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Recently there has been much interest in the chiral phase transition of QED and its implication for the continuum limit. In this 
letter we present the first lattice calculation of the renormalized charge and fermion mass. We use these results to derive the 
Callan-Symanzik fl-function. We find that the renormalized charge vanishes at the critical point, which indicates triviality. By 
examining different renormalization group trajectories we address the issue of whether QED can be viewed as a consistent cut-off 
theory. 

1. Introduction 

In this Let ter  we shall cont inue our  efforts [ 1 ] to 
unders tand  the ul t raviolet  behavior  o f  QED using 
latt ice techniques.  We are par t icular ly  interested in 
knowing whether  QED has a non-t r ivia l  con t inuum 
limit.  This  is one of  the most  fundamenta l  quest ions 
in field theory,  which recently has also received con- 
siderable interest  by var ious  authors  a t tempt ing  to 
construct  microscopic  models  of  dynamica l  symme-  
try breaking [2 ]. 

Kogut, Dagotto and Kocic [ 3 ] have discovered that 
non-compact  QED undergoes a chiral  phase transi-  
t ion at strong coupling. This result was conf i rmed by 
Booth, Kenway and Pendle ton [4]  and us [ 1 ]. Re- 
cently, it  has been shown rigorously [ 5 ] that  chiral  
symmet ry  is broken spontaneously  in the strong cou- 
pling l imit .  It is agreed that  the phase t ransi t ion is of  
second order. This  means  that  non-compact  QED 
possesses a con t inuum limit .  The p rob lem then re- 

duces to f inding out  whether the Ca l l an -Symanz ik  fl- 
function has an ul t raviolet  stable zero. 

In our previous paper  [ 1 ] we have s tudied the crit- 
ical exponents  of  the chiral  phase transi t ion.  The re- 
suits turned  out to be consistent  with the predic t ions  
of  a gaussian model ,  which we regarded as a first in- 
d ica t ion  that  QED is non-interact ing in the contin-  
uum limit.  In this paper  we shall concentrate  on the 
renormal ized  charge and the renormal ized  fermion 
mass in the vicini ty  o f  the critical point .  It is the evo- 
lut ion of  the renormal ized  charge as one moves  to- 
wards the crit ical point  at fixed bare charge which de- 
termines  the Ca l l an -Symanz ik  fl-function. 

The lat t ice version of  non-compact  QED using 
Kogut -Sussk ind  fermions is given by the act ion 

S = S o  + SF , (1.1)  

So=½  E 2 F u ~ ( x )  , (1.2)  
x ,  tt < p 

S v = ~ ( ½ ~ u  (--1)x '+'+x"-~( ,gxeiA" 'x 'z~+u 
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- Z x  + u e- iAu(x)  )& ) + m,~,~x),  (1.3)  
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where Fu,(x ) = Au(X ) + A~(x + I~) - Au(X + u) 
-A~(x) .  The lattice constant has been set equal to 1 
for convenience, and fl= 1/e z, where e is the bare 
charge. The reason for taking Kogut-Susskind fer- 
mions is that Sv preserves a chiral U ( 1 ) X U ( 1 ) sym- 
metry for finite lattice spacing at m = 0. In the classi- 
cal continuum limit SF describes four degenerate 
Dirac fermions (flavors). 

We have performed calculations on 84, 83 X 16 and 
124 lattices at fl=0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 
0.22 and m=0.02,  0.04, 0.09, 0.16. At fl=0.16 and 
0.22 our runs on the 124 lattice have not been com- 
pleted yet. Therefore we will use the numbers ob- 
tained on the 84 lattice in these cases. For generating 
the gauge field configurations we have used the (ex- 
act) hybrid Monte Carlo algorithm [6]. Details of 
the performance of the algorithm for QED can be 
found in ref. [ 1 ]. We have chosen periodic boundary 
conditions for the gauge fields and periodic (anti-pe- 
riodic) spatial (temporal) boundary conditions for 
the Grassmann fields. On the 124 and 83X 16 lattices 
we have accumulated O (300) gauge field configura- 
tions, each separated by 5-10 trajectories, for each 
value offl and m, while on the 84 lattices our sample 
consists of O (100) configurations. 

