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Abstract. Higher order electromagnetic radiative cor- 
rections to neutral current deep inelastic electron proton 
scattering are studied in collinear approximation. Second 
order corrections show qualitatively new features com- 
pared to the first order ones and are non-negligible for 
large y and small x. We also show how kinematical cuts 
on the recoil quark jet, in particular the jet angle, will 
allow a strong reduction of the contribution from radiative 
events for small x and large y. 

1 Introduction 

Deep inelastic lepton nucleon scattering provides an 
important tool for studying the internal structure of 
nucleons. The HERA machine will extend the energy 
range accessible for ep scattering considerably: electron 
and proton beams of 30 and 820GeV, resp., will allow 
measurements at Q2 values up to several 104 G e g  2 and 
x values down to 10 -4 [1]. High-precision measurements 
of structure functions and tests of the electroweak standard 
model, as well as the possibility of observing new pheno- 
mena require a detailed understanding of the standard 
model predictions. 

To first order in ~, complete calculations of the electro- 
weak corrections for the neutral current process within 
the standard model were performed independently by 
two groups [2, 3]. Their results agree numerically within 
0.5~o for the kinematical range 0.02 < x, y < 0.98. Recently 
these results have been confirmed by calculations per- 
formed in the leading logarithmic approximation [4, 5] 
as well as with the help of a Monte Carlo event generator 
[63. 

The (_9(c 0 corrections for NC scattering are large for 
small x and large y. These large corrections originate 
from bremsstrahlung from the lepton line plus corres- 
ponding virtual contributions (Fig. 1, leptonic corrections). 

* Supported by Bundesministerium ffir Forschung und Techno- 
logic, 05 5HH91 P (8), Bonn, FRG 

Other (9(c0 contributions lead in general to much smaller 
effects. There are two reasons for the importance of these 
leptonic corrections: i) Their order of magnitude is 
determined by a large logarithm of the electron mass 
ln(Q2/m2~), and ii) the emission of energy via brems- 
strahlung from the electron line, particularly in direction 
of the electron beam, can shift the effective momentum 
transfer at the quark line (~2 = _ (Pc - P'e - k) 2 to values 
much smaller than the momentum transfer Q 2 = _  
(Pc  - -  P'e) 2 measured from the momentum of the outgoing 
electron: Q2 << Q2. This leads to an enhancement of the 
cross section for radiative events. The minimal value of 
Q2 that can be reached by the emission of a proton is 
determined by the proton mass. Therefore there is also 
an important part of the leptonic corrections which is 
not determined by a logarithm of the electron mass, but 
instead by a logarithm of a hadronic mass scale. This 
part, which is contained in the first two diagrams of Fig. 1 
(describing photon exchange), can be viewed as arising 
from collinear photon emission from the quark line, 
followed by Compton scattering e7 ~ eT. Its contribution 
is significant at large y and small x because of the 
backward peak of the Compton cross section. 

The mass singularities of the leptonic corrections can 
be separated into parts that may be associated to the 
external fermion lines. There are mass singularities per- 
taining to the incoming as well as to the outgoing electron 
line, but also to the incoming hadron line. In a parton 
model language these separate parts correspond to struc- 
ture functions for the external fermions that describe the 
emission of photons, fermions, etc. The mass singularities 
arising from the Feynman diagrams of Fig. 1 are visualized 
in Fig. 2. The first two contributions (Fig. 2a, b) produce 
electron mass singularities ln(Q2/m 2) which have to be 
included explicitly. The remaining contributions would 
generate quark mass singularities which should however 
be absorbed into the hadronic structure functions. 

The fact that (9(c 0 electromagnetic corrections are 
large obviously requires the investigation of higher order 
contributions. For  such a purpose it is helpful to realize 
that the exact (_9(e) corrections can be well reproduced 
for not too small Q2 by a collinear approximation [4, 5]. 
Therefore, a leading collinear approximation should be 
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Fig. 3 a-fl Second order leading logarithmic corrections to eq. r-~ eq s 
using the same conventions as in Fig. 2. 
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Fig. 2 a-c. First order leading logarithmic corrections to eqy ~ eqy 
arising from the diagrams of Fig. l. The vertices emphasized by a 
bold point describe (_0(ct) mass singularities contained in structure 
functions 

appropriate for a study of higher order contributions as 
well. It is the aim of this paper to supply the formulas 
that are relevant for the calculation of corrections up to 
order C(e 2) and to study the effects to be expected 
numerically. 

