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The lattice regularized 13(1) L ® U(I) R symmetric scalar-fermion model with a mirror pair of 
fermion fields is investigated in the phase with spontaneously broken symmetry. The reflection 
positivity condition, ensuring unitarity in Minkowski space, is proven in this lattice formulation 
in a wide range of bare parameters. Numerical Monte Carlo calculations with dynamical 
fermions are performed on 43x 8, 43x 16 and 63x 16 lauices at moderately strong bare 
Yukawa couplings and at very small and infinite bare quartic scalar coupling. It is shown that not 
only the lattice fermion doublers but also the mirror fermion can be made heavy, and therefore 
the light fermion spectrum is "'chirar' as in the standard model. The "'vacuum stability" bound 
on the Higgs-boson mass is discussed in lattice perturbation theory and non-perturbatively. It 
implies that for heavy mirror fermions the Higgs-boson mass has to be close to the non-perturba- 
tive upper limit. 

1. Introduction 

R e c e n t l y  t h e  e x p e r i m e n t a l  l ower  l imits  on  t h e  m a s s e s  of  t he  Higgs  b o s o n  a n d  top  

q u a r k  i n c r e a s e d  cons ide rab ly  [1, 2]. S ince  l a rge  m a s s e s  a r e  d u e  to  s t r o n g  coup l ings  

to the  H iggs  field, the  m o r e  l ikely ex i s t ence  of  a s t rong ly  i n t e r a c t i n g  Higgs  sec to r  

* Present address: Institut ffir Theoretische Physik I, Universifiit Mfinster, Wilhelm-Klemm-Strasse 9, 
D-4400 Mfinster, Germany. 

0550-3213/91/$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland) 



512 L. Lin eta!. / U(I) L ® U(i) R symmetric Yukawa model 

makes the non-perturbative investigations of the scalar-fermion sector of the 
standard model more and more important. At present the numerical simulation of 
the complete Higgs-Yukawa sector of the standard model would certainly be 
premature, if not impossible. One can, however, expect that at least the qualitative 
features of the non-perturbative behaviour can be discovered in simple prototype 
models. In fact, recently several groups stated a series of non-perturbative investi- 
gations of simple lattice scalar-fermion models [3-8]. (For further references see 
the review in ref. [9].) 

In previous papers we started the non-perturbative study of a U ( 1 )  L ® U ( 1 )  R 

symmetric Yukawa model with a complex scalar field and a mirror pair of fermion 
fields [10,11]. Both these papers are dealing with the symmetric phase: in ref. [10] 
the limit of infinitely heavy fermions is studied, whereas in ref. [11] numerical 
simulations on lattices with different sizes are performed and compared to the 
results of lattice perturbation theory and hopping parameter expansion. In the 
present paper we start the investigation of the phase with spontaneously broken 
symmetry in this U(1) L ® U ( 1 )  a symmetric model. In fact, the standard model is 
defined in the broken phase, and therefore the primary interest is in this phase. 
The study of the symmetric phase is only a preparation and a supplement to the 
study of the broken phase. The U(1) L ® U ( 1 )  a model has many important qualita- 
tive features in common with the S U ( 2 )  L ® S U ( 2 )  a model [12] and with the 
S U ( 2 )  L ® U ( 1 )  v symmetric model for mirror pairs of standard fermion families 
[13]. In particular, due to the breaking of a continuous global symmetry there is a 
massless Goldstone boson in the broken phase. From the point of view of axial 
anomalies this model is particularly interesting, because a U(1) axial symmetry can 
be anomalous (unlike SU(2)). As far as numerical simulations are concerned, the 
smaller number of degrees of freedom saves computer time. In the same way as in 
refs. [ 10, 11], neither the full U(1)L ® U(1)R symmetry nor its U(1)L subgroup are 
gauged here. The gauge interactions are left for later studies. Similarly to ref. [11], 
the numerical simulations are performed here by starting from the vicinity of the 
gaussian fixed point at zero bare couplings where the perturbative standard model 
is usually defined. The bare Yukawa couplings are increased only to moderately 
strong values but the bare quartic scalar coupling is allowed to become infinitely 
strong. Very strong bare Yukawa couplings will be considered in a subsequent 
work [14]. 

The main results in ref. [11] are: 
(i) The lattice fermion doublers (there are 30 of them in this formulation) can be 
kept heavy; 
(ii) The renormalization of the Yukawa couplings is rather weak, therefore the 
Callan-Symanzik/3-functions are small, their qualitative behaviour is closer to the 
two-loop than to the one-loop approximation; 
(iii) The measured values of the renormalized Yukawa couplings are surprisingly 
large, at least twice the value of the tree unitarity bound; 
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(iv) For moderately strong bare Yukawa couplings the dependence of physical 
quantities on the bare quartic coupling is very weak. 

These findings have qualitative consequences also for the broken phase which 
have to be taken into account in the strategy of the numerical simulations. Due to 
spontaneous symmetry breaking the fermion spectrum in the broken phase consists 
of a pair of split-up states which are, in general, mixtures of the original fermion 
and mirror fermion. For zero mixing the fermion masses are given by the renormal- 
ized vacuum expectation value of the scalar field times the renormalized Yukawa 
couplings. The possible large values of the renormalized Yukawa couplings open 
up the possibility of decoupling the mirror fermion by a very large mass (and zero 
mixing). In fact, if there is a non-trivial fixed point for Yukawa couplings as 
suggested by the qualitative behaviour of the two-loop /]-functions, then the 
renormalized Yukawa coupling and the mass of the mirror fermion can be 
infinitely large. The decoupling of mirror fermions is only difficult if there is an 
upper limit for the renormalized Yukawa couplings. The advantage of the decou- 
piing by a heavy mass is that it can be extended immediately to the case of weak 
gauge interactions, unlike the decoupling with zero coupling and zero mixing 
suggested in ref. [15]. Therefore in the numerical simulations one can try to make 
the mirror fermion heavy and its mixing to the light fermion small. This will be our 
approach in the present paper. Of course, it remains still interesting whether the 
other way of decoupling is possible or not, but up to now we did not try to follow 
the suggestion of ref. [15]. Heavy mirror fermions can be obtained by large values 
of the bare Yukawa coupling of mirror fermions ( G  x), and therefore an extension 
of the numerical simulations in the symmetric phase to G x ~ 0 can supplement the 
studies in the broken phase. We performed a series of runs for 6;,, G X ~: 0 at 
infinite bare quartic coupling (A = 0o) and found a qualitatively very similar 
behaviour as in ref. [11] at G x = 0. (These results will be published elsewhere.) 

Besides the very important question of doubler- and mirror-fermion decoupling 
there are also other important issues in the broken phase, such as the problem of 
cut-off dependent limits on the scalar and fermion masses. These have to do with 
the behaviour of the/]-functions. If the only fixed point is the infrared stable one 
at zero couplings, then the continuum limit is trivial and there are cut-off 
dependent upper limits for the scalar and fermion masses. The property that in 
some region of the couplings the perturbative /]-function of the quartic scalar 
coupling is negative implies that there is also a lower limit for the Higgs-boson 
mass which depends on the value of the fermion mass. In the literature this is 
called "vacuum stability bound" [16]. Both upper and lower limits depend crucially 
on the properties of the continuum limit. If there is a non-trivial fixed point, then 
the continuum limit is non-trivial, there are no cut-off dependent upper limits and 
also the discussion of the vacuum stability bound is quite different from the case of 
a trivial continuum limit. Therefore the most important question is the fixed-point 
structure of the fl-functions. To investigate this it is better to return first to the 
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symmetric phase where the study of the renormalization is easier. Under the 
assumption of triviality (no non-trivial fixed point) the simulation data presented in 
this paper can give some hints about the upper bounds in the broken phase. From 
the investigation of the A-dependence one can also draw conclusions concerning 
the vacuum stability lower bound on the Higgs mass. 

In general, the evaluation of the numerical simulation data in the broken phase 
is more difficult than in the symmetric phase. First of all, there is the zero-mass 
Goldstone boson due to spontaneous symmetry breaking. This causes serious finite 
size effects culminating in the infrared singularity of some zero-momentum Green's 
functions. There are elaborate techniques to deal with this [17] but in a first 
exploratory study these would be too demanding. Therefore here we shall follow 
simple pragmatic ways to extract the physical quantities. A second difficulty in the 
broken phase is that the scalar and fermion masses car, net be tuned separately. If, 
for instance, zero mixing between fermion and mirror fermion is assumed and the 
Higgs-boson mass is tuned to some desired value then the fermion masses are 
already determined by the renormalized couplings. In some range of renormalized 
couplings the implied scalar-fermion mass ratio can be either very small or very 
large, which makes the control of finite-volume effects in the numerical simula- 
tions difficult. (Note that this is different from the symmetric phase, where both 
scalar and fermion masses can be tuned by the hopping parameters at any values 
of the couplings.) The consequence for the present paper is that sometimes we 
have to live with possibly large finite-volume effects. Nevertheless, some efforts 
will be taken to see the change of the results with the lattice size. 

An important requirement for the euclidean lattice formulation is the Oster- 
walder-Schrader reflection positivity [18]. This axiom plays an important r61e in 
the reconstruction of the quantum field theory in Minkowski space from the 
corresponding euclidean quantum field theory, because it implies the existence of 
a self-adjoint hamiltonian with non-negative spectrum. The problem of reflection 
positivity of lattice Yukawa models received up to now little attention (for lattice 
gauge theories with fermions see, for instance, ref. [19] and references therein). In 
the present paper this question will be considered in our formulation with mirror 
pairs of fermion fields. 

