 

The choice of the values of J and of the lattice size has been made with regard 
to the requirements (3.4), (3.6) and (3.7). Using (2.8) and the mean field scaling 
laws for M,, and v (both quantities scale up to logarithmic corrections as 1/U - K,., 
with coefficients known from numerical simulations) one can determine, for a 
given L, the domains //  and 7 in the r-j  plane (see fig. 1), where the chiral 
perturbation expansions are expected to be valid. 

The problem of correlations between the configurations in Monte Carlo runs 
was taken into account by the blocking method for the error analysis. It consists of 
blocking the data into bunches of different length, ranging from 0.5-40 kilosweeps. 
On each block the fit for the quantity of interest has been performed and the block 
values for this quantity evaluated. These blocked data give then the average value 
and the error of the corresponding quantity. We found a clear dependence of the 
error on the length of the bunches. For J-values at the order of 0.001 we found the 
error to be stable with a block length of 2 ksweeps. For smaller values of J and 
close to the phase transition the minimal block length to reach a stable error 
plateau was found to be 16 ksweeps. This detailed error analysis was done, 
however, only for a subset of the data points and, based on these results, we have 
scaled the naive errors at other data points accordingly. 
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A check on the data and errors provided by the identity (3.16) is non-trivial: the 
calculation of a~. requires good quality data for the correlation function (3.14) at 
large distances. We have included in table 1 the ratio 

jL4a~r 
A =  ( o (4.1) 

~o., ) v. j 

with (, ,p !,! ) v, j measured directly and a~ determined from the Goldstone boson 
correlation function by means of eq. (3.15). We found that for most of the data 
points the ratio A is consistent with 1 within the error bars. A few data points with 
A significantly different from 1 have been excluded from the analysis (it is amusing 
to mention that in this way we have even detected an inconspicuous hardware 
error which occurred during one of our runs). 

We have measured (,p!,!)v.j and G~.(t) for t = 0 , . . . , L , / 2  at all data points. A 
file with these raw data is available from the authors on request. In table 1 we give 
the values of (~!,!)v.j and of the coefficients a~., b= obtained from the analysis of 
Q. ( t )  by means of eq. (3.22) at each data point. The coefficient b~. provides a quite 
complete information about the t-dependence of G~.(t) for each data point. The 
other relevant terms in eq. (3.22) give only a small contribution and can be 
calculated from eqs. (3.25) and (3.26) using the values of ~Y and F obtained from 
the data analysis and listed in table 2. 

Approaching the critical point, critical slowing down decreases the effectiveness 
of the Metropolis Monte Carlo process. This difficulty has been overcome recently 
by the development of non-local, so-called cluster algorithms [37]. Most of our data 
for j ~= 0 have been obtained previous to the introduction of this method. With the 
new algorithm we have obtained some data for J = 0 on lattices of "cylinder'" 
geometry, L t > >  L s. These data points are listed in table 3. Even for L, as large as 
80 we had no problems: thermalization has been easily achieved within 50 
kilosweeps. It is in the cylinder geometry where the power of the cluster algorithms 
is most striking [38]. We have also accumulated some data for j = 0 at K = 0.355 
and 0.33 for a range of lattices 44-164. 

Although we have the corresponding data we do not deal with G,,(x), eq. (3.13), 
here. The reason is that the contribution of the ~r-particle to the propagators, 
which is obviously more important in G,,(x) than in G=(x), is not properly taken 
into account by chiral perturbation theory. Therefore the condition (3.5) has to be 
fulfilled very stringently, which usually leaves only a few data points for G,, at large 
t. We have checked that these data are consistent with the chiral expansion; for a 
reliable extraction of the low energy constants they are insufficient, however. A 
complete analysis of G,,(x), which could also provide valuable information about 
M,,, requires some ingredients beyond chiral perturbation theory and will be 
attempted in a separate work. 
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TABLE 3 
Values of F as obtained from the 0(4)  symmetric propagator (subsect. 6.2). 