In the parton model, deep inelastic scattering is 
described by a sum over electron-quark hard scattering 
subprocesses 

da(eP ~ e X )  = ~ ~ dx'  Dq,/p(x')dd(eq r --* eX )  (1) 
f 

where Dqz/e(x') is the probability distribution of a quark 
with flavor f inside the proton, and dd is the cross section 
for the corresponding electron quark scattering with re- 
scaled center-of-mass energy. Leading logarithmic QCD 
corrections are taken into account by the introduction 
of Q2 dependent parton distributions Dqf/e(x, Q2). This 
Q2 dependence, controlled by Gribov-Lipatov-Altarell i-  
Parisi evolution equations [7,8], is a remnant from 
absorbing mass singularities into the structure functions. 
Nonleading QCD corrections lead to modified evolution 
equations for the parton densities, as well as to finite 
higher order contributions to the patton cross sections. 
In particular, new subprocesses involving gluons will 
appear and (1) will receive a contribution which contains 
the gluon distribution. 

The modification of the electron-proton cross section 
by electroweak corrections can be described with the help 
of a generalization of the parton model relation (1) [9]*: 

da(eP ~ eX )  = ~ I dzl  Da/e(zl) f dz2 Db/P(z2) 
a,b,c 

" S dzab~/c(z3)da(ab --* cX) .  (2) 

Dwe(x ) is the density of a 'QED patton'  a inside the 
incident electron (a = e + , e - ,  ~ . . . .  , u, ~ , . . . ) ,  Db/e(X ) is the 
distribution of patton b (including the photon) inside the 
proton, and De/c(z3) describes the fragmentation of the 
QED parton c into the observed final state electron. 
Singular parts of the electromagnetic corrections can be 
collected into the (process independent) structure func- 
tions whereas finite contributions modify the patton 
subprocess cross sections d~(ab--* cX).  From the analogy 
to QCD corrections, two important properties of the 
QED corrections are then understandable: i) corrections 
describing bremsstrahlung from the quark line (which are 
not considered in this work) also modify the Q2 depend- 
ence of the parton distribution functions and ii) the 
photon appears as a hadron constituent, too, with ey 
Compton scattering as the corresponding subprocess 
in (2). 

The leading second order parton model diagrams are 
shown in Fig. 3. A qualitatively new effect appears in this 
order. Using a QCD terminology this would be described 
as the appearance of a 'sea' component of the electron 
structure function, i.e. a 1Ix term. It corresponds to the 
production of an e +e- pair where the secondary electron 
undergoes the hard scattering (Fig, 3f). Additionally, 

* This formalism of describing electromagnetic corrections in terms 
of structure functions has already been used extens.ively for electron 
positron annihilation, see [10] and references therein 



fermion pairs may be radiated from the electron line in 
this order (Fig. 3e). Predominantly, these fermion pairs 
will be produced in forward direction and would be hard 
to observe. Logarithms of the fermion masses arising from 
these diagrams cancel partly against logarithms of the 
same type coming from the (9(~ 2) diagram describing a 
vacuum polarization insertion in the one-loop vertex 
correction. Therefore we include these parts as a contri- 
bution to the (9(~ 2) corrected inclusive eP cross section. 
Our numerical investigations show that the inclusion 
of (9(~ 2) electromagnetic radiative processes still 
increase the corrections in the large y region consider- 
ably. 

It has already been demonstrated in [11] that the 
high y peak could be removed completely if the corres- 
ponding photons could be tagged. It should be easily 
possible to separate the Compton contribution to the 
high y peak by experimental cuts. The events pertain- 
ing to this part have a clear experimental signature: 
the transverse momentum of the electron is essentially 
balanced by a hard photon. In contrast to this, direct 
measurements of the small-angle hard photons are pre- 
sumably not feasible. It has, however, been pointed out 
in [ 12] that cuts in the angle of the recoil quark jet should 
allow to remove such hard photon events very efficiently. 
This will be demonstrated in detail in Sect. 3. This method 
will work at very small ~ as well, where without cuts very 
large electromagnetic corrections would have to be 
applied over the whole y range. 