In the next section the lattice action will be defined and the problem of 
reflection positivity will be investigated. In sect. 3 the renormalized parameters will 
be considered and the definitions suitable for numerical simulations in the broken 
phase will be given. Sect. 4 is devoted to lattice perturbation theory in the broken 
phase. The results of the numerical simulations will be presented and discussed in 
sects. 5 and 6. Sect. 5 is concentrated around the question of the mirror symmetry 
breaking and the possibility of making both doublers and mirror fermions heavy. In 
sect. 6 the vacuum stability bound will be discussed. The last section contains a 
short summary and some concluding remarks. 
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2. The lattice action and reflection positivity 

Throughout this paper the same notations will be used as in ref. [11]. For the 
reader's convenience first we repeat a few basic formulas. The lattice action with a 
general field normalization is 

S - S,~ + Smx¢, ~ , ~ + ~ x  + A(4,~ ,t,x) K Y'. + = - 4'x+a4,x 
0t 

/z 

+ " : r E  - + ( xXx) - 
IX 

- } +G,(O, ,[4, , .~-  i,/54J2,,]O,,) + G~(2.,[q~,,, + iy ,  q,2,,]x,,) . (1) 

Here x is a lattice point and the sum 7". runs over eight directions of the 
neighbours,/2 is the unit vector in the direction o f / t .  The fields for the mirror 
fermion pair are ~.,. and X.,-, the complex scalar field is ~ . , - 4 ~ x  + i~2x. A 
normalization convenient for the numerical simulations is defined by 

# ~  = 1 -  2 A ,  K o =  K ,  - K , K r -  r K ,  -~ - ~t,~ + 8 r K  = 1. (2) 

The fermionic part of the action S,x~ can be written with the help of the 
"fermion matrix" Q(4~)yx as 

S , , , =  Y', ~yQ(~b):.x~. , .  (3)  
X , y  

Here the fermion field ~.,. =-(O.,.,X.,.) stands for the mirror pair, and the 8 ® 8 
matrix Q is given in the fermion-mirror-fermion basis in 4 ® 4 block notation by 

Q(,~),..,.=~,..,. 
G~,( ~bl. i - iysd~z. ~. ) -~ 

-~ Gx(  rb,.,. + iysd~zx) 

r) 
- K]~&~'.x+~ r ,/, " 

/z 

(4) 

Here r is the Wilson parameter, which is usually chosen to be 1. For negative 

indices the definition of the euclidean Dirac-matrices is y _ ,  = - y , .  
In order to be able to use the Hybrid Monte Carlo algorithm for dynamical 

fermions in the numerical simulations, the fermion spectrum has to be flavour- 
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doubled. Therefore the fermionic part  of the lattice action will be, instead of 

eq. (3), 

= 3 2  . (5) 
f = l , 2 x ,  y 

For the value f =  1 of the flavour index the fermion matrix is given by eq. (4): 
Q(~) = Q, but for the other value f = 2 the adjoint is taken: Q(e) = Q+. This means 
that the 0-field of the second flavour (0  (2~) is a mirror-field with respect to the 
0-field of the first one (0(n)). The flavour doubling of the fermion fields leads also 
to an extension of the chiral symmetry from U(1)L ® U(1)R tO U(1)L O U(I)R ® 
U(l)n_ 2 [11]. If the model is described in terms of the left-handed fields (the 
right-handed fields are represented by the left-handed component  of the charge- 
conjugate field as ~bcL -- C ~ ) ,  then the quantum numbers of the 8 fermion fields 
and of the Higgs field are 

U ( 1 ) L  U ( 1 ) R  U ( 1 ) i - 2  U ( I ) L  U ( I ) R  U ( I ) I - 2  

0(n). 1 0 1 a,(2). 0 1 - 1 L " ~ 'L  " 

~.(')'cL- 0 -- 1 - 1 ~c(~): - 1 0 1 

X(~): 0 I I X~): I 0 - I 

X(~)" - 1 0 - 1 ..(2). 0 - 1 1 cL"  AcL  " 

.~: 1 - -1  0 

(6) 

The mass terms allowed by the chiral symmetry U(1) L ® U(1) R ® U(1)l_ 2 are those 
connecting 0 in) with X t~) or 0t2) with X (2) but not 0(l) with 0t2) and X t~ with X t2) 
(these latter are forbidden by U(1)l_2). The vacuum expectation value of the scalar 
field breaks U(1) L ® U(1) R to its diagonal subgroup, but U(1)l_ 2 is not sponta- 
neously broken, at least in the phase which is considered in this article. A "chiral" 
set of fields can be defined by the requirement that no mass term is allowed by the 
symmetry a n d / o r  generated by spontaneous symmetry breaking. In this sense, for 
instance, the subset ta, tn) a, tnB is "chiral" and "anomalous" (that is, has a non-zero t ~ ' L  , "/cL 

U(1)-anomaly). A subset like {0~), .~,(n) ,,(1) ,,(~)~ is "non-chiral"  and "non-anoma- ~ ' cL ,  A L  , AcL  

lous". Finally, the subset {0tLi),a,(n) a,(Z) a,(2)} which is obtained after decoupling ~ ' cL '  ~ 'L  ' '~°'cL ' 

the mirror (X-) fields, is "chiral" and "non-anomalous".  (With respect to the 
subgroup U(1) L ® U(1) R this latter subset is "non-chiral",  but there is no reason 
why only this subgroup should be considered.) Therefore, in some general sense 
the subset {0_(!), a, tn) d,(2) ,i,(2)1 is similar to a fermion family in the standard model, L V ' c L , ~ ' L  , ' / ' cL~  

although there the pattern of anomaly cancellation is different. 
The above form of the action is convenient for the physical interpretation of the 

fermion spectrum in the broken phase, but for some purposes, like the hopping 
parametcr expansion in the symmetric phase or the proof of reflection positivity, it 
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is better to introduce another form based on the fields 

m o 

I[/Ax ---- I[/Lx + ~"Rx ' I[/Bx ~ XLx  "[" If/Rx, If/Ax -~ I[/Lx "{- , ~ R x '  
m 

I/$Bx -----~ ~ L x  d" If/Rx . 

(7) 

Denoting now the (0A, 0B)'P air by qt x - (~Ax,  Oa~), and using the field normaliza- 
tion condition in eq. (2) ,  ~ - 1, the fermion matrix in eq. (3) becomes 

C>(¢,) ,x  = 
+ r) 

+ 
(8) 

The coupling constant combinations Ga, Gt3 are defined as 

! 
- ½(G - (9) 

In the rest of this section the reflection positivity of chiral Yukawa models will 
be investigated in the lattice formulation with mirror pairs of fermion fields. The 
U(1)L ® U(1)R symmetric model will explicitly be considered, but the results can 
immediately be generalized to other cases, as for instance to the SU(2) b ® SU(2) R 
symmetric model. The positivity axiom asserts that there exists an antilinear 
operator O which transforms an arbitrary function F of the fields at positive times 
into a function OF of fields at negative times such that 

((OF) F) >10. (lO) 

The time reflection of the points can be defined on the lattice in two different 
ways: one can reflect either with respect to a plane between two time layers, say 
t = 0 and t = 1, which we call link-reflection, or with respect to the t = 0 plane, 
which is called site-reflection. The transformation in the first case is t - ,  1 - t ,  in 
the second case t - ,  - t .  If reflection positivity holds for either type of reflections a 
bounded positive transfer matrix can be defined for time shifts with an even 
distance [19,20]. Since the definition of the transfer matrices depends on O, they 
can be different, and also the regions of bare parameter space where they are 
positive can, in principle, be different. Of course, in the continuum limit when the 
lattice spacing is going to zero, the positivity of any of them is sufficient to 
guarantee the existence of a self-adjoint hamiltonian with non-negative spectrum. 
At finite lattice spacings, for instance, in numerical simulations, the best thing is to 
have reflection positivity of both kinds, because then for the determination of the 
spectrum one can safely consider correlations at arbitrary time distances and the 
positive transfer matrix is the usual one, which acts on wave functions defined at 

fixed times, e.g. t = 0 [21]. 
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Let us first consider the link-reflection positivity condition, that is the time 
reflection t--> 1 -  t. In this case the effect of the antilinear operator O on the 
fields in the U(1) L ® U(1)  R symmetric Yukawa model is (with x = {x, t}): 

06. . ,=6.+,_ , ,  Oqt.., = qt..,_,y4, O~..,=y4qt..,_ , . (11) 

The piece of the action connecting the two time-halls of the space can therefore be 
written as 

So= - 2K )".(b~. , (O6~ .  , )  
x 

- K  E E{~t~ . t ( l - ry4) (O~tx . , )  + ~l~.,(l +ry4)(O~tx.,)}. (12) 
I = A . B  x 

Here the form of the lattice action in eq. (8) was used for convenience. Since S o 
does not depend on the local Yukawa interactions, reflection positivity can be 
proven for K >/0 in the same way as for the pure scalar model and for free 
fermions [20]. In case of non-zero Yukawa couplings the non-negativity of the 
scalar hopping parameter r seems to be crucial. In principle, for r < 0 one can try 
to introduce a different O-mapping, but for non-zero Yukawa coupling we did not 
succeed to find a suitable choice. (The fermion hopping parameter K can be 
negative, but negative K can be transformed away to a positive one by going to the 
opposite corners of the Briilouin zone [ 11].) 

In case of the site-reflection positivity condition the O-mapping is defined in the 
same way as in eq. (11), only 1 -  t is replaced everywhere by - t .  The proof of 
reflection positivity for r = 1 goes along the same lines as in ref. [19]. Defining the 
t = 0 field variables by 

! 
= + q'x., , ,  = + 

T/T = -- qtx.02(1 - ~ 4 ) ,  T / ;  T=-- ½(1 - y4) qtx, o, (13) 

the interactive part of the t = 0 piece of the action on the A, B-basis is 

x 

= F G i 3 ~ ; ( , q T x ~ A x  - +  + T \  + + T  - ~;Bx~/Ax ) + Gt3tb~(--T/TxCBx + CA.,.'r/B~ )}. (14) 

The total t -  0 action can be written in matrix notation as 

St,- (£+B~£) + (rl +Bnrl ) + (~Tc~:) + (~:+C+,r/+T). ( 1 5 )  
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The matrices B~,,1 and C occurring in the proof of reflection positivity [19] are, in 
a block notation on the A, B-basis 

G ~  + ~ Bo , Bn  = G~4J~ B o ' 

co 1 
C =  GI3# + Co ] .  (16) 

Here Bo and C O are the hermitian matrices occurring in the case of free Wilson 
fermions. 

A sufficient condition for reflection positivity is the positivity of the matrices 
B~.,, which is satisfied for A = oo and 

I r l  < - IG I ) (17) 

irrespective of the value of the other bare parameters.  It is remarkable that the Y5 
piece of the Yukawa coupling proportional to Gt3 does not influence the positivity 
domain at all. Correspondingly, in case of simple Yukawa models with one 
component scalar fields, Wilson fermions and local Yukawa couplings, the pseu- 
doscalar couplings do not squeeze the positivity domain, unlike the scalar ones, for 
which a bound similar to eq. (17) holds. Obviously, the bound in eq. (17) cannot be 
satisfied for large bare scalar Yukawa couplings. In some special cases one can, 
however, derive site-reflection positivity also for very large bare Yukawa couplings 
by starting from another form of the action with composite fermion fields (similar 
to the ~.~ field in ref. [9]). Without going into details here we just remark that, for 
instance, at A = ~ and Gt3 = 0 a sufficient condition in terms of K~ - K / G ~  is 

IK l < 16ol- ' ) .  (18) 

This is interesting for small G~ -! (that is for large G~), where the relevant fermion 
hopping parameter  is K.~. 

