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Abstract. A Selberg trace formula is derived for the Laplace-Beltrami operator on 
bordered Riemann surfaces with Dirichlet or Neumann boundary conditions, 
respectively, using a construction via the compact double of the surface, for which 
the standard trace formula is valid. Applications of the trace formula to spectral 
functions of the Laplace-Beltrami operators are discussed and their functional 
determinants are explicitly expressed in terms of various Selberg zeta functions. 
For Selberg's zeta function relevant to the Dirichlet boundary value problem 
a representation as a Dirichlet series is given, for which we conjecture conditional 
convergence even within the critical strip for Re s > �89 

I. Introduction 

In recent years the Selberg trace formula [1-3] has become notably popular 
among physicists. There are two fields in physics, where Riemann surfaces occur 
and the trace formula has been successfully applied: quantum chaology [4, 5] and 
string theory [6]. In the first field it was discovered 1-4] that Gutzwiller's periodic- 
orbit theory for the semiclassical quantization of a classically chaotic system 
becomes exact for a particle sliding freely on a Riemann surface of genus 9 > 2 
(Hadamard-Gutzwiller model). The corresponding periodic-orbit formula is just 
Selberg's trace formula. This then has been intensively applied there [5]. 

The second striking application of the Selberg trace formula has been string 
theory. In Polyakov's path integral approach [-6], where the string partition 
function is given as an integral over all world sheets of the string, there occurs the 
functional determinant of the Laplace-Beltrami operator on the world sheet 
as a result of the integration over the embedding functions into space-time. 
It is possible to evaluate this determinant using the Selberg trace formula and 
express it through Selberg's zeta function [6, 7]. Also, the ghost determinant 
appearing in string theory may be expressed analogously. In fact, the determinants 
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of higher-rank Laplace-like operators allow such a treatment, too [8]. Even in the 
case of the superstring a "super-analogue" of Selberg's trace formula has been 
derived and applied [9]. Thus the use of Selberg techniques has become a whole 
business in physics. 

In this paper we derive a trace formula for bordered Riemann surfaces, that is 
we study the trace of certain integral operators associated with the Laplace- 
Beltrami operator obeying Dirichlet or Neumann boundary conditions. Our inter- 
est in that subject mainly stems from string theory, but we hope that one will be 
able to use the formula also in quantum chaology, e.g. to study the quantum Sinai 
billiard. 

In string theory, one way to define off-shell string scattering amplitudes is to use 
a functional integral over bordered world sheets [10], the bordering curves being 
the incoming and outgoing string states of the scattering process. Then naturally 
the functional determinant of the Laplace-Beltrami operator occurs and the 
question arises, how to deal with it. Blau et al. [11] used for the first time a version 
of Selberg's trace formula for bordered surfaces, but restricted their attention to 
surfaces of genus zero. 

Our purpose in this paper is to derive a trace formula for bordered Riemann 
surfaces of arbitrary genus. We proceed by constructing a compact Riemann 
surface through doubling the original one and by using the well-known trace 
formula for the cocompact case. To deal with the boundary conditions on the 
bordered surface properly, we divide the eigenfunctions of the Laplace-Beltrami 
operator on the doubled surface into symmetry classes according to their reflection 
property introduced by the doubling procedure. Similar considerations have been 
performed in special cases in [11-13]. Such a trace formula in the general context 
has first been derived by Venkov [14]. In this article we give a self-consistent 
derivation of the trace formula using similar methods as in [14] and also discuss 
some applications of it. 

Our paper is organized as follows: First we explain the construction of the 
doubled surfaces and derive the trace formula. Then we study the trace of the heat 
kernel and the MP-zeta function of the Dirichlet-(Neumann-)Laplace-Beltrami 
operator and give some of their properties. In addition to the usual Selberg zeta 
function (on the doubled surface) we introduce functions that effectively take care 
of the correct boundary conditions. We are then in a position to express the 
functional determinant of the Dirichlet-(Neumann-)Laplace-Beltrami operator 
by these functions or by the respective heat kernels. These are the formulae that 
have been used in [15] to study the on-shell limit of off-shell string scattering 
amplitudes. Finally, we rearrange the trace formula and introduce a new Selberg 
zeta function for the Dirichlet problem, which can be identified with a combination 
of the previously introduced functions. In addition we discuss several properties of 
this zeta function. 

2. Derivation of the Trace Formula 

Before we start to derive the trace formula, we briefly recall how bordered Riemann 
surfaces are most conveniently dealt with [16]. The idea is to lift the discussion to 
an appropriately chosen compact surface, since the theory of compact Riemann 
surfaces is well developed and comparatively easy to handle. 
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Let I~ be a compact Riemann surface of genus g and dl . . . . .  d, conformal, 
non-overlapping discs on 2~. Then 2;:= Z \ { d l  . . . . .  dn} is a bordered Riemann 
surface of signature (g, n). cl := ~dl are the n components of 02;. Now one takes 
a copy IS  of S, a mirror image, and glues both surfaces together along (32; and 
0(12;). Technically this is done in terms of local coordinates in the following way: 
Let z be a local coordinate in the neighbourhood of P e 2;. Then - 2 is taken as the 
local coordinate in the neighbourhood of the mirror image P '  of P on 12;. The 
corresponding points on ~3Z and 0(I2;), respectively, are identified and thus have 
purely imaginary coordinates. The reflection I: P --* P '  in (32; then is an anticonfor- 
mal involution (I 2 = 1) on the doubled surface S : =  2; w 12;. Furthermore 2; = S/I, 
and 2; is a compact  Riemann surface of genus 0 = 29 + n - 1. The uniformization 
theorem for compact  Riemann surfaces now states that 2~, f o r 0  > 2, may be 
represented as 2 ; -  F \  J e F, where f is the Fuchsian group of 2 and x4e is the 
Poincar6 upper half-plane, ~ = { z  = x + iyly > 0}, endowed with the hyperbolic 
metric ds 2 = y -  2(dx2 + dy2). F then is a discrete subgroup of PSL(2, IR) that 
solely consists of hyperbolic elements. In several circumstances it is advantageous 
to represent 2; by a fundamental domain ~ c YF for F. 