2. The renormalized charge and fermion mass 

The renormalized charge, eR is related to the bare 
charge by 

~ =Z3e 2 , (2.1) 

Where Z3 is the wave function renormalization con- 
stant of the photon. The latter can be defined by [ 7 ] 

Z3 =lira D ( k ) ,  (2.2) 
k ~ O  

where 

D(k)=] f l  ~. e ~kx (Fu~(x) F ~ ( 0 ) ) .  (2.3) 
X , / 2  "~ P 

We cannot compute D(0)  on a periodic lattice be- 
cause of the boundary conditions, which means that 
D(k) has to be extrapolated to k =  0 appropriately. 

It has turned out that the photon field A u fluctuates 
strongly. Therefore we have computed D(k) from the 
identity 

i - D ( k ~ U ) ) =  ~ e ik~*'x (Al,(X)Ju(O)) , (2.4) 
x 

which follows from the equation of motion [ 7 ], and 
which suffers less from these fluctuations. Here, Ju is 
the electromagnetic current, and k I~) is any momen- 
tum with k~ ~) = 0. The electromagnetic current can 
be efficiently calculated by means of a stochastic 
estimator. 

In fig. 1 we show 1 - D ( k )  as a function o f k  2 on 
the 124 lattice atfl=0.21 and m=0.04.  This figure is 
typical of what we obtain for light renormalized fer- 
mion masses. For larger masses 1 - D ( k )  is essen- 
tially constant. The extrapolation of D (k) to k = 0 can 
reliably be done by fitting a smooth function to the 
data. The reason is that the k 2 dependence of D(k)  
is determined by the magnitude of the renormalized 
fermion mass, which on our larger lattices will always 
be larger than the smallest fermion lattice momen- 
tum. We shall return to the extrapolation in detail in 
section 3. 

In order to determine the renormalized fermion 
mass, mR, we have studied the fermion propagator. 
Since this is not gauge invariant, we have to fix the 
gauge. We have chosen the Landau gauge 

Z [Au(x+12) - A u ( x ) ]  = 0 ,  (2.5) 

which can be implemented exactly. However, this 
condition does not eliminate all gauge degrees of 
freedom in the fermion propagator. Adding an inte- 
ger multiple of 2~z/L u, where L u is the extent of  the 
lattice in the/~-direction, to A~,(x) for all x leaves the 
action invariant. For the fermions this amounts to a 
gauge transformation, because they couple to the 
(compact) link variables. Hence, we can add multi- 
ples of 2n/L~ to Au(x) so that 

Lu ~u'  "~u= , (2.6) 

for all/~, where V is the lattice volume. Since in our 
simulations A~,, restricted to the interval ( - n/Lu, n~ 
L u), does not give 0 when averaged over the ensem- 
ble because of the limited statistics, special care has 
to be taken. Indeed, Au changes very little from con- 
figuration to configuration. 

When computing the Kogut-Susskind fermion 
propagator, we divide the lattice into elementary hy- 
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Fig. 1. The current-photon correlation function 1 -D(k) as a function of k* on the 1 24 lattice at 8=0.2 1 and M = 0.04. The open circles 
are our data. The solid circles are a fit with the l-loop lattice result. The star is the extrapolation to zero momentum and infinite volume, 
which gives us the renormalized charge. The error on the latter quantity is smaller than the symbol. 

percubes, because the action is invariant under trans- 
lations of 2 lattice spacings. We compute the 
propagator 

G,(t)= 1 <~(2x+o)Z(O)) , (2.7) 
X 

where x labels the hypercube, o is a 4-vector with 
components 0 or 1 and t= 2x,+@,. To extract mR, 
we shall fit G,(t) with the lattice fermion propagator 
in the presence of a constant background field B, #l. 
In the analysis we restricted ourselves to o = 0. For 
B, = 0 this is the only non-vanishing component of 
the propagator. For -n/L,<B,bnlL, the lattice 
fermion propagator of mass mR reads 

Go(2x,)= 2 ; e2ia4x4 

sin’(p,+B,)f i sin’B,+mi 
isI > 

-1 

, (2.8) 

#’ Attempts to lit eq. (2.7) with the free propagator (B,=O) did 
not work. In particular, we found nonvanishing imaginary parts 
for Go ( t ) , whereas the free propagator is real. 

