Nuclear Physics B 368 (1992) 390-412
North-Holland

The eigenvalue spectra in Z(2) ® Z(2) and
SU(2) ® SU(2) fermion—-Higgs models *

Ian Barbour ', Wolfgang Bock 23, Christine Davies !, Asit K. De 22,
David Henty !, Jan Smit # and Thomas Trappenberg 2

! Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
2 HLRZ ¢ / o KFA Jiilich, P.O. Box 1913, D-5170 Jiilich, Germany
3 Institut fiir Theoretische Physik E, RWTH Aachen, D-5100 Aachen, Germany
4 Institute of Theoretical Physics, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands

Received 28 August 1990
(Revised 5 August 1991)
Accepted for publication 27 August 1991

We present an analysis of the eigenvalue spectra of the Dirac operator M and related
operators M’ and M*M in an SU(2)®SUQ) and a Z(2)®Z(2) fermion-Higgs model in the
quenched approximation. We especially study the spectra in the symmetric and broken symmetry
phases along the crossover line which was recently discovered in these models in numerical
simulations. It turns out that in the symmetric phases of both models zero modes emerge along
the crossover line. In the case of the Z(2) model the zero modes follow the crossover line into
the broken symmetry phase whereas in the case of the SU(2) model they appear to stop at the
phase transition line between the symmetric and the broken phases.

1. Introduction

Non-perturbative understanding of the spontaneous symmetry breaking in the
standard model of electroweak interactions has been the subject of many recent
investigations. Studies of lattice regularized pure scalar @* theory have been able
to confirm the perturbative picture of triviality and have determined an upper
bound on the Higgs mass (for recent reviews see refs. [1-3] and references
therein). The next stage of the calculation naturally involves the so-called Yukawa
models on the lattice involving both scalar and fermion fields interacting through
Yukawa couplings. Initial studies have considered scalar—fermion models on the
lattice with Z(2), U(1) and SU(2) symmetries. For reviews see refs. [4-6] and
references therein.

The non-perturbative investigations of the lattice Yukawa models have revealed
a variety of interesting and unusual properties. At intermediate values of the
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Yukawa coupling there exists a region which the fermionic observables are very
sensitive to [7,8]. Let us call it the crossover region. Across the crossover the
behaviour of the fermion mass changes, as explained below. For smaller Yukawa
couplings, perturbative expectations about fermion mass generation are fulfilled.
For Yukawa couplings above the value corresponding to the crossover there exists,
on the contrary, a symmetric phase where the fermions are massive and a broken
phase where the fermion mass increases as the vacuum expectation value of the
scalar field decreases. For such strong Yukawa couplings, the fermion mass does
not notice the phase transition between the symmetric and the broken phase and
decouples in the continuum limit. Nevertheless, it has been proposed [9] that using
a second derivative Yukawa coupling known as the Wilson—Yukawa coupling [10]
which is chirally invariant, this apparently unphysical region may come to use in
decoupling species doublers of chirally coupled fermions on the lattice while the
masses of the physical fermions can scale. The decoupling of the fermion doublers
by making them heavy and scaling of the physical fermion masses have now been
demonstrated in these theories using both analytic and numerical techniques
[11-17]. Although it is very unclear at the moment what kind of a theory emerges
in the continuum limit using the Wilson-Yukawa approach [13,18], from the point
of view of understanding Yukawa couplings alone non-perturbatively, investiga-
tions on curious phenomena like the crossover would be very valuable.

In this paper we study the eigenmodes of the fermion matrix in the vicinity of
the crossover. The peculiarities of the crossover, e.g. the failure or at least a great
difficulty to invert the fermion matrix at and around the crossover, can be studied
in a more quantitative and direct way in this approach. In particular, we would like
to make definite statements about the existence of zero eigenvalues even in the
limit of infinite lattice volume. Analogous studies of the eigenmodes in other field
theories which involve fermions, such as QCD and QED, have proved useful
[19-22]. Details of the quality of the lattice approximation for fermions can also be
judged from the spectra [16,23].

We investigate two different lattice Yukawa models in the quenched approxima-
tion. One is with the discrete symmetry group Z(2) ® Z(2) and the other with the
continuous symmetry SU(2) ® SU(2). The Z(2) model uses staggered lattice
fermions. The SU(2) model is studied both with and without the above-mentioned
Wilson—Yukawa coupling.

After defining the two models in sect. 2 we briefly describe in sect. 3 the
Lanczos algorithm used to obtain the eigenvalues of the fermion matrices M,
M and the related matrix M’. In sect. 4 we describe the cigenvalue spectra of
the fermion matrices M and M’ in different regions of the phase diagrams for the
two models and discuss the appearance of small eigenvalues. In order to obtain
information about the volume dependence of the small eigenvalues of M we
analyse in sect. 5 the small eigenvalues of the hermitian operator MM which
allows us to use larger lattices. In sect. 6 we discuss fermion condensates calculated
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from the cigenvalues and show in sect. 7 that an effective free fermion mass
calculated from the fermion condensate surprisingly has reasonable qualitative
behaviour.