To construct a convenient fundamental domain and representation of the 
involution I on it, it is advantageous to view ,~ as a symmetric Riemann surface 
with reflection symmetry I. For  such surfaces the Fuchsian groups are well 
investigated by Sibner [17]. He shows that ~ may be chosen as the interior of 
a fundamental polygon in ~ with 40 + 2n - 2 edges, which is symmetric with 
respect to the imaginary axes. The involution I is being represented by z --* - g, 
that is a reflection in the symmetry axis of o~. One of the bordering curves, say c,, is 
mapped onto the imaginary axis and the others are among the edges of the 
fundamental^polygon. The advantage of this construction is that one can work 
directly on ~ ,  with I, viewed as a mapping of complex numbers, being formally 
identical on 2; a n d  o ~ .  

On ~ the Laplace-Beltrami operator takes the form A = y2(~2 + 02), hence it 
commutes with I. Therefore the eigenfunctions of - A  can be simultaneously 
chosen as eigenfunctions of I. The odd functions (with respect to I )  on 2; are exactly 
the (antisymmetric) continuations of the functions on 1; that satisfy Dirichlet 
boundary conditions on ~Z, and the even functions are in the same way related to 
the functions on 2 that satisfy Neumann boundary conditions. In this paper we will 
explicitly deal with the Dirichlet case and mention only from time to time how the 
Neumann case looks like. In the trace formula the difference is just a few signs. 
Thus from now on we concentrate on odd functions on 2~ or ~ ' ,  respectively. They 
may be constructed from functions defined on the whole of J f  via Poincar6 series. 
Letfo  e C(Jt ~) be continuous, then 

f ( z ) : =  ~" [ fo (VZ) - fo ( f l ( z ) ) ]  = ~^ [ f o ( T Z ) - f o ( 7 ( - 2 ) ) ]  (1) 

is such an odd, F-automorphic function, i.e. f ( T z ) = f ( z )  for all ~ e f ,  and 
f ( Iz)  = - f ( z ) .  

In the Selberg trace formula one considers traces of integral operators, whose 
spectra are related to the spectrum of - A .  Let �9 e Cc ~ (IR) be a smooth function 
with compact support. Then for z, z' ~ J/g, 

k(z,z'):= �9 (Iz---z'12'~ 
YY' J (2) 
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is called a point-pair invariant. For M ~ PSL(2, lR), which acts on z s ovf as a frac- 
tional linear transformation, it follows that k(Mz, Mz' )= k(z,z') and also 
k(Iz, Iz') = k(z, z'). Let ~ e C~(W) be an eigenfunction of - A ,  - A O  = 2~, then it 
is simultaneously an eigenfunction of the integral operator L (see e.g. [2]), 

(L~)(z) := S d#(z')k(z, z')~k(z') = A(2)ff(z), (3) 

where dlz(Z) := dx dy. the Poincar6 measure on Yf, and A depends only on ~. Now y---T-is 

we form the integral kernel 

1 
/((z, z ' ) := ~ ~ [k(z, ~z') - k(z, 7 ( -  z'))] , (4) 

y ~ F  

which defines an integral operator on L2(~).  I ff~ L2 (~') is an odd eigenfunction of 
- A  with eigenvalue 4, then we compute 

(s := ~ d#(z')Is z')f(z') 

1 
= ~(Lf)(z) - ~(Lf)(--  ~) 

= A(2)f(z), (5) 

hencefis  also an eigenfunction of s  eigenvalue A(2). - A  on 2~ has a discrete 
spectrum, 0 < 21 < 22 < . . . .  and K can be expanded in (odd) eigenfunctions ~p, 
of - A ,  

K(z,z') = ~ A(2,,)q),(z)~o,,(z'). (6) 
n = l  

As usual, one defines 2 = pZ + �88 A(2) = h(p), and gets as the trace of s 

Tr / / ,=  ~ A(2 , )=  ~ h(p,,) 
n = l  n = l  

= z )  

1 
=1- Z ~ d#(z)k(z, 7 z ) - ~  ~ ~ d#(z)k(z, pz) . (7) 

2 ~,~f ~ p~fl ~. 

