
Nuclear Physics B350 (1991) 225-262
North-Holland

FT E C NST T EFFECT

	

TENT

M. GÖCKELER

Iirstitutefor Theoretical Physics E, RWTH Aachen, D-5100 Aachen, Germany
and

HLRZ c/o KFA Jülich, P.O. Box 1913, D-5170, Germany

H. LEUTWYLER

Institute f6r Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Received 7 August 1990

Using results from chiral perturbation theory for O(N)-symmetric models in the sponta-
neously broken phase, we study the distribution of the mean field 40 = V- i f d`rx +(x) at large
volume . We show that this distribution obeys a scaling law and we calculate the shape of the
constraint effective potential in the scaling limit .

. Introduction

All "measurements" in lattice field theories performed by the Monte Carlo
method or variants thereof are done on finite (and usually rather small) systems .
Since one is ultimately only interested in results referring to the infinite volume
limit, one needs a reliable procedure to extract infinite volume results from finite
volume calculations . A number of methods have been devised to achieve this goal
[1-5] .

In this paper, we study O(N)-symmetric models containing a scalar field +(x )
which transforms according to the fundamental representation of O(N). We
consider the spontaneously broken phase and assume that, at infinite volume, the
order parameter (+(x)) is different from zero . A specific model with these
properties is the I-Iiggs model [6] and, below the critical temperature, O(N)
ferromagnets also belong to this category of theories . QCD with two massless
flavours provides another realization ; in this case, N is equal to four and the field

is to be identified with

fi" = - i1q ,

	

0' = il'ysT'q .
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For definiteness, we use Higgs model terminology, treating + as the basic field of
the theory .
We work in euclidean space of dimension d. The methods used here apply

provided d > 2. We will explicitly consider the cases d = 3 and d = 4 and show
that the behaviour of some of the quantities of interest is quite different in the two
cases.
As is well known, spontaneous symmetry breakdown does not occur if the

volume is finite-some of the low-energy properties are qualitatively different at
finite and at infinite volume . In the infinite volume limit, the system contains
massless modes (Goldstone bosons) and the spectrum of excitations does therefore
not contain an energy gap, while, at finite volume, the levels are discrete and there
is a gap.
One method which allows one to extract the behaviour at infinite volume from

measurements carried out at finite volume is to introduce a symmetry breaking
external source (an external magnetic field in the case of a spin system, a quark
mass term in the case of QCD). Since the source equips the Goldstone bosons with
a mass, the finite-size effects generated by the box become exponentially small,
provided only that the volume is large enough . Even if this condition is not met,
the behaviour of the partition function for large volumes and for weak external
sources can be analyzed by means of chiral perturbation theory [2,31. The chiral
perturbation series amounts to a systematic expansion in inverse powers of the box
size. The coefficients occurring in the expansion are determined by low-energy
properties of the system at infinite volume . Hence, the observation of the volume
dependence of suitable observables enables one to extract infinite volume results
from simulations in a finite box (see also ref. [4]) . An extensive discussion of the
method is given in ref. [5] and several applications of the technique to the analysis
of numerical data concerning the O(4) model in four dimensions have appeared in
ref. [6].
A different method which does not require the introduction of a symmetry

breaking term is the following. Even at finite volume, the properties of the field
manifest the occurrence of spontaneous symmetry breakdown in the sense that
the directions of the field +(X) at different points are strongly correlated. If the
volume is large enough, most of the field configurations are such that the
directions of the field at the various points of space are close to the direction of
the mean field

1
J

/'- ddX+(X)

	

(1.2)
V

(in the case of a spin system,

	

is the net magnetization of the given spin
configuration) . The order parameter (4)W> vanishes at finite volume if the action
is O(N) symmetric, only because the mean field does not prefer any particular
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direction . If one samples the different field configurations according to their mean
field and analyzes the properties of the system for a given value of [6,7], then
the various finite volume observables are not very different from the corresponding
quantities at infinite volume,
We study the relation between these two methods in sect . 2 and show that, in

the case of OM, the distribution of the magnitude of the mean field is a Hankel
transform of the partition function associated with an external source . In sect . 3,
we review known chiral perturbation theory results for the partition function .
'heir implications for the distribution of the mean field at large volume and for
the constraint effective potential [8,91 (see also ref. [10]) are discussed in sects .
4-6 : sect . 4 describes the general strategy, whereas sects. 5 and 6 are devoted to
ciac details iui u - 3 and u - ~+, iespectively . A summary and some conclusions are
given in sect . 7 .

2. istribution of the mean field

We consider a scalar field +(x) = (00(x), . . ., ON- I(X)) in a d-dimensional
periodic box. Let L,_, denote the length of the box in direction /-t = 1, 2, . . ., d and
define the mean length L as V'e`t,

V=L,L2 . . .L,l=(L) " .

	

(2.1)

The euclidean action S((~) is assumed to be invariant under global O(N) rotations
of the field . In the presence of a symmetry breaking external source j, the
partition function takes the form

Z( j) = f[d(b]exp ( - S{ q~ } +j - f~ d'lx
)

-

	

(2.2)

Since we consider a space-independent source, the perturbation generated by it
only involves the mean field defined in eq . (1 .2). Furthermore, O(N) symmetry
implies that the partition function only depends on the absolute magnitude j = Ij
of the source .
The distribution of the mean field is determined by the functional integral

1
Z(O)

	

f[dO]exp( - Sf+)) 5
1
- f d `x+(x)
V

(2 .3)

Note that this integral does not involve the external source . Furthermore, on
account of O(N) symmetry, Z only depends on the absolute value 0 = 14N of the
mean field . The partition function represents an ordinary integral over this
quantity,

Z(j) = f dN0 exp( (2 .4)
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and the probability for the mean field to be contained in dNo is given by

dPj

In particular, in the absence of symmetry breaking, the probability distribution of
the mean field is isotropic,

dPj

carried out explicitly, with the result

where

Z(o)

231

(2.5)

(2 .6)

In eq . (2.4), the angular integration over the direction of the mean field can be

Z(j) - Kf00 dOON- 'Y
0

N(OJV)Z( tP ),

	

2.7

(X) - ' 1

	

x

	

1

	

1

	

( x ) 2k
YN(x) =

	

2

	

Iv(x) _
k-~0 ki r( v +k + 1)

	

2

	

(2.8)

with the modified Bessel function I� of index

The normalization factor in front of the integral (2.7) is given by

Z(ij) = f dN0 exp(i

v =

	

N- 1 .

	

(2.9)

K = 2Tr N12 .

	

(2.10)

The relation (2.7) can be inverted . To establish the inversion formula, we first note
that YN(z) is an entire function of z . Furthermore, the series representation (2.8)
implies the inequality I YN(z )j < YN(I z I) . The integral representation (2.7) therefore
converges in the entire complex j-plane if it converges on the positive real axis .
Along the imaginary axis, we have

x -"
YN('X) = YN( -'X) =

	

Z

	

Jv(x),

	

(2.11)

where Jv is the standard Bessel function . For imaginary values of j, the represen-
tation (2.4) takes the form of a Fourier decomposition,

(2.12)
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which can be inverted to give

\2 IN

The transformation f --->f defined by

f d Nj exp( -

V N x

2,n. ~~K(

	

djjN-l ynr(i(pjV)Z(ij) .

x
f(t) = f

	

dx

	

tx J,,( .;x) f(x)
u

-jV) Z(ij)

is called a Hankel transformation [11] . The inversion formula reads

(2.13)

x
f(x) = f~

dt

	

tx J,,(tx) f(t) .

