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Abstract. A numerical study of the Gribov-Levin-Ryskin 
equation for deep inelastic structure functions in the 
small-x regions is performed. In the first part we study 
a simplified version which illustrates general features of 
the solution and also allows to investigate certain analytic 
properties. In the second part we formulate a more 
realistic version of the GLR equation and compute its 
soiution, for different input distributions and for different 
values of the strength of the nonlinearity in the GLR 
equation. One of the conclusions is that, provided the 
input distribution is not too flat and the nonlinear 
coupling is not too small, deviations from the standard 
evolution may be visible at HERA. 

1 Introduction 

The small-x behaviour of deep inelastic structure functions 
in QCD represents one of the most interesting topics in 
investigating and testing QCD as the correct theory of 
strong interactions. Most likely, the small-x values at not 
too small values of Q2 that will be accessible at HERA 
as well as at LHC or the SSC will mostly belong to the 
transition region that lies between the domains of perturb- 
ative QCD on the one side and the nonperturbative 
Regge limit on the other side. By the domain of perturb- 
ative QCD we mean the region of moderately small 
values o fx  (say, x > 10 -2 and Q2 > 10GeV2), where the 
parton picture has been developed and applied success- 
fully. Using well-established methods such as the operator 
expansion and the renormalization group equation, this 
region can be analyzed reliably and thus represents one 
of the cleanest QCD tests. Standard methods are the 
(linear) evolution equations, first derived and discussed 
by Gribov and Lipatov [1], Altarelli and Parisi [2] and 
Dokshitser [3]. In the limit of very small x, on the other 
hand, one expects to see new features inside the nucleon 
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[4,5]: the density of gluons and quarks becomes very 
high and a new dynamical effect of saturation is expected 
to stop the further growth of the structure functions. 
Ultimately, the physics in this region will be similar to 
that of the nonperturbative Regge limit which is still 
waiting for a satisfactory solution in QCD. However, the 
transition from the moderate-x region towards the small-x 
limit may very well be accessible to perturbation theory, 
and, hence, allows us to test the ideas about the onset of 
nonperturbative dynamics. This is what makes, from the 
theoretical point of view, the small-x behaviour of the 
QCD deep inelastic structure functions very interesting. 
From a more pragmatic point of view, it is clear that QCD 
investigations at future machines (HERA, LHC, SSC) will 
inevitably face the question how structure functions 
behave at very small values of x: a thorough theoretical 
understanding of this region will, therefore, be of extreme 
importance. 

About ten years ago, Gribov et al. [4] have performed 
a detailed study within QCD of this region. They showed 
that the x - Q2 plane has to be divided into three regions 
(in what follows we will always assume Q2 to be larger 
than a few GeV2): at x of the order unity the standard 
evolution equations [1-3] are valid. They are based upon 
the sum of QCD-ladder diagrams. At smaller values of 
x non-ladder contributions become important and have 
to be added. Gribov, Levin and Ryskin were able to 
isolate the leading contributions: the multi-ladder diagrams 
(so-called fan-diagrams). Beyond this transition region 
many more Feynman diagrams and, eventually, also 
nonperturbative contributions have to be taken into 
account, leaving the Regge limit a still open problem. The 
transition region extends the region of applicability of 
perturbative QCD towards smaller values of x. The sum 
of the fan diagrams which forms the basis for the QCD 
description in this region can also be viewed as "screening" 
or "absorbtive corrections". Making certain assumptions 
about the coupling of these muttiladder diagrams to the 
partons inside the nucleon, the sum of these diagrams 
has been shown to satisfy a nonlinear integro-differential 
equation (henceforth referred to as GLR-equation). The 
analysis of this equation appears to be highly nontrivial: 
apart from a few qualitative properties that have been 
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discussed already in [4], no systematic investigation has 
been done. In particular, methods that allow a careful 
numerical analysis will have to be developed and tested; 
once such a method has been found, the most urgent 
question concerns the precise location of the transition 
region: how far in x, Q2 can we use standard perturbation 
theory [1-3], where should one use the improved des- 
cription [4] of the fan-diagrams, and where should we 
expect to face the breakdown of perturbation theory? A 
first attempt to answer some of these question has recently 
been made by Collins and Kwiecinski [6].  

In this paper we discuss numerical solutions of the 
GLR equation. As a start, we consider a somewhat 
simplified version of this equation keeping only the 

leading terms both in In 1 and in Q2. It allows to discuss 
x 

some analytic properties explicitly, but its solution has 
only qualitative character. This "toy model" illustrates 
one of the important features of the GLR equation: the 
equation predicts its limit of applicability. To be more 
quantitative we then solve numerically a more realistic 
version of the GLR equation: the result, depending upon 
the input distribution and the strength of the nonlinearity 
in the GLR equation, indicates where in the x - Q2 plane 
the GLR equation should be used instead of the usual 
linear evolution equation. 

The main results of our analysis are described as 
follows. The nonlinear term in the GLR equation results 
in a much weaker rise at small x-values, compared to the 
standard linear evolution. In fact, at very small x-values 
the structure function becomes fiat, thus confirming the 
idea of saturation of slow partons. It should, however, 
be kept in mind that the region of validity of the GLR 
equations ends before saturation is reached. As it had 
been already indicated in [4], a promising method of 
analyzing the GLR equation is the semi-classical approxi- 
mation. In this picture one follows the evolution of the 
structure function along classical paths in the x - Q 2  
plane. In case of the linear evolution equation which is 
valid for moderately small values of x these paths are 
straight lines ("rays"). In contrast, the GLR equations 
lead to slightly curved rays which are reflected along a 
boundary line (also called "critical line"). This line plays 
a fundamental role; in particular, it determines the 
location of the transition region in the x - Q2 plane. An 
interesting feature of the GLR equation is also the fact 
that the input distribution at some small Q2 is required 
only for x < x 0 where xo is the value of the boundary line 
at Q2=Q2. This information seems to be sufficient to 
predict, for higher Q2, the x-distribution at smaller values 
of x. We illustrate this for the case of the "toy model", 
but more theoretical work needs to be done before a 
similar analysis can be carried out also for the full GLR 
equation. 