The second column gives the spatial and the third column the 
time extent of the lattice 

..c L,  L, /~n FL F~I F 

0.310 8 32 0.143 0.179(I) 0.156(1) 0.167(7) 

0.310 8 40 0.285 0.178(!) 0.155(I) " 

0.310 8 i 20 2.640 0.178(I) 0.155(1) " 

0.310 10 32 0.048 0.171(I) 0.157(I) " 

0.310 10 40 0.143 0.169(1) 0.154(1) " 

0.310 12 32 - 0.004 0.168(2) 0.158(1) " 

0.310 14 32 - 0.035 0.164(2) 0.157(1) " 

0.310 14 80 0.399 0.166(2) 0.159(1) " 

0.320 8 40 0.285 0.261(I ) 0.247(!) 0.249(4) 

0.320 I0 40 0.143 0.257(2) 0.248( 1 ) " 

0.355 8 40 0.285 0.418(10) 0.409(5) 0.411(1) 

0.355 10 40 0.143 0.420( 1 ) 0.415( 1 ) " 

0.355 l0 80 0.831 0.4 i 8(1 !) 0.413(6) " 

/31 is the corresponding shape coefficient. The quantity Ft. denotes the value of F calculated by 
means of the zeroth order of the relations (6.5) and (6.6) whereas Fo. i is calculated including first order 
corrections there. For comparison we give in the last column the values of F obtained from the 
expans ion/ / ( see  also table 2). For ~: = 0.32, F 2 is interpolated linearly from the values at ~: = 0.31 and 

= 0.325. Note the strong dependence of F~ on the lattice size. whereas Fc:, n is nearly constant and in 
good agreement with F from the expansion/ / .  

5. Results for non-vanishing external source 

5.1. FIELD EXPECTATION VALUE 

The results for (,p!,!)v.j are displayed in fig. 2. The data at the lower values of j, 
where the full curves are drawn, belong to the domain //. As expected, they are 
j-dependent and show very strong finite size effects, in particular in the vicinity of 
j = 0. The challenge is to describe these very different results for each K by means 
of eq. (3.10) (the expansion / / )  in terms of only two parameters, ,v and F. 

Fitting all the data for (~0.',!)v,j in the domain / /  one can determine both 
(from the leading term in eqs. (3.10) and (3.9)) and, in principle, also F (from the 
non-leading correction O(1 /L  2) in eqs. (3.10) and (3.9)). For our fit we consider 
only the terms up to O ( L - 2 )  of these equations; a fit including the higher order 
terms serves as a method to estimate the systematic uncertainty. The fit deter- 
mines Z reliably with a very small error. The values of F obtained in a preliminary 
analysis had a large error, however. We could only conclude that the values of Z 
calculated from F by means of eq. (2.7) were within their large error bars 
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Fig. 2. Expectation values o (~0,) ~:i on lattices of various sizes at the considered values of r. The solid 
curves correspond to fits by means of the expansion //, eq. (3.10), up to order l / L  2. They are drawn 
only in the region where the //-expansion according to eq. (3.6) is valid. The solid circles in the 
upper-left corners of the graphs mark the fitted values of v which are given in table 2. The dashed 
curves at r = 0.33 correspond to a fit by means of the expansion 7 ,  eq. (3.31) in the domain (3.6). If the 

error bars here and in the following figures are not shown they are smaller than the symbol sizes. 

cons i s ten t  wi th  a n u m b e r  a r o u n d  1. As  the  n o n - l e a d i n g  t e rm in eq.  (3.9) con- 

t r ibu tes  only a few %,  it is diff icul t  to d e t e r m i n e  F even  f rom very prec ise  da t a  for 

~, ! )v , j .  As  will be  exp la ined  in subsect .  5.2, the  G o l d s t o n e  boson  p r o p a g a t o r  is 

m u c h  mor e  su i tab le  for this pu rpose .  