Go(2x4+l)=- & 
R 

x [eiB4Go(2x4+2)-e-iB4Go(2x4)] , 

where 

(2.9) 

2an 
p4=-p n=ff, 3~2 ,..., +f(L,-1)) (2.10) 

4 

in accord with our choice of anti-periodic temporal 
boundary conditions. In the tits we allowed for an 
overall normalization factor as an additional 

parameter. 
In the actual calculations we have computed G, for 

sources distributed over all even points in a given time 
slice. Subsequently, the average over all time slices is 
taken. For the analysis we have divided our data in 
sets of lo-20 configurations. The sets had to be se- 
lected such that they do not include jumps of A4 by 
2n/L4. Then tits starting from t = 1, 2 and 3 (the lat- 
ter only for our larger lattices) give consistent results. 
Furthermore, we find that the fitted values of the 
background field, B4 and Ci sin2B, agree well with 
(A4) and 2, sin’(Ai) . The mass values obtained 
from the various sets agree as they should. The errors 
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Fig. 2. The real part of the fermion propagator as a function oft 

on the 1 24 lattice at p= 0.2 1 and m = 0.04. The stars are our data. 

The statistical errors are smaller than the symbols. The curves 

are a tit to the data for t 3 1. Because of the properties of Kogut- 

Susskind fermions the even and odd points lie on different curves. 

are determined from the fluctuations from set to set. 
They are typically of the order of a few percent. In 
fig. 2 we show a correlation function for /?= 0.2 1 and 

m = 0.04. Tables of the mass values will be given in a 
more detailed publication [ 8 1. 

3. Renormalization group flow and the jkfunction 

To understand the ultraviolet behavior of the the- 
ory, we need to know the renormalization group flow 
with regard to the critical point. The flow is governed 
by the renormalization group equation 

(3.1) 

wherep(ei, mR) is the Callan-Symanzik/3-function. 
Note that mR is given in lattice units and that mR+O 
at the critical point, i.e. in the continuum limit. The 
critical coupling was found to be [ I] /3,z 0.195, 
which, according to Liischer [ 7 ] as 2, < 1, leads to 
the upper bound for the fine-structure constant in the 
continuum limit: 

(3.2) 

Since renormalized perturbation theory is expected 

to be reliable for ffR d 7r/4 (for 4 flavors), one could 
argue that the p-function cannot have a second, ultra- 
violet stable zero [ 7 1. However, in order to obtain a 
definite answer, this problem needs to be investi- 
gated by non-perturbative methods. This will be done 
in this section. 

The first step is to compute 2, from eqs. (2.2) and 
(2.4). We have explored several ways of extrapolat- 
ing D(k) to k= 0. We shall demonstrate in ref. [ 8 ] 
that the results do not depend on the specific form of 
the interpolating function. The procedure we find 
most satisfactory and which we will use in this paper 
is based on renormalized perturbation theory. Re- 
normalized perturbation theory predicts to 1 -loop 
order 

1 

ezo(k)= & +n(O, co) -n(k, L,) , (3.3) 

where I7 derives from the (lattice) vacuum polari- 
zation and ei refers to the infinite lattice. Since we 
know mR, the only free parameter in eq. (3.3) is ei. 
It turns out that the k2 dependence of D(k) can be 
very well fitted by eq. (3.3). Moreover, we obtain the 
same values within errors for ek on the g4 and on the 
1 24 lattices. This means that the finite size effects are 
also accounted for by the perturbative formula. The 
quality of the fit is shown in fig. 1 for the 124 lattice 
at /?= 0.2 1 and m = 0.04. The statistical errors on Z3 
are less than 2%. The actual numbers will be pre- 
sented in ref. [ 8 1. 

We have computed the lines of constant renormal- 
ized charge in the plane of bare parameters /3, m. Since 
we know eR only on the grid of points quoted in sec- 
tion 1, we had to interpolate between them. For the 
interpolation in /? and m we have used the formulae 
1 /ei =a+ bp and 1 /ei =c+dln m, respectively. The 
result is shown by the solid lines in fig. 3. The uncer- 
tainty is about 5% of the spacing between the trajec- 
tories. The most important thing to notice is that 
when m, and so mR, is decreased, /3 must always be 
decreased to keep eR constant. This holds on both 
sides of the critical p. So thepfunction is positive over 
the entire range investigated. 