	

(2 .l5)

In this terminology, the relations (2.7) and (2.13) show that, up to a normalization
factor, the functions j ( N- ')12Z(ij ) and O( N- ')/2Z( 0) are Hankel transforms of one
another .
The partition function is related to the free energy density f of the system by

Z(j) = e-vf(j) (2 .16)

In the case of Z(0), the analogous quantity is the "constraint effective potential"
u(0) [8,91,

Z( (P) = const . e -v"c`f') .

	

(2.l7)

Note that, at finite volume, both the free energy density and the constraint
effective potential depend on the size and on the shape of the box. In the notation
used here, the volume dependence of the various quantities is not indicated
explicitly-in the case of u((P) = u((P, L 1 .) . . . , L << ), we will discuss it in detail in
sects. 4-6 . When analyzing the behaviour of the potential in the vicinity of the
minimum, it is convenient, not to consider the energy density, but to work with the
quantity

U(O) = Vu((P) .

	

(2.l8)

We will use the term "effective potential" also for UM and refer to ii(o) as the
"potential per unit volume", if we want to stress the difference .



M. Göckeler, H. Leutwyler / Effectire potential

3. Large volume expansion of the partition function

The leading term in the E-expansion of the partition function is given by [1, 2]

Z(j) = J hYiv(EjV)[1 +r(1ILd-2 )] ,

233

We wish to show that the behaviour of the constraint effective potential at large
volume can be worked out on the basis of known results for the large volume
expansion of the partition function . The results we are referring to were obtained
with the method of effective lagrangians [2,5]. The technique applies to systems
where a continuous symmetry is broken spontaneously . It relies on the fact that the
low-energy (large volume) behaviour of such a system is dominated by Goldstone
modes. The hidden symmetry strongly constrains the properties of these modes; in
particular, it implies that the Goldstone bosons only interact weakly, if the
dimension of space-time is larger than two. The behaviour of the system at large
volume can be analyzed in terms of a systematic expansion which treats this
interaction as a pertürbation. iii the present section we briefly review those results
of the perturbative analysis which concern the partition function .
The behaviour of the partition function at large volume depends on the

magnitude of the source j in comparison to the size L = V'1d of the box.
Symmetry restoration occurs if j is of order 11V. The properties of the system in
this region are controlled by the so-called E-expansion, where the partition
function is expanded in inverse powers of L at a fixed value of the product jLd
both j and 11L are treated as small quantities and the relative magnitude is
specified as

j= r,'( I ILd)

	

"e-expansion" .

	

(3.1)

(3 .2)

where the normalization constant .1 ^ depends on the volume, but is independent
of the external source j. Note that the argument of the Bessel function is kept
fixed as V --* oo . The constant 1 represents the expectation value of the field at
infinite volume and in the symmetry limit (first V -.> oo, then j --~- 0) . The next term
in the expansion is of order 1 ILd-2, i.e . of order 1 /L in d = 3 and of order 1 /L2

in d = 4. It involves a second constant, F, which also characterizes a low-energy
property of the infinite volume theory : in QCD, F is the pion decay constant,
while in spin-model terminology, F2 is the helicity modulus. Up to and including
terms of order (1 ILd-2)2, the explicit expression for the E-expansion of the
partition function can be written in the form [5]

2

Z

	

=.~1~'Y

	

jV exp p

	

jV

	

1 + r' (1/e -2 )3

	

.	(3 .3)nr(P~ ) 2 F2Ld-2
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In three dimensions, p, and P 2 are given by

N- 1 ß,

	

(N- 1)(N-3) (p2 - 2162)

N- 1
P2 -	4

	

ß2

where the numbers ß, and P2 only depend on the shape of the box, i.e . on the
ratios L, : L2 : L3 . For a cubic box ( L, = L 2 = L 3) they are given by

ß, =0.2258,

	

P2=0.0106

	

(d=3) .

In d = 4, the quantities p, and P2 contain two additional low-energy constants in
the form of logarithmic scales Am , A , ,

N- 1 ß,

	

(N- 1)(N -3)

	

,
P1 = 1 + 2F2 L2 -

	

8F4L4

	

8
ï

N-1 1
P2 =

	

4

	

ß2 + 87r2
ln(A,.L)

The physical significance of these scales is discussed in ref . [5] . In four dimensions,
the shape coefficients of a symmetric box are given by

ß, = 0 .1405 ,	ß2= -0.0203

	

(d = 4) .

	

(3.7)

The higher-order terms in eq. (3.3), represented by the symbol r'[(1/Ld-2)3], also
involve powers of In L-we do not indicate this explicitly when specifying orders of
magnitude .
The symmetry breaking external source equips the Goldstone bosons with a

mass M which is proportional to VUJ (to lowest order in j),

Ml- = ~j
F2 .

1
2,82 - 4Tr2

In( AM L)

(d=3), (3 .4)

(d=4) .

(3 .6)

(3 .8)

In the region governed by the E-expansion, the mass is small compared to the
inverse size of the box, ML << 1 . At the opposite extreme, ML >> 1 (which is
outside the range covered by the E-expansion), the finite-size effects generated by
the box are exponentially small, of order exp(-ML). In the intermediate region,
where the Compton wavelength of the Goldstone bosons is of the same order of
magnitude as the length of the box, an alternative expansion scheme applies,
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referred to as the p-expansion,

j = 6,(1 /L2 )

	

"p-expansion" .

	

(3.9)

The expansion of the partition function in powers of 11L then involves nontrivial
functions of the product ML a jL2 which stays fixed as V oc. The partition
function grows exponentially,

The first two terms in the p-expansion of the free energy density are [2]

N-1
f- - v(j) -

	

2

	

go +r(L2_	-2c!)

(for the next term in this expansion, see appendix A). Up to a sign, the volume
independent quantity v(j) represents the energy density of the vacuum, while the
term involving the function go, is the free energy density of a free gas with N- 1
Bose flavours and is of order 1ILd. For a symmetric box, go , may be expressed in
terms of the Bessel function K�(x) as

M 2 1 d/2
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(3.10)

2

	

~'(~n~ML)-`~l2K (In~ML),

	

(3 .12)g() -

	

~ 2,TT ~

	

d/2
n

where the sum runs over a lattice of integers n = (n, , . . . , n d)) the origin n = 0
being omitted. For a discussion of the properties of go,, see appendix B of ref. [5].
The vacuum energy can be expanded in powers of j (or of M - VFJ ) . In three

dimensions, the expansion starts with

N-1
'(j) =F2M2+ 127r

M3+~~(M4)

	

(d

	

3)

	

(3.l3)

while in d = 4, the expansion involves one of the two logarithmic scales mentioned
above,

=F 2M2 + N- 1 M4 (In
Av + 1 ) + r(M6 )

	

(d =4) .

	

(3.l4)
( )	327r"

	

M 4

Taken together, the E- and p-expansions cover the large volume behaviour of the
partition function for arbitrary relative magnitude of j and L, provided only that j
is small compared to the scale of the theory and that L is large. To compare the
two expansions in their common domain of validity (L -d12 <<M<<L -1 ), one
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expands the function g� in powers of 111. [5],

s

	

x

L -'

	

b7r

	

L � -u fz

x

ln( ~ L ) +

	

M
,

	

ln(1V~L ) -
1

	

+

	

1

	

ß~a
(1V1L ) z,a

	

(d = 4) ,
L~

	

167r -	4

	

L~ � =c~ f~

where ßt, , ß,, . . . are the shape coefficients referred to above . ®ne verifies that the
two expansions indeed agree. In the normalization of the partition function
adopted in eqs. (3.10) and (3.11), the constant .1 ~ occurring in the E-expansion
formula (3.3) is given by

xt

	

cti

	

i f®r

	

a i®

	

u

	

t e c® ~t~~int e ~ctive

	

®te tial fr®

	

t e

pie can now apply the large volume expansions of the partition function (see
sect . ;) to obtain information on the constraint effective potential .