It is k n o w n  a l r eady  f rom our  p rev ious  ca lcula t ions ,  bo th  at j = 0 [9, 11] and  j > 0 

[12,32], as well  as f rom the resul t s  of  o the r  g roups  [8, 10], tha t  in the  cons ide red  

r - r a n g e  Z is a b o u t  0.98. This  is c o n f i r m e d  also by o u r  analysis of  G ~ ( t )  in sect. 6. 
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Therefore in the further analysis of ( 0 ~,)v,j we have taken Z = 1 and thus set 
F =.,~ in eq. (3.9) and determined only ~.  We have also checked that  the results 
for ~ do not change if the value Z = 0.98 is assumed. 

At each • we did a simultaneous fit using the expression (3.10) to all the data at 
various j and L in ~/. The full curves in fig. 2 give the results of this fit. The values 
for ,~ obtained in this way are shown in fig. 2, too (large dots in the upper  left 
corners). It is remarkable how much the measured values of (q~.°)v,~ differ from 
the final numbers for ,~. Nevertheless, all these data agree precisely with the full 
curves (3.10)with ,~ obtained from the joint fit. The figure also demonstrates how 
dangerous an attempt could be to try to obtain the correct value of =Y by means of 
some linear (or any other)extrapolation of (q~°)v.~ to j = 0. 

Alternatively one may invert (3.10) individually for each ( ,p°)r : j  in ~'. The 
results for ,Y (listed in table 1) are consistent with the value of ,Y from the joint fit 
at the corresponding K, though some scattering of the data can be observed. Thus, 
chiral perturbation theory allows us to determine the quantity =Y for infinite 
volume and zero external source from the measured field expectation value at o n e  

suitably chosen value of the external source j on a lattice of o n e  suitable size. 
The power of this method has been already observed in our earlier work [11, 12] 

at a rather large distance from the critical point, for K = 0.355, 0.330 and 0.325 on 
hypercubic lattices, L t = L s. We give these data here for completeness. We have 
now verified at x = 0.325 on the 123× 16 lattice that the method also works on 
asymmetric lattices. In this work wc also include the points K = 0.310 and 0.3075, 
which are of physical interest and where the condition (1.1) is satisfied with a 
smaller security margin than at the points we have studied earlier. Here we find 
first indications of systematic errors. They may be estimated by performing the 
analysis based on eq. (3.9) considering terms up to O(1), O(L-2) ,  and O(L-4) ,  
respectively. We find remarkably fast convergence at larger K. The corresponding 
values for =Y at K = 0.355 are 0.40923, 0.40361 and 0.40354. Closer to the phase 
transition the results indicate larger systematic uncertainties, i.e. for _~ at K = 0.310 
we obtain values 0.17526, 0.16439 and 0.15808. Thus at the smaller values of x we 
expect systematic errors up to 4%. We include these estimates of the systematic 
errors in the errors given in table 2. 

To summarize: The expansion describes the data satisfactorily throughout the 
domain of K considered here. As seen in fig. 2, even the points at larger values of 
j, which are outside the domain /t', tend to lie on the continuation of the curves 
(3.10). However, at values of ~c close to the critical point we notice an increase of 
the systematic error if one neglects higher order terms. 

The results for ,Y are listed in table 2 and =Y-" is shown in fig. 3 as a function of 
K. The values lie on the scaling law line 

t tK c) = In I /2  • ( 5 . 1 )  
Kc K c 
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Fig. 3. Scaling law fit according to eq. (5.1) to the infinite volume .Y-values. Only the points x ~< 0.33 
have been used for the fit (solid line). The error of Kc is indicated on the 2~ = 0 axis. 