It is remarkable that, although the parameter  region where link-reflection 
positivity could be proven is much wider than the one for site-reflection positivity, 
there is a region at negative x and ,~ = oo where the site-reflection positivity 
condition could be proven but the link-reflection positivity condition not. As it was 
remarked before, this is not a contradiction, but one has also to keep in mind that 
the above proofs give only sufficient conditions and not necessary ones. Therefore, 
the full domain of reflection positivity can, in fact, be larger. 
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3. Renormalized parameters 

The difficulty for the numerical simulations in the broken phase is the infrared 
singularity of some Green's functions at zero four-momentum, due to the presence 
of massless Goldstone bosom. The finite volume acts as an infrared regulator. 
Therefore there are very large finite-volume effects even in large volumes. In case 
of the O( N )-symmetric pure scalar models there is by now an impressive amount 
of ingenious work done, which shows that the problem can, in fact, be solved in a 
theoretically clean and rather appealing way (see, for instance refs. [17] and [22]). 
In practice, however, the procedure is rather demanding because it requires the 
introduction of an external source and the careful study of finite-size effects on 
large lattices. Another way to deal with the problem is to introduce the gauge 
interaction which has to be considered at some point anyway and which renders 
the Goldstone bosons massive [23]. The difficulty in this case is that one has to 
deal with a relatively large ratio of the Higgs-boson mass to W-boson mass, which 
is about 8-10 at the upper limit [24, 25]. In a first exploratory study both these 
ways of dealing with the Goldstone boson problem would be too difficult. There- 
fore one has to return to simple pragmatic ways which are known to give 
satisfactory results in pure scalar 64 models [26, 27]. 

For the definition of the vacuum expectation value of the scalar field on a finite 
lattice one has to take into account the drift of the direction of the symmetry 
breaking. For a given configuration of the scalar field the average of the field over 
the L a- T lattice is 

1 
tb=-- L3 T ~_~d&.. (19) 

x 

An infinitesimal external source field is imagined to point in the direction of ~b, 
given in our case by the phase angle a: 

4~ = I4~le i ' -  (20)  

The vacuum expectation value is then defined by the absolute value of the average 
field: 

v -  <14,1>. (21) 

In order to have the imagined external source field always in the direction of the 
real axis, a global U(1)L ® U(1) a transformation is applied to the field configura- 
tion. This defines the longitudinal (~bLx) and transverse (d~Tx) field components: 

4~ = e -i~ 4'~ - 4~L. + iOT,. (22) 



L. Linet al. / U(I) L ® U(I) R symmetric Yukawa model 521 

Similarly, since a - - O t L - - a  R [11], for the chiral components of the fermion fields 
we have: 

0~.~ = e -i~' ~ t L x ,  O R x - ' O R x ,  ~ . x = ~ L x e  ia , 
u m 

~lhx=~lRx,  

X R x  = e - i a  -- " , X R x ,  X l . x  m X L x ,  X R x - ' X R x  eta XLx- -XLx"  (23) 

(This holds for the f = 1 flavour, for f = 2 the transformations of O and g are 
exchanged.) 

In a numerical simulation the renonnalized quantities for the scalar field are 
defined by the timeslices of the longitudinal and transverse correlations 

1 1 
SLt ~ a 3 E (t~Lxt~i~LO0)c = "-~ E (<t~Lxtt~LO0) -- U2), 

x x 

1 
ST,  = 1_.3 ~ ,  (¢kr~,~kroo) .  (24) 

x 

Here it was taken into account that (~Lx)  = U and (d~Tx) = 0. The behaviour of 
the longitudinal correlations is dominated by the physical Higgs boson mass m L. 
On a periodic lattice with time extension T one can determine mL, at sufficiently 
large time separation t, from a fit 

SLt = a ac b(e  -mLt + e-m~{r-'}). (25) 

The constant a is due to the non-zero expectation value of ~ L x  [28]. 
The wave-function renormalization constants of the scalar field have an infrared 

singularity at zero four-momentum, but they can be extracted from the behaviour 
at non-zero momenta [26~ 571. In case of a not very large lattice the lowest non-zero 
momentum can be used and then suitable definitions of Z L and Z T are 

Z L - ~  m2L + 4sin 2 -~ E cos - T t  <~Lx~LO)C, 
x={xt} 

Z T = 4 s i n 2  T Y' COS(~t) ( t~Txt~T0) .  (26) 
x = {xt} 

The renormalized vacuum expectation value u R and renormalized quartic scalar 

coupling g a are then defined as 

v (~bLx) 3m 2 
Vs=  T= gs =  27) 
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The renormalized quantities in the fermionic sector are defined by the 2-point 
function of the transformed fermion field 1/*'= (~'X'): 

~,( v) - F_, e-"~~"-"}< ~',~.,:) . (28) 
X 

For small momenta let the bchaviour of z[~, and z[~, l be 

'~v, = A - ip" TB,  '~7e' -- M + ip" T N .  (29) 

For the fermion fields we use antiperiodic boundary conditions in the time 
direction such that the smallest momenta in the time direction are +vr /T .  
Therefore suitable definitions of A and B are 

A = g ~i .  o ,o ,o,  + -~ + ~ ,  o ,o ,o ,  - ¥ 

[-;1 (°'°) = ~ COS t ( ~ 6 ~ - " > =  a a ,  ' 

x=-{xt} 

/ + 

T4B= 2 sin(rr/T) -T -T 

sin[Trt/r] ( g , ~ , )  (b  ! b )  (30) 
= -  ~ sin(Tr/T) - T4 b b 2 " x={xt} 

Here the matrices are in a block notation in the ($', X') space. The connection to 
the matrices M, N in the inverse propagator is 

(m m) a) 
= A - l =  a 2 _ a l a 2  _ , M=- m m 2 a a I 

n2 = A - t B A  -I 

a,a2~-', a2b2 + a 2 b ' -  2aa2b a Z b - a a t b 2 - a a 2 b '  +a 'a2b  |1 ( .~  - 
a2b _ aalb 2 - aazb I + ala2b a2bt + a2b2 - 2aaib ] 

(31) 

The wave-function renormalization has to transform N to the unit matrix: 

ZI/2TMTI/2 (1 O) (32) 
,1, , , - - , , I ,  = 0 l ' 
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In the symmetric phase Z~/2 is diagonal, but now, due to n ~ O, a rotation is also 
needed: 

(cos,. 
Zd'/2 = sin ~" cos  # 0 01 (33) 

In terms of the matrix elements of N in eq. (31)we have 

I g" = v arcsin 
s g n ( n  I - n 2 ) -  2 n  

~ ( n l  - n2)  2 + 4n 2 ' 

7_., = 2[n, + n2 + sgn(n, - n 2 ) ¢ ( n ,  - n  2)2 + 4 / / 2 ]  - !  

[ ]-' Zx= 2 n, + n 2 - s g n ( n  , - n 2 ) ¢ ( n  , - - / / 2 )  2 + 4 / 1 2  (34) 

Multiplying the unrenormalized mass matrix M by Z~/2 from left and fight gives 
the renormalized mass matrix MR: 

7 I/2TilA7 !/2 ( GR~'t' R 
bta 

/£R 

GRxl"  R 
(35) 

This defines the renormalized off-diagonal mass// 'R and the renormalized Yukawa 
couplings GR,  and GRx (the renormalized vacuum expectation value r R is given 
by eq. (27)). In terms of the matrix elements of M in eq. (31)we have 

[1, R = e Z ~  Z x [ m cost2s r) - ½ ( m , -  m2)sin(2g')] ,  

Z~, 
GR * = _ _  [ l ( m l  + m2 ) + ~(m, -- m2)cos(2~" ) + m sin(2~')],  

UR 

G R ~ ,  = -  [ / ( / ' H  I + m z ) - ½ ( m ,  
l; R 

- m2)cos(2~" ) - m  sin(2~r)]. (36) 

The renormalized fermion mass matrix (35) can be diagonalized by a rotation with 
an angle a a. Let the mass eigenvalues be denoted by ~IR and /.t2g. The corre- 
sponding eigenstates are then mixtures of the original 0- and x-states with the 
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mixing angle ~R. The explicit relations to the matrix elements of MR are 

sin a R "-- 

~v 2(GR, -- G R x  + 4/~ 2 + / ; R I G R ,  -- GRx I v2(GR#~ -- GRx) 2 + 4P,2R 

l[ 
~t, IR --- VR(GR# , + G R x  ) + s g n ( G R #  , -- GRx)~]/u2(GRd/-- GRx) 2 4- 4/z~, ], 

/&2R "- ~ U R ( G R ,  -t- G R I t )  -- s g n ( G R 4  ' -- G R ~ )  v 2 ( G  R~ -- G R x ) 2  + 4P, 2 ] -  

(37) 

These expressions are valid at the zero corner of the Brillouin zone. The other 

corners at p = (el~- , e2~- , e3.n- , e4,rr); e l ,2 ,3 ,4  - -  0 ,  1 can be reached by a transforma- 
tion of the fermion field 

~x. "'> ( -- 1) eF*''+e'x2+e~x3+e4x4~r- " " - x ,  ~t~a"--> (--1)e'x '+e2x2+e3x'a+e4x4~ x • ( 3 8 )  

If one wants to calculate the fermionic renormalized quantities at the other 
corners, then one has to take these transformed fields in eq. (30). Otherwise the 
same formulae as in eqs. (31)-(37) apply. 