-L~ . ~ION9ENTS OF THE MEAN-FIELD DISTRIBUTION

et us first study the consequences of the large volume theorem quoted in eq.
(3 .3), valid in the region controlled by the ~-expansion . This equation requires the
mean-field distribution Z(

	

) to have the property

where ~l = j i~ and

)~(

	

) _ . ~,Y,v(~D

Ie

	

e v®

	

e ex e si® s

P, ~. The volume element d~c is given by

N -, d~

(3 .15)

(4 .2)

At leading order in the expansion, i.e . in the infinite volume limit at fixed jig, the
r.h.s . reduces to Yv (~g~). I-fence the mean-field distribution Z(~) tends to a
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2T_y2

	

(N- 1 D/2

lim
~
~,2Ld-2eß~~

	

Z(O) = &(~ - -Y) .v,. ~
0 fixed

Recall that I is the expectation value of the field 4~ at infinite volume and in the
symmetry limit. At finite volume, the S-function is replaced by a peak of finite
width. As the volume grows, the position of the maximum tends to 0 = I and the
width shrinks to zero. According to eq. (4.1), the correction of order 1/L4-2
merely shifts the position of the peak to 0 = 0' ---- p, X; the width of the distribu-
tion only shows up at order 1/L2d-4 . To calculate this width, we first observe that
for rq = 0 the relation (4.1) implies f dp, Z = . 1' . Next, we expand the function
YN( -qO) which occurs in the integrand on the l.h.s . in a Taylor series around
= 0, and obtain

YN(7n0,) +rO<'p - 'PlM(no1) + ~ n 2<(o-~l)2~ ti(Î~I) + . . .

= Y

	

0

	

1 +

	

p2(117)2

	

+~ [( 1 /Ld--')
(F

IV(~1 )

	

2
L
d_2)2

(4.3)

(4.4)

The moments of the distribution Z()) which occur here are of order <((p - 0, )`t)
- (®f )'s , where AO is the width of the distribution . For n > 2, the ratio
<((P - (P, )" >/ <(o - 01)2 > therefore tends to zero as L --> x such that the terms
neglected on the l.h.s . of eq . (4.4) are small compared to the last term retained .
Using the differential equation

zYN(z) + (N- 1)YN(z) - zYN(z) =0,

	

(4.5)

we conclude that the relation (4.4) holds for all values of q if and only if the
expectation value of the field and the mean square deviation obey

N-1
< (P ) =-Y

(
pl + F4L21t-4 p2

)
+l,[(1/Ld-'-)3] ,

(4.6)

This shows that the width of the distribution is of order ®O _ 1/Ld- '-.

	

e
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expectation value ~(

	

-0 1 )" > is therefore of order 1 /L(`r--')" and is beyond our
accuracy for n > 3 : The two moments given in eq. (4.6) exhaust the information
contained in the E-expansion of the partition function to order 1/L2`î-a.

Note that in four dimensions, the expression (3.6) for the quantity p2 contains a
logarithm of the box size whose scale is set by the low-energy constant A, In the
above discussion of orders of magnitude, we did not explicitly indicate logarithmic
factors. They enhance the magnitude of the fluctuations in the mean field: In
d = 4, the width of the distribution is actually of order ®0 - (In L)'/2L-2.

-1 .2 . SHAPE OF THE POTENTIAL IN THE VICINITY OF THE MINIMUM

To determine the actual shape of the distribution, we invoke the p-expansion of
the partition function given in eqs. (3.10)-(3.14) . The details of the calculations
will be presented in sects. 5 and 6 for d = 3 and d = 4, because the properties of
the partition function at large volume depend on the dimension of the system (in
d = 2, the finite-size effects cannot be analyzed perturbatively). Whereas for the
computation of the expectation value of 0" the normalization of the mean-field
distribution played no role, this is now no longer the case . We normalize the
partition function Z(j) such that, once the Compton wavelength of the Goldstone
bosons is short compared to the box size, In Z(j) becomes an extensive quantity,
the ratio In Z(j)/Y' being volume independent except for exponentially small
finite-size effects [this is the normalization adopted in eqs. (3 .10) and (3 .11)]. The
peak in the distribution Z(0) then grows with a power of the volume. We extract
this power and define the effective potential UM by

F2L~r-2

	

cN+i~/2

=1-,v

	

e-00)
2 7r

(the factors of F and I insure that U(0) is dimensionless.) In three dimensions,
this normalization implies that the value of the potential at the minimum [i .e . at
the peak of the distribution 2M] tends to a constant as L --3. oo . In four
dimensions, the growth of the peak in Z(0) involves an additional factor of
(in L )'f- which could be put in the normalization constant, thus modifying L1(ß)
by a term of order In In L. We choose not to do this, as it would generate an
unnecessary complication of our formulae (in numerical simulations it is very
difficult to distinguish In In L from a constant, anyway.)

e peak in Z( O) thus rises and shrinks as the volume grows. Expressed in
terms of the potential, this amounts to the statement that, for L ~ 00, the function
U(

	

) tends to + cc, except for the immediate vicinity of the minimum.
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The p-expansion implies

F 2M2V

	

N - 1

	

(ML)3
du YN

	

-

	

0 Z(0) = exp F2M 2L3 +

	

2

	

~L3,( ) +

	

6

	

[ 1 +`(1/L )

(d=3),

F2M 2V

	

N- 1

	

(ML) 4 (

	

As	1

I di£ YN
(

	

I~

	

)
Z(

	

) = exp F2M2L4 +

	

2

	

L4go +

	

16T2

	

in
M

+ -
»

Since ZW is concentrated at 0=.X, the argument of the function YN is in the
vicinity of F2M2V. Recall that in the p-expansion the product ML is kept fixed as
L -:, oc, such that F 2M2V= C( Ld-2) is large and we can replace YN by its
asymptotic representation [51,

with

x [l +é-- (1/L2 )]

	

(d=4) .

	

(4.8)

1

	

Z 0-N)/2

	

(N- 1)(N - 3)
YN(Z)

	

4-rr

	

2

	

eZ

	

1 -

	

8Z

	

+(( z-2 )

	

.

	

(4.9)
)

The relation (4.8) then takes the form

2 7r~2

	

(N-0/2

F2Ld-2 J dOexp(~(O-X)F2Ld-2/1)Z(0) = er("[1 +e'(1/Ld-2) ] ,

(4.10)

N- 1
(L3g(D+

	

1 (ML) 3 +21n(ML)

	

(d=3),
2

	

67r
N - 1 ( ,4ge)+

	

1

	

(ML )4 In
n

	

+ 1

	

+ 21n(ML)

	

(d= 4) .
2

	

16Tr2

	

M 4

(4.l1)
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The variable ~, defined by

=M2L2 = IjL2
F2 '

plays a role analogous to the parameter -q =jV occurring in the context of the
E-expansion . The function F(~) is fixed by the purely kinematical function go,
except for a logarithmic contribution in d = 4.

In contrast to the partition function Z(j), the quantity FQ) contains singulari-
ties . For simplicity, we consider a symmetric box where FQ) has a cut extending
from - 472 to - oo : In the limit L -> cc, L2j = const ., the entire function
exp(--YjV)Z(j) becomes a singular function of the variable L2j . The phenomenon
illustrates the well-known fact that a convergent sequence of analytic functions
need not converge to an analytic function . It is not difficult to identify the origin of
the singularities occurring in F(~). The partition function of a free Bose gas, which
enters F(6) through the function go, is the inverse square root of the determinant
associated with the differential operator (-® +M2 ). For a symmetric box, the
eigenvalues of this operator are of the form (27rn/L )2 + M 2 , where n is a vector
with integer components. The contribution of the zero mode n = 0 is proportional
to the power M- ( ^' - ') which cancels the pre-exponential term in the representa-
tion (4.9) of the function YN. This is why for a symmetric box, the singularity
closest to the origin occurs at ~ = M 2L2 = -47 2 .