The first sum on the r.h.s;.of (7) is �89 times the r.h.s, of the usual Selberg trace formula 
for the compact surface Z, and the result of its evaluation is well known to be [1, 2] 

+oo 

~ ~ d#(z)k(z, ?z)= ( g -  1) S dph(p)ptanh(•p) 

+ ~ ~ 1(7) a(kl(7)). (8) 

{,}, k=a 2sinh (~l(y))  

In order that all the sums and integrals converge absolutely, h(p) has to be an even 
fimction holomornhic in the stria Ilm nl < 1 -~ 4- v._ P. > 0. and has to decrease faster 
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dp 
than Ip]-2 at infinity, g(x):= S-+2 ~ h(P) e~ is the Fourier-transform of h(p), and 

the sum over { ?}p runs over all primitive conjugacy classes in F. l(?) is the length of 
the closed geodesic on 2~ that corresponds to the hyperbolic conjugacy class {~}p. 

We now evaluate the second sum on the r.h.s, of (7). To this end we first study 
the set FI  of reflections. We divide the primitive reflections in FI  into two classes as 
discussed in [-11]. Here an element p ~ FI is called primitive, if it cannot be written 
as a power of another reflection. Since p e/~I implies that p2 s/~, the reflections 
were classified in [11] according to the properties of their squares. Three cases are 
to be distinguished: 

�9 P = Pe, P~ = 1. These are the pure reflections in a geodesic. 
�9 P = Pi, P~ ~ {Ci}f, i = 1 , . . . ,  n. The {Ci}.e are the conjugacy classes of the 

Ci in F, which correspond to the closed geodesics ci on Z. 
�9 P = Pv, P~ being a primitive element in f and pv 2 r {Ci}r. 

There are, however, no pure reflections in/~ that do not lie in the second class. To 
see this write Pi = ?d, 7 ~ F .  As pici = ci it follows that Ici = ~:21ci. Hence 71 is the 
hyperbolic transformation that identifies the edge of o~ in one half of ~ with its 
corresponding edge, which, by the symmetric construction of ~',  lies in the other 
half of x/f. Now, the 7~ are the only transformations in/~ that identify edges in 
different halves of ~f. Thus the P1 are the only primitive pure reflections. 

We now split the sum over the p r FI  according to the above classification and 
get all elements out of the primitive ones by summing over all powers of the 
primitive reflections. There one must only take odd powers, since an even power of 
a reflection is a hyperbolic transformation. We define Ir  = S~ d#(z)k(z, pz) as 
a shorthand and get 

Y, I ~ ( P ) =  L Y, L I~(P:  k+~) + 2 L l~(P~k+a) �9 (9) 
p~fl i=1  Pi k=O p~ k=O 

With these expressions one can repeat the manipulations carried out in [-11]: 

y i r  E Y, Ir 

= Z Z I~(7-aP2k+t?) 
{p} ~Z(p~)\~ 

= E ~ d#(z)k(z, p 2 k + l z ) .  (10) 
{p) z(p~)\Je 

Here Z (p 2): = { 7 e/~ [ 7P 2 7 -~ = p 2 } and Z (p) := { 7 s/~ [ ?p7 -~ = p } are the central- 
izers of p2 and p respectively. One easily finds that they are equal, Z(p)  = Z(p2). 

2 We now conjugate p in such a way that it acts as a dilatation by a factor 
N(p 2) = e ll~ where l(p 2) is the length of the closed geodesic on 27 corresponding 
to {p2}. Then p itself acts as pz = et(P~)/2( - ~). A fundamental domain for the 
centralizer Z(p 2) is given by { z e a l  1 N y < N(p2)}. Thus 

) 
~=oNy2p)d'Tdxl~( 'Z2Nk+li2(p2p)''2~ (11) 

+ 2 ~ ~ Nk+, lZ(pj)y 2 , ] .  
{pp} k 0 
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A manipulation well-known from the proof of the Selberg trace formula in the 
cocompact case leads to (see e.g. [2]) 

]~  ) 1 lnNo 
1 ~ o Ny 2 = 2N1/z + N_l /zg( lnN ) . (12) 

We use (12) in (11) and insert N (p 2) = el('2). In the first sum of (11) we separate the 
k = 0 term and introduce L := ~ =  1 l(ci) as the total length of dS. The lengths l(ci) 
are twofold degenerate, since Ci and C[  1 both have to be included into the sum. 
We collect all this and formulate the trace formula as a theorem. 

Theorem. Let h(p) be an even function, analytic in the strip I Im p l < �89 + ~, ~ > 0, and 

decreasing faster than Ip1-2 at infinity, with Fourier-transform g (x) = S +-o~ ~ h(p) e ip x. 

Let 2, = p~ + �88 be the eigenvalues with multiplicities d, of the Dirichlet-Laplace- 
Beltrami operator on the bordered Riemann surface S of signature (g, n), then 
( 0 = 2 9 + n -  1,0 >2)  

~ dnh(p.) - 0 - 1 + ~ I(7 ) 
2 ~ dph(p)ptanh(rcp)+ ~ ~ 4sinh-(~(7)/Z)g(kl(?)) 

n = l  - oo  {~} k = l  

l(p~) 
- ~ ~ 4cosh[(k + 1/2)l(p~)/2] g((k+ 1/2)l(p~)) 

{p,} k=O 

l (c i )  
Lg(0) - -  ~ ~ 2cos(l~(ci)/2]g(kl(ci) ) . (13) 

i = 1  k = l  

Remarks. 