4. Perturbat ion  theory  on  the  latt ice  

Green's functions and other quantities in the Yukawa model can be studied by 
means of perturbation theory. In bare perturbation theory the expansions are in 
powers of the bare couplings, namely the scalar self-coupling a and the Yukawa 

couplings G, and G x. Reexpressing these in terms of the corresponding renormal- 
ized couplings leads to renormalized perturbation theory. In order to obtain 
Feynman rules similar to the case of perturbation theory in the continuum, the 
fields and couplings have to be rescaled. We define the bare scalar field &0 and its 
components ~b0k through 

1 
vck-~b = ~b0 = - -~  (~b0, + i&02) • (39) 

Vx 

The lattice lagrangean for the scalar field is then 

m 2 0 _~ +.~ go ( 

- - T  + T "  
2 

, ( 4 0 )  
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where 0~ denotes a lattice derivative (i.e. finite difference) and the bare mass m o 
and bare coupling go are given by 

6 ~  
m 2=  16 -~,2/~*r go = r2 . (41) 

The potential has its minima at 

~']@o( x)l = So = I/3m2/go (42) 

and the shifted fields are defined by 

o-(x) =,po,(X) =,/,o,(X) -So ,  = (43) 

In terms of these fields the lagrangian is 

, 2 m 2  2 ~ 2 1 
~ , =  ~(O~or) + -~-or + _~(0~-) + ~-.w 3~omoortor  2 +Tr 2) 

go ,, 
+ ~.w ~ or- + ~r 2)2 + const. (44) 

From this expression we read off the Feynman rules for the scalar field. The 
perturbative expansions are most conveniently derived in momentum space. On a 
finite L 3- T lattice the allowed momenta are in the Brillouin zone 

27i" 
Pi : -  --7--Hi ' 

L 
n i = 0 , 1 , 2 , . . . , L - 1 ,  i = 1 , 2 , 3  

271" 
P4 = T ( / / 4  -t- ~4) ,  n 4 = 0, 1 , 2 , . . . ,  T -  1, (45)  

l where for bosons t~ 4 = 0  and for fermions ~4 = 2" For later convenience we 
introduce the following abbreviations: 

/)~ = 2 sin(½p~,), ,~, = s in(p~) .  (46) 

The scalar propagator is diagonal in the field components with 

~ , , ( p )  = (/~2 + m ~ ) - ' ,  '~22(P) = ( /~2)- '  ( p  ~ 0) .  (47) 
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The scalar three-point vertices are 

- g o S o  , for o'o'a , 

-- ~goSo , for zrTrtr, 

(48) 

(49) 

and the scalar four-point vertex is 

with 

--goSOkl, i, j ,  k,  l = 1,2 (50) 

! 
Sak,  = ~ (606k i  + 6ik6~, + 6i ,~jk) .  (51) 

The bare fermion and mirror fermion fields are defined by 

~,o = 2 ~ , ,  Xo = 2 ~ X  (52) 

and the free part of the fermion lagrangian for one flavour is 

4 
y'. 

g = i  

(53) 

with 

tt~, x G~, Gx 
= = = . (54) t~° 2 K  ' Go* 2 K  2¢~-K ' G°x  2Kvr2r  

The explicit mass terms are due to the spontaneous breakdown of symmetry. For 
simplicity of the notation we display the conventions for one fermion flavour only. 
The perturbative results below, however, refer to the full model with two flavours 
of fermions and mirror fermions. In terms of the two-component vector 

~ ° = (  ~'° )Xo (55) 

the free fermion action can be written as 

S,t, = E ~Fo.y W~..flto. x. (56) 
xy 



L. Lin et al. / U(1) L ® U(I)R symmetric Yukawa model 527 

Wrx is a two-by-two matrix in (0, X)-space whose Fourier transform is 

i f ' (P)  = )"- e-ip"r-x' Wr~ = [ i7"~ +/Zo, 
x [ /Zp 

jttp 

iT"ff +/Zox 

where 

(57) 

r 
p.p = l~ ° + . ~ 2 ,  P'o, = G o ,  so , I~o x = Goxso .  (58) 

The fermion propagator is given by 

with 

-2 -I- 2 2 -2 2 1 

J --2 2 --2 2 2 
( P -|- ~Lp - ]Zo,]Zox )]Zp ( P -I- ~ZO, )~ZOx -- ~Zp]ZO, 

- i7 "P/)( P ) - '  /Zp +/Z2ox - (/z°* +/'t°x )/z" (59) 
2 4 .  t 2  - ( g o ,  +gox)/~p , 52 + g p  - I%, I 

2 /-~o,P'ox)2 b ( p )  = + + (60) 

The Yukawa interaction is 

(61) 

where the coupling matrices V~ are 

with 

E 
G0,F~ 0 ) 

0 GoxFi + (62) 

F I = 1, Fz= - iy5-  (63) 

The Yukawa interaction vertex between two fermions and the scalar field qh}i is 
given by the matrix -V~. 

Given these Feynman rules the Green's functions and vertex functions can be 
calculated perturbatively in the usual way. Let us consider vertex functions 

Ft"I"Z"F)( Pa) ,  a = 1 , . . . , n  a + 2n~ 

for na bosons, n F fermions and /l F anti-fermions. They refer to the fields 
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6", X, ~ and ~ in the original normalization• Below we present results in the t/,% 
one-loop approximation. Momentum sums or integrals respectively only run over 
the Brillouin zone specified above. They are denoted by 

fp 1 _4 f02-~- d (64) L3 T ~] = (2~r) 4p if L T =  oo 
p 

If the integrand contains massless propagators the momentum sum is understood 
without the point p = 0. 

/-,(2,o) is the negative inverse propagator of the field ~(x). It is diagonal in the 

field indices: 

r~ 'm(v)  = / C(p) o 
o r~(p) 

(65) 

For the inverse 7r-propagator we find 

1 /.,.r(p) =P-"' _ gofq(02 2~ gofq(~2) --! 
2K T +m"'- '  + T 3 .,~of(O'- + m2) 

+8fqJ~(q)-'{O2(GZ,t,+G2+) _ 2~qG,,,t, G o x 2  + 2Go,Gox+o}2 z 2 

- _ 2 - 2  2 t'?.2 ¢'2.2 _2 i.%Go~,Gox ~ , -8[D(q)-'b(p +q) '((q G,,, +.~,,,._.,,x~,, 
aq 

. . 

X ( (  ~ 2 2 I-,2 -",2 2 2 )S 2 p + q) Go, + oo,t-.oxso - i~v+qGooGox 

2 
2 2 2 _ Goq, GoxsojGooGoxlZqtZv+q - ( 0  2 + ".-Go,Go~so)((P"-4-q) 2 + !10+.1 

)( 2 2 2 2 2 2 + Goxso)Go+q .p +q +(0 ~ + ~o + Go+so ( F - ~ )  ~ + ~+0 

2 2- X)} (66) -Izqlzv+q(Go~+Go x) Go,Go~soq'P+q+(~O ~* . 

The 7r-field is massless and the inverse propagator behaves like 

- C ( p )  = z ; ' { p '  + O(u4)}, (67) 

which defines the wave-function renormalization constant Z .  corresponding to ZT 
in the infinite-volume limit. 
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Our result for the inverse o--propagator is 

529 

1 
2K F,~(p) ~_/~2 + m2_gOfq(42 + m2) - '  

go - i 
3 fqt 0 2) - 

3 g ° m 2 f (  ,~ O~ + m~o)-' 1 (7"~)~  + m~o] - '  

g°m~°f.<a~)-'[(b--~)l - ' + 6  2 4 f ? ( q ) - '  

× { ~ ( c g ° + c , , \ )  ~ ~ ' - 2l~aGoc, Gox + 2Go,Go, so} 

f ?  -",2 -'-"2 2 2 +8 (q)-'6(p+q)-'{(~a~o,+Oo,~,o~So-~,~ao,Co~) 

× ((p + q ) ~  2G0¢,2 + ,., o,t,,.,ox,S 0 , r 7 . 2  i-:.2 _2 _p.p+qGo~,Gox~S02 ] 2 

2 2 _ Go~,Go x So ) Go~Goxltqltp +q _ ao ,ao~ ,o  ~ ) ( ( ~ - - ~ ) :  + ,.,,, +,, -I- (~2 -I-/./,q 

( ,~  +,,.,,~ + c~ . , . so~ ) ( (~~)  ' + , , , ,+ , ,+  Co,,So)Co,q-p + q ~  , , 2 - 

2 2-  - ~ o ~ , + . ( a , , ,  + a,,~) a , , , ao~Soq  . p  + q + ( ~  ~ x ) )  . (68) 

This expression is infrared singular at p = 0 due to the massless ~r-propagator in 
the sixth term. Therefore the renormalized sigma mass has to be defined at 
non-zero momentum. We choose to consider the physical sigma mass m~, which is 
given by the complex pole of the propagator through 

At tree level its value is 

! , 0 , 0 , 0 )  = 0  F,~( im,~ + ~y~ (69) 

m~ = 2 log(mo/2 + V/1 + m2/4 ). (70) 

The one-loop correction can be derived straightforwardly from eq. (68) but is too 
lengthy to be displayed here. 

In the infinite-volume limit the vacuum expectation value of the scalar field 
t; = (~b) is related to the vacuum expectation value of the shifted o--field by 

2q~ v = so + (~r). (71) 
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In perturbation theory (or) is given by the sum of tadpole diagrams, which in the 
one-loop approximation yields 

(or) = -So2m--- i (0 2 + m2o) - + g(O2) - 

8 L -- -I 2 ~ 9 _ 2lzqGo,Gox + 2Go~.Gox + S 0 2 0  - . O ( q )  {q ( G ~ o + G ~ c )  2 2 2 S2}. (72) 

Next we come to the fermion propagator. Let a and b be indices which assume 
values 6 and X. Then the inverse fermion propagator matrix in one-loop order is 

1 
2K F2~'E'( P) = ]~ob(P) + ~abGoa(°') 

{ 1' } - GoaGob P - q )  +m 2 l~,'~'(q)+(mo-->O, so-->-So ) . 

(73) 

From this expression the matrices M and N, which describe the behaviour of the 
inverse propagator near p = 0 according to eq. (29), can be derived. The result is 

1 
2Kml = Go~ ( s o+ (or)) 

×{1-Goq, fq[(Clz+m 2) -I _ (¢~2)-i ] 6 (q ) -1 [ (~2  + G(2xs(2)Go, 2 ) - l.tqGox ] , 

1 

2K 

(74) 

1 
2 K  m 2  = ditto with (~ ~ X). (75) 

f,, - 2 = 2 _ Goq, Goxs ° )l.tq m i.to-Go,Gox [(¢~2+m2 ) 1 + ( ~ 2 ) I ] / ~ ( q ) - l ( t ~ 2 + / . t  q 

(76) 
1 

! 2~i  [ -2 -2] -I 2 2 2 2 K n , = l + s G o ,  ( 4 2 + m 2 )  + ( 4 2 )  O(q )  ( q 2 + l ~ o + G o x s o ) q 2  , (77) 

1 
2 K n 2 = ditto with ( 6 ~ X ) ,  (78) 

1 
"2Kn = -½G".t,G"x(G,,.t, + G,,x)S,,f,[(O2 + m 2 ) - 2 -  (02)-2]6(,)- '~21.%. (79) 
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The diagonalization of these matrices leads to the definition of the fermionic 
wave-function renormalization factors, renormalized Yukawa couplings and 
fermion masses as explained in the previous section. The one-loop expressions for 
these quantities are straightfo~,ardly obtained by inserting the expressions for M 
and N above into eqs. (34)-(37). 