This paper is organized in the following way: In 
Sect. 2 we define our notations and provide the (9(c0 and 
(9(~ 2) expressions in leading logarithmic approximation. 
The (9(cd) contributions include two-photon radiation, 
fermion pair production and the leptonic C(c 0 correction 
to the Compton part of the (9(c0 corrections. In the final 
Sect. 3 we discuss numerical results. We emphasize the 
possibility of removing large corrections by imposing 
suitable experimental cuts, in particular on the jet angle. 
Although we concentrate on the machine parameters of 
HERA, several results are also given for the conditions 
of a possible future lepton-hadron collider in the LEP 
tunnel (50 GeV electrons on 8 TeV protons). 

2 F a c t o r i z a t i o n  o f  m a s s  s ingu lar i t i e s  

Up to (9(~ 2) the contributions to (2) describing electro- 
magnetic radiative corrections originate from either 
electron quark or electron-photon hard subprocesses. 
For the cross section differential in x and y this equation 
reads: 

d2a 1 dz 1 i dz 2 
-- 2 ~ 7 - D e / e ( Z l ) I ~ - D b / e ( z 2 )  dxdy b=q,q,yO 1 0 2 

1 dz 3 _ y dZO 
�9 ! 7 3 D ~ / ~ ( z 3 ) ~ 2 - ~ ( e b - + e X ) .  (3) 

In the following the 4-momenta of the incoming (outgoing) 
electron are denoted by Pe (P'~), that of the nucleon by P,. 
The momentum fractions z~ define the 4-momenta of the 
generalized partons in the corresponding hard sub- 
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processes according to the convention 

~ e = g l P e ,  Pb=ZzPn ,  ~ ' e = L p ' e .  
Z3 

As usual we introduce the kinematical variables 
Q2 

Q Z = _ ( p  _p , )2 ,  x =  
2P,(p~ - P'e)' 

P,(Pe -- P'e) Q2 y =  
P,,p~ xS  

(4) 

(5) 

with S = (Pe + pn)2. ~, 2,.9 and 0 2 denote the correspond- 
ing variables for the hard electron-patton subprocesses, 

= z l z 2 S ,  2 = z l xy  
Zz(Z1Z 3 -~ y -- 1)' 

~9=zlz3 + y - 1 ,  o 2 = Z l  Q2. (6) 
Z1Z 3 Z 3 

In the following we assume rn}<<S,Q 2 and neglect 
fermion masses where possible. 

In leading logarithmic approximation it is sufficient 
to use the hard-scattering cross section d ~ ( e b ~ e X )  in 
lowest order of ~ since the large logarithms are provided 
by the structure functions. The Born term for unpolarized 
electron-quark scattering is given by 

dZ~(o) 
- - . ( e - q ~ e - q )  
d2dp 

2x~2 I 
- 2 ~ ( A  [1 + (1 - .9)2] + BY[1 _ (1 - 3))2])b(1 - 2)  

(7) 

where the plus and minus signs refer to quark and 
antiquark scattering, resp., and 

A I = e} - 2VeefVfgz(Q 2) + (v~ + a2e)(V} + a~)()~z(02)) 2, 
B 1 = - 2aeelal)~z(O 2) + 2Veae2vlal(Xz(02)) z. (8) 

The 7Z interference and the pure Z exchange contain the 
reduced Z propagator 

0 2 
)~z(O 2) = Q2 + M~" (9) 

v I and a I are the vector and axial vector coupling 
constants of the fermions to the Z boson given by their 
charge e I and isospin I{: 

I{ - 2sawe I I~ 
v I -  2swc w , a l - 2 s w c  w. (10) 

The weak mixing angle is determined by the gauge boson 
masses (Cw = cos Ow): 

M w  
c W -  M z '  Saw=l-caw.  (ll) 

For Compton scattering we have 

d2~ (0) 2ncz 2 1 + (1 -- )3) 2 
d2d~ (eT~eT)= ~ 1 -3) 3(1 -2 ) .  (12) 

In leading logarithmic approximation the electromagnetic 
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contributions to the parton distribution functions are 
generated by the evolution equation 

(2 dO ~ ~176 Q-) 2~ ~ "~ [~ Pb/b,(fl)D~,/~(z/fl, QZ). 