1. The function h(p) has to satisfy the same conditions as in the cocompact case 
of (8), because the same manipulations have been done in the derivations of 
both formulae. 

2. The case of Neumann boundary conditions can be treated in complete 
analogy to the Dirichlet case. One then has to study functions which are even 
under the reflection I on ,~. The relevant integral kernel for which one has to 
evaluate the trace is given by 

, 1 
/s z ) := ~ ~^ [k(z, 7z') + k(z, 7 ( -  f ' ) ) l  . (14) 

- -  y ~ F  

The only difference to (13) is that the minus signs in front of the three last 
terms change into plus signs. 

3. Application to Heat Kernels, Zeta Functions and Determinants 

The first spectral function that we want to study with the help of the trace formula 

is the trace of the heat kernel for ~ - A. For t > 0 this is defined by (D = Dirichlet) 

OD(t):=TretA= ~ d,e -~"t (15) 
. = l  
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Inserting the function h(p)= e -(p2 +�88 into the trace formula (13), we obtain 
Oo(t) = ~ ,=~5 O~)(t), where the terms on the r.h.s, are labelled according to their 
appearance in (13): 

-- 1 e -t/4 ue - u2/4t 

1 e-t~4 Z ~ l(y) e_k212ff)/4t 
ODZ)(t) -- 8 ~  ~ -  {7}. k=l sinh(kl(7)/2) 

1 e -t/4 ~ ~ l(p~) e - -  k212(P~)/4t 
0(D3)(t) -- 8Xf~ X/~ {p,}k~0 cosh((k +~) l (p2p) /2 )  

0~4)(t) = L e -t/4 

8,/;,5' 
1 e-t~4 

O~5)(t)_ 4V/-~ V/7 ~ ~ l(ci) _kZlZ(ci)/4t 
i= 1 k = 1 cosh(kl(ci)/2) e 

(16) 

The first thing to study is the small-t asymptotics. One notices that the 
contributions 0~ 2), 0~ 3) and 0~ 5) decrease exponentially for t ~ 0+ .  Thus only 
0(D 1) and 0~ 4) are relevant for the small-t asymptotics, giving 

0D(t) 0- -  1 L 1 1 
- '  2t 8x /~x/~  ~ ( 0 -  1) + O(x/~ ), t ~ 0 +  . (17) 

In the case of Neumann boundary conditions the term proportional to t - �89 changes 
its sign. The result (17) is exactly what one expects from the general expansion given 
by McKean and Singer [18]. 

The functional determinant of the Laplace-Beltrami operator will be defined 
by the method of zeta function regularization. Therefore we need to investigate 
the zeta function of Minakshisundaram-Pleijel (MP-zeta function), which is for 
Re s > 1 defined as 

~D(S):= ~ d,22 s �9 (18) 
n = l  

In terms of this function the determinant of - A  is defined to be d e t ( -  A)D:= 
e - r This definition requires an analytical continuation of ~D to S = 0, which is 
possible, because ~O is a meromorphic function with only a simple pole at s = 1. 

We take h(p) = (p2 + (~ _ �89 Res, Rea  > 1, to use it in the trace formula. 
Then (D(S) = lim++l + ~,~=1 d,h(p,). Again we label the terms on the r.h.s, of the 
trace formula by ~1) . . . . .  ~5). They are given by 

0 - lzc J~ dp(P2 + 1/4)1-s ~l>(s) i 

s -  12 o c~ ' 

~g~>(s)  - 1 2r(s) +~m+ I(s; a) , 

~(Da)(s) _ 1 2r(s) lim+ J(s; ~) , 
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L 22s_4F(s - �89 ) 
? b - ,  ' 

2F(s) ,tim+ H(s; a), (19) 

where we have introduced the functions I(s; a) and J(s; a), which are both  entire 
functions of s for Re a > 1, whereas H(s; a) is entire in s for Re a > 0. These 
functions are defined by 

I (s ;a) ' - (2a-1) �89  ~' {~} k=a l (kl)S- ( ( ~ ) )  
x / ~  s i n h ( ~ l )  �89 �89 kl a -  , 

\ - - /  

{p,} k=0 cosh k + ~ g 

H(s;a). (2a-1)�89 ~ ~ l, (kli)S �89189 (20, 

,=1 k=~ cosh (~1, )  
x / 

Kv(z) is a modified Bessel function, and we drop the argument  of I(7) and l(p2p) 
whenever it may  not  lead to confusion; l i := l(ci). Equat ion (19) serves as an 
analytical cont inuat ion to s = 0, since the pole term has been explicitly extracted 
i n  ~(o 1). 

In principle one could now study ~fi(0), but  to do this properly we first 
investigate I(0; a), J(0; a) and H(0; a) for Re cr > 1 or Re a > 0 respectively. After 
rearranging the k-summations in (20) we arrive at 

I(0; a) = - In [ l  f i  (1 - e - (~ + .)t) = _ In Z(a), 
{~} .=o 

(1 - e t(~ + �89 + e - l(n + �89 + 1)))'~ 
J(O; 0") In I I  In Y(a) i 

{p,}.=o e 1(0+�89 + e - - ~ + T ~  =: - ' 
/ 

fi l_e-I,(,r+2m) N)2 
/ - / (o;  o ,  = - i n  . . . .  1 - = :  (21) 

i = 1  m = O  

Z(a) is the usual Selberg zeta function (on the doubled surface Z)  and Y(a), X(a) 
are two new functions similar to Z(a), that come from the additional terms in the 
trace formula, and which take care of the boundary  conditions. 