2. The models

The models under consideration are defined by the following actions on an
cuclidean lattice. The Z(2) model with staggered fermions and on-site Yukawa
coupling is defined by the action

S=S,+Sg,
Su= =21 bis (2.1)
Xp
Sp=xMx
= 2 M X (Xaapp ~ Xami) +Y LD KXo (2.2)
X X

where 7, =(—1D""*2% "% and y, and y, denote the staggered fermion
fields. The action for the SU(2) model is given by

S=8,+Sg,

Sy= -k LiTr(0fD,, , + PlD, ), (2.3)
Xp

Sg=PMY

=) %WXYM(WXJrﬁ. - q/x~ﬁ) +yz¢x(®xPR + (DIPL)TX
xu X
+w L (W0, P+ DIP)Y,
X

~ [T D Py + DLy P )W + T (D PR+ q>j{,ﬁPL)1px_ﬁ]}. (2.4)

i x
In both actions the scalar fields ¢ € Z(2) and & € SU(2) are radially frozen and M
denotes the fermion matrix. In the case of the SU(2) model the Dirac-fermion
fields ¥, and ¥, are SU(2) doublets and P, y are the left- and right-handed chiral
projectors. There are two kinds of coupling present in both models, namely, the
Yukawa coupling and the scalar field hopping term with parameters y and «,
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respectively. In the SU(2) model, in addition, there is a second derivative Yukawa
coupling called the Wilson—-Yukawa coupling involving the parameter w.

The action in (2.1) and (2.2) is invariant under global chiral Z(2), ® Z(2),
transformations

X —i (QCPE + QOPO)X’ X _);(QCPO + QOPC)’ ¢ - QGQO(b’ (2'5)

where P, and P, project onto even and odd sites, respectively,

X tx+x3+xy

P =%(l+sx), P =‘12‘(1—8x), e, =(—1) R (2.6)

cx ox X

and 2,,=+1
In a corresponding manner (¢, o « R, L) the action in (2.3) and (2.4) is invariant
under the global chiral SU(2); ® SU(2)y transformations

V(2 P+ Qg PV, FoT(QP+0LP), P®->0Q00, (2.7)

where | ; € SUQ), .
The fermionic part of the action for the Z(2) model can be rewritten via a
transformation on the fermion fields,

Xx _(d)x ox Pex)Xx’ )?;=A7x(¢xpex+P ) (28)
giving

Sp=x'M'x'=x{My;+yl}x’

I

Z 217,uxXx<(¢ ¢x+;.:. ox+ i +P€Xiﬁ)/\/;iﬁ.> +yZX,'()(;, (29)
x

xXut+

where My is the off-diagonal part of the fermion matrix M’. Under the above
7(2), ® Z(2), transformations y' transforms as y' = €.y’ and ¥' =y = x'{2..

Analogous transformations can be performed on the fermion fields in the SU(2)
model. When written in terms of the fermion fields

= (@I P+ Py)V,, V' =¥ (P Py+P), (2.10)

which transform as 1, ® SU(2)y, the Yukawa term takes the form of a bare mass
term and the Wilson-Yukawa term the form of the standard Wilson mass term
familiar from QCD,

Se=V'M'V =¥ {Mle+ (y+dw)l}¥

= LAV {( BB P+ P )Wy — (B10,_ P+ P} W)

x Tx+i xX+a X T x—4
xp
Yy DT A w D = 3T (W ) (2.11)
X Xp
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where M again denotes the off-diagonal part of the fermion matrix M.
An alternative transformation on the fermion fields to, for example

lPx” = (QDXPR +PL)1PX = (pxlpx” @x/, = @x(d);PL-’_ PR) = WX,(D;’ (212)

which transform as SU(2); ® 1, corresponds to just a unitary transformation on
M’ and hence gives the same eigenvalue spectrum. However, note that the Wilson
term in the action for the ¥”, ¥/ fields contains the scalar field in a non-trivial
way.

The eigenvalues of M/ are particularly useful in the quenched theory, since
they are independent of y + 4w and need only be shifted by y + 4w to give the
spectrum of M'. The ecigenvalues of M, and M’ can be easily seen to be
invariant under Z(2) ® Z(2) or SU(2) ® SU(2) transformations.

The phase diagrams of the two models are qualitatively quite similar and much
is already known about them. In the quenched theory the phase diagram is
independent of y (and w for the SU(2) model) and given by the respective pure
scalar Z(2) (k. = 0.07483(2)) or SU(2) ® SU(2) /Z(2) = O(4) model (k. = 0.3045(7)).
There exist a symmetric or paramagnetic phase (PM) (x>« > —«k.) and two
broken phases: a ferromagnetic (FM) phase («x > k_), and an antiferromagnetic
(AM) phase (=« > «).