(13) 

To leading order the fragmentation function D~/~(z) is 
equal to the parton density Db/o(z). The running fine 
structure constant is given by 

~(&) ~ ~(0) (14) 
1 - (a/gn)Xfe}  In (QZ/m})O(Q z - m})" 

The O-function guarantees that only fermions with 
masses below Q2 contribute to the running of a. P(z) 
denote the Altarelli-Parisi splitting functions 

1 + z  2 
P~/~(z) - (1 - z)+' (15) 

1 +(1 - z )  2 
P,/~z(z) = , (16) 

Z 

and the (+)-distribution is defined by 
1 

dzP~/~(z)f(z) 
X 

~.  l + z  z 5 .  1--]-x 2 
= ! d Z ~ _ z ( f ( z ) - - f ( 1 ) ) -  ! c l Z ~ z _ z f ( 1 ) .  (17) 

2.1 First order corrections 

(9(~) expressions for the structure functions are obtained 
from (13) supplementing it with the zeroth order initial 
condition D(~)b(z) = 6(t -- Z)O,b. For O~/e one finds: 

(1) 2 (18) De/e(Z, Q ) = ~ LePe/~(z) 

with 
Q2 

L~ = l n ~ .  (19) 

In case of the photon distribution in the proton the 
initial values D~/p(z, Q2) at some reference momentum Q2 
could only be measured but not predicted with present 
theoretical techniques. To first order in c~ Eq. (t3)can be 
rewritten as 

D(') z = D,/p(z, Q2) + ee~ I ~ dQ 'z 

fl P,/q~(fl)Dq,/e(z/fl, Q,2). (20) 

In the leading logarithmic approximation D~/e(z, Qg) 
should be ignored since it does not depend on two vastly 
differing mass scales (if Qo z is chosen of the order of the 
proton mass) which would be required for a large 
logarithm. We use as approximate solution 

(1) 2 ae} Q21dfi  
D~/e(z ' Q ) ~_ ~ ~ l n ~ o o  ! _ ~  n~/q~(fl)Dq,/p(z/fi, Q2). (21) 

which is obtained by neglecting the Q2 dependence of 
the quark distributions in the Q,2 integration of (20). 
Numerical calculations show that not neglecting this Q2 
dependence can change the final results for the Compton 
contribution to the eP cross section by about 10~. The 
same amount of uncertainty is found when the value of 
Qo is changed from 200 MeV to 400 MeV. This leads to 
errors in the final results for the (9(e) corrections of the 
order of 10~ only where the Compton part reaches the 
order of magnitude of the Born cross section, which is 
the case for small x and large y, e.g. at x = 10 -2 and 
y > 0.96 or at x = 10-3 and y > 0.93. In this region the 
uncertainty in the results for the (9(a) corrections is 
dominated by the uncertainty of the photon distribution 
in the proton. 

For the eP cross section, first order corrections are 
obtained from (3) by inserting the (9(~) result for one of 
the generalized densities, leaving for the others their initial 
values. The resulting three contributions to the differential 
cross section are visualized in Fig. 2. Inserting formula 
(18) into (3) we obtain a first contribution to the (9(e) 
radiative corrections describing initial state radiation 
from the electron 

d2a (1) c~ f 1 l+z~  
dxdy i = ~ - L e {  ~ d z ~ - - - ( a ~  1) -a~  1)) 

,<7[ (zTi~ I --Z I 

+ S(zTi')ao(1, 1)} (22) 

with 

S(z) = 2 In (1 - z) + z + �89 z, (23) 

y ~ 1. dz2 ^- d2d (~ 
O'o(Z 1' Z3) = . ~ ,  L J ~ - D q s / P ( z 2 '  Q~),~-~,~(e- q ~ e-  q) 

~l~3Y qf 0 Z2 axay 
2~a2y ~ 

�9 (ALE1 + (1 - )~)2] _ BYE1 _ (1 - 3~)2])1=~ =e: 

(24) 
Z2 - -  z 1 x Y  (25) 

zlz 3 + y - I' 

and 

m~, __ 1 -- y 
Z 1 1 - xy" (26) 

Besides kinematical factors, ao is just the Born expression 
for electron proton scattering with appropriately rescaled 
variables (x, y, QZ ~ 2, ~, (~2). 

The corresponding expression for (.0(cQ final state 
radiation from the electron reads 

e2~ ) =-ce~ dz31--+z~ 
dxdy z~ [ ~,i~ 1 - z 3  (a~ z3) Go(l, 1)) 

+ S(zTi")ao(1, 1)t (27) 

with 

zTi"= 1 - y ( 1 - x ) .  (28) 



For the Compton contribution we find from (3) and 
using (21) 

d2a o) "dz2 (1) 2 d~(~ 
d ~ y  c = j ~ D'/v(z2' Q ) d ~ 7 ~  (e~ -+ e~) ~, = :~ = i 

2~0~ 2 1 + ( 1 -  )2 
= Y n(1)t,, r)2~ (29) 

xS 1 -- y ~lvt~,  ~ ~. 

