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Abstracl. Matrix elements to be used in second order 
Monte Carlo generators for e +e- annihilation have been 
derived from the O(~ 2) calculations by Ellis, Ross and 
Terrrano and by Kramer and Lampe. They were in- 
corporated into the JETSET 6.3 Lund String Monte 
Carlo program. The recombination scheme dependence 
of the O(~ 2) jet cross sections are studied in detail on 
the parton level (ERT) and on the hadron level (ERT and 
KL). 

1 Introduction 

The measurement of jet cross sections in the hadronic 
final states in e+e - annihilation offers the possibility 
of testing detailed features of the theory of strong 
interactions, quantum chromodynamics (QCD). Experi- 
mentally, however, not the QCD quanta, the quarks and 
gluons are seen, but only the colourless hadrons. Up to 
now the hadr0nization process can not be calculated 
from basic QCD and can be described only pheno- 
menologically. Therefore, due to hadronization no direct 
comparisons between the predictions of the theory and 
the measured hadrons can be made. Elaborate computer 
programs to simulate the fragementation process have 
been developed in the last decade [1-3].  Two different 
classes of simulation programs are available. The first 
type employs fixed order QCD calculations as theory 
input. The now almost exclusively used program of this 
type is the JETSET Monte Carlo program of the Lund 
group [3]. In a first step this program determines the jet 
multiplicity to be produced. For this purpose the QCD 
cross sections for jet production have to be provided. 

Complete perturbative calculations have only been 
performed up to order ~2. Therefore only 2, 3 and 4 
dressed partons can be calculated. This has the con- 
sequence that only up to 4 hadron jets can be simulated 
realistically. Events with more than 4 hadron jets origin- 
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ate from the fragmentation of the 2, 3 or 4 dressed partons 
and are not described correctly. 

In contrast to this simulation of the number of jets 
the second class of simulation programs, the parton 
shower programs [4, 5], can produce any number of jets 
since they calculate any number of produced partons. 
The drawback of these programs, though, lies in the 
application of the leading logarithmic approximation 
(LLA) to the theory which prohibits the deduction of 
fixed order parameters, like e.g. the strong coupling 
strength or equivalently the A parameter in a specified 
renormalization scheme. 

In the last four years rather accurate measurements 
of the 2-, 3-, 4- and 5-jet rates have been reported by the 
JADE [6] and TASSO [7] collaboration at PETRA, the 
MARK II [8] collaboration at PEP, the AMY [9], 
TOPAZ [10] and VENUS [11] collaboration at TRI- 
STAN, and just recently by the MARK II [12] colla- 
boration at SLC and the OPAL [13] collaboration at 
LEP. These experimental data were compared either to 
parton shower calculations, or to the complete second 
order matrix element calculations by Ellis, Ross and 
Terrano (ERT) [14] or by Kramer and Lampe (KL) [15]. 

In both matrix elements the complete calculations up 
to O(~ 2) have been performed using different lines of 
approach. In the ERT approach the inclusive cross sec- 
tior~ for e +e- annihilation into 3 and 4 partons have been 
calculated including all virtual and real contributions 
up to the second order in ~.  No resolution parameter 
for the separation into 2-, 3- and 4-jet contributions has 
been introduced. For this reason these calculations are 
usually referred to as representing the results for vanish- 
ing jet resolution. In order to obtain cross sections for a 
fixed number of jets a resolution criterion must be 
introduced and partons must be recombined to form jets. 
This recombination of partons is not unique and causes 
a recombination scheme dependence of the results 
[16-18]. The KL approach is complementary to the ERT 
approach in the sense that the resolution criterion, which 
allows the recombination of partons into 2, 3, and 4 jets 
is introduced already in the perturbative calculations to 
cancel infrared and/or coUinear divergences between 
virtual and real contributions. In this approach the cross 



302 

sections for the production of 2, 3 and 4 jets as a func- 
tion of the resolution parameter were obtained directly. 
Nevertheless some arbitraryness exists here also. For 
example, the 3-jet cross section depends on the way how 
the variables describing 3 jets were formed out of the 
momenta of the four partons. 

The purpose of this paper is two-fold. First we want 
to make it known that both second order matrix element 
calculations, ERT and KL, have been implemented in the 
Lund string fragmentation program and can be used for 
analysing e+e - annihilation data. Second we want to 
study the recombination dependence of partons and 
hadrons, the latter corresponding to different schemes for 
the clustering of hadrons into jets. The recombination 
dependence of partons is calculated only for the ERT 
version, in which recombination of partons is unavoid- 
able if one wishes to calculate jet cross sections. The 
dependence on the hadron clustering is investigated with 
both, the ERT and the KL based Monte Carlo generators. 
Concerning the ERT [14] based studies we follow the 
earlier work of one of us [17]. Of course, for various jet 
cross sections we shall compare results obtained with the 
ERT routine with results obtained with the KL approach 
05]. 