A deviation from the leading linear behaviour is observable and compatible with 
the logarithmic correction. Imposing the formula (5.1) to the results for .Y we 

obtain from the fit 

r c = 0.3036(10), C 2 = 0.672(6).  (5.2) 

The value of Kc is in agreement with r c = 0.3045(7) obtained in our earlier 
calculations [11] at j = 0 using the approximation (3.2). Here the error on r c 
includes the systematic error induced by the O(L -4) corrections. If one includes 
an estimation of these corrections as described above, rc is shifted to a value of 
K c = 0.3046. The results (5.2) are also in good agreement with those of other 

authors [8, 10]. 
In table 2 we also include the values for ,Y obtained in our previous calculations 

at j = 0  [9,11] by means of the approximation (3.2). The excellent agreement 

demonstrates that systematic errors of the method (3.2) used at j - 0  are remark- 

ably small. 
We now turn to the data for (tp!,!) v.j obtained at larger values of j in the domain 

7:. They ought to be analyzed according to eq. (3.31) and indeed this equation 
describes the data nicely. This provides us with the possibility to determine the 
scale parameter A~. We fix the value of ,Y to that obtained from the analysis in the 
domain ~'/and fit the data accordingly. The resulting curves are exhibited in fig. 2 
(dashed lines for K = 0.330) and are in excellent agreement with the data. One 

notices a sizeable overlap with the data at small j in the domain / / .  
The fit provides an estimate for in A,_. at r =0.33, In A,_ = 3.3(4). With the 

perturbative relations (3.34) and (3.35) of this parameter to M,, [31,39] we obtain 



354 A. Hasenjhuz et aL / Gohistone bosons 

M,, = 1.06(8). Here we regard however the fitted value for In A,.: as rather impre- 
cise, especially as slight modifications of the fit procedure, like omitting or 
including data points, leads to a larger scattering of the fitted values than indicated 
by the quoted statistical error alone. The value obtained is smaller than the one 
obtained by an alternative determination of A~ described below. Still, this indirect 
determination of M,, agrees remarkably well with the value obtained from the 
propagator, M o = 0.92(7). The discrepancy may also be partly explained by appli- 
cability problems of the perturbative relation at such large values of ~:. 

To summarize, both expansions / / a n d  7 work nicely and allow us to extract 
the low energy constants, in particular ,~, from data on finite lattices. 

5.2. GOLDSTONE BOSON PROPAGATOR 

As may be seen from eqs. (3.19) and (3.24), the wave function renormalization 
constant Z [eq. (2.5)] multiplies the leading term of the expression which deter- 
mines the t-dependence of G~(t) in eq. (3.18) or eq. (3.22). This provides a 
suitable method of extracting precise values of Z. A preliminary analysis of the 
data taught us, however, that the chiral perturbation expansion for the propagator 
on the level of accuracy described in subsect. 3.3 does not work for all our data on 
small lattices and at lower r closer to the phase transition. Thus we had to proceed 
selectively. 

For K = 0.355, 0.330 and 0.325 we performed the analysis in two steps. In the 
first step we worked on the O ( L  -2)  level of accuracy, using eq. (3.18) to fit for 
every data point the last four points of G~(t). The coefficients a ° and b ° were 
determined by the fit. For each K we then fitted all b~, except those obtained on 
the 84 lattice, by the expression (3.19) using in eq. (3.9) for u the already known 
value of £.  This resulted in an approximate value Zappr of Z = ~2/F2. 

In the second step we calculated in (3.22) the function multiplying 1 /L  4 using ,~ 
and Zappr and subtracted the values of this term for each t from the data for 
G~(t). The rest of the data was fitted by the first two terms in eq. (3.22) and the 
constants a~, and b,. were determined. Their values are given in table 1. Excluding 
again the 84 results, the final values of Z (given in table 2) were extracted from b~. 
by means of a fit using the expression (3.24) with inserted value of _v. 

In fig. 4 we collect the results for b~ obtained from our data at K >/0.325. The 
curves represent for each K the values of the expression (3.22) using the final 
values of ~ and Z. They are drawn only in the domain //. One can observe that, 
except for K = 0.355, the 84 lattice is too small for the formula (3.22) to be 
applicable. This is due to the importance of the higher order corrections. On the 
other hand, on larger lattices the formula (3.22) seems to describe even the data 
lying outside the domain/ / .  