Although this part does not contain a logarithm of the 
electron mass, it should not be neglected because it 
increases with an inverse power 1/(1 - y) as y ~ 1. In an 
exact C(c0 calculation of the leptonic corrections shown 
in Fig. 1 it is automatically included. The results of (22), 
(27), and (29) agree with those of [4, 5]. 

2.2 Second order corrections 

2,2.1 Two photon radiation from the electron line. Insert- 
ing the (9(a) results for the electron structure function 
into the evolution equation (13)one can determine a first 
contribution to the diagonal electron density in (9(c~2): 

D(27)tz / . } 2 , = 1 (  g )2  2 ! d ~  - 
e/e t , ~ , ~ ~ LZe P ~ l ~ ( f l ) P ~ l e ( f l / z )  �9 (30) 

After evaluating the integral in the last equation and 
inserting the result into (3) the contribution of (9(~ z) 
two-photon initial state radiation from the electron 
(Fig. 3a) may be written as 

dxdy ,  2 \ 2 ~ )  L~ 

.{) [ 2 1 + z , %  3)  
~;,dh L 1 - - ~ \  l n ( 1 - h ) - l n  (Zx)+~ 

"(ao( h ,  1) - ao(1, 1)) 

+ ((1 + zi) In z 1 - 2(1 - zO)ao(Zi, 1)/ 
_J 

+ {[S(zT~")] 2 + 4Li2(1 __Z lmin ) 

min min min 1 +zl  (zi - -2) lnzl  -- (zTi~)*-(zTi~) 3 

- z a  + % ( 1 , 1 )  . (31) 

The corresponding expression for final state radiation 
(Fig. 3b) is determined by the same expression with the 
replacement 
zmin ~ min ao(Zl, 1) Z 3 ,0-o(1 ,  Z3). (32) 
The contribution from initial-final state interference 
(Fig. 3c) is obtained by inserting the (9(00 contributions 
to both the electron density D~(z t )  and the fragmentation 
function /5~(z3) in (3). The result can be written in the 
form 

dxdy int = 2~ Le dZl 1 z 1 

-t- S(zr~in(zl))(lYo(Z1, 1) -- fro(l, 1))] 
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with 

~(z0 : 

and 

z?"(zO - 

-t- i dz31 +z2 3 (ao(l ,  Z3 ) -- fro(l, l))S(gmin) 
zTi~ 1 -- Z 3 

+ } . 1 + ~  . ~Z mm mm 
z~ .'i~ I ~ ( S ( z  3 (z1))--S(z 3 ))ao(1, l )  

min rain } + S(z~ )S(z~ )~o(i, 1) . 

} . l + z ~  
a Z 3 ~ ( a o ( z l ,  z3) -- O-o(Z1, 1)) 

z l x y +  1 - -y  

Z 1 

(33) 

(34) 

(35) 

Another second order contribution describing two- 
photon emission from the electron line is obtained as (9(~) 
leptonic corrections to the Compton part of the (9(cr 
corrections (Fig. 3d). This contribution is derived with 
the help of the (9(cr expressions (18) for the electron 
density and the electron fragmentation function applying 
the same formalism to the e7 ~ e7 subprocess. The result- 
ing contributions to the differential ep cross section have 
the same structure as the (9(~) leptonic corrections for 
initial and final state radiation, (22) and (27), respectively, 
provided that the lowest order cross section ao(Zl, z3) of 
(24) is replaced by the corresponding expression for the 
Compton part of the (9(a) corrections (29). 

_ Y ~dZ2D(1)~ z r52~d2a~~ . 
ac(z l , z3 ) -  z ~2~J _ ~/P~ 2,~ J ~  r ~ e - 7 )  

1,~3YO Z2 axay 

- -Y D ~ i ~  r32~2~za21+(1-j))2 (36) 

with ~z from (25). The order of magnitude of the resulting 
second order contribution is determined by (c~/2)aLe 
ln(QZ/Q2). 