The plan of the paper is the following. In Sect. 2 we 
describe the preparation of the ERT and KL matrix 
elements to be used in the Lund string Monte Carlo. In 
this section we also describe the three schemes which are 
used for the recombination of partons in the ERT based 
generator and for the recombination of hadrons in both 
generators, ERT and KL. For  the KL generator we 
demonstrate that the 3-jet cross section obtained with 
the Monte Carlo (without fragmentation) agrees with the 
directly calculated cross section reported in [15]. The 
results of the recombination studies are presented in 
Sect. 3. Here we show also how selecting clustering 
schemes may help to enrich the 4-parton contribution 
which is useful for investigating details of the 4-parton 
matrix elements concerning the 3-gluon coupling or other 
details. Section 4 contains a summary and some conclud- 
ing remarks. 

2 Preparation of the ERT and KL matrix elements 

The starting point of the simulation of multi-hadronic 
events in the Lund Monte Carlo generator is the pro- 
duction of 2-, 3- or 4-QCDjets (resolved partons in O(cq2)) 
according to the so-called dressed or resolution dependent 
matrix elements which are installed in the program. 

The matrix element for the production of 4 QCD jets 
in O(~s 2) is calculated from tree-level diagrams as given 
in [14] or [19] and no ambiguities are introduced. The 
calculation of the O(~ 2) resolution dependent 3-jet matrix 
elements involves the introduction of a criterion to define 
resolved 4-jet events and the definition of a procedure of 
how to recombine the unresolved 4-parton events into 
3-jet events. For this we use the scaled invariant mass Yij 
of any two partons i and j as resolution criterion with 
y~j defined as usual 

y~j = (p~ + pi)2/s (2.1) 

where p~ and pj are the four-momenta of the partons i 
and j and x/s is the center-of-mass energy. If all possible 
combinations (i, j) yielded scaled invariant masses larger 
than a prescribed parameter y the n-parton event was 
counted as a n-jet event. For  any combination Yij < Y the 
partons i and j were recombined into a new "dressed" 
parton (or "QCD"-jet) and the n-parton event was 
counted as a (n - 1)-jet event if all possible combinations 
in the recombined event satisfied yi~ > y. 

As already pointed out in the introduction the com- 
plete O(es 2) calculation by ERT 1-14] is performed for 
vanishing jet resolution and can therefore not be separated 
into 2-, 3- and 4-jet contributions and thus cannot be used 
in a Monte Carlo generator in its original form. To make 
use of this calculation we employed the results of a 
numerical integration of the ERT matrix elements done 
by Ali and Barreiro [20], introduced a resolution criterion 
y as described above and calculated the O(es 2) 3-jet matrix 
elements. The results of the numerical evaluation were in 
the form of more than 8 million 3- and 4-parton events 
with specified kinematics and weights. The dressed O(cQ + 
O((~s  2) 3-jet cross section is given by 

= O'3_jeO, y ! + O'3.jet(Y ) + d~r 4 ( y )  (2.2) 
k 3-jets ) 

where Born, ", o'3_jetly ) stands for the resolution dependent (since 
the 3-jet contribution must be separated from the 2-jet 
contribution) O(c~,) cross section, vlr, . O'3_jet(Y ) for the virtual 

c~176 in O(c~'z)' as defined in [20]' and { -~3 ts da,}(y)  

for the 3-jet-like unresolved 4-parton contributions minus 
the terms already contained in O'3_jet(y ) . v i r t  O.3_jet[Y ) B  . . . . .  and 

virt m O'3_jet(y ) are  calculated fro the weighted 3-parton events. 

To calculate { !tsda4}(y) those parton pairs that fall 
3-j 

below the specified resolution y have to be recombined 
into a dressed parton such that a 3-jet event balanced in 
momentum and energy follows. 

The recombination of two partons into one jet can 
be done in different ways. Three schemes have been used 
in the past [16, 17,21]: (i) the energy scheme (ERT E), 
where the 4-vectors of the partons are added. The 
resulting parton mass is taken into account when checking 
whether the recombined event belongs to the 2- or 3-jet 
class after recombination; (ii) the energy scheme without 
mass (ERT E0), where the 4-vectors of the partons are 
added and the mass of the new parton is neglected in the 
recombined event; (iii) the momentum scheme (ERT p), 
where the momenta of the partons are added. The mass 
of the new parton is set to zero and the momenta are 
rescaled to yield a balanced event. The difference between 
the E- and E 0 recombination scheme lies in the different 
treatment of the mass of the recombined events. In the 
E o scheme all partons are regarded as massless in the 
recombined event, as it is the case for tree graph partons, 
and no compensation for the neglected energy is per- 
formed. The E scheme, however, manifestly conserves 
energy and momentum. In the p scheme energy and 
momentum are also conserved and the resulting recom- 
bined events are indistinguishable from genuine 3-jet 



events. Although one can give good arguments  for either 
of these three schemes there is no principle that  would 
guide us which scheme should be preferred. Therefore  we 
shall consider all three schemes in the following. 