The perturbative relations between bare masses and couplings and their corre- 
sponding renormalized counterparts discussed above can be inverted in order to 
express the bare quantities in terms of the renormalized ones. If these expressions 
are substituted into the expansions of other physical quantities, say higher vertex 
functions, renormalized perturbation theory is obtained, where divergencies are 
eliminated. A particular example are perturbative finite-size effects. The finite 
lattice-size dependence of various quantities can be obtained from the formulae 
above in the same way as in ref. [11] and can be evaluated numerically. 

Particularly interesting for the investigation of spontaneous symmetry breaking 
is the effective potential for the scalar field. For constant fields d~ the coefficients 
of its power series expansion (if they exist) are the zero momentum vertex 
functions: 

U ( ~ )  "- -- E ~ r ( N ' O )  I'{'l 0 ) ~ i  I 
N = 2  N I  " ix . . . . .  i x x " '  " " " " 

( 8 0 )  

As is well known the effective potential can be obtained by perturbation theory 
around the point ~b = 0 in the case of a spontaneous breakdown of symmetry as 
well. In this case the Feynman rules of the symmetric phase [11] have to be used, 
where in our case m 2 has to be replaced by - m 2 / 2  according to eq. (40). 

In the one-loop approximation the effective potential is 

m2° g°l-~ 14 ½TrlogD TrlogQ TrlogQ+ (81) U(~)  = 2 1 ''12 + T + - - ' 

where 

62S ] (82) 

Dx:' = 26~bo(x)t$$,,(y) dh, :c°nst. 

and Q is the fermion matrix of eq. (3). The matrix 

Dxy ~-~ _ D + I ol 2 1 0 + _~_oxy 
2 T 8.,.,, 0 1 ~bo,~o 2 ~b22 

(83) 

is easily diagonalized and yields 
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( m; ) ( ,84, Trlog D = ~ log 42 2 + g°]*°12 + log t~ 2 m2° go , 
2 

Q 
ik  = w + E~o,, (85) 

We write the fermion matrix as 

where W is as in eq. (57) but without the So-term. For the fermionic contribution 
we obtain 

2 Tr log Q = 2 Tr log(1 + W- ' ~ * o i )  + const. 

- Tr log( 1 - W- ' Vi,oiW- 'V**ok ) 

- fetrlog{(~2 + p.2q) 2 -  21,oi 2 

^ ' ~ ' ~  2 - q - o ~ ,  + itqGo, Go~ 
x 

-i~/ " # l~qGo,(Go, + Go~ ) 

- i y  " ~lzqGox(Goo + Go x) 
-#2G20. ~ + Iz~GooGox 

=4fq{(~2+/~q-2 2GooGoxl,ol2)2+2~2(Go,+Gox)21,ol 2} (86) 

The vacuum expectation value of the scalar field is determined by the minimum of 
the effective potential. Through differentiation of the one-loop expression for 
U ( , )  the result (72) can be confirmed. 

Expressing the bare fields and parameters in terms of the renormalized ones in 
the effective potential yields a renormalized potential UR(,R) which is free of 
UV-divergencies. The infrared singularities of the scalar propagator mentioned 
above show up if the effective potential is expanded around its minimum. We 
obtain a contribution of the form 

1 (~g 
647r2" 3 RU ROrR 

~R )2 
+ V ( - l ÷ ~ )  .o~I(2~,.~.~ + ~(.~ + ~)~) /3m~ I , 

(87) 

which cannot be expanded in powers of the shifted fields. 
For large I*RI the leading term in the one-loop effective potential is the 

logarithmic contribution 

l , a l  2 
14 (88) aI~R log v~ 
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with 

1 (  102 ) 
B = 64-r 2 v g  R -- 3 2 G ~ , -  32G~x . (89) 

It reveals the breakdown of the one-loop approximation for large fields and makes 
the summation of the leading logarithms with the help of the renormalization 
group necessary [16]. This leads to the consideration of "vacuum stability" bounds, 
which are discussed in sect. 6. 

5. Mirror-symmetry breaking: heavy mirror fermions 

The vacuum expectation value of the scalar field induces non-zero diagonal 
elements in the fermion mass matrix (35). Therefore the physical fermion states 
are mixtures of the (0, X)-states with a mixing angle a R and with two, in general 
different, mas eigenvalues ~t~R and/zeR. From the point of view of chirai Yukawa 
models the most interesting situation is zero mixing- a R = 0. In this case a U(1) L 
gauge field has a pure V -  A coupling to one of the states (and pure V + A 
coupling to the other). In the present paper we shall only be interested in a R -- 0, 
which can be achieved, for instance, by an appropriate tuning of the fermion 
hopping parameter K. (Since a R = 0  corresponds to zero off-diagonal fermion 
mass •R = 0, it is natural to tune by K but, of course, one can in general speak 
about the four-parameter subspace defined by a R = 0 in the space of five bare 
parameters {K, K, A, G, ,  Gx}.) 

For zero mixing the two fermion masses are given by GR~,U R and GR,,t, R, 
respectively. Therefore a heavy mirror fermion corresponds to a large value of the 
renormalized Yukawa-coupling G Rx. If there were similar upper limits for renor- 
malized Yukawa couplings as in pure scalar d~ 4 models for the renormalized 
quartic scalar coupling (see, for instance, refs. [26, 27]), then it would be impossible 
to make the mirror fermion really heavy. Nevertheless, we have seen in the 
symmetric phase that the renormalized Yukawa couplings can be rather large [11]. 
It is expected on general grounds that the qualitative features of renormalization 
are the same in both phases. Therefore in the broken phase the mirror fermion 
can presumably be rather heavy. It is also possible that there is a non-trivial fixed 
point for the Yukawa couplings (which would correspond to the qualitative 
behaviour of the two-loop/3-functions). In this case there is no upper limit on the 
renormalized Yukawa couplings and the mirror fermion can be infinitely heavy. 
This opens up a new possibility for removing the mirror fermion from the physical 
spectrum. Therefore, after knowing the results in the symmetric phase, we changed 
our strategy for the numerical simulations in the broken phase. Namely originally 
we were planning to follow the suggestion of ref. [15] and to try to decouple the 
mirror fermion by tuning it to zero mass and zero mixing. On the other hand the 
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decoupling with a heavy mass is more natural and it can also immediately be 
extended to the case of weak gauge fields. Thus in the present paper we try to tune 
the mass of the mirror fermion to large values by increasing G~. 

As a consequence both bare Yukawa couplings (3;, and G X have to be non-zero. 
A few test runs with G~,G x ~ 0 showed, both in the symmetric and broken phases, 
that compared to G~,G X = 0 the doubler masses are decreasing for G , G  x > 0 and 
increasing for G~G X < 0. Since we want to make the doublers as heavy as possible, 
in the following we always consider G~ positive and G x negative. Note that an 
overall sign of the Yukawa couplings can be compensated by the transformation 
~.,--> -4~x, but the relative sign of G~ and G x cannot be transformed away. The 
signs of the renormalized Yukawa couplings usually remain the same as those of 
the bare ones. This means that we get a negative renormalized fermion mass for 
one of the states. The sign of the fermion mass, however, is insignificant, because 
one can change it by an appropriate y5-transformation (see ref. [11]). It is 
remarkable that the opposite signs of G ,  and G x are also preferred by the 
site-reflection positivity condition in eq. (17) in the sense that in the overwhelming 
part of the region IG,~ + G~I < 2(1 - 61KI) the signs of G~, and G x are opposite. 

The Monte Carlo simulations were performed on 43× 8, 43× 16 and 63x  16 
lattices with periodic boundary conditions in the space directions. In the (longest) 
time direction periodic boundary conditions were taken for the scalar field and 
antiperiodic ones for the fermions. The larger time extension is favourable for the 
definition of fermionic renormalized quantities because of the smaller value of the 
smallest non-zero momentum in the time direction. In the molecular-dynamics 
step typically 15000 to 40000 trajectories per point were calculated, with a few 
thousand at the beginning used for equilibration. The number of leapfrog steps per 
trajectory was chosen randomly between 4 and 10. The step length was tuned so 
that the acceptance rate for the trajectories was near 75-80%. The typical average 
trajectory length was between 0.5 and 1.5. The necessary inversions of the fermion 
matrix were done by the conjugate gradient iteration, until the residuum was 
smaller than 10 -8 times the length square of the input vector. 

The Wilson parameter in the lattice action (1), (2) was always chosen to be r = I. 
We have seen in the symmetric phase that the value of bare quartic coupling A did 
not influence the results at all, at least within the typical statistical errors and as 
long as A was within the range 0.1-10.0. This should be qualitatively similar in the 
broken phase, too. Therefore here we only performed numerical simulations at 
A = oo and at almost zero A, namely A = 10 - 4  and A = 10 - 6 .  ( W e  did not choose A 
to be exactly zero, in order to be sure about the convergence of the Monte Carlo 
process.) A summary of our data points is collected in table 1. Some global 
expectation values in these points are given in table 2. The results for the 
renormalized couplings and for the wave-function renormalization parameters, as 
defined in sect. 3, are included in table 3. In the present section we shall 
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TABLE 1 
The chosen points in the parameter space and the measured renormalized masses mL,/gR,/ItIR 

and ~2R- Statistical errors in last numerals are in parentheses. Points with labels in capital 
letters are at A = oo, others with small letters at A = 1 0  - 4  and those with a greek letter at 