Fig. 5 illustrates the relative importance of the I / L  2 and I /L  4 terms in the 
formula for the Goldstone propagator (3.22) at K -  0.325 and J = 0.0002 on the 
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Fig. 4. Values of b~ from a fit to G~ up to order 1/L "l, eq. (3.22). Only the solid symbols have entered 
the fit of b~ made by means of eq. (3.24). As in fig. 2 the curves displaying the fit are drawn only in the 

domain/I' .  

123× 16 lattice (fig. 5a) and at r = 0.33 and J = 0.02 on the 124 lattice (fig. 5b). 
The circles display the data for G~(t), which are essentially parabolas with the 
apex at t = L J 2 .  The triangles have been obtained from the circles by subtracting 
the 1 / /L  2 term in (3.22) using the value of b,~ obtained from the fit. The crosses 
indicate what remains if the 1 /L 4 term is subtracted, too. Their positions are in 
excellent agreement with the values of constant a~. We conclude that eq. (3.22) 
describes the data very well and that the 1/L 4 term is just a tiny (of the order of 
1-2%) correction. This correction is of significance, however, when a precise 
determination of Z is required. Particularly remarkable is the negative slope of the 
triangles (data with the correction 1 / / L  2) in fig. 5b which is compensated by the 
1 / /L  4 correction. This data point is quite outside the domain/ / ,  but the expansion 
~/ still seems to be applicable, as is also indicated by the rapidly decreasing 

magnitude of the corrections. 
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In fig. 6 we give another illustration of the importance of the 1 / L  4 term in 
(3.22), this time in more critical situations. We show the values of b °,  obtained 
from the fit to G=(t) by means of the formula (3.18) (open symbols), as well as b= 
obtained using eq. (3.22). The curves are the values of the coefficient (3.24)when 
the final values of ,~ and Z have been used. For K = 0.355 on the 84 lattice it is 
important to take into account the difference between b= and b ° to achieve an 
agreement with the results obtained on larger lattices. For r = 0.325 on the 124 
lattice both these coefficients agree within the region of validity of the condition 
(3.6), but start to differ strongly beyond it. Still, the higher order correction 
improves the agreement with (3.24) significantly. 

We have at tempted unsuccessfully to analyze the data for the propagator also at 
the small values of r = 0.310 and 0.3075. As M,r is rather small (cf. table 2), only 
the data at large t can be expected to satisfy the condition (3.5) and to be thus 
described by chiral perturbation theory. Because of the vicinity to the critical point, 
the accumulated statistics, similar to the statistics at higher K, turned out to be 
insufficient here and the error bars for larger t were very big. Thus it was only 
possible to analyze the bulk quantity (q~°) ., v.j, as described in subsect. 5.1, but not 

the correlation function. 

6. Results for vanishing external source 

In this section we describe some results of an analysis of the data at j = 0 that 
we have obtained in part by means of the cluster algorithm [37,38]. Due to this 
new error-reducing technique the precision of the data allows us to go far beyond 
the methods used earlier at j = 0 [9-11]. As we are now gaining experience with 
this approach, the results presented below should be regarded as exploratory. 

6.1. SUSCEPTIBILITY 

Recently it has been pointed out that the moments of the distribution of the 
magnetization I~'~1 (3.2) at J = 0 can be used for extraction of some low energy 
constants [35]. A first application of this idea has been reported in ref. [34]. We 
consider the susceptibility X associated with I~'~l. On hypercubic lattices ( V =  L 4) 
in chiral perturbation expansion it assumes the form 

x = 2> - 2) = 2F--W /32 + ~w2 in(A,-L)  , (6.1) 

where //2- -0 .0203  is a shape coefficient introduced earlier in eq. (3.12). The 
logarithmic divergence is due to the contribution of the light Goldstone modes. 
This expression allows the extraction of In A,. from the L-dependence. The 
susceptibility [eq. (6.1)] has been obtained in our earlier calculations [9,11] for 
J = 0 at several values of K for even L - 4-16 (with the Metropolis algorithm) and 
recently for all L -  4-16 with the cluster algorithm. Here we present a first 
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analysis of these data for K = 0.355 and 0.33. A full account, also including further 
r points, will be given elsewhere [40]. 