Before we can present  our  results on the recombinat ion  
dependence of the 3-jet cross section we must  describe 
some further technical details. 

In the J E T S E T  6.3 Monte  Car lo  p rog ram the 0(% 2) 
matr ix  element for 3-jet p roduct ion  is installed as a 
correct ion matr ix  G to the Born matr ix  element which 
depends on the scaled energies xl  and x2 of quark  and 
ant iquark,  respectively, and the resolution cut y, so that  
the sum of first and second order  contr ibut ion is: 

d2t73 
- - ( x  l, x2, y) 
dxadx 2 

- dxldx2 (xl ,x2)  1 + rc G(x l , x2 ,y  ) . (2.3) 

Second one needs in the Lund  p rog ram the integrated 
3-jet cross section, which is obta ined by integrat ion of 
(2.3) over  the 3-jet region. The  4-jet cross section is 
obta ined by integrat ion of the 4-par ton matr ix  elements 
with the appropr ia te  cuts as explained above. Then one 
needs still the 2-jet rate as a function of y. This can be 
deduced from the sum rule 

O'to t = 0"2_jet(Y ) -{- O'3.jet(Y ) + 0"4_jet(Y ). (2.4) 
Thus  all three jet fractions are known if G(xl, x2,y) in 
(2.3) is supplied. To  generate G the following steps are 
taken. The ERT matr ix  elements were evaluated by Ali 
and Barreiro [-20] in the form that  they supplied 6.5 
million 4-par ton events (q[lgg and qgtqgl) and 1.9 million 
3-par ton events (q@) with their corresponding weights. 
F r o m  these events all three contr ibut ions to cr3_j~t(y ) in 
(2.2), agi,t(Y) and a2.j~t(y ) f rom (2.4) could be calculated. 
Also from the stored events the correct ion matr ix  G(xj., 
x z,y) in (2.3) was determined and stored as a matr ix  in 
xa, x2 in bins o fAx  I = 0.1, A x  2 = 0.1 in total  I00 G-mat r ix  
elements for 2 0 y  values 0.015, 0.02, 0.03 . . . .  ,0.20. When  
the correction matr ix  G(x~,x2,y ) is known and 3-jet 
events are generated with it the integrated 3-jet rate 
obta ined from G need not be identical with the 3-jet rate 
calculated from (2.2) with the same y. The reason for this 
difference lies in the fact, that  with the correct ion matr ix  
G the separat ion of 2- and 3-jet events occurs on the basis 
of the scaled energies xa and x 2, which are considered as 
the jet energies of massless partons.  This difference, 
which is small, will be largest in the E-scheme. One might  
think that  for this mismatch  those events give the largest 
contr ibut ion in which a qc] pair  in ggq[l or in qglqgl is 
being combined and considered as one jet. This contri-  
but ion is non-singular  for Ymin---~0 and is contained 
exclusively in the last term of (2.2). This contr ibut ion f rom 
99(qgl) with qc] combined  has been incorpora ted  into G 
by identifying the m o m e n t u m  of the first gluon with x~, 
of  the second gluon with x 2 and then symmetrized.  The  
difference Aa3(y)/atot as a function of y, where Aa  3 is 
aEQCD(y)- aEMC(y) is the difference between the result 
following from (2.2), denoted aEQCD(y), and the result 
obta ined from (2.3) with the correct ion matr ix  G, denoted 

n [o'3-jet/ O'tot] 
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Fig. 1. a Devia t ion  of  M o n t e  Car lo  genera ted  3-jet ra te  (aE Mc) f rom 
original 3-jet rate calculated from (2.2) (or. Qc~ for E recombination 
scheme as a function of y. Open circles are the full deviations, full 
diamonds are deviations corrected with non-singular term, full 
squares are deviations corrected with fE. b Same as a for E 0 
recombination scheme, e Same as b for p recombination scheme 
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O'EMC(y) is shown in Fig. la. In this figure the open circles 
give Aa 3 in the case that the non-singular gg(q(l) or q[l(qcl) 
terms are neglected completely. The points labelled 
aE o c D -  a~MC(+ ns) have the contributions gg(q~) and 
qfl(q[l) included. This changes Aa 3 by a very small amount  
which shows that these events contribute very little to 
Aa3. In total Aa3 is of the order of 2~o and therefore 
nonnegligible. To restore the correct number of 3-jet 
events by using the correction matrix G we have renor- 
malized the matrix G by the difference 
fe.(Y) = aEQCD(y) -- aEMC(y) �9 (2.5) 