The numerical results that we present depend on the 
choice of the (nonperturbative) initial x-distribution at 
Q2, as it does also in the case of the standard evolution. 
Further, the results depend upon the strength of the 
nonlinearity in the GLR equation, i.e. the value of the 
triple ladder vertex and the coupling of the first two- 
ladder diagrams to the hadron, relative to the one-ladder 
diagrams. These degrees of freedom are not predicted by 

perturbation theory but have to be determined by fitting 
the open parameters to experimental data. In this paper 
we choose one of the current parametrizations of the 
input densities and vary the two-to-one-ladder strength 
factor in some range. Then our results indicate that the 
nonlinear effects of the GLR equation may set in as early 
as at x =  10 2 (for Q2= 10GeV2), and hence could be 
visible at HERA and at the Tevatron through the analysis 
of the low mass dimuon events at CDF and DO in the 
very forward direction. With these forthcoming data and 
more theoretical and numerical work along the line of 
this paper the interesting question of the transition region 
should be settled soon. 

The organization of this paper is the following. We 
first describe the different versions of the GLR equation 
that we are going to study. In Sect. 3 we present numerical 
results of the simplest approximation. Section 4 contains 
the analytic investigation in the framework of the semi- 
classical approximation. In Sect. 5 we describe a more 
realistic version of the GLR equation and present its 
numerical results. We then summarize and discuss our 
results in a final concluding section. 

2 The Gribov-Levin-Ryskin equation 

The equation that has been proposed by Gribov et al. 
[4] is illustrated in terms of Feynman diagrams in Fig. 1. 
It represents the sum of the so-called fan diagrams, where 
each single ladder denotes the standard Altarelli-Parisi 
evolution for gluons. Fermionic degrees of freedom are 
small compared to the gluon at small-x and are neglected 

~F 
in [4]. The GLR equation is formulated for ~b = ~ with 

t7 = xG(x, Q2) the gluon momentum density, and it has 

Fig. 1. Fan diagrams which are the basis for the GLR equation. 
The wavy lines denote gluons 
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the following form: 

_ ~ ,  2 ,2 , - ,  x ,2,4N~ d ;2  4J(x,q ) S t q , q   r ) q 

1 (~(q2)~2V4)2(x,  q2)" (2.1) 

Here we have adopted the notation of [4]: x and Q2 are 
the standard variables used in the Bjorken limit; in 
addition to these we use 

4 = l n l n ~ ,  y = f l o o  with f l o = ~ N ~ - 2 n  I. 

y ~ 6.6.1og,o (x  1-) for n f = 4 ,  and ~ 1.502 Numerically, 
\ / 

(2.683) for Q2=4GeV2 (105GeV2). The QCD scale 
parameter A will be taken to be 0.212GeV and the 
one-loop formula for the strong coupling constant is 
being used, o~(Q2)=4rc/(floln(Q2/A2)). In (2.1) the first 
term is linear in q~ and contains the usual splitting 
function, where the gluonic part has been corrected to 
include the kernel of the Lipatov equation [7]. The second 
term, nonlinear in 4~, describes the recombination of two 
ladders into one. The expression V for the triple ladder 
vertex is obtained by a saddle point approximation of 
the Feynman diagrams Fig. 1. The parameter R denotes 
the size of the nucleon and is related to a scale Q02 above 
which a~(Q2) is small enough so that perturbative QCD 
can be applied. It follows from this equation that the 
coupling of two ladders at the bottom (Fig. 1) is not 
independent from that of one ladder: by iteration of the 
equation one fnds  that the probability of finding inside 
the nucleon two gluons with momentum fractions x~, x2 
has been assumed to be proportional to the square of the 
corresponding one-gluon distribution. It is important to 
note that this equation describes the evolution in y and 
not in In Q2, in contrast to the usual Altarelli-Parisi 
equation. Consequently, initial conditions are not pre- 
scribed at fixed Qo 2 as a function of x (or y) but at fixed 
x as a function of Q2. This indicates that the evolution 
scenario will be quite different from that in [1-3]. 

As a preparatory exercise, Gribov, Levin, and Ryskin 
suggested to study, instead of (2.1), a somewhat simpler 
version: 

y 
e(y, 4) = FG(Y, 4) -- ~ dy' ~ d4 'Fo(y -y ' ,  4 - 4') 

o 4o 
�9 C exp ( - e r - 4')FZ(y ', 4'). 

lY r 'F  ' ' = ~ d y ' y d 4  G(Y,r  FG(Y, 4) G(y) + ~ o 4o 

Fo(y, 4t = 1 + dy ' !  d4'Fo(y', ~'). (2.2) 

Apart from the form of the triple-ladder vertex which now 
appears under the momentum integral, this equation can 
be derived from (2.1) by simply approximating the gluon 
splitting function by its most singular (for x + 0) contri- 
bution, Pgg(z)--', 6/z, and by rewriting (2.1) in the form of 

an integral equation. F~(y, ~) and Fo(y, 4) denote the sum 
of (gluonic) QCD ladder graphs with the initial condition 
FG(y, 40) = G(y), FG(0, 4) = 0 and Fo(y, 0) = Fo(0, 4) = 1, res- 
pectively. In the original paper [4] (2.2) was discussed 
only up to constants. Correspondingly the authors of [4] 
set 4o = 0 and used Fo(y,~)= Fo(y, 4). The quantity C 
was simply taken to be C =  1. With these boundary 
conditions the solution of the linear equation for FG(y, ~) 
is just the Bessel function Io(z) where z = xfl2y4. 

