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We show how to incorporate baryons in the heavy quark effective theory. A convenient 
formalism is exhibited and applied to semileptonic weak decays of heavy baryons. In general, the 
heavy quark effective theory reduces the number of form factors necessary to describe the matrix 
elements for transitions among heavy baryons. We also note that in semileptonic weak decays of 
.i c one arrives at an important and experimentally testable prediction that two form factors 
suffice to describe this process. As a further application of the formalism we discuss exclusive 
production of heavy baryons in e+e annihilation. 

1. Introduction 

The physics of heavy hadrons has recently attracted a great amount of attention. 
One of the reasons is that the experimental data have improved considerably over 
the last couple of years. Another reason is that new theoretical ideas which lead to 
a formulation of an effective heavy quark theory [1-7] have been put forward. A 
number of interesting predictions based on this theory have been found, and this 
paper shows how the effective theory can be applied to heavy baryons. 

One of the main points of the heavy quark effective theory is the fact that it 
possesses two additional symmetries compared to the full theory of QCD. The first 
one is a heavy flavor symmetry, namely an SU(N h) (N h denotes the number of 
heavy flavors), under which the heavy quarks may be rotated into one another. 

The second symmetry is the so-called spin symmetry, which is due to the 
decoupling of the spin degrees of freedom in the heavy quark limit. 

These symmetries have been applied very successfully to weak decays of heavy 
mesons [4,8,9] and to exclusive heavy meson production in e+e - annihilation 
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[10, 11]. In addition, since the heavy quark effective theory is a well-defined limit of 
QCD, gluonic radiative corrections may be calculated systematically [8, 10]. 

The purpose of the present paper is to extend the formalism of spin symmetry to 
baryons containing a heavy quark. This has also been discussed by Isgur and Wise 
[12] by explicit application of the commutation relations of spin and heavy flavor 
symmetry. In the present paper, we exhibit a convenient formalism which strongly 
simplifies the counting of form factors compared to ref. [12]. A brief outline of this 
formalism is found in ref. [13]. As applications we discuss semileptonic decays of 
heavy baryons and exclusive heavy baryon production in e+e - annihilation. Note 
that the issue of heavy baryonic form factors has also been addressed by Hussain 
et al. [14] using a phenomenological model. 

For the sake of clarity later on, let us briefly discuss the nomenclature of the 
baryons containing heavy quarks. We adopt the scheme of the Particle Data Group 
[15]. In this scheme, the ground-state baryons are 

Ah=[(qq')oh],/2. ~=[(qs)oh],/2. 

.~,= [(qq'),hl,/2. -=n = [(qS)lhll/2. 

.Oh=[(Ss)lh],/2, 2~=[(qq')lh]3/2, 

='*--- [(qs),h]3/2 .O~= [(ss),h]3/2. ~"h  

Here q, q' refer to u- and d-quarks, q #: q' for the A h, but q may be the same as q' 
for the .~, and .~' .  The first subscript (0, 1) is the total spin of the light pair, while 
the second subscript (1 /2 ,3 /2 )  is the total spin of the baryon. For later conve- 
nience, ~:h may refer to any of the two baryons A, or _w~. Similarly, we denote any 
of the three baryons 2h, --~, and .O h as o h, and 2~,--h'--* and .O~" as to~. 

Section 2 of this paper mainly contains the group theoretical framework of heavy 
flavor and spin symmetry, which is applied in sect. 3 to semileptonic decays of 
heavy baryons and to exclusive heavy baryon production in e +e- annihilation. 

2, The formalism of spin symmetry for baryons 

In this section we exhibit the group theoretical framework of spin symmetry 
(SU(2)spin) of heavy hadrons which arises in the limit mq >> Aoc D, where mq 
denotes the mass of the heavy quark. As discussed in ref. [6], heavy quark systems 
may be described by an effective theory in which the heavy quark part of the 
lagrangian is given by 

.d31, 
= + ( l )  
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.5/ is the covariant derivative, and h,, + (h~) annihilates (creates) heavy quark 
(antiquark) states with 4-momentum 

p/.t = FHqU# _.1... k/.t , (2) 

and k~, is of the order Aoc D- 
The dynamics described by Jhe,,~ differs from QCD by terms that go to zero as 

mq ~ ~o, at least logarithmically: the differences are due to terms suppressed by 
powers o f  teQcD(m q) o r  A Q C D / m  q. If we neglect these effects, different velocity 
sectors do not communicate leading to the so-called velocity superselection rule. 
Note also that the lagrangian ~'he,,w contains no reference to the mass of the 
heavy quark, which has been formally sent to infinity. Consequently, if we have 
different species of heavy quarks which obey mq >> Aoc o, the effective theory has 
an additional heavy flavor symmetry corresponding to exchanges of heavy quarks. 