This gives the points denoted "aE QcD - fEaE Me'' in Fig. la. 
With this renormalization AaJato t is now between 0.59/o 
and 19/o. The equivalent results for the E o and the p 
scheme are shown in Fig. lb  and c respectively. Since the 
contribution of 9g(q[l) made no difference in Fig. la  we 
did not include this contribution for the E o and the p 
scheme in Fig. lb and c. As we expected also in these 
two schemes the mismatch between the direct calculation 
of a3(y ) from (2.2) and from G is reduced. For the case 
with renormalization, using fEo and fp defined in analogy 
to (2.5), the Ao'3/O'to t a re  in both cases smaller than 0.5~o. 
The results in Fig. l a - c  are obtained with a, calculated 
with the second order formula with A ~  = 100 MeV at 
Ecru = 43 GeV (~ = 0.119). In the following all correction 
matrices G calculated from the ERT matrix element are 
renormalized with the functions fE, leo and fp. 

Now we are in the position to study the recombination 
dependence of the integrated 3-jet cross section as a 
function of y. For this purpose we have calculated the 
O(a~ 2) contribution to a 3 jr for the three recombination 
schemes ERT E, ERT Eo and ERT p. The results are 
shown in Fig. 2a. We used again a~ = 0.119, as in all the 
following plots, and normalized a 3 = a3_jr t by ao, the 
lowest order cross section with N I = 5 .  The a 3 for 
the three recombination schemes show an appreciable 
spread. The ERT E scheme produces the largest O(a~ 2) 
correction to a 3. The results for the Eo and p scheme lie 
near together, they differ by approximately 30~o. In Fig. 2 
we also plotted the O(a~ 2) contribution to a 3 calculated 
with the formulas of Gutbrod et al. (GKS) [22], which 
have been used in the Lund Monte Carlo in the past [3]. 
In this calculation a 3 is obtained purely analytically, 
although in an approximate way. These authors neglected 
all non-singular contributions to G, which vanish in the 
limit y-*0.  The neglected terms include also the non- 
singular terms that originate from unresolved 4-patton 
events of the ggqcl and qclq{l type with unresolved q~ pair, 
already mentioned above. This particular contribution is 
exhibited in Fig. 2a as a(ns). If we add this to the GKS 
prediction we come closer to the ERT p result, but a 
small difference, of the order of 0.01-0.02, remains. We 
notice that all four 0 ( ~  2) predictions become negative in 
the vicinity ofy  = 0.01. This is caused by the leading term, 
which is ( - I n  4 y). The p recombination scheme has also 
been studied by Zhu [21]. His results agree with ours for 
those y-values where there is overlap. In Fig. 2b we have 
added the cross sections 0- 3 in O(a~) and O(a~ 2) and 
normalized with a~o t. This shows clearly the spread in the 
total a 3 as a function of y. The GKS prediction is the 
smallest, the ERT E gives the largest 3-jet cross section. 
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Fig. 2. a O(~ 2) contributions to the 3-jet rate a~_ jeJa  o as a function 

of y calculated from ERT matrix element for E, Eo and p 
recombination and GKS prediction [22] and non-singular contri- 
bution (a(ns)). b Comparison of full (O(a,)+ O(~s2)) 3-jet rates 
a3. je t /a to  t obtained from ERT E, ERT E o and ERT p scheme and 
from GKS 
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Fig. 3. Recombination dependence of full (O(~s) + O(~,2)) n-jet rates 
a,,_jet/ato t (n = 2, 3) for E, E o and p scheme together with 4-jet rate 
obtained from ERT Monte Carlo as a function of y 



To see the final predictions for all three jet cross sections 
a2, a3 and a4 as they depend on the recombination 
scheme we show them in a logarithmic plot in Fig. 3. Of 
course, the differences are somewhat reduced since the 
O(~s) contribution in o-3 and the O(1) and O(cq) con- 
tributions in o-2 are independent of the recombination 
scheme. The 4-jet cross section shows no dependence on 
the recombination scheme as it was calculated from tree 
graphs only. Various differential distributions for 3 jets 
with these ERT E, E o and p patton dressing schemes [17] 
have been calculated in [18]. 

Now we shall describe the KL generator. In [15] the 
O(ot, 2) matrix elements for 3-jet production have been 
calculated using a partial fraction decomposition of the 
4-parton matrix elements and then applying the invariant 
mass resolution cut. This allows a separation of the 
singular and the non-singular terms. The results consist 
of three parts, (i) the singular contributions, which could 
be calculated analytically, and are equal to the GKS terms 
up to small terms of order y, (ii) non-singular contri- 
butions which are closely related to the singular terms 
and which are given as an integral over the Y~i invariant 
in the region Yli < Y, which produces the singularity in 
the singular terms and (iii) non-singular terms from the 
4-parton phase space region y~j > y, which are everywhere 
finite because of the partial fractioning. The contributions 
in (ii) are obtained by one numerical integration whereas 
the contribution (iii) have been evaluated by Monte Carlo 
methods since an analytical integration of the partial 
fractions in connection with the complicated phase space 
boundaries due to the invariant mass resolution cut 
was not feasable. All three contributions have been in- 
corporated into the correction matrix G(xl, x 2, y) defined 
in (2.3). This implementation of the KL results was done 
for y = 0.01,0.02, 0.03 . . . . .  0.14 and for y = 0.16, 0.18, 0.20, 
0.22, 0.25. For  all these y values G(xt, xz, y) is written as 
a 100 x 100 matrix in xl,  x2-bins, 0.01 wide, similar to the 
implementation of the ERT matrix elements. In [15] 
the separation of the 3- and 4-jet contribution of the 
4-parton matrix elements with the chosen resolution cut 
y had already been done in the course of the analytical 