In fig. 7 we show data for X at K = 0.355 plotted against In L for L = 4-16. For 
small L the data depart from the linear dependence on in L predicted by formula 
(6.1). However, for L = 10-16 the increase is consistent with a linear behaviour. 
Fitting X by means of (6.1) for L = 10-16 and using the known values of ,Y and F 
we obtain in A,- ( r  = 0.355)= 3.96(5) and in A,. (K = 0.33)= 4.6(2) in reasonable 
agreement with the result obtained in the subsect. 5.1, especially if one keeps in 
mind possible large systematic errors of that determination. We point out that a 
systematic study of the deviations of X from the linear dependence on In L, aimed 
for in a separate publication [40], is necessary before the results for In A_~ may be 
considered reliable. 

Using again the perturbative relationship (3.34) of this parameter to M,, [31,39] 
we obtain for M,r the preliminary results M,r = 1.39(4) at K = 0.355 and M,~= 
0.96(3) at x = 0.33. They are to be compared with the results obtained earlier from 
the propagator at J = 0 and corrected for finite size effects [12] which are listed in 
table 2. We note that in the analysis of the propagator the width of the tr-boson 
has been neglected. 

6.2. S Y M M E T R I C  P R O P A G A T O R  F O R  C Y L I N D E R  G E O M E T R Y  

We initiated the study of the model also on elongated lattices L 3 x L, with 
L, >> L, since the cluster algorithm [37,38] makes the determination of propaga- 
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tors for such geometry feasible. As has been pointed out in refs. [24,26,28] the 
most important field modes in this "cylinder" geometry are those with vanishing 
spatial momentum, p = 0. Thus the fluctuations in spatial directions may be 
discarded and only the variation of the field in the time direction of the cylinder is 
taken into account. In this approximation the system reduces to a quantum 
mechanical model whose variables are the x-independent components of the field 
with values in the manifold of the symmetry group 0(4). The system may be 
interpreted as a free quantum mechanical rotator on the SU(2)® SU(2)manifold 
and the spectrum, partition function and correlation functions can be calculated 
using the properties of representations of the SU(2) group in terms of the low 
energy constants [26,28]. 

For the 0(4) symmetric two-point function 

1 
G ( t )  = 4L 3 ~ (,px~,,p,'~)v.j=o (6.2) 

one obtains the expression 

1 , ~  n(n  + 1)exp 2F2LL3 [ n ( / / +  1) - ½] G ( t )  = :z  4 , , _ ~  

x cosh [(n 
, L, , )] 

+ r- ,3 
- F ~ L s  - J 

1 

Here 2" is the partition function 

and 

[Lt ] 
~" = ,=l~ !/2 exp 2F2LL3 (//2 _ 1) 

36,) 
"~L = ~  1 + 2~-Y-L2 , 

(6.4) 

(6.5) 

F L = F  14 F-~2 , (6.6) 

1 (,)3/2 
fi, = fl, + -~- ~ . (6.7) 

The coefficient fl~ is a shape coefficient as defined in subsect. 3.2. We give the 
values of fll together with the lattices and r-values we have used in table 3. 
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Fig. 8. Example for the 0 (4 )  symmetric  two-point  function at K = 0.31 on a 143 × 80 lattice at j = 0 
obta ined with the cluster algorithm. The  line is a fit made  by means  of  eq. (6.3) for 6 ~< t ~< 40 (crosses). 

We have analyzed the t-dependence of G(t) by means of (6.3); this determines 
F. An example of the fit is shown in fig. 8. Typically, for L t = 40 it is sufficient to 
take into account 6 (for L~ = 8) and 8 -9  (for L,. = 10) terms of the sum (6.3). 