Note that in the context of the E-expansion, these singularities do not show up,
because in the variable ,Y7 =jV CCM 2L`i, they occur at -q = ,I~(L`~ - ') and are sent to
infinity if the limit V - oo is taken at fixed jV.
We now express the function Z((P) in terms of the corresponding constraint

effective potential by means of eq. (4.7). Furthermore, we stretch the scale of
integration in eq. (4.10), setting

=-Y

	

1 +

	

2
(

-2

	

,

	

(4 .l3)
FL t

where ~i is a new variable of integration . Thus, eq. (4.10) becomes

1 f
27

dqi exp( ~ip - U( (P)) = e

	

1 + ~ (110 -2

	

(4 .l4)

and the potential can be expanded in the form

(4 .12)

U(O) = U()(41) +

	

1
_ 2 U1(ß) +~~'' (1 /L"-2 )2

	

(4 .15)2 clFL

if the infinite volume limit is taken at a fixed value of the scaled field 0. The
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1
2Tr
f dq/exp(~gi - Uo(qi)) = e r( ) .

We shall determine U0 (4i) numerically from the inverse of this relation. The
calculation of U,(4i) is discussed in appendix A. Note, however, that in d = 4 the
expansion coefficients U() , U1 , . . . logarithmically depend on the volume, while in
d = 3 they are strictly volume independent.

4.3 . BEHAVIOUR FAR TO THE RIGHT OF THE MINIMUM
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(4.16)

Next we analyze the shape of the mean-field distribution in the region 0 > I
and first consider the infinite volume limit at a fixed value of the mean field 0. For
this purpose, we return to the general relation between the constraint effective
potential and the partition function,

277- N/2 S -N
F2Lt-2 (N+ )/2

( 27r

x

J dO(pN-'YN((PjV)e-v"('P)=Z(j), (4.l7)
0

and consider the infinite volume limit at a fixed value of the external source j. In
this case, the finite-size effects generated by the box are exponentially small-the
partition function is given by the energy density at infinite volume,

Z(j) = e""(j)[1 + e '(exp( -MphysL))I .

Here Mpnys = Mpny,(j) is the mass of the lightest particle at infinite volume . For a
weak external source, Mpnys aj' /2 while c,(j) = jj + (,,--,(j3/2) . The representation
(4.18), however, also holds if j is not small-chiral perturbation theory is not
needed here .
At the peak of the function exp(- Vu(O)), the argument of YN is large, of order

V, and is rapidly growing with (P . With the asymptotic representation (4.9) we
obtain

00
(N+1)/2 r

	

(N-1)/2

	

v("(fh)-j'p)= vl ' (j)

0

F2Ld-2 , J1.L2,(1
-N)/2

(4 .18)

(4.19)

where the correction of order 1/V arises from the term (N - 1)(N - 3)/8z in eq .
(4.9). The source shifts the peak of the integrand to the right, i.e . to the region we
wish to investigate . Up to a correction of order 1/V, the position of the peak is
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determined by the minimum of the function u(O) -j4P,

j = U'(0) .

	

(4 .20)

Since the peak is very narrow, we can expand around the minimum. Evaluating the
integral in the gaussian approximation and comparing the leading terms on the two
sides of eq. (4.19), we obtain

L'(j) =j(P - "(0),

	

(4.2l)

valid again up to corrections of order 11V. Together with eq . (4.20), this shows
that the vacuum energy is the Legendre transform of the constraint effective
potential and vice versa. The inversion leads

0 = i'(j)'

	

u(0) =j~(j) - 1 ,(j),

	

(4 .22)

where the dot stands for the derivative with respect to j. The result for the
position of the peak merely confirms that the expectation value of the field at
infinite volume is given by the logarithmic derivative of the partition function with
respect to the source,

~~ilv=x -_
J

	

,)

	

.
I jl

The corrections of order 11V to the above relations are readily worked out. The
factor O( ^' - ' )/ 2 modifies eq. (4.20) with the result

while the factor (Vu"(O))-1/2 arising from the gaussian integral affects the relation
(4.21) at order 11V,

N - 1

	

( ~

	

1 ~ V~2ac"
L' (j) =jO - u( O) +

	

2V

	

In

	

)

- 2V In

	

27rA2

j

+

	

(1/V2 ) .	(4 .25)

enoting the Legendre transform of the vacuum energy by û(P),

WO) =ji'(j) - L 7 0),

	

= i'(j)'

	

(4.26)

the corrections of order 1/V to the potential take the form

N_ 1

	

y2L
In

	

2ûp( ,p)

2V

	

F20

(4 .24)

1

	

2TrX2L4- dit"( op)

2V F
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and the peak now occurs at

1

	

~N- 1

	

û"'
2V

	

ii,

	

(ll") 2
) +r,(IIV2) .

Note that the second derivatives of û(f) and c(j) are related by

The above discussion is connected with the analysis in subsect. 4.2 . There we
assumed 0- I to be a small quantity of order 1ILd-2 and considered the scaled
field 41 _ (0 - *il- that language, ~. .thethe region discussed above corre-
sponds to large values of 41 . Evaluating the behaviour of Uo(4) for 41 -* x. we shall
establish that the two approaches are indeed consistent .

4.4 . BEHAVIOUR FAR TO THE LEFT OF THE MINIMUM

Finally, the behaviour of Uo(gi) for 41 -~ -oc corresponding to the region (P < X
is determined by the fact that the kinematical function F(~) contains a cut along
the negative real axis . The integral in the relation

1

	

rc~ ~f d4iexp(~qi - Uo(qi)) = e
27r

must therefore diverge, as 6 approaches the beginning of the cut (6 -> -4-r2 for a
symmetric box) . This will yield the leading behaviour

as e --> -oc.

5 .1 . VICINITY OF THE MINIMUM (d = 3)

Uj qi) - 47r2101

5. Constraint effective potential in three dimensions

entering the r.h.s . of eq. (4.10) is given by
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(4.28)

û"Wi'(j) = 1 .

	

(4.29)

(4.30)

(4.31)

We shall now work out the properties of the constraint effective potential in
d = 3 along the lines indicated in sect. 4.

For the scaled field we have now qi = (0 - X)F2L/X. The function F(0

N- 1 1
F(6) =

	

2

	

(L3go+ 66312+In

	

(5.1)
7r
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The representation (3.15) of g o) shows that the Taylor series of F(~) exclusively
involves the shape coefficients of the box,

2

	

r: = () n

Therefore, in the formula (4.16) determining Uo(qi),

1
2 Tr f d4i exp(64i - Uo(qf )) = er-(6)

(5 .2)

(5 .3)

the low-energy constants I and F do not occur at all! These constants only
determine the value 2.' around which the mean field fluctuates and fix the scale
/F 21, of the fluctuations, in agreement with the information extracted above

from the E-expansion . The shape of the distribution is fixed by kinematics alone:
The distribution exp{ - Uo(ap)) must be such that its Laplace transform is the
exponential of the purely kinematical function F(~).

It remains to invert the Laplace transformation (5.3). If the U .s . converges at
the real positive value ~(), then it converges in the half plane Re 6 > 6() and defines
an analytic function there-in agreement with the fact that the function FQ) is
analytic except for the cut mentioned above. Setting 6 = 6() + ix, the relation (5.3)
takes the form of a Fourier transform, which is readily inverted, provided the
function exp F(6() + ix) is integrable. To verify that this is the case, we first note
that the function go) defined in eq. (3 .12) decreases exponentially if the real part of
ML = ~_6 tends to infinity . In the 6-plane, go therefore tends to zero as 16) -> W,
except for a wedge along the negative ~-axis . The representation (5.1) then shows
that for x -~ oo, the function F(6o + ix) is dominated by the term a 63/2 whose
real part tends to - oo, such that exp F(6o + ix) is indeed integrable . Finally, since
the function F(6) is regular at 6 = 0, we can take the limit eo) --)- 0 and obtain the
representation

exp( - Uo(qi)) = f
x
dxexp(-ixqi+F(ix)) .