T a b l e  1. Comparison of the 3-jet rate 0(o~ z) coefficient C32 for 
various y values as calculated with correction matrix G (Ca2(matrix)) 
with directly calculated C32 (analytical) from [15] 

y C32 (analytical) C32 (matrix) d(%) 

0.01 6.8367 6.7166 
0.02 9.2478 9.265 ! 
0.03 8.2678 8.3150 
0.04 7.1111 7.1457 
0.05 6.0494 6.0822 
0.06 5.1574 5.1618 
0.08 3.7260 3.7343 
0.10 2.7045 2.7079 
0.12 1.9686 1.9749 
0.14 1.4343 1.4446 
0.16 1.0504 
0.18 0.7563 
0.20 0.5329 
0.22 0.3628 
0.25 0.1836 

- 1.8 
0.2 
0.6 
0.5 
0.5 
0.1 
0.2 
0.1 
0.3 
0.7 
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and numerical evaluations. Therefore no subsequent 
recombination of partons as in the implementation of 
the ERT matrix elements is needed here. Also the re- 
evaluation of the O(~q 2) contribution to o- 3 using the 
correction matrix G(x 1, x2, y) should reproduce the results 
for 0" 3 obtained in [15]. This has been checked by Monte 
Carlo integration of the 100 • 100 correction matrix G. 
We write 63/o" 0 as usual 

trs(y)/a o = O~sC31(Y ) q'- Ots2C32(Y). (2.6) 

Our results for C32(y ) for all y values for which G has 
been converted into matrix form are collected in Table 1. 
We compare them with the directly calculated values 
taken from [15] for those y values for which results are 
reported in this reference. The agreement is very good. 
For all y __> 0.02 the deviations are below 0.7%. A small 
difference is caused by neglecting a small non-singular 
piece of the q~qt]-contribution when calculating G which 
is below 0.3%. This term was included in C32 (analytical). 
For  y = 0.01 the deviation is larger which presumably 
comes from the fact that the higher-order corrections are 
transformed into the matrix G with finite bins in x 1 and 
x2. The achieved accuracy, however, is sufficient for our 
purposes. 

Actually in 1-15] two different predictions for 2- and 
3-jet cross sections have been presented. In both versions 
all subleading 4-parton contributions were included from 
the start. It was found, however, that the 3-jet cross section 
depends on the way the variables describing 3-jets were 
formed out of the momenta of the 4 partons. In one 
version, called KL1 in this work (this corresponds to 
KL in [15]), if the singular term in yi~ corresponds to a 
q# pair, the energy of ~ is unchanged in the recombination 
procedure, while the energy of the unrecombined gluon 
is increased by yijEcu/2 and that of the qy pair is 
decreased by the same amount. If the recombined pair is 
99 or q'~' the treatment is more symmetric. The energy 
of the combined pair is decreased and the sum of quark 
and antiquark energies is increased accordingly. We have 
symmetrized the final result in quark and antiquark 
energies x 1 and x2 to eliminate the unsymmetric procedure 
of quark and antiquark energies in the recombination 
process. 

In the other scheme, the KL' in [15], denoted KL2 
in this work, the definition of 3-jet variables is essentially 
similar to the E scheme, in that the energy ofa  recombined 
parton pair (i j )  is Ei + Ej with three-momenta suitably 
modified. The treatment of #9 and q't~' pairs is as in the 
KL1 procedure. 