In the symmetric phase, p>&, mR vanishes as 
m-+0, and so we expect from a positive /?-function 
that e,=O in this limit. In the broken phase, /3</$, 
mR is finite as m+O, and so we expect a finite charge 
renormalization. Therefore all trajectories should end 
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Fig. 3. The renormalization group flow in the region of parameters covered by our calculations. The solid lines are lines of constant 
renormalized charge, where e~ ranges from e~ =2.8 (lower right-hand corner) to e~ = 5.4 (upper left-hand corner) in steps of 0.2. The 
dotted lines are lines of constant rna/mp s ranging from 0.4 (lower right-hand corner) to 2.1 (lower left-hand corner) in steps of 0.1. The 
uncertainty in the position of the flow lines is about 5% of the spacing between lines for the ea lines and about 15% for the mass-ratio 
lines. The star indicates the position of the critical point. 

at m = 0 in the broken phase ~:2. To make this picture 
quantitative, we have plotted curves o f  1/e 2 against 
In mR in fig. 4a for various values of  ft. The slope o f  
these curves is (see eq. (3 .1) )  - (l/e~)fl(eER, mR). 
At lowest order in perturbation theory fl(e 2, O)= 
2e~/3~z 2, which would give a straight line for small 
m R. Fig. 4b shows the fl-function found by differen- 
tiating our data compared with the l-loop fl-function 
on the infinite lattice. At small mR the observed fl- 
function is the same as the l-loop fl-function, whereas 
at larger m R the observed fl-function is smaller than 
the l-loop result. Note that fl(e~, mR ) / e  4 is the same 
for all fl values, including those in the broken phase. 
Both these effects can also be seen in fig. 4a, where 
we compare our data with the integrated l-loop fl- 
function shifted to coincide with the data point at the 
smallest value of  mR. In the symmetric phase (open 

#2 That this might happen was noted recently by Liischer [9] 
and later found in the calculations of Rakow [ 10]. 

symbols) the curves extend to mR = 0. The renormal- 
ization group behavior gives eR = 0 in this limit. In 
particular, eR = 0 at the critical point. In the broken 
phase (solid symbols) the curves end at finite mR, 
and so finite ca. The smaller mR becomes, the smaller 
eR is. For any finite eR there is a limit on the cutoff  
using the l-loop formula (for 4 flavors) 

mR>~ ( 2 6 +  3) exp ( -3z tZ /2e~ )  . (3.4) 

Having found evidence that ea = 0 at the critical 
point, we shall ask now to what extent the theory can 
be regarded as a consistent cutoff  theory. That  would 
require the existence of  lines of  constant physics, 
which would not necessarily go to infinite cutoff 
(correlation length ). To answer this question, we need 
to compare the flow different dimensionless quan- 
tities. We have computed the ratio ma/mps, where 
mps is the pseudoscalar Goldstone boson mass, on our 
grid of  points and interpolated the result to find the 
lines of  constant mass ratios. In fig. 3 these lines are 
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Fig. 4. The pfunction and the relationship between the renormalized charge and the renormalized fermion mass. In (a) we plot 1 /e& 

againstm,.Thesymbolsrefertothedifferentvaluesof~~=0.16(A),0.17(~),0.18 (m),O.19 (0),0.2O(V)O.21 (0),0.22(O). 
The open symbols are for a values above /I,, while the solid symbols are forp values below a. The dotted lines are the prediction of the l- 

loop lattice &function shifted to fit the data point at the smallest value of mR, which corresponds to ~1~0.02. In (b) we show /3(ei, 

mR)/(2ei/3n2) found by differentiating the data in (a). The symbols are the same as in (a). This is compared with the l-loop lattice 

B-function indicated by the dashed line. 