2.2.2 Fermion pair production from the electron line. Addi- 
tional fermion-pairs come from two sources (Fig. 3e, f). 
Direct fermion pair production (Fig. 3e) combined with 
the diagram describing a photon self energy insertion in 
the one-loop vertex correction can be respected by the 
use of the running coupling constant (14) in the evolution 
equations to second order. This corresponds to the 
replacement 

(x 02 0~ o2 1 / ct O2 \2 
- - l n  ~_ ~ - - l n  ~-_ + - S ~ e 2 | - - l n  ~ _ |  O(QE-m})  (37) 
2re m~ 2~z rnZ~ 3 ~ "\2re m} ] 

in the (9(c 0 contributions and results in 

r i  1--  2//o~ Q2"~2 
D e / e ( Z ) = ~ e z t ~ l n ~ )  O(Q2--1TI;)Pe/e(Z), (38) 

The other source is the hard scattering of the electron 
from a produced e+e - pair (Fig. 3f). In QCD language 
this corresponds to a sea contribution. A similar situation 
occurs for the fragmentation of the final state electron. 
The corresponding term in the second order electron 
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density is obtained by iterating the evolution equation 
(13) twice, with the kernels Pr/e and Pe/r: 

De+e EZ ()2"~ 
e/e ~. ~ ~ J 

/ c~ Q2\2[- + z ) l n z + ~ ( 1 - z ) + ~ ] .  (39) ) 
These results are in agreement with [9]. The important 
point to realize is the occurrence of a 1/z term character- 
istic for a sea distribution. 

The complete result for the electron structure function 
to second order is 

O~2) 2~ Sf ~ + e- (40) e/e = De/e + De/e + De/e �9 

Together with the contribution from initial-final state 
interference and the leptonic corrections to the Compton 
part this determines the complete (9(e 2) corrections in 
leading logarithmic approximation. 

3 Numerical results and discussion 

In this section we present numerical results for first and 
second order corrections to electron proton scattering 
based on the formulas of the previous section*. Figure 4 
shows a comparison of the (9(~) leading leptonic cor- 
rections with the corrections including also the (9(a 2) 
contributions. In this and the following figures we have 
used the quark distribution functions of [13] and M w  = 
80.0 GeV, Mz = 9t.1 GeV. The hadronic mass scale in the 
photon distribution function equation (21) was chosen to 
be Qo = 200 MeV. 

The features of the (9(a) corrections are: 

�9 At large x and small y the combined contributions of 
virtual and real soft photons lead to large negative cor- 
rections. These are described by S(z mln) in (22) and (27). 
They factorize from the lowest order cross section. For  
y--* 0 one finds zI"in--, 1 and the log term in S becomes 
large. In the region where this term is dominating, the 
corrections are insensitive to the details of the parton dis- 
tribution functions and the weak interaction parameters. 

However, at small x, the non-factorized parts in (22) and 
(27) are important even in the limit y--* 0. For  small y, 
energy-momentum conservation restricts the energy of 
bremsstrahlung photons to small values compared to the 
electron energy in this case. But these photons must be 
considered as hard photons because their energy is large 
enough to induce a large variation of the underlying non- 
radiative cross section. The non-factorized parts in (22) 
and (27) are very sensitive to the shape of the parton 
distribution functions. In particular, they are responsible 
for the increase of the corrections with y--* 0 at small x. 

�9 The corrections are large for y--, t, especially at small 
x, due to emission of photons with high energy which 
shifts the momentum transfer to small values. Not only 

~' The  results presented here do not  include self energy correct ions 
to the gauge  boson  p ropaga to r s  a l t hough  these provide ano the r  
source of large logar i thms  and  should  be included in a complete  
calculat ion of radiat ive correct ions 

1 . 0  i ~ . . , 

0.8 L 511 

o6[ , 
0.4 x=O.O01 

0.2 

0.0 ../.,.......... """'"'"'"'" " '"'""'""""'" . 

-0.4 ~/.~..'~ x={~5 

-0,6 
0.0 0.2 0.4 0.6 0.8 1.0 

Y 

Fig. 4. Leptonic  correct ions for e-p---, e - X  at  S = 10 5 GeV 2 in the 
leading logarithmic approximation for x =0.5, x =0.1, x =0.01, 
and x = 0.001. The dotted curves show the (9(c0 results and the full 
curves include also the O(cd) contributions from (31,32,33,36, 38,39). 
(Mw = 80.0GeV, Mz = 91.1GeV, Qo = 200 MeV, quark distribu- 
tions from 113]) 

emission into the forward direction but also the Compton 
part is increasingly important with increasing y. Both 
contributions behave like 1 / (1 -  y) with y going to 1. 
Already at x = 0A, y =0.9 the (9(~) corrections reach the 
50~ level. 