In the study of a singular term in y~ in the region 
y~j < y, it is always the partons (i j )  that are recombined, 
even if another parton pair has a smaller invariant mass, 
e.g. if Y~k < YO" For the numerical integration in other 
regions, where the 4-parton matrix elements are non- 
singular because of partial fractioning, the energy re- 
combination is performed for the pair with small invariant 
mass in that region. The second order corrections in the 
KL1 scheme are larger than in the KL2 scheme. The 
different results for the KL1 and KL2 procedure is similar 
to the recombination dependence for the ERT case 
described above. In this work we have implemented only 
the KL2 version into the JETSET 6.3 Lund program. 
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Fig. 4. a Results from Fig. 2a for ERT E, ERT E 0 and ERT p 
compared to KL1 and KL2 results [15]. b Results from Fig. 2b 
for ERT E, ERT E o and ERT p compared to KL1 and KL2 results 
1-15] 

But the integrated 3-jet cross sections as a function of y 
are available for both versions, however, for a limited 
number of y values [15] only and can be compared with 
the ERT E, ERT Eo and ERT p results presented above. 
This is shown in Fig. 4a and b. In Fig. 4a we compare 
the O(~s 2) contribution to a3(y)/ao from Fig. 2a with the 
KL1 and KL2 result [15]. We see that the ERT E o cross 
section is almost equal to KL2 whereas KL1 lies only 
slightly below the result for ERT E. In Fig. 4b we have 
included the O(es) contributions in the plot for O-3(y)/O'to t. 
We see that ERT Eo and KL2 almost coincide and KL1 
is smaller than ERT E by 0.01-0.02. This completes our 
description of the implementation of the ERT and the 
KL2 matrix elements into the JETSET 6.3 Lund Monte 
Carlo program. We compared results for the three 
recombination schemes of the ERT implementation with 
the two KL versions. In the next section we shall use the 
two Monte Carlo routines, ERT and KL (we write KL 
for KL2 in the following), and shall study how the jet 
cross sections depend on the recombination scheme which 

is used to define jets out of the hadron distribution with 
various cluster algorithms. 

3 Hadron recombination dependence 

If we want to confront the predictions for 2-, 3- and 4-jet 
cross sections presented in the last section with experi- 
mental data we can do this in two ways. One way is to 
use the implementation of the ERT E, ERT Eo, ERT p or 
KL matrix element in the Lund string Monte Carlo to 
generate hadron events. To these hadron events one of the 
popular cluster algorithms for the definition of hadron 
jets is applied. As cluster algorithms we consider the same 
E, E o and p scheme for partons as in Sect. 2. The only 
difference is that these recombination schemes are applied 
to hadron four-momenta with a preselected cluster para- 
meter y. For  the p scheme, however, we have to introduce 
one important change from the definition in Sect. 2. If 
we apply the same algorithm to hadronic events, as we 
did to the partons, the total cross section is almost 
saturated by 2-jet and 1-jet events for large y values and 
only very low 3- and 4-jet rates are measured. This occurs 
because the rescaling procedure tends to drag the jets 
into the vicinity of the highest momenta  tracks and thus 
favours the q and ~ directions. We therefore have chosen 
to use the p algorithm without rescaling of momenta. It 
then yields multijet rates comparable to the E and Eo 
algorithm. Then one might try the p-scheme without 
rescaling also for the parton recombination. We have 
estimated the influence of the rescaling procedure on the 
ERT p cross section by comparing our result to the ERT p 
result of [18] who use the p scheme without rescaling. 
Our 3-jet rates for 0.2 __< y __< 0.10 are about 1-4% larger 
than the 3-jet cross sections given in [18]. This causes an 
even larger spread of the p scheme to the two other 
schemes on the parton level than shown in Fig. 2b. 

Now the same cluster algorithm applied to the Monte 
Carlo generated hadron events is applied to the measured 
hadron events and then compared to the calculated 
events. This way we can check whether the measured 
hadron jet cross sections as a function of y agree with 
the generated hadron-jet cross sections and use this as a 
test of perturbative QCD. Such comparisons with the 
JADE experimental data [6] have been performed in 
great detail by one of us [17]. The other method is to use 
the Lund Monte Carlo to calculate correction matrices 
which allow to deduce the QCD-jet  cross sections from 
the hadron-jet cross sections for a definite Monte Carlo 
version ERT E, ERT Eo, ERT p or KL and for a definite 
cluster algorithm E, Eo or p. It has also been suggested 
by Kunzst et al. [18] that there should be a one-to-one 
correspondence between the recombination scheme to 
define jets out of patrons, i.e. E, E o or p and the scheme 
to define jets or clusters from hadrons, i.e. also E, E 0 or 
p, so that these correction matrices should be near unity, 
if the same scheme is applied for the definition of jets 
from partons and from hadrons. This is unfortunately not 
the case as shown in Fig. 5a and b. In Fig. 5a we present 
curves for the n-hadron jet fractions a, /a to  t (n = 2, 3, 4) as 
a function of y for the two cases of E and p algorithm. 
The hadrons for the E(p) cluster algorithm are generated 



I 

10 0 

lO-I 

10-z 

10-3 ) 
0.0 

ERT Monte Carlo 
I I I I I I ~ 1 

o , ~  hadrons: ERT E, YCLUS E 
.. \ 

, j , I , I , ~"~- , , ~'-- ~ , ~ , 

0.02 0.04 0.06 0.08 0 10 
Y 

O" n _ ; e i / O ' t o t  
I 

lO o 

1 0 - !  

lO-Z 

lO-S , , 
0.0 

a 

ERT Monte Carlo b 
I I I I I I I I " 

. .  _ . . . . .  . :  .: ,: 5 ,- ~ ' ~  

hadrons: ERT E, YCLUS E 
, ' " . .  