In each velocity sector of the theory described by (1) there is a second new 
symmetry, called spin symmetry, which arises because QCD interactions of a heavy 
quark become independent of its spin degrees of freedom in the heavy quark limit. 
This means that for each c there exists a separate SU(2) spin symmetry. The 
generators of this symmetry can be associated with three unit vectors e~' (i = 1, 2, 3) 
which are orthogonal to l "u • e i • 7" = 0, e,? = - 1. Let us introduce a triplet of quark 
spin operators S + ( c ,  e) (e = e~, e 2, e3). The commutation relations for the opera- 
tors S are 

, ) ,  h,+] = (3) 

Note that if we consider a system with a heavy antiquark, the QCD interactions 
again do not depend on the polarization state of the heavy antiquark. Analogously 
then, one can introduce three operators S- (e ,  e) which obey 

Also 

= (4) 

[ s ' +- '( , , , , ) , h ' , .  = o ,  ( 5 )  

and S ÷ ( c ,  e )  and S- (c ,  e) commute with each other. 
Now consider a heavy baryon built out of a heavy quark and two light quarks. 

The mass M of the baryon in the spin symmetry limit tends to the quark mass 
M = mq(1 + O ( A o c D / m q ) ) .  Such a baryon is moving with an "infinite" momentum 
P u  = M e  ~ and obviously the only heavy quark states present in the baryon's wave 
function come from the r ~' sector of the theory. In this sector we have the 
symmetry generated by the operators S+(t ,, e) and all hadron states in the sector 
must occur in multiplcts of SU(2)~p~.,. On the other hand, the operators S+(c,  e) do 
not commute with total angular momentum, which means that they may connect 
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states of different spins. In other words, each irreducible representation of 
G = Lorentz ~ SU(2)spin in general may describe states whose spins differ by unity. 

Here we would like to identify the representations of G that correspond to the 
light baryons. The simplest baryons are the ~h- The nontrivial Lorentz structure of 
~h is due solely to the two polarization states of the heavy quark. This means that 
the SU(2)~pi. rotations constitute a subset of the Lorentz transformations, i.e. that 
SU(2)spin connects polarization states of the same particle. It follows that the 
representation of G which contains ~:n can be described by an ordinary Dirac 
spinor u~h(t'). The Lorentz transformations are 

u~.( t,) ~ O( A )u~h ( At'), (6) 

where A denotes the fundamental representation matrix of the given Lorentz 
transformation and D(A)  is its spinorial representation. Note that the spinor 
indices have been suppressed. The spin transformations are 

t, ) ) , (7) 

which transform one polarization state of sen into another. 
On the other hand, consider the baryon states in which the light quarks are 

paired into spin one. These are the to h and to t states. These states have nontriviai 
Lorentz structure coming from both the light system polarizations and the heavy. 
quark polarizations. In this representation of G there are spin-1/2 states (tOn), and 
spin-3/2 states (tO~). In fact there is a slight ambiguity as to which representation 
of G describes the o h and tO~ states. This is because under the Lorentz group the 
light quarks' indices can transform either as a pseudovector or as an antisymmetric 
tensor. In the first case one has to introduce a pseudovector-spinor object R u, 
where t,uRU = 0 and the spinor indices have been suppressed. Note that in general 
"guR u ~ 0  because R u describes a sp in - l /2  particle together with a spin-3/2 
particle. In other words, R ~' contains a Rarita-Schwinger field as well as a Dirac 
field. Under the Lorentz transformation, 

RU( v) --9 au,,D( A )R"( At ' ) ,  (8) 

and under the spin transformation, 

RU(t,) ..~ -Ts¢4RU(c) .  (9) 

The parity transformation of R u is 

R~'(v") ~ - ? " R u ( v . ) .  (10) 
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An alternative representation is to introduce a spinorial object with two vector 
indices, pu, .  which is antisymmetric under the exchange/x ~ v and obeys v~,P ~'' 
= 0 (spinorial indices once again are suppressed). The Lorentz transformation of 
P is 

v P~'"( v ) -~ A ~,A aD( A ) P"~( av  ) , (11) 

and the spin symmetry transformation is 

Under parity, 

P . " ( v )  - +  - r s ¢ ¢ P ' " ( v ) .  

e . , ' (  v . )  - .  roe . , , (  vo) . 