	

(5.4)
-x

Exploiting the property I'(~ )* = FQ *), this integral can be reduced to the positive
real axis,

x
exp(-U�(qi))=2f dxexp(F,(x))cos(x iP-F,(x)),

	

(5 .5)
()
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where the real functions T, and T, are the real and imaginary parts of T,
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Fig . 1 . (a) Effective potential as a function of the scaled mean field in three dimensions : O(2) model
(full curve), O(3) model (dashed curve), O(4) model (dotted curve) . (b) Comparison of the asymptotic
representations (5.12) (dashed line) and (5.15) (dotted line) with the full result for the O(3) model in

three dimensions .

T(ix) =T, (x) +iF,(x) .

	

(5.6)

Numerical evaluation of the integral (5.5) leads to the results shown in fig . l a . The
minimum occurs at a positive value of q, (for numerical values, see table 1 ;
throughout, we consider a symmetric box, L, = L, = LO. Note that the potential is
not symmetric with respect to reflections at the minimum .

i ~ I I I - I I I

0

vww
(b)

I m
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TABLE 1
Minimum of the effective potential for d = 3 . 0�, denotes the position of the minimum in. the

function Uo(O) and U�, is the corresponding potential

5.2 . FAR TO THE RIGHT OF THE MINIMUM (d = 3)

To analyze the shape of the mean-field distribution for 0 > X along the lines of
subsect. 4.3 we make use of the expansion of the vacuum energy for weak external
fields . For d = 3, the expansion is given in eq. (3 .13). Expressed in terms of j, this
becomes

3/2

127r F 3 2F~(~j)2+~
,(j5l2), (5 .7)

where we have included the term of order j2 (see appendix A). The corresponding
Legendre transform is readily worked out, with the result

(87r )2

	

F`,

	

91,

	

3

	

3 (	87r

	

~2

(N-1) 2 -Y

	

2 N-1
k0 ~

	

1~ +

	

(5.8)

This expansion is useful only at values of 0 for which 0 - 2~ is small compared to
-X - if this is not the case, the infinite volume limit of the potential is still given by
the Legendre transform of the vacuum energy, but one then needs to know the
vacuum energy for strong external sources which is beyond the control of chiral
perturbation theory.
At finite volume, the corrections to the potential are of order 11V; in the region

where the leading term in (5.8) dominates, they are given by

( 87r )
2 F63
(N-1)2

- 1
1
1 ; - N V

/
Z in(-~,-ll+

1
(5 .9)

where we have dropped a field independent term of order V- ' In V.
In terms of the scaled field

	

_ (,p - .~)_F2L/2, we have just discussed the
region qi -4 oo . The function U(,(qs) must therefore be proportional to ,I`3 if 4
becomes large . To check that this is indeed the case, we consider the relation (5.3)
and let ~ become large, such that the integral can again be evaluated by expanding
the exponent around the minimum. One concludes that, for large values of 4, the

N Um

2 0. i 24 -4.292
3 0.238 -4.659
4 0.352 - 5 . 179



function Ujqi) is given by the Legendre transform of the kinematical function
F(~),

Now, for large values of ~, we have

41=F'(~), Uj4i)=~4i-F(~) .

	

(5.10)

N - 1

	

~3i2

F(~) =

	

2

	

6Tr + In 6+r(e-

	

)

	

.

This leads to the asymptotic representation

(8-m )2

3(N- 1)2
4P

	

V

	

2 J""' 'P
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-L- Al 1 .,i A iui

5.3 . FAR TO THE LEFT OF THE MINIMUM (d = 3)

1-IA-1 -jL ~,,--r 1 /a. laa .~-rig I I f . LjiwI,

(5 .12)

which indeed agrees with (5.9). As shown in fig. lb, this asymptotic formula
(dashed line) is an adequate representation of the tail of the distribution
exp[ - Uo(qi )] for 41 > 0.3 .

Finally, we consider the region 4) <X . If the difference -Y - 0 is small, of order
I IL, then the potential is given by the function U�Q0 determined in subsect. 5.1,
at the corresponding negative value of the scaled field 41 = F2L(O To see
what happens as the difference 1 - 0 grows, we consider the relation (5.3) and
recall that the kinematical function F(~) contains a cut along the negative real
axis. As ~ approaches the beginning of the cut,

	

-~ -4Tr'- , the integral occurring
in (5 .3) must therefore diverge. The singularity in FQ) is of the form

F(~) = -3(N- 1)ln(~+4Tr2 ) +F(6),

	

(5 .l3)

where FQ) is regular except for a cut occurring at ~ < -8-r2. The r.h,s . of eq.
(5.3) therefore contains a pole of order 3(N - 1) . For the integrand to generate
this divergence, the effective potential must behave like

exp( - Uo(e)) « lel 3N-4 exp( -47r 2 »l)

	

(5.14)

as 41 tends to - oo . A straightforward way to prove this result is to deform the
contour of integration in the inversion formula (5 .4) to a circle around the
singularity and a straight line parallel to the imaginary axis, located e.g . at
Re 6 = -67 2 . For large values of lql the contribution from the pole dominates - it
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is indeed of the form (5 .14). Hence we obtain the asymptotic representation

U

	

) = 47,--'»I - (3N - 4)lnlipl - F( -471 2) + In

	

(3N- 4) !
2 7r

(5 .15)

The value of the constant T(- 4

	

-' ) is readily worked out with the technique
described in appendix B of ref. [5] leading to the result 1( -4 , '-) = 7.521 - (N - 1).
The relation (5.15) implies that for small values of .2: - 0, the potential per unit

F? l
ii(P)=4-r'L, 1 - -

YI
+ . . .

	

(5.l6)

n the infinite volume limit at fixed 0 <X, the potential per unit volume thus
tends to zero, as required by general convexity arguments [9]. The asymptotic
formula (5.15) is represented in fig. lb as a dotted line. Comparison with the full
curve shows that on the left of the minimum, asymptotics sets in rather slowly.
The expansion (5 .16) only holds if 0 is in the vicinity of _Y and does not specify

the large volume behaviour of u(0) at an arbitrary value in the interval 0 < (P <

	

.
e expect the quantity L-u(O)/F' to tend to a finite limit îi(0/1) for V-4 oc (0

fixed) . Presumably, the limit îr(x) is a universal function, which for a symmetric
box only depends on the group index N. To prove or disprove this guess, one
however needs to analyze the effective theory in more detail, treating the modes
responsible for the singularity at

	

_ -47- as collective variables-we did not
carry out such an analysis.

Finally, we compare the above results for the shape of the potential with the
large volume expansion of the expectation value given in eq. (4.6). Expressed in
terms of the scaled mean field, this expansion takes the form

The first term, (0 >� =(N - 1)ß, /2 represents the expectation value of 4 in the
distribution exp[ - Uo(P)] and is shown as a vertical (dash-dotted) line in fig. l b.
The correction of order 11L is beyond the accuracy of the above analysis which
exclusively concerns the leading term UjiA) in the large volume expansion of the
effective potential . A representation for the next-to-leading term U,(O) is given in
appendix A. As a check, one may verify that the correction in the mean value of
generated by U, indeed reproduces the formula (5 .17) .
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In d = 4, the large volume expansion only involves even powers of 1/L. A given
number of terms in either the E- or the p-expansion therefore specifies the
partition function more accurately than in d = 3. The back side of the coin is that
the expansion to order 01Ld-2)2 = 1/L4 now involves additional low-energy
constants in the form of logarithmic scales .