'-, , % _ _ ~  . . . . . . . . . .  ERT Eo, YCLUS Eo 

4-jet "",, " ~ ~ T  t7, YCLUS/7 ..... % 

0.02 0.04 0.06 0.08 O. 10 

Y 

F i g .  5 .  a 2-, 3- and 4-hadron jet fractions a,_je,/ato , as a function of 
y for E and p cluster algorithm (YCLUS) for hadrons based on 
ERT E and ERT p parton recombination together with parton jet 
fractions for ERT E and ERT p. b n-hadron jet fractions a,_~,/a~ot 
(n = 2, 3, 4) as a function of y for E, E o and p cluster algorithm 
based on ERT E, ERT E o and ERT p parton recombination 

o-._ :e~/~Ytot KL Monte Carlo 
I I I I I I I I ' I 

10 o 

2-jet 

10-J 

~ , ~ ' x  hadrons: YCLUS E 
-... --,,. 

"i'i ' ~  .......... Y CL~S Eo 

I t I I ' " , " " 1 " " - ~ " "  I , "': '~:.. , 1 0 - 3  , I , t I 

0.0 0.02 0.04 0.06 0.08 0.10 

Y 

Fig. 6 n-hadron jet fraction a,_jet/ato t (n = 2, 3, 4) as a function of y 
generated with KL Monte Carlo for E, E o and p cluster algorithm 
for hadrons 

307 

with the ERT E(p) recombination scheme for partons. 
We see that the results for the E and p clustering differ 
by an appreciable amount, in particular a3/etot and 
a , /a to  t. The curves for the parton predictions lie much 
nearer together as we had seen already in Fig. 3. 
Furthermore for the E-scheme the hadron and parton 
curves almost coincide, so that for the E scheme the 
correction matrix is approximately the unit matrix. For 
the p scheme, on the other hand, the correction from 
hadron to parton jet-cross sections is certainly large. In 
Fig. 5b we show the hadron-jet fractions a, /ato , (n = 2, 3, 4) 
with E, E o and p clustering, where the hadrons used for 
the E, E o and p clustering are generated from the ERT 
E, E o and p Monte Carlo. The spread in the hadron 
jet-fractions is much larger than the spread shown in 
Fig. 3 originating from the recombination of partons. 
Thus the results depend very much on the clustering 
scheme. If the scheme dependence on the hadron side 
would be approximately the same as on the parton side 
the three curve in Fig. 5b for n = 2, 3 and 4, respectively, 
should coincide. This is not the case. That this does not 
happen we can perhaps understand from the fact that if 
jets are formed out of hadrons many more hadrons 
produce one jet or cluster than partons form one dressed 
jet. Then on the hadron side the ambiguities inherent in 
the E, E o or p scheme must matter more than on the 
parton side. 

In Fig. 6 we compare the hadron-jet fractions generated 
with the KL Monte Carlo and analysed with E, E o and p 
cluster algorithm. The result is similar to Fig. 5a obtained 
for the ERT based Monte Carlo�9 The results for the E, 
E o scheme on one side and for p on the other side differ 
very much. Furthermore we observe that for the E o 
scheme the hadron-jet fractions overlap almost completely 
with the patton-jet fractions. This means that the correc- 
tion matrix for the E o scheme has the effect that there is 
a "linear correction" factor equal to one. This does not 
mean, that the correction matrix is the unit matrix. This 
can even be more clearly seen in the differential jet rates 
D2(y ) defined as 

D2(y) = N. [R2(y + Ay)  - R2(y)] (3.1) 

with N the total number of events which is shown in 
Fig. 7a c for the three jet algorithms. The differential 
jet rates as determined with the E o jet algorithm follow 
almost exactly the differential parton rates as given by 
the KL Monte Carlo events. For the E- and p-algorithms 
the linear correction factor on Dz(y )  is larger. The same 
result is obtained for the ERTEo Monte Carlo. We 
conclude from this that in particular for the Eo scheme 
the experimental data for the hadron-jet  fractions can 
directly be compared to the parton predictions, i.e. for 
example to the results in [15]. In Fig. 5a we observe this 
also for the ERT based routine. This finding, which had 
been obtained also in [6,8, 13] with the parton shower 
program with subsequent fragmentation into hadrons, is 
very satisfactory since it offers the possibility to measure 
the coupling ~s without recourse to complicated hadron- 

ization programs. These findings are for x/s = 43 GeV. In 
general the linear correction factors are a function of the 
c.m. energy and the y cut. If the c.m. energy is large 
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enough (E . . . .  > 35 GeV) the correction factor for the E o 
scheme is always equal to one for y > 0.08. For  larger 
energies it is reached for even smaller y values. 