(12) 

(13) 

In what follows we discuss the formalism in terms of both P's and R's and we 
will check whether those two descriptions are equivalent. Before we continue it is 
important to identify the parts of R (P)  that correspond to s p i n - l / 2  and those 
that correspond to spin-3/2 states. Spin-3/2 states can be easily projected by 
contraction with y~, 

R u yg ~4, = 0, (14) 

and equivalently 

T~y,,P~" = 0. (15) 

The rest of the independent components of R (P)  correspond to ton, 

1 
RU = (,/u +vU)Tsu,. h (16) to h V ~  "1 

where uo, h is the Dirac spinor of the o h state. Analogously 

1 
p ~ "  = - -  ( T u t , "  - -  TvV ~ J (17) 

The power of the spin symmetry formalism lies in the observation that a generic 
operator h, Fh, z transforms as a spinor under SU(2),I (and of course indepen- 
dently as a spinor under SU(2),.). Suppose we look at the matrix element of 
-h,,Fh, 2 sandwiched between heavy hadron states. One of the hadron states must 
correspond to the v l velocity sector (and the other one to the v2-sector). The 
irreducible representation of G which describes the heavy hadron state of velocity 
t,~ decomposes into a direct sum of the spinors of SU(2), I. In such a representation 
the different SU(2),, spinors correspond to all the independent polarization states 
of the light quark system (and for this reason the indices which label the spinors 
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are termed light quark indices). The Wigner-Eckart  theorem tells us that for each 
independent SU(2),. spinor in the given representation of G there is only one 
SU(2),:,-invariant amplitude that describes the matrix element of-h,.,Fh,2*. 

On the other hand, Lorentz transformations mix the light quark indices, which 
means that the set of all the SU(2)spin-invariant amplitudes transforms as some 
tensor representation (not necessarily irreducible) of the Lorentz group. Such a 
Lorentz tensor can only be built from the velocity vectors /,,g v g and invariant i ,  2 
tensors gg~,eu~'~. In other words, the requirement that the hadron matrix 
element transforms properly under the Lorentz group means that the light quark 
indices must be contracted with a Lorentz tensor built out of v~, v~, gin, and 
E t'~'~t~. The number of irreducible components in such a tensor corresponds to the 
number of independent form factors describing the heavy hadron matrix element 
o f  ~l,,iFhv2. 

As we have discussed above, ~h baryons are described by the simplest possible 
representation of G, a single spinor. This means that the matrix elements which 
describe processes involving ~h particles will be most constrained by the require- 
ment of the spin symmetry. For example let us look at the matrix element 

( ~h(V)l-hFh'l~h,(v')> =A(v.v')~¢~(V)Flt~(v'), (18) 

where we have allowed for the possibility of two heavy quark species h and h'. 
G-symmetry tells us that there is only one independent amplitude A(v-v ' ) .  
Moreover, if we put F = 3'u then the matrix element (18) corresponds to the matrix 
element of the effective flavor symmetry current and in the forward limit it is 
uniquely specified, 

A(1) = ~/m~.hmeh. 1, (19) 

where the factor ~/m~_hm¢h ' means that the hadron states in eq. (18) are normalized 

relativistically. The case of gh is special because it is the only hadron for which 
spin symmetry connects different polarization states of the same particle. This 
means that the number of independent Lorentz amplitudes will be reduced not 
only for heavy ~ heavy transitions. As we show later in this section, in the case of 
the semileptonic decays ~:h --' light baryon the a priori six independent amplitudes 
describing such a transition get reduced to two. 

l a  I ' 1  I t c~  As a way of verifying our group theory arguments which lead to a resmt liKe t.lo) 
one can present a derivation of (18) where the spin symmetry constraints are 
imposed explicitly via commutation relations (3). Let us first introduce matrix 