An improved treatment of (2.2) requires, in particular, 
a more realistic choice of initial conditions. In a first step, 
one might follow the same strategy which is used for the 
linear evolution equation, i.e. specify F along the y-axis 
at a fixed Q2. In (2.2) this is achieved by taking FG(y, 4) 
again to be the sum of the gluonic ladder diagrams but 
with FG(y, 4o) = G(y), where G(y) is the x-distribution at 
Q2 = Q~. In general, the distribution along the 4-axis is 
then determined through (2.2). Furthermore the quantity 
C has to be calculated. It consists of two factors, the 
relative strength of the two-gluon G(2 ) to the (usual) 
single-gluon distribution function G, and the triple ladder 
vertex coupling G3e. The former term cannot be cal- 
culated from perturbative QCD but has to be taken as 
input. Following I-8] we assume G~2)= QZ/(4zc)G(y) 2. The 
triple ladder vertex coupling G3e is calculated from all 
triple ladder diagrams yielding G3p = 7c2O~s(QZ)/(CFQ2). 
This gives 

3re 2 Qo 2 
C - 4fi ~ A2. (2.3) 

Note that 

3~ 2 Qo ~ Cexp(-e~-r ~s(Q )~2, (2.4) 

showing that the fan diagrams are higher twist contri- 
butions. 

It should, however, be emphasized that this way of 
choosing initial conditions is not the only possibility. In 
fact, as we have said before, the first version of the 
GLR-equation (2.1) is an evolution equation in y, and it 
thus seems more natural to specify the initial conditions 
at fixed y rather than at fixed Q2. If, on the other hand, 
this is done at a small value of y where the nonlinear 
term can safely be disregarded, then this (fixed-y,Q 2) 
distribution must be connected, through the usual linear 
evolution equations, with some (fixed-Q 2, y) distribution. 
The two ways of specifying initial conditions should 
therefore be equivalent, and it becomes a matter of 
practical convenience which one to choose. In our 
calculations, we adopt the "conventional" method.  

It is convenient to rewrite (2.2) as an equation for F, 
eliminating both F o and FG. The result is 

F(y, 4) = G(y) + ~ dy' S d4' F(y', ~') 
o 4o 

�9 (�89 C exp ( -  e ~ ' -  ~')F(y', 4')). (2.5) 

Equivalently, one Could use differential equations for 
~F OF 02F 

either ~ y  or ~ -  or ~ (each with the according 
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bounda ry  conditions), e.g. 

aZF(y, ~) 1 
0yO~ - ~ F ( y , ~ ) ( 1  - 2 C e x p ( - e ~ - ~ ) f ( y , ~ ) )  (2.6) 

and 

OF(y, ~) 
- i dy'F(v', ~)[�89 - Ce-e~-~F(y ', ~)]. (2.7) 

O~ o " 

Since the linear term of this approx ima t ion  to the G L R  
equat ion sums the leading powers  of both  log Q 2 and 

log ~,  it has been named  double- leading- log-approxi-  
x 

mat ion,  DLA.  Note ,  however,  tha t  this name  only refers 
to the ladders inside the fan diagramas;  the fan d iagrams 
on the whole are of higher order  in 1/Q 2. It  is the form 
(2.5) of the G L R  equat ion that  we will investigate first. 
We will denote  it as " D L A  + fan" approximat ion .  

3 The numerical solution of the GLR equation (2.5) 

The G L R  equat ion (2.5) is a nonl inear  integral equat ion 
of the Vol ter ra- type in bo th  variables. The solution F(y, ~) 
is bounded  f rom above by the solution Fo(y, ~) of the 
linear p rob lem (C = 0). Choosing  G(y) as a cont inuously  
differentiable function for all y the existence and unique- 
ness of the solution of (2.5) can be shown [9] for 
F(y, ~.) > O. 

Due to this proof,  the equat ion can be solved by 
discretizing the integral (2.5) in y and (. We have applied 
three different methods:  (i) the solution of the discretized 
integral equat ion was determined by stepwise evolut ion 
solving one quadrat ic  equat ion at each step; (ii) differenti- 
at ing (2.5) with respect to y, we obta in  the integro-dif- 
ferential equat ion (2.7) which has been solved numerically; 
(iii) we have integrated (2.6) with the bounda ry  condit ions 
F(y, ~o) = G(y) and F(0, ~) = 0. 

Fo r  the initial distr ibution we choose 

F(y, ~o) = G(y) = (1 - x) 5 exp x / c y  (3.1) 

at Q2 = 4 GeV 2 (~o = 1.52). The exponential  factor in (3.1) 
was in t roduced to account  for the asympto t ic  behaviour  
of the linear solution at small x. We choose c = 6 x 10 -4  
which yields a modif icat ion of the term ( l - x )  5 by less 
than 10~o for x >  10 -2. We checked that  the numerical  
results obta ined by the three different methods  described 
above agree on the per cent level. 

In Fig. 2a and b the solution of (2.5) is given as a 
function of y at different values of Q2. Fo r  compar i son  
the corresponding curves obta ined for linear evolut ion 
are also shown. These show the well known exponent ia l  
growth at large y. The main  effect of the nonl inear  term 
is a substant ial  flattening towards  large y (i.e. small x). 
Fo r  compar i son  we also show the correct ion due to  the 
first fan d iagram.  Fo r  modera t e  values of y it provides a 
rather  reliable es t imate  of  the effect of the nonl inear  term. 
In Fig. 3a and  b we have  extended the y-axis up to 
exceedingly large y-values: the  curves reach saturat ion,  
For  smaller values o f  QZ (Fig. 3a) the  curves oscillate 
before they reach the final plateau,  for  targer values of Q2 
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Fig. 2 a, b. Distributions of F in y at two different values of Q2 for 
the "DLA+fan" approximation (2.5) of the GLR equation. The 
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these oscillations persist but become small compared to 
the height of the plateau and thus are no longer visible. 

The effect of saturation is quite in agreement with 
model calculations by A. Mueller [103, and it can be 
derived from (2.5) also by direct calculation [6]: at fixed 
3, the asymptotic (y~oo) solution of (2.5) is given by 
F(y, 3) --" 1/(2C) exp (e ~ + 3)- However, as we will discuss 
below, the plateau is already outside the region of validity 
of (2.5). We finally mention that for larger values of Q2 
the characteristics of Figs. 2a-3b do not change: the 
plateau grows higher, and it shifts towards larger values 
of y. 