A = 10 - 6  

Label L 3- T G#, G~ K K m L /z R /.tla P'2R 

A 43 x 8 0.1 -0 .6  0.088 0.125 1.30(4) -0.012(3) 0.2324(5) 0.983(4) 
B 43 × 16 0.1 -0 .6  0.088 0.125 1.10(5) -0.031(21) 0.2091(5) 0.945(13) 
C 63 × 16 0.1 -0 .6  0.088 0.125 0.78(7) -0.059(14) 0.194(1) 0.701(14) 
D 43 × 8 0.2 -0 .6  0.080 0.127 0.99(7) -0.049(27) 0.462(1) 0.964(8) 
E 43 × 8 0.3 - 0.6 0.072 0.133 1.11(5) - 0.28(2) 0.619(2) 1.041(10) 
F 43 × 8 0.4 -0 .6  0.050 0.142 1.27(6) -0.16(11) 0.702(11) 0.968(11) 
G 43 × 8 0.5 -0 .6  0.032 0.153 1.60(3) -0.20(17) 0.856(5) 1.017(6) 
H 43 × 8 0.6 - 0.6 0.030 0.155 1.59(4) - 0.8(2) 1.117(4) 1.119(5) 
I 43 × 8 0.1 - 0.7 0.073 0.125 1.36(6) - 0.011(8) 0.2384(3) 1.116(10) 
J 43 × 8 0.1 - 0.8 0.059 0.125 1.39(6) - 0.039(9) 0.2463(4) 1.30(2) 
K 43 × 8 0.1 -0 .9  0.046 0.125 1.62(8) -0.055(13) 0.2530(5) 1.51(2) 
L 43 × 8 0.1 -1 .0  0.030 0.125 1.60(8) -0.073(11) 0.2583(3) 1.63(2) 
M 43 × 16 0.1 - 1.0 0.030 0.125 1.30(8) -0.27(7) 0.2386(3) 1.53(6) 
a 43 × 8 0.1 -0.1 0.110 0.130 0.51(9) 0.22(4) 0.286(4) 0.286(3) 
b 43 × 8 0.1 - 0.2 0.096 0.130 0.72(4) - 0.001(3) 0.286(2) 0.555(3) 
c 43 × 8 0.1 -0 .3  0 . 0 8 1  0.130 0.90(3) -0.001(3) 0.2656(8) 0.54(3) 
d 43 × 8 0.1 -0 .4  0.065 0.130 1.14(3) -0.007(3) 0.249(1) 0.895(6) 
e 43 × 8 0.1 -0 .5  0.049 0.130 1.27(3) -0.016(3) 0.2467(7) 1.025(6) 
f 43 × 8 0.1 - 0.6 0.032 0.129 1.28(6) - 0.021(5) 0.2594(6) 1.05(2) 
a 43 × 8 0.1 -0 .6  0.032 0.129 1,32(6) -0.025(6) 0.2610(7) 1.06(2) 
fl 63 x 16 0.1 -0 .6  0.032 0.129 0.73(7) -0.11(2) 0.207(1) 0.65(2) 

concentrate on the A = oo points. The data at very small A will be discussed in the 
next section in connection with the vacuum stability bound. 

An important question to be investigated is whether the doubler masses are kept 
large by the off-diagonal Wilson term, as is suggested by lattice perturbation theory 
and has been shown by the numerical simulations in the symmetric phase [11]. A 
slight complication in the broken phase is the mixing and the mass splitting of the 
doublers due to the scalar vacuum expectation value. In an unfavourable situation 
the mixing could push down one of the states with respect to the mean value. This 
does not happen if the off-diagonal terms in the mass matrix of the doublers are 
sufficiently dominating, because then the two masses are nearly degenerate. The 
numerical data show, that for the chosen points with G,G x < 0 all the doubler 
masses remain above 1.7-1.8 in lattice units (see fig. 1), and the mixing angles are 
always roughly about rr/4. A closer look at the results shows that the splitting of 
the doubler masses is sensitive to the quality of the tuning to aR = 0 at the zero 
corner. If the mixing at the zero corner is closer to zero, then the splitting of the 

doublers is usually smaller. 
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TABLE 2 

Some global expectation values in the points with label defined in table 1. ! is the normalized 
link variable defined in eq. (120) of ref. [11]. 161 denotes the absolute value of  the average scalar 

field, r R is the renormalized average scalar field and a R is the mixing angle. The other 
notations are self-explaining. Statistical errors in last numerals are given in parentheses 

! (161> (¢,,$,) (x,£,> ra  an 

A 0.244(1) 0.371(1) 0.930(6) - 0.376(3) 0.267(1) - 0.010(2) 

B 0.246(2) 0.353(4) 0.91( i ) - 0.356(4) 0.297(15) - 0.027(18) 
C 0.2q)5(2) 0.273(8) 0.65(2) - 0.271(7) 0.183(63) - 0.066(16) 
D 0.213(2) 0.313(4) 0.779(8) - 0.395(4) 0.229(5) - 0.034(19) 

E 0.231(2) 0.347(4) 0.819(8) -0 .519 (5 )  0.246(4) -0 .169(12)  
F 0.218(! ) 0.345(3) 0.814(5) - 0.624(4) 0.253(5) - 0.098(75) 
G 0.248(I) 0.405(3) 0.922(6) - 0.819(5) 0.299(8) - 0.115(97) 

H 0.2718(6) 0.431(1) 0.937(2) - 0.936(2) 0.304(4) - 0.4(2) 

I 0.Z~3(3) 0.360(5) !.020(6) - 0.376(2) 0.262(7) - 0.0084(43) 
J 0.238(2) 0.375(4) 1.182(9) - 0.400(3) 0.274(7) - 0.025(6) 

K 0.246(2) 0.393(3) 1.36( i ) - 0.422(3) 0.296(7) - 0.031(5) 
L 0.Z39( 1 ) 0.389(3) 1.461(9) - 0.426(2) 0.288(7) - 0.039(6) 
M 0.241(!) 0.374(3) i .43(!)  - 0 .408 (4 )  0.33(2) -0 .16(5 )  
a 0.448(4) 0.780(8) 0.464(4) - 0.463(5) 0.425(5) 0.44(10) 
b 0.411(2) 0.752(4) 0.709(3) - 0.513(2) 0.406(4) - 0.002(3) 
c 0.356(I) 0.674(2) 0.859(2) - 0.501(!)  0.363(4) - 0.001(3) 

d 0.301(2) 0.594(3) 0.946(4) - 0.472(2) 0.322(4) - 0.006(2) 
e 0.2592(9) 0.538(2) 1.019(4) - 0.447(2) 0.293(4) - 0.012(3) 

f 0.203(2) 0.444(4) 0.982(7) - 0.384(3) 0.259(5) - 0.016(4) 
a 0 . 2 0 6 ( 2 )  0.448(4) 0.989(9) - 0.387(4) 0.254(7) - 0.019(5) 
/3 0.160(2) 0.269(9) 0.58(2) -0 .237(8 )  0.18(2) -0 .13(2)  

The second question in the broken phase is whether the mirror fermion can be 
made sufficiently heavy by choosing G x large. Also here the first general observa- 
tion is that this is rather sensitive to the smallness of the mixing angle a R. For 
fixed values of the bare Yukawa couplings, the smaller aa ,  the larger can the mass 
splitting of the dominant ~- and X-states be. The opposite of this statement sounds 
more familiar: for large mass splittings the mixing has to be small. The sensitivity 
of the mass values of the tuning of fiR is also a difficulty because, unfortunately, 
the fluctuations of fiR during the Monte Carlo process turned out to be large. 
Therefore the tuning of a R requires long runs, especially at large bare Yukawa 
couplings. The measured masses of the fermion and mirror fermion on a 4 s ×  8 
lattice are shown in figs. 2 and 3. According to fig. 2 the mirror fermion mass can 
be kept near 1 for decreasing fermion mass. The opposite is done in fig. 3: for fixed 
small fermion mass the mirror fermion mass is increased beyond 1. The maximum 
value of the mirror fermion mass in the last point at (G,  = 0.1; Gx = - 1.0) is about 
1.6-1.7, which is practically the same as the lowest doubler mass. 

The masses in the tables and figures were obtained, according to the formulae in 
sect. 3, from the behaviour of the propagator at the lowest timelike momenta. An 
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TABLE 3 
Renormalized couplings, Z-factors and the angle g" defined in eq. (33) in the points with label 

defined in table 1. Statistical errors in the last numerals are given in parentheses 

537 

gg  GR* GRx ZL ZT Z~ Zx ~" 

A 71(5) 0.87(2) -3.68(11) 2.96(12) 1.93(9) 1.077(7) 3.28(2) 0.26(1) 
B 42(7) 0.70(4) -3.17(17) 2.71(13) 1.41(15) 2.15(1) 3.47(5) 0.24(2) 
C 54(12) 1.04(13) - 3.82(35) 2.82(16) 2.22(37) 1.96(2) 3.21(3) 0.35(2) 
D 57(4) 2.01(4~ - 4.20(7) 2.73(9) 1.86(5) 2.30( 1 ) 3.17(3) 0.40(3) 
E 60(4) 2.33(6) - 4.05(8) 2.66(14) 2.03(8) 2.66(1) 3.09(3) 0.48(2) 
F 75(4) 2.7(3) - 3.77(28) 2.89(9) 1.87(6) 2.66(2) 2.86(3) 0.33(9) 
G 87(8) 2.67(9) - 3.21(15) 2.91(9) 1.84(7) 2.62(2) 2.73(3) 0.20(10) 
H 82(4) 2.5(3) - 2.5(3) 2.63(7) 2.01(5) 2.75(2) 2.77(2) 0.5(2) 
I 81(6) 0.91(2) -4.26(12) 3.08(12) 1.89(10) 1.121(5) 3.31(3) 0.26(7) 
J 77(6) 0.89(2) - 4.73(13) 2.77(11) 1.87(7) 1.171(5) 3.34(5) 0.26(8) 
K 90(7) 0.85(2) - 5.09(13) 3.1(1) 126(7) 1.21(5) 3.35(4) 0.25(9) 
L 93(9) 0.87(2) - 5.65(13) 2.54(14) 1.82(7) 1.247(4) 3.27(3) 0.262(9) 
M 46(5) 0.59(11) -4.5(2) 2.30(12) 1.27(12) 2.38(3) 3.15(9) 0.36(5) 
a 4.2(4) 0.43(6) - 0.43(6) 3.61(7) 3.37(5) 134(2) 1.34(2) - 0.49(7) 
b 9.4(5) 0.703(5) - 1.365(12) 4.28(8) 3.42(5) 1.37(1) 2.54(1) 0.032(3) 
c 18.3(8) 0.733(7) - 2.08(2) 4.71(9) 3.45(6) 1.248(4) 2.96(2) 0.081(4) 
d 38(2) 0.774(7) - 2.78(3) 4.9(1) 3.41(5) 1.140(7) 3.09(2) 0.133(3) 
e 57(3) 0.84(2) - 3.50(5) 5.5(2) 3.38(8) 1.127(5) 3.16(2) 0.179(4) 
f 72(6) 1.00(2) - 4.05(8) 5.4(2) 2.93(9) 1.218(6) 3.14(3) 0.264(6) 
a 80(5) 1.03(3) -4.18(9) 5.7(3) 3.1(2) 1.232(6) 3.13(4) 0.267(7) 
/3 46(9) 1.09(.9) - 3.6(3) 4.3(3) 2.3(3) 2.01(2) 3.07(5) 0.47(3) 

alternative possibility is to use cosh and sinh fits to the appropriate matrix 
elements of the fermion propagator. This is particularly simple for degenerate 
fermion masses (e.g. at G,  = - G ~ ) .  Therefore, as a check, the fermion mass at 
G~ - - G  X = 0.6 was determined also from such fits. A cosh fit to matrix elements 
like <~L'}/4/~L> gives /J, IR=IJ,2R = 1.05(2). A sinh fit to matrix elements like 
<~tL/~R > gives /tlR =]J'Ea = 1.02(4). This has to be compared with the values in 
table 1 . /~R = 1.117(4), /J'ER = 1.119(5). The agreement is reasonably good, but the 
fits give 5-10% lower values. 