compared with the lines of constant eR #3. The two M For all but two of the grid points mPs < 2ma, and so the pseu- 

flows are obviously completely different in the pa- 

rameter range studied. The trajectories of constant 

mass ratios flow into the critical point in contrast to 

the lines of constant eR. In perturbation theory 

mps = mRf( aR), and the two sets of trajectories would 

doscalar is a genuine bound state (ignoring the possible decay 
into two photons). As we go to larger /I, mR decreases while 

the mass of the pseudoscalar produced by our operator [ I] 
increases, and eventually the pseudoscalar becomes a reso- 
nance able to decay into two fermions. There may, of course, 

be a positronium-like state lighter than 2mR, which couples 
agree. The inconsistency is most striking for /_<& only weakly to our operator. 
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where the eR trajectories move in the direction of 
lower fl, while the mass-ratio trajectories move in the 
direction of larger fl, but it is also clearly present for 
fl> tic- The correlation length does not have to be very 
large before the difference between the flows be- 
comes apparent. For example at e2R = 3.6 the differ- 
ence becomes marked when mR < 0.5 (i.e. at a cutoff 
which is only two times as large as the fermion mass). 
When e 2 is smaller, we can reach smaller values of 
mR (larger correlation lengths) before this effect is 
seen. Thus, there are no lines of constant physics in 
the critical region except possibly for very small val- 
ues ofe 2 . This contradicts renormalizability: a change 
in cutoff cannot be compensated for by a change in 
the bare parameters. It may be possible to restore re- 
normalizability by adding another interaction to the 
action. I f  the extended action is renormalizable, it will 
have true trajectories of constant physics in the larger 
space of bare parameters. Various authors have sug- 
gested adding a 4-Fermi interaction [ 11,2 ]. 

To illuminate the nature of the chiral transition, 
we have compared the renormalized fermion mass 
with the chiral condensate (ZZ) in fig. 5. We find that 
(gX) and mR are related in the same way on both 

sides of tic, just as we saw for the fl-function. This sug- 
gests that the main effect of the chiral transition is 
simply to give the fermion a mass, which acts in the 
same way as the mass induced by m in the symmetric 
phase. The Miransky model [ 12] predicts (XTX) oc 
rn 2 near the phase transition. We see no sign of any 
such behavior but find (ZZ) oc mR at all fl values. This 
indicates that the dimension of (77X) is 1. In fig. 5 we 
have included for comparison purposes the l-loop 
lattice relationship. In agreement with what has been 
said above, ( ~ )  is surprisingly well described by this 
c u r v e .  

4. Conclusions 

This is the first full investigation of the renormali- 
zation of charge in lattice non-compact QED. The 
key-point in deciding on the triviality of the theory is 
knowing its interactions in the continuum limit. We 
were able to simulate the theory at small eR, where 
we find agreement between the measured fl-function 
and that predicted by renormalized perturbation the- 
ory. This allowed us to extrapolate to the continuum 
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Fig. 5. The chiral condensate against the renormalized fermion mass. The symbols are the same as in fig. 4. The open symbols are in the 
chirally symmetric  phase, while the solid symbols are in the broken phase• The dashed line is the l-loop lattice result, which is included 
for comparison. 
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limit by means of the renormalization group equa- 
tion. We find that eR=O at the critical point. Our 
measured p-function is always positive, whatever side 
of /3, we look. 

By comparing the renormalization group trajecto- 
ries found by keeping eR constant and by keeping the 
ratio of fermion mass to pseudoscalar mass, mR/mps, 
constant, we show that there are no lines of constant 
physics for renormalized couplings as low as cxR = 0.3 
(a value which is supposed to lie inside the domain 
in which renormalized perturbation theory can be 
trusted) and quite moderate cutoffs. Our conclusion 
from this is that pure QED is not renormalizable in 
this region. This pattern of renormalization group 
flow was also found from Schwinger-Dyson equa- 
tions [lo]. 

We have presented evidence that the photon de- 
couples at the critical point. Is it possible that the fer- 
mion and the bound states still interact in this limit? 
The candidate models without photons are Nambu- 
Jona-Lasinio and Yukawa-type interactions. These 
are also believed to be trivial theories, because their 
/?-functions are positive. In any case, the scaling win- 
dow would be merely the point p= PC and m = 0. 
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