V . 1 .' VICINITY OF THE MINIMUM (d = 4)
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ective potential in four dimensions

The scaled field 41 = (0 -,X)F2L2/1 is such that the mean square fluctuations
in 41 are of order In L,

where

becomes

In four dimensions, the kinematical function FQ) appearing on the r.h.s . of (4.14)
is given by

N- 1

	

2

	

(A,L)
2

	

1
F(~) =

	

2

	

L4g0 + 327r2

	

In

	

+ 2

	

+ In ~

	

.

	

(6.3)

Representing g( , in terms of the shape coefficients ß� according to eq. (3.15), this

12

	

N- 1
rM = -

2 +

	

FI
ßn en

	

(6.4)
2

	

2

	

niL2 n 0

Let us first take the infinite volume limit at a fixed value of l~. In this limit, all
terms occurring in the expansion (6.4) disappear, except for a constant and for the
term quadratic in ~. The Laplace transformation (4.14) is then readily inverted-the
distribution is a gaussian in the variable _ ik/l =F2L2(0/_y - 1)/1 conjugate
to 1~,

1 2
lim

	

~
U(O) - '-, In

2Tr
-) = 1~2 _

V-~ xx
41 fixed

The power of the field occurring here is precisely the one for which the potential
per unit volume becomes volume independent,

F4

	

0_ ~V 2
u(o) =

	

)

2l2

	

+
( Y

'-,(N- 1 )ßo . (6 .5)

(6.6)

2,
=~'l1< T _2<~~<<. (6 .1)

VN- 1
[ln(A,L) + 8V2

J62]1
/2

(6 .2)
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except for the logarithmic factor 1/12 . The calculation shows that, in the vicinity of
the minimum, the constraint effective potential approaches the infinite volume
limit only very slowly, u(0) - (in L)- ', a phenomenon already observed on the
basis of numerical data in ref. [9] .
The leading term (6.5) represents the effective potential only up to corrections

of order 1- ' - (In L)- '/2 which stem from the remainder in the function T(~).
The term proportional to ß, merely shifts the distribution, 4 --> 4 - (N - D'81/2.
The correction generated by the term oc 83 3 is readily worked out with the result

1 2

-(N- 1) 63 (4,-41»03+~(1-4)~
121

where ~�, denotes the position of the minimum and is given by

(6 .7)

(6 .8)

The potential is not symmetric with respect to a reflection at the minimum. At
large volumes, the asymmetry is described by a cubic term proportional to the
shape coefficient 13 3 , which is negative ; for a symmetric box, 8, 3 _ -0.000482 .
The above representations are useful only if the logarithmic quanti'- 471 is

large . In numerical simulations this requirement is not necessarily met and it is
therefore of interest to sum the series up and to give a representation for U valid
up to inverse powers of the box size, rather than of the logarithm thereof (compare
subsect . 4.2) . The large volume expansion (4.15) of the potential at a fixed value of
the scaled field 41 is now of the form

1
IJ( ~P ) = U()( e) + î. 2L2 UI(O) +e'( L -4 )

	

(6.9)

It differs qualitatively from the corresponding series for the three-dimensional case
in two respects : (i) the field is now scaled with L2 rather than with L and the
expansion goes in even powers of 1 /L; (ii) in d = 3, the expansion coefficients
Uo,, U, ' . . . are strictly volume independent while in d = 4, they logarithmically
depend on the volume .

In the language of the expansion (6.9), the representation (6.7) specifies the
leading term Uo(4) as a series of inverse powers of (In L)'/2 . We wish to
generalize this result and to determine the function Uo(qi) when In L cannot be
treated as large. Here, a technical problem occurs which does not arise for d = 3.
The problem is that the function exp(T(ix)) is not integrable, but explodes for
large values of x : Outside the cut along the negative real axis, the function go
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tends to zero exponentially as ICI --> oo such that the representation (6.3) implies

N- 1

	

1

	

1
FM -

	

2

	

327r2~2 In (AsL )2
- 2

	

(6.l0)

If ~ is on the imaginary axis in the interval 1 << 161 << (A,L)2, the real part of this
expression is negative, reaching large values of order (A sL)4. Once 161 however
exceeds (A,L)2, Re F(6) turns to large positive values and tends to infinity as
161 --> x. This behaviour prevents a straightforward inversion of the Laplace trans-
formation (4.16) along the lines discussed in subsect . 5.1 . The trouble arises,
because the representation for the partition function used in the derivation of eq.
(4.16) only holds if M is small in comparison to the scale of the theory . If the
condition M << 4TrF is not met, the second term in the chiral expansion of the
vacuum energy is not small compared to the leading contribution and it is then not
justified to neglect the higher-order contributions . Indeed, the problem disappears
if the next term in the expansion of the vacuum energy (see appendix A) is
retained . Actually, the problem is however of a purely technical nature-the
behaviour of the partition function for strong external sources is relevant only if
one wants to determine the shape of the potential far to the right of the minimum.
As noted above, the integrand first decreases to values which are exponentially
small, of order exp(-AsV), and only then starts exhibiting fictitious behaviour.
Instead of using a more adequate representation of the quantity F(ix) for x >
(ArL)2, one mayjust as well cut the integral off before this region is reached, such
that the inversion formula analogous to (5.5) becomes

exp(-Uo(qi)) =2fA dxexp(F,(x))cos(xgr-I',(x)) .

	

(6.11)
0

The cutoff A must be taken somewhere in the region where the integrand is
exponentially small, e.g . at A = (A_vL)2-the sensitivity to the choice of A is
negligible compared to the corrections of order 11L2. In contrast to the situation
in three dimensions, the function UoQ) now logarithmically depends on the size of
the system, through the parameter 1 which enters the expression for FQ) and
which is related to the logarithmic scale A . ,: by

167r 212
AYL = exp

~
N- 1 - 87r2ß2 . (6 .12)

The results of a numerical evaluation of eq . (6.11) is shown in fig. 2, where we
restrict ourselves to N= 4, i.e . the O(4) symmetry, spontaneously broken to O(3).
We illustrate the logarithmic volume dependence of the function U0(1) by consid-
ering two different values of 1, viz. 1= 0.15 and l = 0.2, which correspond to
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6.2 . FAR TO THE RIGHT OF THE MINIMUM (d = 4)

8

4

2

0

-2

-4

-6

Fig . 2. Effective potential of the O(4) model in four dimensions . The logarithmic volume dependence
of the scaled potential is illustrated by showing the result for two box sizes which differ by a factor of

2.5 . The dashed line indicates the approximate representation of the potential given in eq . (6.7).

,,A -L = 16 and 40, respectively . Accordingly, the figure shows the variation in UJ41 )
produced if the box size is inflated by a factor of 2 .5 : The position of the minimum
changes very little, but the valley flattens out as L grows (it is essential here that
the variable 0 - S is scaled by two powers of L ; if the potential is plotted against
the mean field itself, the valley of course rapidly narrows with increasing volume).
The approximation (6.7) is shown as a dashed line . For 1= 0.15, this approxima-

tion provides a good description only in the vicinity of the minimum, whereas for
1= 0.2, it can barely be distinguished from the full result throughout the interval
shown in the figure .