It is also seen in Fig. 4 that the (9(~ z) corrections are large 
for large x and small y. They are even larger and certainly 
non-negligible in the small x-large y region (see Fig. 5b). 
For x = 10 -1, y = 0.95 the (_Q(o~ 2) corrections reach 30~. 

In order to discuss the origin of the (9(c~ 2) corrections 
we present in Fig. 5 results for the separate contributions. 
There it can be seen that the large (9(cd) contributions at 
large x are due to the direct 2V parts of (3t-33). An 
inspection of the formulae reveals that it is essentially the 
soft part [,~is(zmin)]2/2 which leads to positive contribu- 
tions at small y. In the small x region, however, the main 
effect comes again from hard radiation, first of all by 
additional e+e - pairs (39). This contribution increases 
like l/x(1 - .]2)2. Also the (9(~ z) contribution to the Compton 
part (36) gets large at small x and large y. 

For large x and small y the hard contribution is small 
and the behavior of the corrections is essentially deter- 
mined by the soft contribution ocS(z~)ln(Q2/m2).  Ex- 
ponentiation of these IR parts [14, 15-] would improve 
the predictions for the cross section. The exponentiation 
of these terms can in fact be derived by an iterative 
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Fig. 5a, b. Separate contributions to the (9(~ 2) leading leptonic 
corrections for S = l0 s GeV 2, x = 0.5, and x = 0.01. The full line 
contains the 27 contributions from (31,32,33), the dotted curve 
shows the 27 part from (36) (Compton scattering), the dashed line 
is for the fj 7 contribution (38), and the effect of additional e+e - 
pairs (Eq. (39)) is represented by the dashed-dotted line. (Mw = 
80.0 GeV, Mz = 91.1 GeV, Qo = 200 MeV, quark distribulions from 
[13]) 

solution of the evolution equation (13). The full prescrip- 
tion of [14] would include in addition to this also IR 
contributions not proportional to a large logarithm. 
However, at large y, especially for small x the corrections 
are mainly due to hard photon and fermion pair emission 
and exponentiation of the soft part  does not lead to an 
inclusion of the dominant higher order corrections. 

We stress again that the large positive corrections are 
due to the fact that the corrections include cross sections 
for new processes, i.e. one-photon, two-photon, and 
fermion pair production. These new processes are inte- 
grated over the whole phase space available to the 
additional photons, fermions, resp. because an analytical 
calculation with cuts is in general much too complicated. 
These contributions should not be included as corrections 
if they can be separated experimentally. 

There are several possibilities to identify experimentally 
events of these new types: 

�9 Large angle emission of photons can be directly 
observed, unless the photon is inside a jet. In the latter 
case it is probably not possible to separate photons from 
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decays of hadrons. Events of this type are, however, 
expected to be rare. Cutting out events with a high Pr 
photon will reduce the bremsstrahlung cross section. 
Especially the Compton  part  (29) will be eliminated by 
such a cut leading to a considerable decrease of the 
corrections at small x and large y. 

�9 To some extent, photons coming close to the electron 
direction will be seen in the H1 and ZEUS experiments 
at HERA with the help of a forward detector, originally 
designed for luminosity measurements. These detectors 
will cover the range of polar angle up to about  1 mrad. 
This will reduce but not remove the large y peak in the 
correction. 

�9 There is also the possibility to indirectly identify events 
with additional photons or fermion pairs by comparing 
the measured current jet angle with the one expected from 
the electron measurement. Measuring the momentum of 
the scattered electron and assuming that the basic scatter- 
ing process is a 2 ~ 2 process one can determine via x 
and Q2 the angle and the energy of the scattered quark. 
In case of 7 emission, the momentum of the scattered 
quark depends also on the energy and the emission angle 
of the bremsstrahlung photon. If the photon is emitted 
collinearily with the incoming electron, one finds: 

(y + z~ -- 1)2Ee -- xy(1 -- y)E v 
cOS0q, ( y + z  1 - 1 ) 2 E e + x y ( 1 - y ) E P '  

(41) 

xy(1 - y) 
Eq, = Ee(y + zl - 1) + Ep 

y + z l - - 1  

where Ep and Ee are the energies of the proton and the 
electron and z t --- 1 - EJEe ,  see Eq. (4). 0r is defined with 
respect to the electron beam direction. In Figure 6 we 
show the effect of emission of a photon collinear with the 
incoming electron on the energy and the polar angle of 
the scattered quark (which is closely related to the energy 
and angle of the current jet). It is important  that the polar 
angle 0r is always increasing with the photon energy. 
This also means that for very small values of x where 
according to the non-radiative kinematics one can not 
expect the jet to be fully contained in the detector, photon 
emission will turn the jet to larger angles. 