In a next step we would like to discuss the analytic properties of the new zeta 
functions X(s) and Y(s). Therefore we study the trace of the regularized resolvent 
of - A ,  which can be obtained by the choice h ( p ) =  [ p 2 + ( s - � 8 9  
[pZ + (a -1)2]-1, for Res, R e a  > 1, in the trace formula. The 1.h.s. then gives 

lim d.h(p.) = d. 2. + s(s - 1) " (22) 
a ~ l +  n = l  n = l  
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Before performing the limit a--+ 1 + one obtains 
expressing the r.h.s, in terms of Z(s), Y(s) and X(s), 

, ] 
.=ld" ) c , + s ( s - 1 )  2 , + a ( a - 1 )  

= - ( 0  - 1 ) [ ~ , ( s )  - ~ , ( , ~ ) ]  + 

from the trace formula, by 

1 1 ~Z'(s) Y'(s) X'(s)~ L I 
22s - 1 ( ~  r(s) X(s) J 4 2s - 1 

1 1 (Z'(~) Y'(a) X'(cr)] L 1 

2 2 a - 1  <( Z(a) r(a) ~- ->3  + 4 2 a - 1 '  
(23) 

where O(z):= F'(z)/F(z) denotes the digamma function. It is known how Z(a) 
behaves in the limit o- -+ 1 + [7], 

lim [ 1 Z'(a) 1 ] lZ"(1) 
~--,1+ 2 a - l Z ( a )  a(a-- 1) = 2 Z ' ( 1 )  1 = : B ,  (24) 

and thus the behaviour of X(a) and Y(a) may be deduced from the fact that the 
limit a --, 1 + yields a finite result on the 1.h.s. of (23). From (21) it is clear that 

X'(1) __ d ~ ~ - 
X(1) da H(O;a)["=l= 21i e kl, 

i= a k = 1 1 + e - k l i  (25) 

is finite and positive, as (21) converges for Re o-> 0 and all the summands are 
positive. Hence also the limit 

li_,m+ ( ~ - - - - i - k ~ - ~  r(o) J J =: B + A (26) 

exists, which together with (24) defines the constant A. From (26) one may draw the 
behaviour of the logarithmic derivative of Y(a) at a = 1, 

Y'(a) 1 
Y(z) a -  1 

A + I + O ( a - 1 ) ,  a - - * l .  (27) 

Therefore Y(o-) itself has a simple zero at o- = 1 and Y'(1) is finite. We now define 
B + A L 1X'(1) h 

7D := (0 -- 1)7 + ~ 4 ~ - ~ - ~ , W  ere 7is Euler's constant. It canbe shown 

/( 10 -~) ' "  is the finite part of (D(S)at s =  1. that 7D = FP(D(1):= lims-~l (D(s) 2s 
\ 

With all these definitions the limit a --* 1 + of (23) yields 

d, 2 , + s ( s -  1) 2, = - ( g - 1 ) 0 ( s )  L 1 . = 1 4 2 s  - 1 7D 

1 1 ~Z'(s) Y'(s) X ' ( s ) ' ~  (28 )  

+ 2 2 s ~  (Z(s) r(s) X(s) J" 

This regularized trace of the resolvent is a meromorphic function of s and thus 
defines a meromorphic continuation of the function X(s) Y(s) to all s e C. Knowing 
the analytic properties of the Selberg zeta function [2] one can obtain the poles and 
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2 zeroes of X ( s ) Y ( s )  from (28). Denote the eigenvalues of - A  on Z by % = �88 + r, 
with multiplicities 6,, then the non-trivial zeroes of Z(s)  are s, = �89 + Jr,. Further- 
more denote the Dirichlet eigenvalues as before by 2, = �88 + p2 with multiplicities 

_(N)2 dn and the Neumann eigenvalues by 2(, N) = �88 + p, with multiplicities d, ~N). Then 
X(s )  Y(s) has poles of order d, at s, = �89 +_ ip, and zeroes at s, = 0, 1, �89 _+ tp," (N) of 
order 1, 1, d~ N) respectively. 

Another way of obtaining the analytic properties of X(s )  Y(s)  is to express this 
product through determinant functions. Therefore define 

@i(z) := d e t ' ( -  A + z ) i ,  (29) 

where the index i = D, N, A indicates, whether we take the case of Dirichlet or 
Neumann boundary conditions on dE or - A  on the whole of Z, and the 
prime denotes the omission of possible zero modes. The obvious relation 
N,~(z) = No(Z)NN(Z) is fulfilled for all z. This can be obtained using the regulariz- 
ation 

z -~. (30) ~D(z)  = @D(O)e ~~ 1 + e , 
n = l  

which is valid for all z. The other determinant functions are defined analogously. 
Using the representation [7] 

Z(s)  = s(s - 1)@A(S(S -- 1))e 2cl~ - 1)[(2rt)l-SeS(~-1)G(s)G( s + 1)]2(~- 1), (31) 

with C:=  �88 �89 - 2 ~ ' ( -  1), ~(s) denoting Riemann's zeta function, and G(s) 
being Barnes' double gamma function [19], one derives by integrating (28) in s, 

X(s )  r ( s )  = X(1) Y' (1)s (s  - 1)e - ~(s - 1)~o(0) ~N(S(S -- 1)) (32) 
~ N ( O ) ~ D ( S ( S -  1))" 

This can be pushed even a bit further by eliminating the unknown constants X(1) 
and Y'(1). To do this we study the limit s -~ ~ in (32). 