* Likewise, for each spinor in the representation that describes the hadron moving with velocity v_, 
there is only one SU(2), :-invariant amplitude. 
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elements  of  the vector and axial currents, 

(20) 

t , t  ~t (¢h ( " )  hYuysh ~:h'(' ))=~,(C){C(C', )y, ys+d(c'c')(e-e')~,ys}u~,,(e'), (21) 

where we have used the flavor symmetry of the effective theory to get  rid of the 
second-class currents. Without any loss of  generali ty we can assume that  t r '=  
(1,0,0,0) and that the two polarizations of  ~:h' correspond to s : =  1 / 2  and 
s. = - 1 /2  states. We may adopt  the phase convention 

I~:h.,S: : 1 / 2 )  = S(ex,c') I~h',S: = - 1 / 2 ) ,  (22) 

where e.,. = (0, 1.0, 0). Spin symmetry tells us that  

(¢h(c) -h3,uh' ~h,(C'),S. = 1 / 2 ) = (  Cdc)l-hvs¢'4. , .h'  = - 1 / 2 ) .  (23) 

In particular, if we put # = 3 and use y375¢'~( ,. = i y  2 together  with the  form of the 
vector current  matrix e lement  given in eq. (20), we get the consistency condit ion 

b(e. r ' ) =  0. Next, we may put /z = 0, use y°ys¢'~/x = - T I T  5 and the  form of the 
axial and vector currents (20),(21) to obtain a(l" .c ')=c(r.c') .  ,Lastly, putting 

= 1 and using y~ys¢'~tx = - y ° y  5 we get d(c. c')  = 0. In conclusion, we see that 
the matrix e lements  of the axial and vector currents  are given by one  form factor 
a(t'. l")= c(c. c'). Similarly, we can use the projection equat ion ¢ ' h ' =  h' to show 
that other matrix elements  (~h(c)JTtFh'l~h,(c')) are indeed given in terms of a 
single form factor. 

The little exercise we have just performed shows that the results obta ined  on the 
basis of general group theory arguments  are indeed  correct and from now on we 
forego the use of explicit symmetry commutators  in the discussion of the other  
heavy baryon matrix elements*.  

Now let us discuss a matrix e lement  related to a ~:h' -~ toh(to~) transition. Again, 
the constraint of G-invariance tells us that only one ampli tude consistent  with 
Lorentz invariance and spin symmetry can exist, 

(24) 

where we have used the R orepresentation to describe tot, and !oh*" The  use of the 
P-representation again leads to a single form factor, 

. -  (25) r h  , {'Oh r c' 

* Let us note that in rcf. [12] all of the relations due to spin synlmetry h,'we been tlerived explicil ly, 
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But in fact eqs. (24) and (25) are consistent only with the subset of the proper 
Lorentz transformations. If we use the parity properties of R or P we see that 
parity forces G(c"  c ' ) =  G ' ( c - c ' ) =  0. In ref. [16] spin symmetry arguments in 
combinatioo with parity and angular momentum conservation explain that (24) and 
(25) in fact had to be equal to zero. 

Now consider the matrix element between to<h * ~ and a;h* ~, 

( ,oV '(v) ') = {B( r .  t") gu,, + C( c" c')cuc,, } . (26) 

G-invariance allows two independent form factors (without parity there could be a 
third one). The same result is obtained with the P-representation, 

- -  (,, 
rh,.l,oh ' ( ,: ')) 

_--u'~ p~.,( r" )FP'~,(v )g,~tj{B (c 'v ' )gu,  +C'(r'v')c~r~ } ' (27) 

where again parity was used to eliminate one additional invariant. 
As in the case of the A h ~ A h, transitions, we can make a statement about the 

normalization. Taking a matrix element of the (conserved) vector current between 
two identical rOb'S, we find that B has to be normalized at zero momentum 
transfer in the same way as A is normalized in eq. (18). 