4 The semiclassical approximation 

We now turn to an attempt to understand the situation 
in a more analytic manner. In [4] it had already been 
suggested that (2.6), for large values of ( and y, could be 
investigated in terms of a semi-classical approximation. 
With the ansatz F = exp (S), the partial differential equation 
(2.6) of second order for F turns into a partial differential 
equation of first order for S: 

SySr = �89 - C exp ( S -  e r - ~) (4. l) 

with S,  = 8S/8a. This equation is valid as long as the 
following condition is satisfied: 

SyS~ >> Sy~. (4.2) 

Equation (4.2) can be solved with the methods of charac- 
teristics. This leads to the following set of ordinary 
differential equations ("evolution equations"): 

9 = S~ 
= Sy 

= 2SyS~ 

Sy = - C exp ( S -  e ~-  ~)Sy 

Se = - C exp ( S -  e ~ -  ~)(S~- 1 - ee). (4.3) 

Here the derivative symbol 3~ etc. refers to the "inner" 
time along trajectories in the (~, y)-plane. It is straight- 
forward to eliminate this time variable and to reduce the 
set of five equations to another set of four. A first 
numerical inspection of the validity condition (4.2) shows 
that it is satisfied for sufficiently large S. This excludes 
the regions close to the ~ axis (i.e. y near zero or x near 
1) and, depending upon the initial y-distribution chosen 
at Qo 2, possibly also the region of low Qz. In particular, 
one has to be careful in applying this method in the most 
straightforward way: choose some initial y-distribution 
at Qo 2 and use (4.3) to evolve towards larger Q2. Moreover, 
the condition (4.2) is also not fulfilled near the plateau 
where both Sy and Sy~ are small. In order to make correct 
use of this semi-classical approximation we therefore 
adopt the following strategy. We select a region in the 
(y, ~) plane where both y and ~ are reasonable large and 
where the condition (4.2) is satisfied. As starting values 
for the evolution equations (4.3), we then use those values 
for 

S=lnF, Sy Fy Sr F~ 
=?-' =7  
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which we have calculated numerically in the previous 
section and evolve backwards, i.e. towards lower values 
of y and ~. 

The results of this calculation, for a whole set of such 
trajectories in the (y, ~)-plane, are shown in Fig. 4, both 
for the linear case (Fig. 4a) and for the GLR equation 
(Fig. 4b). In the former case, the trajectories are straight 
lines ("rays") which, starting from the lower left corner, 
cover the whole (y, ~)-plane in such a way that each point 
can be reached by exactly one ray (this also holds for the 
y-axis, although the density of trajectories seems to 
increase towards larger y-values). As soon as the nonlinear 
term in the GLR equation is turned on this picture 
changes quite essentially: the (y, ~)-plane appears to be 
divided into two distinct regions. If we concentrate on 
trajectories which, at some reasonably large Q2 value, 
start at a not too large y-value, and follow this trajectories 
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Fig. 4a-c.  Pattern of trajectories in the "DLA+fan'" approxi- 
mation, a linear case, b nonlinear case, e a few trajectories in the 
"non- perturbative" region 
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backwards, i.e. towards the origin, then these trajectories 
seem to stay away from a region in the upper left corner. 
Moreover, each trajectory undergoes a slight bending as 
soon as it comes close to the boundary line between the 
"empty" and the "full' area. The boundary line between 
the two regions is the envelope to the trajectories which 
cover the "full" region. In the latter part of the (y, {)-plane 
there is another new feature, compared to the linear case 
of Fig. 4a: each point (excluding those on the boundary 
line) appears to be an intersection point of two different 
trajectories. Finally, far away from the boundary line the 
trajectories are again straight lines, just as in the linear 
case: the influence of the nonlinear term, therefore, is only 
felt at those points in the (y, {)-plane, for which the 
trajectories leading to this point have come close to the 
boundary line (below we shall argue that it should be 
only the flatter of the two trajectories to which this 
argument applies). This includes, approximately, all points 
above that line in Fig. 4b which is tangent to the boundary 
line on the y-axis. So far our discussion has been restricted 
to those trajectories which do not start at large values of 
y. If we now choose, as a starting point for our backward 
evolution, a point at very large y, i.e. inside the (so far) 
empty region, then this trajectory shows a quite different 
behaviour (examples are shown in Fig. 4c). It stays above 
the boundary line and, at smaller values of ~, it eventually 
moves upwards. As a result, there seems to be a separation 
of the two regions. It is clear that the quantitative details 
of this whole picture will depend upon the initial y-distri- 
bution along the y-axis. The general form, however, is 
the same for a rather large variety of initial distributions. 

Before we try to analyze this situation in further detail, 
we remind that these findings are quite in agreement with 
what has been discussed already in [4]. In the context of 
the GLR-equation (2.2) it has been shown that in addition 
to the trajectories (there named "group trajectories") there 
exists a distinguished path which is both "group and 
phase trajectory". This is exactly the boundary line in 
Fig. 4, and, for large ~, it has the form 

Yc({) = �88 2{. (4.4) 

Along this line, S behaves as: 

S({) = exp { - in C. (4.5) 

We emphasize, however, that both results are valid only 
asymptotically, and for finite { there are other, nonleading 
terms on the right hand side, e.g. in (4.4) a constant piece. 
The latter one cannot be computed analytically from the 
semi-classical approximation of the GLR equation alone 
but depends on the initial conditions on the y-axis. Our 
numerical analysis, in fact, shows that the asymptotic 
form (4.4) is not a very good approximation for realistic 
values of 3. 