It cannot be expected that on our 43 x 8 lattice the finite-size effects are small. 
A detailed study on large lattices has to be left for later studies. In the present 
paper we only report on a first look at the lattice-size dependence. Due to the 
small masses one can expect that for fixed space volumes still larger time exten- 
sions are needed. In order to see the effect of finite T, we increased it to T = 16 in 
the points at (G~, = 0.1; G X = - 0 . 6 )  and (G~,= 0.1; G x = -1 .0) .  Most quantities 
change only little, but the Higgs-boson mass and especially the renormalized 
quartic coupling becomes substantially smaller. An even larger change of these 
quantities is observed if in the (G¢, = 0.1; Gx = - 0 . 6 )  point the spatial lattice size is 
increased to 63. The change of the fermionic quantities, however, remains moder- 
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ate. In particular, the renormalized Yukawa coupling of the mirror fermion is 
similarly large as on the smaller lattice, in such a way that the ratios GRx/GR, 
and /J,2R//./,IR are  almost the same on the 4 3 x  8, 4 3 x  16 and 6 3 x  16 lattice. It is 
clear, however, that the 4 3 X 8 lattice is only indicating the qualitative behaviour. 
For quantitative results considerably larger lattices are needed. 

6. The "vacuum stability" bound on the Higgs mass 

As has been mentioned at the end of sect. 4 the perturbative expansion of the 
effective potential breaks down for large values of the scalar field d~. This is due to 
the appearance of logarithms of the field in the coefficient of the quartic term. In 
the literature this situation has been dealt with by a summation of the leading logs 
by means of the renormalization group [16]. The coefficient of the d/-term is then 
equal to the running quartic coupling at a scale which is given by the value of the 
field. Given some values of the renormalized couplings ga, G R ~ ,  and G R x  a t  the 
physical scale, the renormalization group equations can be integrated upwards to 
some high scale to yield the corresponding quartic coupling. An important qualita- 
tive feature of the Callan-Symanzik fl-function of the quartic scalar coupling is 
that in some region, namely at small couplings and large ratios GRJg R and/or 
G R x/g R, it is negative. Consequently it may happen that for large fields one ends 
up with a running coupling which is negative, and the effective potential appears to 
bend over to large negative values. This situation has been called "vacuum 
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instability" and the corresponding values of the renormalized couplings, for which 
it occurs, are excluded from the allowed region. This implies the "vacuum 
stability" bound on the renormalized quartic coupling (that is, on the Higgs-boson 
mass) [ 16]. 

Now the question poses itself, what is the meaning of vacuum stability in the  
framework of the lattice regularized theory. Here the effective potential is a 
well-defined quantity, which is known to be convex due to a theorem of Symanzik 
[29]. Consequently it cannot possibly bend over to negative values for large fields 
because it is finite (e.g. zero by convention) at its minimum. 

The resolution of this apparent paradox is related to the fact that the running 
coupling at the cut-off scale is essentially equal to the bare coupling. In order that 
the theory be well defined the bare coupling A has to be positive. The renormaliza- 
tion group flow may now be followed downwards from the cut-off scale to the 
physical scale, where the renormalized couplings are defined. Those values of the 
renormalized couplings that can be reached starting from any positive value of 
the bare coupling form the physical admissible region. Those outside would not 
correspond to any positive bare A and cannot be realized for the given cut-off. In 
particular the boundary corresponding to A = 0 yields the vacuum stability bound. 

To conclude, a non-perturbative formulation of the vacuum stability bound is 
the requirement of a positive bare quartic coupling A. The problem is not primarily 
the large field behavior of the effective potential. Furthermore the cut-off plays an 
important r61e, which has not always been emphasized in the literature. 

The exact effective potential and exact /3-functions are, of course, not known. 
Therefore one has to rely on some approximations like perturbation theory or 
numerical simulations. Without knowing the qualitative behaviour of the/3-func- 
tions it is impossible to derive the vacuum stability bound. In particular, the 
qualitative discussion is different in case of a trivial continuum limit, which is 
qualitatively represented by the l-loop/3-functions, or if a non-trivial fixed point at 
non-zero couplings exists, as suggested by the qualitative features of the 2-loop 
approximation. (For the explicit expressions of the/3-functions up to 2-loop order 
see sect. 3 of ref. [11].) Since the qualitative behaviour of the/3-functions is not yet 
known, for the moment the vacuum stability bound can only be discussed if some 
scenario is assumed for the/3-functions. 

Later on one can, of course, obtain information about the /3-functions from 
numerical simulations by studying the cut-off dependence of the allowed values of 
renormalized Yukawa and quartic couplings. Before going into the discussion of 
the vacuum stability bound let us mention three possible alternative scenarios. The 
allowed region A in the space of renormalized couplings can be mapped out by 
studying the A-dependence of GR,#,GRx, g a for every bare Yukawa couplings 
within the broken phase near the gaussian fixed point. The region A will, in 
general, depend on the cut-off, which can be defined, for instance, by the value of 
the Higgs mass in lattice units. The first possibility corresponding to a trivial 
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Fig. 4. The qualitative behaviour of  the renormalization group flows as indicated by the l-loop 
/3-functions is depicted. The arrows on the flow lines are pointing in the direction of increasing energy 
scale. The dashed line separates two regions where the RG flows are going to positive and negative 
infinite values of the scalar quartic coupling respectively, and therefore gives us the lower bound on the 
Higgs mass if we require that the vacuum of our model be stable. In the figure, G R means GR, .  We set 

G a x  = 0 or - GR~. The qualitative feature of the flow lines is the same for both cases. 

continuum limit is that for increasing cut-off A is shrinking to the origin G R¢ , = 

G Rx = g R = 0. Another possibility is that, maybe after some shrinking for low 
cut-offs, the region A starts to expand and fills a 3-dimensional part of the 
(GR~,,GRx, gR)-space (or even the whole space) for infinite cut-off. In this case 
the continuum limit is non-trivial. A third possibility is that at infinite cut-off 
region A becomes a lower-dimensional subset, say, a surface. In this case the 
continuum theory is again non-trivial but the quartic coupling is a function of the 
Yukawa couplings. In other words, for given Yukawa couplings the lower and 
upper limit on the renormalized quartic coupling coincide. 

Returning to the discussion of the vacuum stability lower bound, let us first 
assume that the continuum limit is trivial and the l-loop fl-functions are qualita- 
tively correct (small scale breaking corrections to the /3-functions will always be 
neglected here). In this case the renormalization flow of the coupling is as shown 
by fig. 4. (For simplicity only one Yukawa coupling is considered. For instance, one 
can imagine that G R - - G R ,  and G R x = 0  or GR-----GR, = - - G R  x, which are 
renormalization group invariant relations.) The renormalized couplings at the 
physical scale (e.g. point P of the figure) are connected to the bare couplings along 
a flow line (point C on the figure). The length of the flow line connecting P and C 
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depends, of course, on the scale ratio at P and C. For a given scale ratio, i.e. for a 
given physical mass in lattice units, one can put the point C on the positive G R axis 
where g R = 0. The set of corresponding points P defines a curve, which is the 
vacuum stability bound for the given ratio of cut-off to physical mass. Namely, if 
one wanted to go with P along the flow line closer to the g R = 0 axis, then the 
corresponding point C would have a negative bare quartic coupling, and the lattice 
action would become unstable. Saying it differently, since the l-loop contribution 
of the fe.maion loop to the quartic coupling (at given bare couplings) is positive, it 
can happen that the bare quartic coupling needed for some combination of 
renormalized couplings is negative. (Note that here we refer to the true l-loop 
contribution, not to its leading log at large fields.) It is clear from the figure, that 
for very large scale differences the lower limit implied by the requirement of 
stability tends to the separatrix of the flow to g R = 00 and g R = --o0. Of course, in 
case of a trivial continuum limit one has to take into account also the cut-off 
dependent upper limit on the renormalized couplings (see, for instance, fig. 2a in 
ref. [11]). The numerical evaluation shows, that the allowed region in the 
(GR, g R)-plane is bounded by the upper limit for g R and by the vacuum stability 
bound. Note that in the literature the effect of weak gauge couplings is usually also 
included. Therefore there is an additional small excluded pocket near zero 
couplings, which is due to the Weinberg-Linde bound. 

The small coupling part of the vacuum stability bound curve can be obtained 
from lattice perturbation theory. If the cut-off is not very far from the physical 
scale, in such a way that the logarithm of the scale ratio is not very large, the low 
orders of perturbation theory give a good approximation. Using at A = 0 the l-loop 
perturbative expressions given in sect. 4, one obtains for instance in the special 

case GRg , = - - G R x  = G R 

96G2 fa (~2+ (/Zg + ~2/2)2)-' 
gR = t' 2 . (90) 

In fig. 5 this is plotted for the case that the cut-off is twice the fermion mass 
a n d  L' R. 