We conclude our discussion of the formalism of heavy ~ heavy transitions by 
noting that all the above arguments hold for pair creation matrix elements of heavy 
baryons as well. This will be used in sect. 3 to discuss the exclusive production of 

heavy baryon pairs in e + e -  annihilation. 
Finally we comment on the heavy ~ light transitions. Note that, in general, spin 

symmetry multiplets contain particles which decay electromagnetically or strongly. 
This means that even if spin symmetry relates some weak heavy ~ light amplitudes 
for the particles in the given representation, many of these relations have little 
chance of being tested experimentally. One important exception corresponds to 
the ~h particles. Here spin symmetry relates different polarizations of the same 
particle and imposes interesting constraints. Consider for example the matrix 
element of an operator iFh,. between a heavy ~:h and a light sp in - l /2  baryon B~. It 

is described by only two form factors, 

( B, iFh ,~h(v ) )=~ , (p ) {F , (p . v )+¢F2(p .c ) }yu~ , ( , . ) .  (28) 

Thus in this particular case spin symmetry greatly reduced the number of the 
independent Lorentz-invariant amplitudes which may describe the heavy ~ light 

transitions. 
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3. Appl icat ions  

In this section we discuss some applications of the formalism outlined above. In 
subsect. 3.1 we discuss weak decays of heavy baryons. In subsect. 3.2 we calculate 
the exclusive cross sections for the production of heavy baryons in electron-posi tron 
annihilation. 

3.1. WEAK DECAYS OF HEAVY BARYONS 

We focus here on the discussion of semileptonic decays, where we need to give 
the matrix elements of the left-handed hadronic current only. The semileptonic 
decays fall into two classes: the ones involving a transition of a heavy quark into a 
heavy quark, such as a b---, c transition, and the ones with a heavy to light 
transition, such as b---, u or c--, s,d transitions. In general, due to the higher 
symmetry the heavy to heavy transitions are described by fewer form factors than 
the heavy to light decays. 

Before we discuss the weak form factors, we point out that all of the form 
factors discussed in sect. 2 are real. This is easily seen by noting that the general 
form for the vector current of a specific quark species q between s p i n - l / 2  baryons 
B and B' is 

(B',p',s'lq3,.qlB,p,s) =u(p',s ')[ f ,(q2)T.-if2(q2)org.q ~ + f3(q2)q .]u(p ,s ) ,  

(29) 

where f~, f2 and f3 are real. The form factors of sect. 2 may be expressed in terms 
of these. 

For the heavy A's, we find (cf. eq. (18)) 

f, = A ,  f2 =f3  = 0. (30) 

For P- ease 9f a heavy lambda (/fih) decaying into a light one (A(uds)), we have 
(of. ~.q. ~2~)) 

m 1 
fl-'--" El -I- - ~ f 2 ,  f2 = - f 3  = - - ~ g 2 ,  (31) 

where M is the mass of the heavy A and m is the mass of the light one. Finally, for 
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the form factors for the transition between the to h we find (cf. eq. (26)) 

f ,  = - ½ [ B ( e - v ' - - 4 )  + C ( v ' v ' -  l ) ( v - v ' -  3 ) ] ,  

4 
f2--  - 3 ( M + M ' )  [ B + C ( v ' c ' -  I ) ] ,  

f3 = 0 .  (32) 

Let us now discuss the semileptonic decays of a heavy A, say A b. Its semileptonic 
weak decay into A c involves the matrix element of the charged current which, due 
to spin symmetry, may be parametrized in terms of a single form factor, 

(Ac(t")[?.yu(l + ys)b Ah(c) )=A(v.c')~t<(v')y~,(l +')/5)utb(v). (33) 

As has been pointed out in sect. 2, the form factor A is normalized at v .  c'= 1. 
Consequently, as in the case of the semileptonic decays of heavy mesons, this fact 
may be used to extract V~b of the Cabibbo-Kobayashi-Maskawa (CKM) matrix 
using these semileptonic decays. 

An even more interesting statement may be made about the weak decays of a 
heavy A h in which there is a transition of a heavy quark into a light one. Since the 
A h baryons are the only case where a spin symmetry multiplet consists of the same 
particle in different polarization states, spin symmetry reduces the possible six 
amplitudes to two independent ones. Using eq. (28) from sect. 2, the relevant 

current is given by 

(A(p')[rsyu(1 + 3,5)hlAh(V) ) 

=~a(p'){Fl(v'p') + CF2(c 'p ' ) lyu(1  + ys)UAh(t'). (34) 

The phenomenological and experimentally testable applications of (34) have been 

worked out in more detail in ref. [17]. 
In addition, heavy flavor symmetry coupled with these relations may allow access 

to the value of Vub of the CKM matrix. The idea is similar to the corresponding 
decays of heavy mesons*. Applying (34) to both A c and A b one may use heavy 
flavor symmetry to find that the form factors F~ and F_~ are the same in both cases. 
In the first process, the c ~ s transition yields a final state which is a A, while in 
the latter the b ~ u decay produces a nucleon. Although it is experimentally much 
more difficult than the corresponding decays of heavy mesons, these relations will 

relate the Cabbibo angle to Vub. 