In order to get a better understanding of Fig. 4b, we 
make use of the fact that (2.6) is, in fact, a two-dimensional 
wave equation, and the influence of the nonlinear term 
in (2.6) is quite analogous to a space-time dependent 
refraction index in an optical medium. In this language, 
our trajectories are light rays, and the boundary line in 
Fig. 4b is a line of focal points (i.e. a caustic), where the 
light rays are reflected. This type of a caustic can be 

handled by standard methods. A classification of caustics 
in terms of singularities of mappings can be found in [11]. 
Within this classification, our caustic is of the simplest 
type, a fold. In the vicinity of such a caustic, the form of 
the semi-classical (or eikonal) amplitude is universal, i.e. 
it only depends upon the type of the caustic. The general 
idea of constructing such an amplitude is described, e.g., 
in [12]. For illustration, we outline the construction of 
an amplitude F which, on the critical line (4.4), has the 
behaviour (4.5) and, a little below the line, reproduces 
the pattern of trajectories as shown in Fig. 4b. 

First switch from the coordinates {,y to another set 
of variables in which the line (4.4) coincides with one of 
the axis (y _= 0). A simple choice is: 

~' = (y +�88 2~) TM 

y' = y - �88 23. (4.6) 

In these variables the following form of F fulfills all our 
requirements: 

F(y', ~') 

= const, j ~ exp - ip'~' + q'y' + ~ p +�89 . 

(4.7) 

Here the integrations are along the imaginary axis: the 
p'-integral is gaussian, and the q'-integral is an Airy- 
integral. For large y' and ~' the integral can be evaluated 
with the help of the saddle point approximation. For each 
point below the ~'-axis (we restrict ourselves to ~'>0) 
there are two solutions: 

P '=  i2xfl2~.', q '=  -+ x/--Y' (4.8) 

with 

const. - ~ ,2 
F -  ~--~v(exp {~/2~ + 2x/(-Y')3/2 } 

_ _  2 r 3 / 2  -exp{ , , /2{  '2 ~ x / ( - Y )  }) (4.9) 

(note the prefactor in front of the exponentials, which 
results from the fluctuations around the saddle points). 
If y' is sufficiently far away from the critical line y ' =  0, 
one can safely disregard the second term in comparison 
with the first one, and F is of the form exp S. For y' closer 
to zero, the two saddle points move closer together and 
the q'-integration can no longer be evaluated by the saddle 
point approximation, but can be expressed in terms of 
Bessel functions [13]. At y ' =  0 

F ~ exp 2 {  '2  = exp e r (4.10) 

in agreement with (4.5). The two saddle points in (4.7) 
correspond to the two trajectories which pass through 
each point below the ~'-axis: if we denote the exponents 
in (4.9) by S + and S_, resp., the equations of motion for 
~' and y' are 3 '=  S• 9' = S• with the solutions: 

~'(r) = ~ exp 2x/2r ~ ~(1 + 2x/2z) 

z2 (4.11) 
y'(r) - 4" 
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For small r these solutions describe parabolas tangent 
(from below) to the critical line y - 0. A similar analysis 
can also be carried out above the critical line, but this 
will not be discussed here further. We only emphasize 
that trajectories never cross the critical line from one side 
to the other. Finally, we have to return to our old variables 

and y: the shape of the classical trajectories can be 
obtained by simple inverting (4.6) and then inserting 
into (4.11). In the vicinity of the critical line (4.4), the 
trajectories are straight lines, tangent (from below) to the 
critical line, in full (qualitative) agreement with the pattern 
of Fig. 4b. The change of variables in (4.7) is slightly more 
complicated: the second part in the exponent 

_ _p,2 1 t3 
S'(P'  q) = 4 , , f 2  - 3q  

has to be viewed as the Legendre transform of a function 
S'(~' ,  y'); in this function we express the primed variables 
in terms of the unprimed ones and thus obtain S(~ ,y ) .  
Now we perform a Legendre transformation with respect 
to ~ and y and arrive at the new function S(p, q). Apart 
from a Jacobian (which we ignore since we are only 
interested in the exponent) the transformed version of 
(4.7) is of exactly the same form, but with S(p,q) rather 
than S'(p ' ,  q')  and unprimed quantities everywhere. The 
expressions in (4.8), (4.9) remain valid, after the primed 
variables have been expressed in terms of the unprimed 
ones. 

The main result of this short argument is the following. 
The simple ansatz F = expS has to be used with great 
care (even if (4.2) is fulfilled). First, near the critical line 
F is really a sum of two exponentials rather than a single 
one; moving closer to the line, the two saddle points 
approach each other and eventually coalesce. Further 
away from the line, one of the two exponentials becomes 
negligible compared to the other. The integral represent- 
ation in (4.7) appears to be the simplest form wich 
correctly reproduces these features (note, however, that 
we have been very cavalier about non-exponential factors 
under the integral. In order to make (4.7) a solution of 
the nonlinear wave equation, such factors have to be 
included). Secondly, even away from the critical line, 
where the ansatz F = exp S can be justified, there is still 
an additional prefactor resulting from the fluctuations 
around the saddle point. When S is very large, its 
contribution may become negligible, but for realistic 
values of ~ and y this seems not to be the case (see below). 
Finally, any semi-classical analysis requires ~ and/or y 
to be large. Again, for realistic values this may not always 
be true. In such a case, one has to compute corrections 
to the leading contributions, which again emphasizes the 
importance of taking into account the fluctuations. 
Unfortunately, all this is not merely of academic 
interest; in particular it seems, as if the critical line is 
within reach of HERA energies, and the correct treatment 
of this region, therefore, is a matter of extreme 
importance. 

From a pragmatic point of view, it is clearly very 
attractive to use the semi-classical approximation scheme 
in terms of trajectories as a basis for practical computa- 

tions. The initial conditions along the y-axis (or along 
some other curve in the (y, 3) plane) would determine the 
starting values for the evolution equations, and the whole 
computation would be reduced to solving ordinary 
differential equations (what we have said above speaks 
by no means against such a computational program, it 
only emphasizes the necessity of doing it carefully). The 
fact that the "empty" region in Fig. 4b cannot be reached 
by trajectories that start in the lower region then offers 
the following attractive possibility. In order to determine 
the value of the structure function somewhere in the lower 
part of the (y, ~)-plane, one needs to know the y-distri- 
bution at 4o only inside a finite y-interval, and not for 
those values of very large y where we would be deep 
inside the Regge-region. In this sense the GLR equations 
seem to be self-consistent with respect to the use of 
perturbative QCD. 