As a last subject we want  to show a possible applica- 
t ion of the different jet algorithms. Using the KL Monte  
Carlo events we determined for each of the three jet re- 
construction algorithms the efficiency 5(4) for reconstruct- 
ing 4 jets and the purity p(4) of the reconstructed 4-jet 
sample for different values of the cut-offy in the algorithm 
with 

# of reconstructed 4-jet events 
e(4) = (3.2) 

# of 4-par ton events 

and 

# of reconstructed 4-jets s temming from 4-par ton events 
p(4) = (3.3) 

# of reconstructed 4-jet events 



These results are shown in Fig. 8a for e(4) and in Fig. 8b 
for p(4). From Fig. 8b it is r~adily seen that using the 
p-algorithm for determining the jets a very clean 4-jet 
sample can be produced for jet resolution cuts in the 
range of 0.04 =<y_<0.06. Although the efficiency for 
reconstructing 4-jet events is only 20 -30~  the sample 
has a background of only about 20~o compared to the 
E 0 jet algorithm where e(4) is about 40~  in this y region 
but p(4) is as small as 40-50~ .  

These results show that it is worthwhile to select 
special hadron recombination schemes for example the 
p scheme if one wants to have large number of genuine 
4-parton events in the event sample. Since the 4-parton 
final state is the simplest state in which the 3-gluon 
coupling occurs the p scheme may be advantageous for 
studying the non-abelian nature of QCD. 

This study also shows that the close relationship 
between parton-jet fractions and hadron-jet fractions in 
the Eo scheme is only correct for the integrated cross 
sections and is not true for all distributions, i.e. not all 
hadron n-jet events (n = 2, 3, 4) originated from the parton 
n-jet events. 

4 Summary and conclusions 

In this paper we described the implementation of second- 
order 3-jet matrix elements in the JETSET 6.3 Lund String 
Monte Carlo program. As matrix elements we used the 
ERT formula supplemented with results of numerical 
integration of the ERT matrix elements in the non- 
singular region. With this implementation we studied the 
dependence of the O(~s 2) corrections to the 3-jet cross 
section on the dressing, i.e. the method to combine 
non-singular 4-parton configurations into 3 jets. For  this 
we employed three recombination schemes, the ERT E, 
E o and p scheme. The integrated O(~s 2) 3-jet rates as 
function of the mass resolution cut differ appreciably for 
the three dressing schemes. The ERT E yields the largest, 
the ERT p the smallest 0(~ 2) corrections. 

These results are compared with another complete 
second-order calculation of the integrated 3-jet cross 
section [15] for which also two versions KL1 and KL2 
exist, depending how the 3-jet variables are defined in 
terms of the 4 parton momenta.  It turns out that KL1 
agrees approximately with ERT E and KL2 almost 
exactly with ERT E o in the O(0q 2) 3-jet fraction. 

The KL2 version is also implemented into the Lund 
Monte Carlo program. It has been checked that the 
implementation produces the same 3-jet fraction as the 
original calculation. With both Monte Carlo programs 
ERT and KL we investigated the recombination or cluster 
algorithm dependence on the hadron side. We used three 
cluster algorithms YCLUS E, E o and p which are defined 
in a similar way as the parton recombination schemes. 
Concerning ERT we always combined ERT E for partons 
with YCLUS E for hadrons and similarly for the E o and 
p scheme. 

For  both versions ERT and KL we found an appreci- 
able dependence on the cluster algorithm. The 3-jet rate 
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for YCLUS p is always smaller than for YCLUS E and 
YCLUS E o. This spread of O'3.je t is much larger than the 
spread on the parton level m the ERT version. An 
important result is that the YCLUS E o scheme gives 
almost identical 3-jet rates for hadron jets as the ERT E o 
and KL predicted for the dressed parton jets. This is 
particularly apparent  if we compare the differential jet 
rate Dz(y ) as a function of y. This means that the linear 
correction factor on D2(y) is almost equal to one for the 
E o scheme. 

As an application of the KL Monte Carlo we deter- 
mined for each of the three jet reconstruction algorithms 
the efficiency for constructing 4 jets and the purity of the 
reconstructed 4-jets concerning the original 4-parton 
events. It turned out that with the p scheme one gets a 
very clean 4 jet sample (high purity), but with low 
efficiency. The other two schemes YCLUS E and YCLUS 
E o have large efficiency but less purity than the p scheme. 

We conclude that the cluster algorithm dependence 
for defining jets out of hadrons is not negligible and must 
be taken into account for quantitative tests of perturb- 
ative QCD. It  leads to a systematic uncertainty, for 
example, in the determination of the strong coupling 
constant ~t s in agreement with earlier findings 1-16]. 
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Note added in proof. The E cluster recombination scheme applied 
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thens the above conclusion (see e.g. [23]). 
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