The qualitative picture of the vacuum stability bound in case of a non-trivial 
fixed point (as in the 2-loop expression) looks quite different. For instance, the 
flow lines crossing the ga  = 0 axis in the negative direction return to positive g a ' S ,  

because they go to the non-trivial fixed point F (see fig. 6 which refers to the case 
G R - G R g  ,, GRx = 0). Therefore, points excluded by the vacuum stability bound 
for some scale ratio can become again allowed for a larger scale ratio~ because 
point C goes again to positive quartic couplings. More generally, the existence of 
the non-trivial fixed point F implies that for large enough scale ratios between the 
cut-off and the physical scale there is practically no restriction on the values of the 
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Fig. 5. The vacuum stability lower bound on the Higgs self-coupling gR as calculated from l-loop 
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Fig. 6. Tile qualitative behaviour of the renormalization group flows as indicated by the 2-loop 
B-functions is shown. The arrows on the flow lines are pointing in the direction of increasing energy 
scale. We set GR~ = 0 in this figure. In the case where GR,I, = --GR~,, there will be another ultraviolet 

attractive fixed point at negative gR. 
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renormalized couplings. This is due to the fact that near F the /3-functions are 
close to zero, and the flow can spend an arbitrarily long time there. This can be 
used to tune C near F such that for a large scale ratio P is an almost arbitrary 
point on the plane. Since, however, the/]-functions are zero also at the origin O, 
the flow can spend a long time also there, and therefore a small region near O 
always remains excluded by the requirement of stability. For large scale ratios this 
region is, however, becoming very small. In the exact continuum limit correspond- 
ing to an infinite scale ratio every point of the plane is allowed. Note that this 
discussion is based on the assumption that the 2-loop /3-function is correct 
everywhere. In reality it can happen that the non-trivial fixed point is associated to 
a phase transition which implies a singularity in the/]-functions,  too. In this case 
some limitations on the renormalized couplings can still arise because, for in- 
stance, some region in fig. 6 is completely absent. Another  possibility is the 
existence of a non-physical attractive fixed point at g R < 0, which occurs for 
instance in the 2-!oop/3-functions for G R - GR~ = --GR~. In this case the vacuum 
stability bound for large cut-offs is the separatrix of the flows to the fixed points at 
positive and negative g R- 

This discussion shows that the qualitative features of the/3-functions, in particu- 
lar the existence or non-existence of a non-trivial fixed point, have to be taken into 
account in the numerical studies of the vacuum stability bound. Assuming that 
such a fixed point does not exist and that the l-loop/3-functions are qualitatively 
correct, a possible strategy in the numerical studies is to investigate the A-depen- 
dence of ga  for fixed Yukawa couplings. The extreme values of the renormalized 
quartic coupling ga  at A = ~ and A = 0 give, respectively, the upper limit implied 
by triviality and the lower limit implied by vacuum stability. On the basis of the 
results in ref. [11] one can expect that the A-dependence of the physical quantities 
is weak if the bare Yukawa couplings are in the range 0.1-1.0. This is supported by 
the numerical data in tables 1-3 at the points with label A, f and a, which 
correspond to (G~ = 0.1; G x = -0 .6)  but the values of A are, respectively, A = oo, 
10 -4, 10 -6. The obtained values of the renormalized masses and couplings are 
very similar in all these points. This shows that for such Yukawa couplings the 
lower and upper limits practically coincide. A large difference can only be 
expected at rather small Yukawa couplings. For instance, the pel turbative vacuum 
stability lower bound in fig. 5 is substantially smaller than the upper limit at such 
small Yukawa couplings, which is practically the same as the upper limit in the 
pure ~4 limit (gR = 40 in our case). 

In models with fermion-mirror-fermion pairs the vacuum stability bound is, in 
general, a function of the two renormalized Yukawa couplings GR~ , and Gax.  As a 
first numerical test, we looked at the dependence of the renormalized quartic 
coupling on G x for G,t , = 0.1, a fixed fermion mass of about 0.25 in lattice units and 
very small bare quartic couplings A = 10 -4, 10 -t~ (points a- f ,  a and /3 in the 
tables). The results for ga  as a function of GRx are shown in fig. 7. Comparing 



L. Linet al. / U(I) L ® U(I) R symmetric Yukawa model 545 

ae 
lafl 

100 

80 

60 

4 0  

2 0  

m 

B 

m 

B 

n 

B 

B 

I 

B 

D 

B 

m 

m 

' l l ' l , l O O l , , l l l , O , , i , , , ,  

I 

u 

m 

a 

N 
! I I I [ I I I I I I I I I [ I I I I I ! I I I 

0 1 2 3 4 5 
- G ~  

Fig. 7. Data of  gR vs. - G n  v at very small values of  A at G ,  = 0.1 are plotted. The point denoted by 
the cross is at A = 10 -~' on the 43 × 8 lattice and the full triangle on the 63 x 16 lattice. Full squares are 

at A = 10 -4  on the 43 × 8 lattice. 

points f and a shows that between A = 10  - 4  and ~ = 10  - 6  there is practically no 
difference if G x = -0 .6 .  There might be a small difference at the other end of 
Ga. = 0.1, where the order of magnitude of g R is the same as the value given by 
perturbation theory (although this point is presumably already beyond the strict 
validity of the l-loop approximation). The actual value of gR = 70 in point f has on 
the 4 3 X  8 lattice a large-finite size effect. The point fl on a 63X 16 lattice gives 
ga = 46(9), a value equal within errors to the corresponding A = ~ point C, namely 
g a -  54(12), and also similar to the upper limit in the N =  2 pure ~4 model 
g R = 40. This shows qualitatively that the vacuum stability lower bound and 
triviality upper bound on the Higgs mass practically coincide if the mirror-fermion 
mass is large. A quantitative statement of this kind needs further numerical studies 
o n  6 3 X  16 and still larger (but feasible) lattices. 

7. Discussion and summary 

An important axiom to be fulfilled by a euclidean lattice action is the 
Osterwalder-Schrader reflection positivity. In sect. 2 of the present paper reflec- 
tion positivity was proven in our model in a wide range of bare parameters. In 
particular the so-called "link-reflection positivity" was shown to be valid for every 
non-negative scalar hopping parameter K. The "site-reflection positivity" could be 
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proven only at infinite bare quartic coupling A = ~ either for sufficiently small or 
for sufficiently large bare Yukawa coupling G~ = ½(G, + Gx). The vicinity of the 
gaussian fixed point at zero couplings, which has been numerically explored in ref. 
[11] and in the present paper, is at K > 0. Therefore the link-reflection positivity 
implies the existence of a non-negative self-adjoint hamiltonian (and the unitarity 
of the S-matrix) in the corresponding quantum field theory in Minkowski space. 

An important question in any lattice fermion model is the decoupling of the 
lattice fermion doublers in the continuum limit. The numerical simulations in both 
the symmetric phase [11] and in the broken phase here show that in the vicinity of 
the gaussian fixed point the 30 fermion doublers can be kept at rather large masses 
(roughly about 2 or higher in lattice units). This allows to define the desired 
continuum limit near the gaussian fixed point with the physical particles corre- 
sponding to the field content of the model (scalar bosons, fermion and mirror- 
fermion). Therefore a potentially dangerous consequence of the hopping para- 
meter expansion at infinite bare Yukawa couplings, namely the dynamical 
mirror-doubling of the fermion states [30-32], does not occur in the investigated 
region at small or moderately large bare Yukawa couplings. In order to be able to 
draw qualitative conclusions from the present model for the Higgs-Yukawa sector 
of the Standard Model, the mirror-fermions, which were up to now not observed in 
nature, have to be decoupled too. The observed large values of the renormalized 
Yukawa couplings in the symmetric phase [ 11] suggest that the decoupling can be 
done similarly to the decoupling of the doublers, namely by large masses. The 
results of the numerical simulations in the broken phase show, that indeed the 
mirror-fermions can be made almost as heavy as the doublers. Theoretically, if a 
non-trivial fixed point would exist, then there were no upper limits for the 
renormalized couplings at all, and the mirror-fermions could be infinitely heavy. If, 
however, the gaussian fixed point at zero couplings would be the only fixed point, 
then the continuum limit would be trivial and the mirror-fermions would have to 
exist as "new physics" at some large energy scale. Already the present simulations 
together with the results of ref. [11] suggest that this scale can, indeed, be rather 
large, say, four times the vacuum expectation value. Nevertheless the conclusions 
in the present paper can only be qualitative since the lattices are small. Obviously 
this limit has to be made more precise in further numerical studies on larger 
lattices [14]. At this point it is worth to emphasize that the present phenomenology 
does not exclude the mirror doubling of the three fermion families even near 100 
GeV [33]. Therefore the light sector of the U(1) L ® U(1) R model can be as 
"chirar '  as the standard model is known to be "chiral" phenomenologically. 

A closer look at the obtained renormalized couplings in the broken phase 
reveals that the values are somewhat (by about 10-20%) smaller than the values in 
the symmetric phase at the same bare Yukawa couplings. This can, however, be 
due to the fact that in the broken phase the parameters are not perfectly tuned to 
zero renormalized fermion-mirror-fermion mixing a a :=0. The numerical data 
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clearly show a strong correlation between a R and the renormalized Yukawa 
couplings GR,,  GRx" the smaller a R is, the larger are GR,  and Gnx. Therefore it 
is not excluded that by an exact tuning to a n - 0  one would obtain very similar 
renormalized Yukawa couplings in both phases. If this is the case, then in the 
broken phase the upper limits on the fermion a n d / o r  mirror fermion masses 
would be rather high. The corresponding renormalized Yukawa couplings could be 
as high as 2-3  times the tree unitarity upper bound. This interesting question 
awaits further detailed numerical studies. 

An interesting new feature of the Higgs-Yukawa models compared to the pure 
scalar ~4-models is the possibility of a (cut-off dependent) lower limit on the 
Higgs-boson mass, the so-called "vacuum stability bound". This lower bound can 
be deduced from the negative/]-function of the quartic scalar coupling. (For its 
non-perturbative definition see sect. 6.) The discussion depends substantially on 
the assumed fixed-point structure. In case of a non-trivial fixed point the vacuum 
stability bound can be very weak or not present at all. Under the more conven- 
tional assumption of a trivial continuum limit the lower bound is similar in nature 
to the upper bound: for fixed Yukawa couplings the largest renormalized quartic 
coupling is reached at infinite bare quartic coupling (A = o0) and the smallest at 
zero (A = 0). The numerical simulations show that, in accordance with the expecta- 
tions based on the perturbative renormalization group studies [16], for large 
Yukawa couplings the lower and upper limits are almost the same. The observed 
quartic coupling is almost entirely induced by the Yukawa couplings. In other 
words, except for very small Yukawa couplings, the renormalized quartic coupling 
is practically a function of the renormalized Yukawa couplings. As a consequence, 
if the mirror-fermions are heavy, then the Higgs boson mass is predicted within 
close upper and lower bounds. The simulations in two points on 63× 16 lattices 
show that these upper and lower bounds at the given Yukawa couplings are within 
errors equal to the non-perturbative upper limit in the pure 4~4-model. Concerning 
the existence of a non-trivial fixed point the present numerical data are not 
conclusive. This question will be investigated in the future [14] by studying the 
cut-off dependence of the upper and lower bounds on the Higgs-boson mass. 

We thank Martin Liischer for helpful comments and discussions about reflection 
positivity. The Monte Carlo calculations for this paper have been performed on 
the CRAY Y-MP of HLRZ, Ji~lich. 
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