Moreover, the boundary line is precisely the line 
where the GLR-equation ceases to be valid [4]. Beyond 
this line, fan-diagrams which are the basis for the GLR 
equations, are not enough and more contributions are 
expected to become important. For a given initial distri- 
bution, the boundary line thus determines the region of 
applicability. On the other hand, the solution of the GLR 
equation is smooth across the boundary line. Thus it may 
very well be that the GLR equation remains qualitatively 
correct even above this line. This assumption is supported 
by the fact that the equation leads to saturation at large 
values of y which is consistent with theoretical expect- 
ations. We can also determine the region of validity of 
the linear evolution. It is the region of all those points 
which can be reached by a classical trajectory (coming 
from the left) that has never touched or come close to 
the boundary line. It lies, approximately, below the 
tangent to the boundary line at ~ = 4o. Thus the GLR- 
equation divides the (y, ~)-plane into three different regions 
(including the nonperturbative region where it is no 
longer valid) [4]. This is quite in contrast to the usual 
framework if linear evolution [1-3] which formally is 
valid at all x and Q2 and does not tell where it becomes 
inapplicable. 

It is now interesting to indicate the transition region 
in the plots o f f  versus y at fixed 4: they are marked with 
two arrows, respectively, in Fig. 2a and b. At low ~ they 
almost coincide with the points where the results of 
nonlinear equation start to deviate from the linear case. 
This is not surprising since the evolution has hardly taken 
place. For larger values of Q2 the critical value in y moves 
faster towards larger y than that ~alues where linear and 
nonlinear curves depart from each other. In other words, 
the "window" where one could see the effects of the 
nonlinear evolution widens when Q2 increases. 

At the end of this discussion of the use of the 
semi-classical approximation we return to the feasability 
of using the trajectories as a basis for doing numerical 
calculations. First let us try to make our argument 
concerning the importance of fluctuations more quanti- 
tative. As an example, consider (2.6) with C = 0 and with 
the simplest boundary conditions, namely F = 1 on both 
the ~ axis and along the y-axis at ~ = 4o. Then the solution 
is known to be lo(x/2y(~-~0))  where I o denotes the 
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modified Bessel Function. 
e z 

Io(z)--*, 2 / ~ ;  z =  v/2y~--~o).  (4.12) 

An integral representation of this solution is [14]: 

[ d~o ~y+k(r (4.13) F(y, = 

1 
where k(~0)= 2~ '  and the integration goes along the 

imaginary axis. When applying the "naive" semi-cassical 
approximation F = e x p S  to this case, one finds the 
exponential term in (4.12), but not the denominator. The 
latter one is just the fluctuation factor which we have 
discussed above. As a numerical example, at y = 33 (or 
x = 10- 5) and Q2 = l0 GeV 2 the exponent is 3.5, whereas 
the logarithm of the denominator is still 1.6. For Q2 = 
105GeV 2 the corresponding numbers are 8.9 and 2.0 
(we take the logarithm since this appears to be more 
natural within the semi-classical approximation). This 
shows that the "naive" semi-classical approximation may 
be rather inaccurate, even at not so small values of ~ and y. 

Finally let us comment on the very recent calculations 
of Collins and Kwiecinski [6]. They have in fact used 
the method of trajectories in order to calculate a numerical 
solution to (2.5) and to determine at what values of ~,y 
the nonlinear terms in the GLR equations become 
important. As input they use a distribution in ~ along 
the line y ~- Yo which has been constructed in such a way 
that, in the absence of the nonlinear term in the evolution 
equation, it would agree with one of the distributions of 
Martin, Roberts, and Stirling [t5]. Here they choose that 
distribution which for small x goes as x-3/2. As a result, 
they present the x-distribution at Q2 = 4 GeV 2. Because 
of their different choice of initial condition, we cannot 
compare directly their results with ours. Qualitatively, 
the results are consistent with ours, in that they also 
predict the nonlinear effects to be visible at rather low 
y-values. Based on the discussion given above, however, 
we feel that the method that they have used may not be 
very accurate in the region where they have presented 
results. It would also be interesting to see, in their 
calculation, where the critical line is located. 

Our conclusion to this part of our discussion is that 
the ansatz F = exp(S), for many cases of practical interest, 
is not good enough, and we have to use a refined version 
of the semi-classical approximation. The representations 
(4.7) and (4.13) are first steps in this direction, but before 
reliable numerical calculations can be done more theoreti- 
cal work needs to be done. Work along this line is in 
progress. In the next section we will see that even the 
approximation (2.5) of the GLR equation is too crude 
and one has to use, at least, more accurate expressions 
for the ladders inside the fan diagrams. 

5 An improved evolution equation 

We now discuss and relax some of the approximations 
that have been made in deriving (2.5). Let us first consider 
the linear term describing the standard evolution [1-3]. 

The latter is given by 

OG(x, Q2) _ as(Q2) ~ dz 
aln (QZ/A2) 2n J~ z 

. {poo(x/z)G(z ' Q2) + poq(X/Z),s(z ' Q2)} 

 Z(x,Q 2) _ } dz 
~ln(Q2/A 2) 2n x z (5.1) 

" { eqg(X/z)G(z, Q2) + Pqq(x/z)~, (z, QZ) } 

 as(x' (221 -  s((22) i ' 

~3 In ( Q 2 / A 2 )  2n 

where S(x, Q2) = Zs[q /x  ' QZ) + (t/x, Q2)] and As(x, (22) = 
,~,s[qs(x, Q2)-cls(x, Q2)]. In the limit of small-x the 
fermionic contributions are small compared to the gluonic 
ones [16], and the gluon-to-gluon splitting kernel can be 
approximated by its x--, 0 limit: 

xP~176 ( l - x ) +  t- x + x ( 1 - x )  + 6 ( l - x )  

~2N.  (5.2) 