Since X(s )  and Y(s) are defined by the Euler products (21), they both converge 
to unity for s -~ ~ ,  i.e. lim~_,~ X(s )  Y(s) = 1. On the r.h.s, of (32) there occur the 
determinant functions, for which the same limit has to be investigated. Sarnak 
showed [20], that if the trace of a given heat kernel has the small-t asymptotics 

a b 
O(t) = ~ + ~ + c + O( ~ t  ), t --, 0 + ,  then the corresponding determinant function 

has the asymptotics 

l n d e t ( -  A + z) = az - (az - c)lnz + 2b , , f~ , ,~  + f ( z ) ,  z ~ ~ ,  (33) 

where l i m ~ , f ( z )  = 0. In our case this implies, 

In d e t ( -  A + s(s - 1))N = in s(s - 1)~N(S(S --  1)) 
det(-- A + s(s - 1))o ~ u ( s ( s  - 1)) 

Thus 

= L ~ _  1) + f ( s ) .  

1 = s~lim X(s )  Y(s) = X(1) Y ' ( 1 ) ~ e  ~- . 

(34) 

(35) 
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We insert (35) into (32) and obtain the desired representation for X(s) Y(s) in terms 
of determinant functions, 

,,~N(s(s - 1)) _L(2s_ 1) X(s) Y(s) = s(s - 1 ) ~ - - ~  ~ 1))e , (36) 

which clearly exhibits the analytic properties that we already discussed above. 
To evaluate the functional determinant of the Dirichlet-Laplace-Beltrami 

operator we require an analytic continuation of X(s), Y(s) and Z(s) to s = 1. For 
Selberg's zeta function there is one available (see Eq. (40) below) 2 and we want to 
recall this formula here. In exactly the same manner a similar representation for 
X(s) and Y(s) may be obtained as well. For Z(s) one starts with McKean's integral 
representation [21], 

Z ' ( s___)) 
= 2(2s -- 1) ~ dte-S(s-1)'O~o2)(t), Res > 1. (37) 

Z(s) o 

The additional factor of two on the r.h.s, stems from the fact that our O~2)(t) is �89 
times McKean's ~9(t). 

We integrate this logarithmic derivative from s > 1 to a > s and after that 
perform a--* oe. (Notice that lim~_~ Z(a) -- 1.) This gives for Res > 1, 

{ r dta(2),,,.-so-i), '~ 
Z(s )=exp  - 2 j o  t vn t~,~ f .  (38) 

Splitting the region of integration and using ([22], p. 342) 

= - , - l n x  - ( -  (39  
i t .=i nn! 

in (38) yields 

  exp{, + Es. <" i"' O>' e 

_ 2 ~  dt s's t)t I ~1}  - - e - ' -  0•2)(t)- . (40) 
z t 

The large-t asymptotics that may be derived from the trace formula expressions, 
O~2)(t) = �89 + O(e-~'), t-+ 0% e : =  rain(%,�88 shows that the integrals in the ex- 
ponential of (40) converge for Re s > �89 + x/�88 + (Im s) 2 - e. Since e > 0, the repres- 
entation (40) is valid in a neighbourhood of s = 1. 

In complete analogy to this reasoning one can also find a representation for 
Y(s) that converges in the vicinity of s = 1 and reads 

Y ( s ) = s ( s - 1 ) e x p { 7 +  ~, [ s 0 - - s ) ] "  i dt ,= 1 nn! + 2 o t O(o3)(t)e-S(,- 1), 

~ dt . rt  I ~ ] }  + 2  - - e -  t -  , O(D3)(t)+ . (41) 
, t 

2 Formula (40) is an unpublished result of Aurich and Steiner 
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(41) has the same region of convergence as (40). The  representation" (21) for~5)X(s) is 
valid for s = 1 anyway,  thus it can mos t  easily be rewrit ten in terms of OD �9 For  
Re s > �89 one gets 

X(s) = exp{2 i ~e-~s-z)tOr . (42) 

Equat ions  (40), (41) and (42) together  can now be used to express the de terminant  of  
- A  in terms of X(1), Y'(1) and Z ' (1)  or th rough  Ov respectively. 

To  evaluate d e t ' ( -  A ) ,  we have to differentiate (19) at s = 0. Using the analytic 
propert ies  of I(s; a), J(s; a) and H(s; a) derived above,  we get 

L In x / ~  1 . ~)(0) = (9 - 1)C + g + + ~ t im+ [I(0; a) - J(O; a ) ] ,  (43) 

where we used the well-known result [6, 7] ~(D1)'(0) = (g -- 1)C. As Y(a) and Z(a) 
both  have simple zeroes at ~ = 1, the result for the de terminant  is 

~ /  Z ' (1)  E L] d e t ' ( -  A)D = X(1) Y'(1) exp - (g - 1)C - . (44) 

Using (40), (41) and (42) the prefactor  of  the exponent ia l  can be expressed th rough  
the trace of  the heat  kernel, 

d e t ' ( -  ~)~ = exp - ~ ~-[O(D2)(t) + + exp - (g - 1)c  - . 
0 

(45) 

In [15] we have used (45) to express a par t  of  the integrand in the formula  for the 
string scattering ampli tudes  in terms of the lengths li of the border ing curves ci, that  
are the external string states of the scattering process. 