* We thank M. Wise and N, Isgur for a discussion on how to extract a relation between the Cabibbo 
angle and Vuh from the decays of heavy mesons into light ones. 
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The above relations may also be used to analyze different polarizations in the 
decay of the A h into A h, or A. This has been discussed in ref. [18], where Lorentz 
invariance alone was imposed and six real functions were introduced to parametrize 
the amplitudes. Using the ideas of the heavy quark effective theory, relations 
between these functions may be found, and this reduces the number of indepen- 
dent real functions to one in the case of an h ~ h' transition and to two in the case 
of a heavy to light decay. 

We turn now to decays of heavy ~:h baryons into to h baryons. As has been 
pointed out, spin symmetry and parity considerations tell us that the semileptonic 
decay of a A h into a .,,v h, baryon is suppressed, since the corresponding matrix 
element of the left-handed current vanishes in the heavy quark limit. This means 
that the amplitude for such a decay is of higher order in aoco(mt h) and 
AOCD/ml ~, SO that this decay may serve as a test of higher-order corrections to the 
heavy quark effective theory. 

Matrix elements like (26) for the weak decays of heavy to h and to~ will in 
general not be measurable, since these particles are expected to decay dominantly 
electromagnetically or strongly. One exception is the g-~h[(SS)lh]l/2*, which can 
neither decay electromagnetically, nor there is enough phase space for its strong 
decay. In this case the weak decay will be observable and is described by two form 
factors, 

(-Oh(C) h,y . t l  +'Ys)h~., Oh,(t") ) -*  " = Rs~.( v)y.(  1 + ys)Rtth,(c') 

× { B ( v ' v ' ) g , . .  +C(c'v')t '~v, ,}.  (35) 

Our final comment concerns the case where at least one of the light quarks is an 
s-quark and the heavy quark is a b-quark. In this case the heavy baryon may decay 
weakly in three different ways, since any of the transitions s ~ u, b ~ c, or b ~ u 
may occur. The decay of the heavy quark is suppressed by small CKM matrix 
elements, but the phase space for the heavy quark decay may be large enough to 
overcome this suppression. Consider the case of a heavy baryon with quark content 
bsl, where l denotes any of u, d, s. The phase space for its semileptonic decay is 

' ( '  qbs- -~- -~[M4_rn4]_ml ln  _ _  

• 64 rr 3 m ' 
(36) 

where we have neglected the lepton mass, and M (m) denotes the mass of the 
initial-(final-) state baryon. For the s -~ u transition the final state still contains a 
heavy quark and the mass difference between the bsl- and the bul-baryon will be 
small compared to the total baryon mass. In this case the phase space (36) may be 

* Wc thank N. lsgur h~r a discussion on this poinl. 
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TABLE 1 
Comparison of phase space ratios to the ratios of  the absolute 

squares of  the CKM matrix elements 

49 

I Vcbl 2//] Vus 12 ~3(s ~ u)//qb3(b ~ c) m i J G e V  

0.053 + 0.021 0.018 5.3 
0.053 -I- 0.021 0.011 6.0 

I Vub 12/Vus 12 (03(s ~ u)/@a(b ~ u) m i J G e V  

(7.5 _+ 5.7) × 10 - 4  7.5 × 10 - 3  5.3 
(7.5 _+ 5.7) × 10 -4  5.5 x 10 -3 6.0 

expanded for small mass differences and we find 

1 
qb 3 = 64,rr3 ( M  - m) 2 . (37) 