From the data for the correlation function we determine the values of Ft., from 
which we then could calculate F, denoted by Fcy ~ in table 3, in order  to distinguish 
it from the determination by means of the expansion //. Note the significant 
dependence of Ft. on the lattice size. This indicates that the 1 / F 2 L  2 corrections 
are important. The values of Fcy~ are almost independent  of the lattice size. We 
compare these values with the results of the expansion / /  and find very good 
agreement at three points K = 0.355, 0.320 and 0.310. 

7. C o n c l u s i o n s  

Our analysis demonstrates, that for M,r >> 1 /L ,  i.e. in a situation where the light 
Goldstone bosons control the dynamics of the system at large distances, it is 
possible to determine several infinite volume, zero external source quantities from 
finite volume simulations in a theoretically controlled way. At small values of j, in 
the symmetry restoration r eg ime / / ,  M~L <_ 1, the drastic j- and L-dependence  of 
(~.~,!)v.j is well described by the formulas of chiral perturbation theory; this allows 
a reliable determination of ~v. For sufficiently large lattices and r values the wave 
function renormalization constant Z may be most precisely obtained from the 
t-dependence of the Goldstone propagator. We also remark that the values of 
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and Z obtained in our previous work [9,11] for a zero external source by means of 
a global rotation of the configurations are consistent with the present results. Both 
results have comparable statistical errors, those obtained by means of the ~/-expan- 
sion are theoretically more reliable, however. 

For larger j, in the domain ~ ,  M~L >> 1, the field expectation value follows a 
different functional behaviour, now well described by the ~r- expansion. There one 
may utilize the knowledge of ,~ from the ~'-expansion and fix it in order to obtain 
the scale parameter In A_v which enters in higher order terms of the expansion. 

1 There is a substantial overlap between the ~' and 7~" region: ~ ~ M~L ~ 1. 
If r is close to the critical point, i.e. K < 0.31 or M,~ < 0.39 the domain ~ shrinks 

and one needs higher order terms in the expansion. We find differences of 4% 
between the values of ,~ obtained in O(L -2) vs. O(L-4). Obviously the condition 
(1.1) gets into trouble and the finite size effects caused by the it-state become 
increasingly important. 

We also explored alternative methods to determine ,~ and F, or, fixing their 
values to those obtained in the ://-expansion, to determine the scale parameter 
In A~. One is measuring the susceptibility of I ~ l ,  eq. (6.1), at j = 0. This appears 
to provide the best way to get In A~ with smallest statistical error. As this 
parameter may be related to the mass M,~ by a weak coupling expansion, the 
method allows us to determine this mass from a bulk quantity. 

In cylinder geometry, again at j =0 ,  the cluster algorithm enabled us to 
determine the O(4)-invariant propagators at large distances. Its shape may be 
understood with help of a quantum mechanical rotator approximation where once 
again the low energy parameters ,~, F enter. From the decay behaviour one may 
determine F, and we find good agreement with the other results. Whereas we had 
the possibility to check the convergence properties and the systematic error in the 
~'/expansion, we are not in this situation here, unfortunately. 

Altogether we find that the volume dependence of the field expectation value 
and the correlation functions are excellently described by the chiral perturbation 
expansion. At small M~ one has to include higher order terms and eventually will 
run into convergence problems. Away from the critical point, deeper in the broken 
phase, our study demonstrates that the chiral expansion provides a simple and 
reliable method to find the (infinite volume, j -> 0) low energy constants ,~, F (or 
Z)  from finite volume results. On a lower accuracy level the method is very simple. 
When higher order corrections are to be taken into account, the complexity of the 
data analysis increases substantially, though the method is, in principle, straightfor- 
ward. We hope that the method will prove to be as useful in lattice QCD as it has 
turned out to be for the study of the Higgs sector of the standard model. 

Our precise determination of F continues our study [9, 1 l, 12,32] of the upper 
bound on the Higgs boson mass in the spirit of ref. [l]. To accomplish this a 
reliable determination of M,, from the data obtained on finite lattices is required. 
This question will be addressed in a forthcoming work [40]. 
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