Changing variables from x and Q2 to y and ~, respectively, 
and setting F(y,~)=xG(x,  Q2), (5.1) yields (2.5) (with 
C = 0). The approximation used in (2.5) therefore amounts 
to approximating the single gluon ladders by their leading 
contributions both in 1Ix and in Q2, i.e. only terms of 
the form (o:s(QZ)ln(1/x)ln(Q2))" are kept. This is why 
(2.5) (with C = 0) is referred to as double-leading-log 
approximation (DLA). In order to see how serious this 
approximation is numerically, we compare in Fig. 5 the 
results of the full standard evolution (5.1) with its DLA 
limit, i.e. with (2.5) with C = 0. We use the parametrization 
fit S by Morfin and Tung (MT) [17] as input densities 
at QZ=4GeV2 with A=0.212GeV. As expected, the 
DLA is not a good approximation at large x. But it differs 
substantially from the full standard evolution also at 
small x. In Fig. 5 we also show the result of (2.5), i.e. 
the DLA including the leading fan contributions. One 
observes that the deviation of the DLA from the full 
linear evolution is, in fact, larger than the effect of the 

6 0  ~ . . . . . . . .  , , ,  . . . . . . .  L . . . . . . . .  ~ . . . . . . . .  , . . . . . . .  
LL(,qZ)A qz = i00 GeV ~ 

~'~ 50 ~ ~ '"' DLA 

d 4 0  i ' - . . . , ,  '"",,,, 

0 L~_ ....... I . . . . . . . . . .  
i0 -5 I0 -4 I0 3 lO-e I0 I x lOa 

Fig. 5. A comparison between the full standard evolution (5.1, full 
curve) and its DLA limit ((2.5) with C=0 ,  dashed curve). The 
dashed-dotted line shows F in the "DLA + fan" approximation, i.e. 
in the DLA limit with the nonlinear term included 



nonlinear term. Thus (2.5) cannot be used to predict the 
effect of the nonlinear contributions. 

An obvious improvement is the inclusion of the full 
linear evolution Eqs. (5.1) for each ladder inside the fan 
diagrams. However, since fermionic contributions to the 
triple ladder vertices of fan diagrams have not been 
calculated yet, we should, in order to be consistent, neglect 
the fermionic contributions also inside the ladders. We 
have checked that in the linear case for x<0.1 the 
inclusion of the fermionic degrees of freedom changes the 
gluon density by less than a few percent only. Since the 
effect of the nonlinear term does not set in above x=0.1 
this is certainly a sufficient approximation. This gives us 
the following improved evolution equation for the gluon: 

aV(y, 0 _ 1 J ~ dy' ~ z2GO/'~-) -_zG(y, {) 
a~ 2 o ( 1 - z  

+ ~(y', O[ -z  +z2(1 -z)] 

+ G(y', 4) [1-2Ce  (-e~ r ~)] t  

Here we defined z = x/x '= exp [ - (y-y ' ) f lo / (8N)] .  Equ- 
ation (5.3) is our "improvement" of (2.7). 

Before we present the solution of this equation we 
have to discuss the nonperturbative input quantities. As 
already mentioned in connection with (2.5) the result 
depends on the input distribution. To explore this kind 
of dependence we therefore solve (5.3) for two different 
input distribution: (i) xG(x, Q~) = (2.62 + 9.17x)(1 - x) 5"9, 
taken from EHLQ [18] set 1, and (ii) the MT-parametriz- 
ation xG(x, Q2) = e l . 8 8 x - o . 3 3 ( l  _X)7.52 In- 1"34(1 + 1/x). 
The EHLQ parametrization represents a density which 
approaches a constant at small x. In the contrast to this, 
the Morfin-Tung parametrization is much steeper. Both 
input distributions are shown in Fig. 6. The other input 
quantity is the constant C in (5.3). As explained in Sect. 2, 
C contains a factor describing the relative strength of the 
two-gluon function relative to the single-gluon distri- 
bution function. To test the sensitivity to this parameter 
we vary C by a factor 2 10 from our canonical value 
(2.3). Eventually, C has to be fitted together with the input 
gluon distribution to the data. 

20 
Qe = 4 GeV a] 

15 

10 5 10-4 10 3 10-a x 10-1 10~ 

Fig. 6. The input distr ibutions xG(x, Q~) of Mor f in -Tung  [17] and 
Eichten et al. [18] 
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The results of our calculation are given in Fig. 7b-d. 
They show the gluon density as a function ofx for various 
values of Q2. The solid curves are the result of the linear 
evolution, while the dashed lines are the results of the 
nonlinear evolution with C as given in (2.3). Finally, the 
dotted lines are obtained by lowering C by a factor of 
10. In each case, the upper (lower) curves originate from 
the MY (EHLQ) input distribution. 

Let us list a few observations: 
(1) the linear evolution gives rise to a steep increase at 
small-x even for the flat EHLQ input density. In contrast, 
the nonlinear evolution flattens the curves. 
(2) In the case of the linear evolution, the large difference 
between the two input densities persists up to high 
QZ-values. For the nonlinear case the difference between 
the two distributions becomes smaller at higher Q2. 

20 
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Q2 = 10 GeV 2 [  

i0 -4 10 3 i0-2 X 10-I 10~ 
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10-3 10-~ x 10-1 10~ 
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0 , i  , f i r  

10 -5 10 -4 10 a 10-Z X 10-1 1O0 
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Fig. 7 a - c .  x-distributions o f F  for different values of Q2: a Q2 = 10 
GeV 2, b Q2=102GeV2,  and c Q2=104GeV2.  The full lines 
belong to the linear equation (C=0) ,  the dashed (dotted) ones to 
the nonlinear case with C of (2.3) (C~C/IO). Upper  (lower) curves 
stem from the MT (EHLQ) input distr ibution 
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(3) At Q2= 10 GeV 2 the deviation between the standard 
and the improved evolution solutions starts to set in at 
x ~ 0.05. At x =  10 -4 the difference is about a factor 2.5. 
Though the linear solution based on the EHLQ input 
density is about 30% smaller than the corresponding one 
obtained from the MT input density, the effect of the 
nonlinear term is larger. Thus it might be visible at HERA. 
It should, however, be kept in mind that we are discussing 
here the gluon structure function. For the structure 
function F2 the effect will presumably be less pronounced 
[19]. 
(4) At larger Q2 the onset of the nonlinear flattening is 
shifted towards smaller values of x. 