Note that (37) depends only on the mass difference which may be estimated by 

using, for example, the A-nucleon mass difference. We may now analyze the 

b -~  c and b ~ u decays versus the s ~ u decays by comparing the ratios of the 

absolute squares of the CKM matrix elements to the ratio of the available phase 

space. In table 1 we compare these ratios. Since there is no firm data as yet on 

bottom baryons we compare for different values of its masses. The lower value is 

the mass of the B-meson which should be a lower limit on the bottom baryon mass, 

while the higher value is a more realistic guess. Furthermore, we have used in table 

1 a value of 200 MeV for the mass difference. 
From this simple estimate we see that the phase space for b --, c transitions may 

indeed be sufficient to compensate for the small CKM matrix element. One would 

expect that the rate for a b ~ c decay would be about five times as large as that for 

an s ~ u decay. In the case of the b ~ u decays, phase space does not compensate 

the very small value of I Vuhl, This simple estimate yields a branching ratio an order 

of magnitude smaller than the corresponding s --, u transition. 

3.2. EXCLUSIVE CROSS SECTIONS F O R  e+e  - INTO H E A V Y  BARYONS 

In this subsection we describe in some detail the calculation of exclusive 

production of heavy baryons in e+e - annihilation. These cross sections have 

already been considered in connection with the production of charmed baryons, 

using spin counting arguments [19], and a helicity amplitude formalism [20]. The 

heavy quark effective theory provides not only the behavior at threshold, but also 

shows how the cross sections change as the energy is increased above threshold. 

The easiest case is the production of ~h barycms. As discussed above, the 

appropriate description of the ~h state is to represent it by the spinor of the heavy 
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quark. From these ~onsiderations we infer that the current for the pair creation ot 
a ~:h(h pair may be parametrized in terms of a single form factor and is therefore 
given by 

( ~h(t') (h( t") lh 'y ,h  0 ) = r/( t'- r ' )~h(  v ) ~ , h ( v ' ) .  (38) 

Thus the hadronic tensor is, up to the form factor [r/(v" t,')] 2, the same as for a 
massive pointlike fermion with the mass of the ~h, and we may make several 
predictions. Aside from the cross sections for the various combinations of polariza- 
tions we can also predict the angular distribution of the ~:h~h pairs to be 

l d o "  3 2 m 2 [  s ] 
o'to , dO = 87r' 2 m 2 + s  (1 - c o s 2 0 )  -I-~-~m2(1 + c o s 2 0 )  , (39) 

where O is the c.m.s, scattering angle. 
Things are a little less trivial for the ~o h and to~ baryons. As discussed in sect. 2, 

spin symmetry relates these two baryons so that relations between the exclusive 
cross sections may be found. The matrix elements of the relevant current of the 
heavy quarks may be expressed in terms of the spinors given in sect. 2. Since the 
to h and the oJ~ lie in the same multiplet of spin symmetry, all the matrix elements 
may be parametrized in terms of only two form factors A and B*, 

(~oh( t, )~h( t  ") -hy, h O) = Ra, oh( t , )yuQ,~h( t,')( A(  r . " ) g a ~ + B ( v . e ' ) e ] v ~ )  

= - } u ( p ) ' Y s ( Y ~  + r a ) Z . ( ' Y ~ - v / , ) Y J ' ( P ' )  

× (A(  v" c') g *" + B( t," v') t,'* v") ,  (40) 

= R A  U K w , ¢  ,0~( ' )yu.Q~,h(V') (A(v 'v  )g,,,  + B (v ' v ' ) rav ,~ )  

1 
Ro,~, ( v)'yu( %, - r,~.).ysv ( p ' )  

X ( A(  t "  t") g *K + B(  v " t")t"*c~) , (41) 

R~:(  t' " " ' )g,,,  + B ( v  l")l'~l'K) = )YuO,o(,(c')(A(r t '  • , 

(42) 

where we have denoted the corresponding antiparticle spinors by Q,o,, and Q,o~. 

* In contrast to the case of the weak decay matrix elements tile form factors in the present case are in 
general con'lplcx functions of r • i". 
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These relations may be employed to give a prediction of the relative exclusive 
production rates of ~OhU h, oJ~U h and OJhOJ n*-* near threshold. Note that in the spin 
symmetry limit the threshold for all these processes is the same, since the mass 
splitting between to h and oJ~ is of higher order in Aoco/m h. 