The case of N e u m a n n  bounda ry  condit ions can easily be derived f rom (35), 

d e t ' ( -  A)u = d e t ' ( -  A)DX(1)Y'(1)e "L 

=~/X(1)Y'(1)Z'(1)exp[-(O-1)c+L]. (46) 

4. Selberg's Zeta Function for the Dirichlet Problem 

One can rearrange the trace formula  (13) to yield a form that  is more  reminiscent of  
a periodic-orbi t  formula  in the sense of [4]. (For  an explicit example,  see e.g. [23].) 
The second sum on the r.h.s, of (13) runs over  the conjugacy classes {pp}, where 
p2 ~/~ is primitive. Therefore the corresponding con jugacy  class also occurs in the 
first sum over  all primitive conjugacy classes in F. I t  is thus natural  to combine  the 
contr ibut ions  of each such conjugacy class f rom both  sums into a single sum. As 
these classes cor respond to closed geodesics on Z that  are symmetr ic  w.r.t, the 
reflection I we call them b~. One also notes that  l(p~) is twice the length of the 
geodesic on 2:; therefore we introduce l(pZ,) --: 2/(b~). 

The remainder  of the first sum on the r.h.s, of (13) consists of  a summat ion  over  
the closed geodesics that  are not  symmetr ic  under  I - we call these geodesics b, - 
and over  the border ing curves ci. On  1: the b, 's and their mir ror  images under  
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I yield the same geodesic. We account  for that  fact by introducing a factor of two 
in the summat ion and counting each geodesic only once. 

One notices that the inner k-summation in the two contr ibut ions to the sum 
over the bs's are over even and odd integers respectively and thus can be combined 
into a single summation.  Complet ing all this we arrive at 

.=1 ~ -~ol dph(p)ptanh(rcp)- 9(0) 

l(b.)9(kl(b.)) ( -  1)kl(bs)g(kl(b~)) 
ekl(b.)/2 kl(b,)/2 + Z ~,  

+ 
/"  k= I e kl(b~)/2 - kl(b~)/2 b. k= 1 -- e - ks -- (-- 1) ke 

+ ~ ~ 2lie-kid2 
i = 1  k = l  e ~-~ ~-~--~kl~ Q(kli) " ( 4 7 )  

Introducing ;(b = 1 for b = b, and Zb = -- 1 for b = b, and suppressing the argu- 
ment  of l(b) yields the alternative form of the trace formula 

d.h(p.) ( 0 - 1 ) + ~ 1 7 6  L .=i - ~ -  -~ ~ dph(p)ptanh(~p)- 9(0) 

+ ~ ~ )~lg(kl)) i ~ 21~e-kt'/2 
ekl/~ ~ ,~b e 2 kl/2 + e ~ -  e ;~, e(kl3 (48) 

b:t:ci k = l  i=l k=l -- 

The zeta functions X(s), Y(s) and Z(s) were obtained after inserting h(p)= 
[ p2 + (s - 1/2) 2 ] - 1 _ [ p2 + (a - 1/2) 2 ] - a, Re s, Re ~ > 1, into the trace formula 
(13). Using the same function h(p) in (48) yields 

d . h ( p . ) = _ ( ~ _ l ) O ( s )  L 1 1 ~Z'o(s) Z 'B(s )~_(s~a  ) (49) 
4 2s - 1 + 2s - ~  LZv(s) + ZB(s)J n = l  

where we have defined 

Zv(s ) :=  1-[ l~I (1 -Z~,+le-l(s+n)), R e s >  1 ,  
b4:c~n=O 

ZB(s):= 12I I~I ( 1 - - e - l ' ( ' + 2 k + l ) )  2, R e s > 0 .  (50) 
/ = 1  k=O 

The product  ZD(s):= ZB(s). ZD(s) now is Selberg's zeta function for the Dirichlet 
problem on the bordered surface 27. Compar ing  this definition and (49) with (23) 
shows that  

Z~,(s) - Z(s) (51) 
X(s) Y(s)" 

In terms of Z~(s) we obtain for the trace of the regularized resolvent 

,=1 ,~,, + s(s 1) 2,, = - ( 0 -  1)O(s)- L 1 
- 4 2s - 1 7o + 2 s ~  ZD(s) 

(52) 

The analytic properties of X(s), Y(s) and Z(s) (see the discussion after (28)) show 
that Zo(s) is an entire function with (trivial) zeroes of order  (0 - 1)(2k + 1) at 



14 J. Bolte and F. Steiner 

s = -- k, k ~ No,  and (non-trivial) zeroes of order  dn at s = �89 _ ip,, 2~ = �88 + p~ 
being the Dirichlet-eigenvalues of - A on S with multiplicities d,. These properties 
are explicitly seen in the representat ion 

Zo(s)  = -@o(s(s -- 1))e ~(2s- 1)[(2n)l-SeC+s(s-1)G(s)G(s + 1)]~-1  (53) 