In Fig. 8 we show the lines in the (x, Q2) plane where 
the deviation between the standard and the improved 
evolution is 10%, 20% and 50%, respectively. Though 
these lines are obtained from the EHLQ input density, 
the result for the MT input parametrization is rather 
similar. Clearly, these lines makes sense only for Q2> 
10 GeV 2, since at Qo 2 both the linear and the nonlinear 
case were forced to start from the same input density. 
We observe that the line where the deviation is 20% is 
approximately at constant x, x ~ 10-2. Thus the effect of 
the nonlinear term might also be observable at higher 
Q2, like in the low mass dimuon events in the very forward 
direction at CDF. Based upon our model calculations of 
the previous section, we expect that, if at lower Q2 HERA 
can really see deviations from the s tandard linear evo- 
lution, then HERA will also reach the nonperturbative 
region where the parton picture breaks down and the 
GLR equation cannot be applied: when discussing the 
arrows in Fig. 2a and b, we noted that at low Q2 the 
transition region is very "thin", and only for larger Q2 it 
widens. In the same plot we also show the critical curve 
of [20]: 

Q2(x)=Q~+AZexp(3.56 l~x) (5.4) 

with 

A = 52 MeV, Qo z = 2 GeV 2. (5.5) 

i0 ~ . . . . . . . . . .  ~ . .~r- . .~v 
:.-. LR ' . . . . . . . . . . . . . . .  

i0 I 10% 

io ~ 20~ .......................... 

~o-~ ....... - -< / .  ......... 

-, " ........ 50% 10 -4 ,, . . . . . . .  

10 ~ 101 10 z 10 a 104 10 ~ 
Q~[c~v ~] 

Fig. 8. Compar i son  of the linear and the nonlinear evolution 
equations: the full (dotted, dashed) lines indicate where the result 
of the linear equat ion differs from the nonlinear one by 10~o 
(20%,50%). The line marked by "LR" corresponds to (5.4) and 
denotes the critical line of Levin and Ryskin 

If this line is accepted, it confirms the expectation raised 
above: at Q2=10GeV2 HERA will even reach the 
nonperturbative region where, strictly speaking, the GLR 
equation should not be used. We finally mention that we 
also have tried to produce, proceeding in the same way 
as for our DLA study, a plot of classical trajectories, 
analogous to Fig. 4b. The resulting trajectories do not 
intersect (as they did in Fig. 4b) and, hence, do not 
produce the boundary line. This indicates that our 
starting values for ~ and y may have been too close to 
the critical line, and the naive ansatz F = e s was not 
accurate enough. 

6 Discussion 

In this paper we have performed a numerical study of 
solutions of the nonlinear Gribov-Levin-Ryskin equation. 
In the first part we have investigated a simplified version 
CDLA +fan"  approximation): it allowed us to examine 
the numerical solution in terms of the semi-classical 
approximation which, at the moment, is the only available 
tool for obtaining an analytic solution. In the second part 
we have tried to define a realistic version of the GLR 
equation and then solved this equation numerically. 

As to the analytic part of our paper, our results are 
consistent with the findings of [4]. In the (y, ~)-plane there 
exists a certain critical line whose exact position depends 
upon the boundary conditions at, for example, some low 
Q2. This line separates the region of finite or moderately 
small x where perturbative QCD is applicable from the 
nonperturbative Regge limit. The nature of this line as 
well as the behaviour of the structure function in its 
vicinity can be analysed in the semi-classical approxi- 
mation, and we have given a first qualitative discussion. 
However, this discussion has made clear that for a 
quantitative analysis the semi-classical approximation 
has to be used very carefully, i.e. in a more sophisticated 
version than exploited so far. We believe that more 
theoretical work will be needed, before a reliable numerical 
calculation can be done within this approximation. 

At the first time a complete numerical solution of the 
GLR-equation was given. For the simplified version, the 
"DLA +fan" approximation, we show the behaviour of 
the solution over a very large range in y and 4, in 
particular we demonstrate that at very small x the 
structure function reaches a plateau: this is consistent 
with the idea of "saturation". In a more realistic version 
of the GLR equation, we investigate the dependence on 
both the initial distribution and the strength of the first 
fan diagram relative to the standard QCD ladder. The 
steeper (in y) the initial distribution, the earlier the 
nonlinear effects will be visible. In particular we find 
evidence that already at x = 1 0 - 2 ,  Q2= 10GeV 2, devi- 
ations from the standard linear evolution may become 
visible. The numerical solutions depend, as in the case of 
the linear equations [1-3] ,  on the choice of the input 
distributions, the QCD-scale A and further on the 
coupling strength C of the fan diagrams. In an analysis 
of deep inelastic scattering data at low x these parameters 
will have to be determined consistently. 



Note added 

After completion of this work we learned that Kwiecinski [21] has 
obtained a numerical solution of an equation similar (but not 
identical) to (3) of Sect. 5. In contrast to us he includes the 
nonlinear term in (5.3) in Sect. 5 only for large y,y > Yo, i.e. he 

replaces the i dy' GE(y ', 4) contribution by O(y- Yo) i dy' GZ(y ', ~). 
0 

As a result of this, the equation agrees no longer wiYt~ one of the 
GLR equations. Furthermore he chooses a different input density 
at Q2= Q2 as well as different values for Qo, A, and C. Though the 
absolute normalizations of the gluon densities are different, the 
relative reduction factors due to the nonlinear term are similar. For 
example, at Qz= 10GeV 2 and x =  10 -4 his difference between the 
standard evolution and the improved one is about a factor 3.5 
whereas in our calculation it is about a factor 2.5. This confirms 
our conclusion that HERA might already enter a region where 
deviations from the standard evolution become important. 
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