Experimentally, these cross sections are only interesting near threshold, since 
the form factors will decrease rapidly for higher c.m.s, energies ~-. Thus we focus 
on the region near threshold and expand s = 4m2+ q2 for small q-'. We find for 

the cross section for tOh~ h production 

2 [ i D i 2 ( 1 2 m 2 + 5 q 2 ) _ 8 q 2 R e C , D ]  1 + O  - -  (43) 
Ore+ e - --~ COhN h ~ " ~ "  IT/4 ' 

where C and D are given in terms of A and B as 

$ 

C = A  + B 2m 2 , (44) 

s - -  2m 2 s(s - -  4m 2) 
D=A +B (45) 

2m 2 4m 4 

Using for the polarization sum of the Rarita-Schwinger objects [21] 

2 , , __ 1 ! 

the remaining two cross sections are 

16 ( ( q 4 ) )  
O'e+e- o~,~,ct-~-[IDl2(12m 2 + 5 q 2 ) - 8 q 2 R e c * O ]  1 + O  ~ , (46) 

20[IDI2(12m2+5q2)-8q2ReC*D ] 1 + O  ~ (47) 
O ' e + e - _ . t o ~ ,  O[ ~ 

Using this we ,,l,,~ t , . .  interesting result for the ratios near threshold, 

o-e+~-_,,,,~," o'c÷¢-_~,~" "o'~+e-__,,o~ = 1"8 + O(q4/m4) • 10 + O(q4/m4), (48) 

which vary quite slowly as we move away from threshold*. 
At threshold, the heavy quark effective theory exactly reproduces the result ot 

ref. [19]. This is because in general the hadronic tensor has two form factors (after 

• Note  that due  to parity and G-par i ty  invariance,  tile cross section for product ion of ~oh~oh*-- is the 

sanle as lhal for COh~ ~. 
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summation over polarizations), one of which is proportional to ga,, and the other 
is proportional to c~ c.., where c~ = c a -  c~. Near threshold, t,, vanishes like 
~ s / 4 m  2 -  1 so that, assuming that the second form factor is not singular at 
threshold, the cross sections may be described by a single form factor, and the 
ratios may be calculated independently of any unknown parameters. In addition, 
since the spin degrees of freedom of the heavy quark decouple in the heavy quark 
limit, our result must agree with spin counting arguments. Finally we note that this 
result does not disagree with ref. [20], since in the heavy quark limit threshold for 
the production of the heavy quarks coincides with that for baryon production. 
When the appropriate threshold conditions of ref. [20] are met, they recover the 
same results. 

Of course, the ratios (48) have to be taken with some caveats. As is known, the 
prediction in the case of heavy mesons [22] is somewhat different from the 
experimental results [23], due largely to the effects of the heavy charmonium 
resonances near threshold. We expect that (48) may also be different from the 
experimental findings, although at the energies for heavy baryon pair creation 
resonance effects are much smaller. 

4. Conclusions 

In this paper we have extended the heavy quark effective theory to describe 
baryons containing a heavy quark. The group theory o f  the additional symmetries 
(hca,~3, flavor and spin symmetry) was elaborated for the case of bat3,ons and the 
corresponding spin symmetry multiplets were identified. 

As was the case for the heavy mesons these additional symmetries strongly 
reduce the number of form factors for the current matrix elements involving heavy 
baryons. In addition one may obtain absolute normalizations which may be 
important for the extraction of CKM matrix elements from future measurements 
of semileptonic decays of heavy baryons. 

An additional interesting statement may be made about the heavy £h-baryons. 
Since these are the only baryons for which a spin symmetry multiplet consists of 
the same particle in different polarization states, spin symmetry allows us to 
restrict the num0er of form factors even for a heavy ~ light transition. This will 
facilitate strongly the analysis of the semileptonic decays A c ~ A e u  [17], which 
should be observable in the near future. 

Finally we have discussed the cross section for exclusive production of heavy 
baryons in e+e - annihilation using the heavy quark effective theory. 

The extension of the effective theory for heavy quarks to baryons will allow the 
calculation of corrections of the order A ocD/m h and QCD radiative corrections to 
the form factors in heavy baryon semileptonic decays. Furthermore, since the data 
on heavy baryons might continue to improve~ all the predictions, including correc- 
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tions of the order AocD/m h and aOCD(mh), will probably be testable in the near 
future. 
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