The functional equat ion of Z(s)  (see e.g. [2]) together with (36) shows that ZD(s) 
satisfies the functional equat ion 

{ s } 
Z o ( s ) = Z o O - s ) e x p  2 ~ ( 0 - 1 )  S �89  ( 2 s - l )  . (54) 

0 

Instead of the Euler products  (50) we want to find a representat ion for ZD(s) in 
terms of a Dirichlet series which seems to be more  practical to treat. The idea to do 
this goes back to McKean  [21] and has in a similar context  been exploited by 
Berry and Keating [24]. We use the relation 

lY-[ (1 - y x " ) - -  1 + ~ ( -  1) m x�89 ym, (55) 
n = O  m = l  HT= 1 (1 --xr) 

which is due to Euler [251. Both  sides converge absolutely for Ix[ < I and y s (C. 
For  ZD(s) we take x = Xbe -l, y = Zbe =sl and for ZB(S) X = e - 2t,, y = e -t,(s + I), and 
perform the inner products  in (50) using (55), 

a': . . , }  ,,6, 
Here the product  over b extends over all closed geodesics, where the ci's occur with 
multiplicities two. In (56) we introduced the coefficients 

--k X~ (k+ 1)e ~(k- 1)/(b) 
�9 b 4: ci: a~b): = (-- I) ~I~=i (I -- z;e-'Z(b)) ' 

�9 b ci: a~'): = ( -  1) k e-k~t '  = . (57) 
l - [ ~ =  I ( 1  - e - 2rl,) 

To evaluate the product  in (56) we introduce so-called "pseudo-orbi ts"  ~ as formal 
sums of primitive closed geodesics b, 

~ : = m l b l @ ' " O m k b k ,  m i e n  o .  (58) 

The length L~ of this pseudo-orbi t  is defined to be 

L~:= ml l(ba) + " "  + mkl(bk) . (59) 

We also introduce the norm N , : =  e L'. These notions allow us to perform the 
product  in (56) to give 

Z D ( S ) = ~ a ~ N ~  ~, R e s >  1 ,  (60) 

where the sum runs over all possible pseudo-orbits  that may be formed out  of the 
closed geodesics b on S according to,,(58), including the "null-orbit" with 

act .= Hr= l  aim~ �9 ao = 1 = No. Fur thermore ,  �9 k 
Equat ion  (60) is a representat ion of ZD(s) as a Dirichlet series. Such series 

converge absolutely in right half-planes Re s > aA and condit ionally for Re s > ac, 
aA > aC. One can derive a similar formula like (60) also for Z(s), where 



Selberg Trace Formula for Bordered Riemann Surfaces 15 

aA = 1. The location of the abscissa of absolute convergence in the latter case is 
a consequence of the zero of Z(s) at s = 1 due to the existence of the eigenvalue 
% = O. ZD(s), however, has no zero at s = 1 and, in addition, the Zb's, which are not 
present for Z(s), introduce alternating signs into the series. Thus one may conjec- 
ture that the Dirichlet series (60) converges conditionally also for some Re s < 1. 
The absolute convergence of (60) is not changed by the manipulations done, 
therefore aa = 1. If there are no small eigenvalues 0 < 2. < �88 there are no zeroes of 
ZD(s) with Res  > �89 Our conjecture therefore is that in this case O-c = �89 This would 
mean that one could evaluate (60) numerically, knowing the geodesic length 
spectrum of S, for Re s = �89 + e, e positive but arbitrarily small, and could identify 
the zeroes s, = �89 _ ip, as minima of ZD(s) in the vicinity of the critical line Re s = �89 
Thus one could compute the eigenvalues for the Dirichlet-Laplace-Beltrami oper- 
ator on Z. 

5. Summary 

In this paper we derived a Selberg trace formula for bordered Riemann surfaces. 
This formula allowed us to express functions of the eigenvalues of the Laplace-  
Beltrami operator, endowed with either Dirichlet or Neumann conditions on the 
surface's boundary, through the lengths of the closed geodesics on the compact 
double of the surface. On the other hand this could be viewed as a trace formula for 
reflection symmetric Riemann surfaces concerning the spectral problem of the 
Laplace-Beltrami operator on either even or odd functions under the symmetry 
operation. 

We discussed spectral functions of - A  for both Dirichlet and Neumann 
boundary conditions and evaluated the respective functional determinants. In 
addition we gave an expression that involved the relation between determinant 
functions of either cases. 

Since in our final formula (45) the dependence of the determinant on the lengths 
of the bordering curves is made explicit, this result could be used in string theory to 
study the dependence of scattering amplitudes on the lengths of the external string 
states [15]. 

Finally we have investigated the Selberg zeta function ZD(s) for the Dirichlet 
problem on the bordered surface Z. Rearranging the trace formula in such a way 
that it looks like a periodic-orbit formula for S, we could represent ZD(s) by an 
Euler product of the usual type. Rewriting this as a Dirichlet series, we were led to 
the hypothesis that we have achieved conditional convergence for that series left of 
the abscissa of absolute convergence Re s = 1 up to just before the critical line 
Re s = �89 This fact may be used in the context of periodic-orbit quantization of 
classically chaotic systems to compute the eigenvalues of a Sinai-billiard-like 
system, i.e. the free motion of a particle on a surface with holes. 
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