In Figure 7 we demonstrate the influence of a cut for the 
difference of the true and expected quark scattering 
angles 

AOr = 0r - Oq,(Z 1 -- 1) 

on the (9(~) corrections. Using (41), the condition AOr > A 
restricts the range of integration over zl for initial state 
radiation and thus reduces the corrections. In these 
figures the dashed lines show the corrections where 
besides a cut on AOr also the Compton part is left out 
(because this part  is always characterized by events with 
a photon of large transverse momentum). In addition to 
this also the final state emission is reduced with the help 
of a cut on the photon energy of 2 GeV. The corrections 
come out to be always flat functions of y of the order of 
0~o to - 20~. The step-like behavior at small y is due to 
the fact that the cut on the photon energy for final state 
radiation becomes active only above a certain threshold 
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(b and d) of the scattered quark on the photon energy in case of 

photon emission collinear with the incoming electron, a) and b) for 
x = 0.1, e) and d) for x = 0.001. Ee = 30GeV, Ee = 820GeV 

in y. The dependence on the actual value of A is not 
strong (see Fig. 7b). Therefore, it is not required to 
determine the jet axis to high precision. An accuracy of 
the order of 15 degrees would be sufficient, although the 
jet axis can in fact be determined with much higher 
precision (few degrees). In Figure 8 results of a similar 
calculation for S = 1.6 x 1 0  6 GeV 2 are shown. 

The effect of cuts of these types have also been studied 
using the Monte Carlo event generator HERACLES. The 
results obtained with HERACLES confirm the con- 

clusions found here and will be published in a forth- 
coming paper [6]. 

Of  course, these results only indicate the potentiality 
of reducing the radiative corrections by suitable cuts. We 
have passed over a discussion of the actual feasibility of 
the cuts, but we believe that experimental details will only 
change the final amount  of the reduction but not the 
conclusion on principle. A full study needs the inclusion 
of fragmentation effects and must also take into account 
the properties of the detectors. 
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Fig. 7. a Reduction of the (0(~) leptonic corrections by a cut on the 
difference of the true and expected quark scattering angle for 
x = 0 . 0 0 1 ,  x = 0 . 0 1 ,  x = 0 . 1 ,  and x = 0 . 5 .  The full lines are the 
complete C0(a) results for S = 10 s GeV z without cut and the dashed 
lines for a cut of A =  15 ~ ( E v < 2 G e V  for final state emission.) 
5 Reduction of the (0(~) leptonic corrections by a cut on the 
difference of the true and expected quark scattering angle for 
x = 0.01 and A = 5 ~ (lower dotted curve), 10 ~ (dashed curve), 15 ~ 
(dashed-dotted curve), and 45 ~ (upper dotted curve) (Er < 2 GeV 
for final state emission.) 

In summary, we have shown that (9(c~ 2) electro- 
magnetic corrections are significant in some regions of the 
accessible phase space, and cannot be ignored. The origin 
of these relatively large terms is well understood. From 
this point of view we do not expect large contributions 
neither from higher order leading terms Cg((~/7t)31n 3- 
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Fig. 8. Same as Fig. 7a, but for S = 1.6 x 10 6 GeV 2 

(QZ/mZ)) ~ 3 x 10 -4, nor from non-leading logarithms*. 
Uncertainties in the calculation of theoretical predictions 
for the deep inelastic electron-proton scattering cross 
section are thus not due to an insufficient knowledge of 
higher order electroweak radiative corrections but the 
reliability of predictions is limited by the precision with 
which hadronic structure functions (especially DT/e) are 
known. In this sense one could say that the limit where 
radiative corrections are under control has been shifted 
to much larger y and smaller x. However, more work is 
required to study combined effects of strong and electro- 
magnetic corrections. 

As a main point of our analysis we have shown that 
the huge radiative corrections can be reduced dramatically 
by appropriate experimental cuts. 
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