We now turn to the large volume limit at fixed 0 and first consider the region to
the right of the minimum . At infinite volume, the potential is given by the
Legendre transform it(0) of the vacuum energy t . (j) ; the finite-size effects are of
order 11V and are given explicitly in eq. (4.27). If 0 -1- is small compared to Y,
the behaviour of the vacuum energy for weak external sources is relevant . For
d = 4, the first two terms in the expansion of v(j) in powers of j are given in eq .
(3.14),

64zr` F

	

tj 2

	

( )	(6 .13)



M. Göckeler, H. Leutwyler / Effectire potential

The relation between the conjugate variables (j, 4)) is therefore of the form

for x, in the region where x and y are small . Denoting the value of in(1 /x) which
corresponds to a given y by z = z(y ), we have

z-Inz=In(1/y)

	

(6.16)

with y << 1, z > 1 . The function z(y) can be expressed as

InIln yI

	

InIln yI

In terms of z, the solution of eq. (6.15) is given by x = y/z(y ). The value of y is
determined by the field,

253

(6 .17)

The representation applies if the field is close to the expectation value 1, such that
0 < 0/2~ - 1 << 1 . In this region, the potential deviates from a parabola only
logarithmically . The position of the parabola is set by s, the curvature by F and
the scale of the logarithm by A, . . In this region, the large volume expansion at
fixed 0, given in eq. (4.27), takes the form

1

	

C
ct((P) =i(f) +

2V((N-
1)z+ln(z- 1)) + V + . . . ,

	

(6 .21)

z
Y N2 nFl

-
(6.18)

I I 1-Y

TheThe corresponding value of the conjugate variable becomes

-yj=(FA,) 2 Y [1+~(Y)] (6 .19)`
z( Y)

and the expression for the potential at infinite volume takes the form

167r2F`1 (P z -
ÙM=

~

--1
)2 ( 1/2)

2 1+
,
--1 (6 .20)

N
-1

'i z`

4P = «j) -Y -327r2 F4
In

lj
(J ) (6.14)

To invert this relation, we need to solve an equation of the type

y=xln(1/x) (6.15)
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where ROM is the potential at infinite volume, specified in eq. (6.20) . The field
independent term c is given by

c = - ( N - 1)In( A,-L) + -, In
N -

1 .

	

(6 .22)
` 647T'

The quantity z occurring in these expressions depends logarithmically on the field
(P in the manner specified in eqs . (6.16) and (6.18) while c depends logarithmically
on the volume .

If 0 is very close to Y, the volume must be very large for the representation
(6.21) to apply . The ratio of the correction a 1 /V to the leading term is of order
[F2L--((p/y - 1)] -2 and is small only if the corresponding value of the scaled field
O=F 2L-'(0/s - 1) is large . As (P moves towards _Y at fixed volume, we enter the
region where this condition fails to be met, the scaled field taking values of order
one . In this region, the representation given in subsect . 6.1 takes over . The two
representations (L - x at fixed 0 and at fixed 4, respectively) are valid simulta-
neously if q7. is in the range 1 << 41 << F 2L 2 . To compare the two, we need to
extract the behaviour of the potential U�(qi) at large values of o from the integral
representation (6.11) . The calculation closely parallels the one sketched at the end
of subsect . 5.2 and leads to

167r2

	

, ( z - 1/2)

	

N - 1
U� (ii) = N- 1

	

`

	

z2

	

+

	

2

	

z+' ln(z- l) +c+~,,(jj-2), (6 .23)

where z > 1 is the solution of

This result indeed agrees with the representation of the potential given in eq.
(6.21) .

6.3 . FAR TO THE LEFT OF THE MINIMUM (d = 4)

z - Inz=In

	

(6.24)327r 24,

Far to the left of the minimum, the shape of the potential is determined by the
singularities occurring in the partition function; when the external source is
analytically continued from positive to negative values . As discussed in sect . 4,
these singularities originate in the fact that modes of wavelength A become
unstable if the square of their frequency, M 2 + (2 77./A )2 turns negative . For a
symmetric box, the wavelength of the lowest excitation is A = L, such that the
corresponding instability sets in at M2L2 = -4 77. 2 , irrespective of the dimension of
the box . This implies that for large negative values of the scaled field 41, the
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constraint effective potential grows linearly with the same slope as in d = 3. The
number of independent modes of wavelength L is different in d = 3 and d = 4,
however. The difference shows up in the coefficient of the logarithmic singularity
contained in FQ). In four dimensions, the analog of eq. (5 .13) reads

F(~) = -4(N- 1)lnQ+4-rr2)+I'(~) .

	

(6.25)

The difference affects the coefficient of the next-to-leading, logarithmic term
the expansion of the potential in inverse powers of 41,

(4N - 5) !
Uo(4j) = 4Tr`~

	

j - (4N - 5)InjOj - F( -4Tr2 ) + In

	

2-r

	

+ e(1/0)
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in

(6 .26)

If the field 0 is kept fixed, the potential per unit volume again tends to zero in
proportion to 11L2 ,

discussion given at the end of subsect. 5.3).

F2
-u(tP) = 4Tr'-

	

2

	

1 -

	

+ . . . .

	

(6.27)
L (

	

-Y )

Note that this result only holds if 4) is not too far away from the minimum (see the

7. Summary and discussion

(i) We consider an O(N)-invariant theory containing a field +(x) which trans-
forms according to the fundamental representation of O(N). Enclosing the system
in a periodic box of volume V we study the distribution of the space average of this
field,

1
Vf ddx (g x),

	

(7.1)

referring to

	

as the "mean field" . The basic observation underlying our analysis
is that if the system is perturbed by a constant external source j coupled linearly to
(~(x), then the action depends on the source only through the mean field . The
partition function can therefore be represented as

Z(j) == f dN(P exp( JV)Z(0) . (7 .2)

O(N) symmetry implies that the partition function only depends on the magnitude
j = Ij j of the source and is independent of its direction ; likewise, the mean-field
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distribution 2M only depends on the magnitude 0 = 101 of the mean field . We
invoke known results concerning the properties of the partition function Z(j ) and
show that the relation (7.2) can be used to determine the main features of the
mean-field distribution Aft

(ii) We consider the situation where, at infinite volume, O(N) symmetry is
spontaneously broken to O(N- 1). In this case, the lightest excitations of the
system are Goldstone bosons and the finite-size effects are dominated by these
modes. Their basic properties are controlled by the spontaneously broken symme-
try which is at their origin, in the sense that the corresponding effective lagrangian
is fully determined up to a set of low-energy constants. In the present context, two
of these constants play a central role : Y (expectation value of the field at infinite
volume) and F (residue of dhe Goldstone boson pole occurring in the current
correlation function).

(iii) Using chiral perturbation theory for the behaviour of the partition function
in the symmetry restoration region where the external source is taken small, of
order I /volume, we show that the expectation value of the mean field can be
expanded in inverse powers of the box size . In three dimensions, the first three
terms in this expansion only involve the constants _Y and F,

where L stands for the mean size of the box, L-- V'", and where 13 D,82 are pure
numbers, determined by the shape of the box. For a symmetric box, 8 1 = 0.23 is
positive such that the expectation value decreases as the volume grows. The root
mean square deviation is of order I IL,

indicating that the peak in the mean-held distribution narrows as the volume
grows.

N- 1

	

N- 1
> =r

	

1 +

	

01-

	

«N- 3)j3' - 4( N - 2) #82) +

	

( L -3 )

	

(7.3)2F2L

	

8F4L2

	

i

	

~ 1

( N

	

1) .V2

<0»->

	

2F4L2 QA)

In four dimensions, the large volume expansion only involves even powers of
1 110

N- 1

	

(N- 1)(N-3)	1

	

ANCW =a 1 +

	

F
JU I -

	

8F
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M

2 2L2

	

4
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4 1

1

	

1 iir-2

+
(N - 2) 12

F4L4

	

+

	

L-6)

	

(7.5)

In this case, the constants Y and F only determine the first two terms of the
expansion. At order 1/L4, a logarithmic volume dept;ndence shows up, through
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N--1_
7%21

	

4r

	

[ln(A,L)

	

- 8

	

ß2 1

and the expression involves two additional constants: A, A.,, (as it is the case with
I and F, these constants also represent specific low-energy properties of the
theory at infinite volume and in the symmetry limit). In four dimensions, the
mean-square deviation also contains a logarithmic factor,

2
((0- (0>) 2 > =

	

£

	

12 [1 +~(L - ') l .~

	

(7.7)
F~L

(iv) In the above results for the expectation values of 0 and 0-, the normaliza-
tion of the mean-field distribution played no role. When discussing the properties
of the distribution itself, the normalization is however not immaterial. We choose
the normalization of the partition function Z(j) such that In Z(j)1V becomes
volume independent except for exponentially small finite-size effects, as soon as
the largest Compton wavelength is short compared to the box size . Extracting the
power of V with which the peak in the distribution ZM grows we define the
constraint effective potential UM by

( F2Ld-2 ~(N+ j)/2

Z(f) -Y-N 2Tr

This normalization insures that the value of the potential at the minimum [i.e . at
the peak for ZM] tends to a constant as L --> oc, except for a contribution of
order In In L occurring in d = 4. Away from the minimum the potential UM
grows with the volume .

(v) In three dimensions, the behaviour of UM in the vicinity of the minimum is
characterized by a scaling law: If one moves closer and closer to the minimum as
the volume grows, keeping the quantity 4 =F2L(P - _Y)/1 fixed, the potential
tends to a finite limit. More precisely, the potential can be expanded in inverse
powers of L at fixed +1,

UM = Uo(O + F2L Uj(+i) + e-, (L -2 )
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e-u(CP) .

	

(7.8)

(7 .9)

In the infinite volume limit, the potential is given by the universal function UOQ)
which only depends on the group index N. We have calculated this function
explicitly as a Fourier integral over the partition function of a free gas of
Goldstone bosons . Numerical values are shown in fig. 1 and an expression for the
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correction term U,(A) of order 1/L is given in appendix A. Far to the right of the
minimum, the potential grows with the third power of ip,

(87r
)2

3(N- I)-

	

(

	

_)

	

(

	

)

	

(

	

)

while far to the left, it only grows linearly,

U{a(4i) = 4-,r -'I41) - (3N - 4)lnlqil + . . .

	

(-qi >> 1) .	(7 .11)

Preliminary results of a numerical simulation of the three-dimensional O(3) model
on lattices of size 4W, 76,2 and 96 _' are available [121 . Work on a comparison of the
data with the theoretical predictions is in progress .

(vi) In four diniens ons, the field must be scaled with two powers of L,
O=F-'L-'(0 - 2:)/Y, and the expansion of the potential takes the form

1
U(O) = U(1(1) + F. 2L, U,(

	

) +~( L -4 ) .

	

(7.l2)

A strict scaling law does however not hold here, because the functions UO,, U1 , . . .
still depend on the volume, although only logarithmically . The shape of UO, is again
determined by the kinematics of free particles enclosed in a periodic box, the
logarithmic volume dependence being controlled by the parameter 1 defined in eq .
(7.6) which in turn involves the scale A, . Numerical values are shown in fig. 2. Far
to the right of the minimum, the potential roughly grows with the square of the
field,

The quantity z logarithmically depends on field and volume, approximately ac-
cording to

16,T- (z - 1/2)

.
(N- 1 )( n,L)

, ,
z=1n

327-'qj (7 .14)

(for details see subsect. 6.2). Far to the left of the minimum, the behaviour is
essentially the same as in d = 3,

UO~(4f) = 47r- I1pI - (4N - 5)lnlqfl + . . .	( -qf >> 1) .

	

(7.15)

A measurement of the scaling violations should allow one to extract the value of
the low-energy constant A,.
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(vii) An interesting open question concerns the generalization of our results to
other symmetry groups, especially to SU(N) xSUM, broken down to SUM.
Both the E- and the p-expansion are available to the same order as for O(N) [2].
The analysis of the constraint effective potential is more involved, however,
because a field transforming with the fundamental representation of SU(N) x
SUM contains several invariants instead of a single one, 101, as in the case of
O(N). Accordingly, the potential then becomes a function of several independent
field variables. Work on the extension of the present analysis to this situation is in
progress .

M.G. wishes to thank the Institut für Theoretische Physik der Universität Bern
for its kind hospitality. Useful discussions with Prof. J . Jersâk and Dr. K. Jansen
are also gratefully acknowledged .

Appendix A

FINITE-SIZE CORRECTIONS TO THE SCALING LAW FOR THE EFFECTIVE POTENTIAL

In the analysis described in the present paper, we made use only of the first two
terms in the p-expansion of the partition function . The calculations can be carried
one step further, because the third term of this expansion is readily worked out. In
fact, in the case of spontaneous breakdown from SU(N) x SU(N) to SU(N), the
explicit representation of this term was given in ref. [2]. Adapting the result to the
breakdown from O(N) to O(N - 1), which we are considering in the present
paper, the expansion (3 .11) becomes

N 1

	

(N-1)(N
_ 3)M2(g,)2+~(L4-3d) . (A.l)

8F

The last term stems from a two-loop graph generated by the interaction among the
Goldstone bosons . It involves the function g, defined by

d
g'

	

dM290-

In addition, the interaction also renormalizes the mass entering the free gas term
(x go and it generates a contribution to the vacuum energy 1 ,Q). To the accuracy
needed in the representation (A.1), the mass of the Goldstone bosons is given by

M-	=M'- 1 - (N-3) M +~(M -')
Phy

	

87i

	

F 2
(d=3),

(A.2)

M2	=M2 1 - ( N- 3) M2 In Av, +~(M4 )

	

(d=4) .

	

(A.3)
phyti
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As before, M2= `j/F '; the expansion given here represents the physical mass of
the particles at infinite volume in powers of the external source . In the four-dimen-
sional case, the expression involves the logarithmic scale which also occurs in
the E-expansion formulae quoted in sect . 3 .

Finally, the expansion of the vacuum energy in powers of j is given by

N- I M -'

	

. 1 ,

	

I

t

	

'.

kj) - ( N - 1)( N - 3)

	

In

	

M6))

	

(d = 4) .

	

(A.4)
16 .. -	M ) -

The expectation value of the field at infinite volume is determined by the
derivative of the vacuum energy with respect to the source,

In three dimensions, this gives

N - I

	

a
UI (O) _

	

2

	

+ exp((I"( i# ))
f

d .r IZe{exp( -ix~r+I'(ix )),f1(ix)) -

	

(A.7)
cs

n three dimensions, the function fl(4) is given by

The low-energy constant k � [which shows up in the shape of the effective potential
at infinite volume as a term proportional to ((p - r)4 , see eq. (5.8)] is therefore
related to the shift in the mean field produced by an external source .
With the above explicit expressions for the terms of order I IL" --' in the

p-expansion of the partition function it is a straightforward exercise to calculate
the corrections of order 1/L" --' for the constraint effective potential, with the
result

(N- I)(1V -3)

	

6k ~~,

	

(A.8)~1{~) =

	

4

	

~W - - 2- -
16-rr-'

	

-
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where cu = W(~) is fixed by kinematics,

The cutoff A is needed only in four dimensions where

(N- 1)(N- 3)
Qw2-2w

-k ~'-

In this case, the function (o = WQ) contains the logarithmic scale Am introduced

1

	

ß11
(40 = 46 , +

	

l62 + 8
p ln(A,a,L) e+

E3 (ü - 1)!

It is related to the derivative of the quantity T(~) specified in eq . (6.3) by
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N - 1

	

8-rr--

	

A ~-
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