We illustrate in fig. 1 a schematic phase diagram applicable to either model. For
the SU(2) model fig. 1 shows the phase diagram only at w = 0. For w > 0 the zero
of the Yukawa coupling axis is to be shifted in the positive y-direction by an

K
FM(W) i FM(S)
|
K —- K.
|
|
|
04 PMW . PMS +0
i
1
I
Ke : #_’CC
AM(W) | AM(S)
i |
*
y
y

Fig. 1. The schematic phase diagram of either of the models in the quenched approximation. The
roughly vertical dashed line at y = y * represents the crossover. For the Z(2) model «, = 0.07483(2) and
for the SU(2) ® SU(2) model «. = 0.3045(7).
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amount of 4w [24]. The phases are distinguished by the local order parameters
(@Y (the scalar field vacuum expectation value) and (@, ) = {(— D)F1T¥ 25+ x) )
(staggered scalar field vacuum expectation value). We use the following abbrevia-
tions for the regions of the phases we have found:

Symmetric phases:
PMW: Paramagnetic phase with weak Yukawa couplings:

(@) =(Dy) =0,
PMS: Paramagnetic phase with strong Yukawa couplings:
(®) = (D) = 0.

Broken symmetry phases:

FM(W): Ferromagnetic phase (weak Yukawa coupling region):
(@)>0, (P,)=0,

FM(S): Ferromagnetic phase (strong Yukawa coupling region):
(D) >0, (P,)=0,

AM(W): Antiferromagnetic phase (weak Yukawa coupling region):
(@) =0, (P>0,

AM(S): Antiferromagnetic phase (strong Yukawa coupling region):
(@)=0, (®,)>0.

In fig. 1 the FM, the PM and the AM phases are separated by solid lines
representing second-order phase transitions. The dashed line approximately paral-
lel to the k-axis at intermediate values of the Yukawa coupling y =y* (= 1.3-1.4)
represents the position of the so-called crossover. In the following we describe
briefly the peculiar facts about the crossover. The discussion applies to both of the
models. For the SU(2) model the crossover is discussed in the following only at
w =0 but can trivially be extended to the w > 0 case keeping in mind the shift of
the phase diagram for nonzero w.

The FM(W) and FM(S) regions are distinguished by the behaviour of the
fermion mass [7,8]. In the FM(W) region the fermion mass mp decreased as « \ k.
for fixed y and w whereas, in the FM(S) region, my followed approximately
myp=yz ' [16] with 22 = JTr{®]P, , ;>, increasing as x \ .. Associated with this
crossover is the technical feature that the number of conjugate gradient iterations
N¢g required to invert the fermion matrix to a given accuracy showed a maximum
in both models at the crossover.

The crossover in the SU(2) model is seen to continue into the symmetric phase,
showing little dependence on «, and splits this phase into two different regions: a
massless weak coupling region (PMW) and a strong coupling region (PMS) where
the fermions are massive [24]. N.; peaks again around the crossover. The
maximum of N.; becomes more pronounced and higher as « decreased. The
observed peak of N, indicated the presence of the crossover also in the AM
phase, though its fate deep in this phase is not known. Similar observations are
made in the Z(2) model in this work, and are described at the end of subsect. 4.2.
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The correlation of the crossover phenomenon with N4 is not well understood
but should be a reflection of the appearance of small eigenvalues in the fermion
matrix. This is investigated in detail below. If there appear exactly zero eigenvalues
at the crossover, some of the weak and strong regions described above may not be
analytically connected and even in the context of the quenched approximation they
can be regarded as two distinct phases separated by the crossover.

3. The Lanczos algorithm

We have used the Lanczos method for non-hermitian matrices [25] for calculat-
ing the eigenvalues of the Dirac operator M and the related operator M'. In the
case of the operator MM the simpler hermitian version of this algorithm [26]
could be applied. The eigenvalue calculations were performed on independent
scalar field configurations which were generated by a simple heat bath algorithm in
the case of the Z(2) model and a Hybrid Monte Carlo algorithm in the case of the
SU(2) model. The Lanczos algorithm is an iterative algorithm which transforms a
given matrix M to a matrix 7 which has a tridiagonal form,

Y'™MX =T, where YIX=1 and Y=X if M is hermitian. (3.1)
The transformation matrices X =(x,,...,xy) and Y=(y,,...,y,) consist of the
Lanczos vectors x; and y; (i, j=1,..., N) which are generated iteratively during

the process of calculation. If M is non-hermitian it turns out that, because of
rounding erros, re-orthogonalization of the above Lanczos vectors is necessary.
This requires a large amount of storage space since 2N vectors have to be stored
simultaneously. The nonzero elements of 7 are calculated from products of M
with these Lanczos vectors. The details of the iterative procedure are described in
refs. [25,27]. From the elements of T the eigenvalues can be computed by Sturm
sequencing in the case of the hermitian matrix M "M and by the QL algorithm for
the non-hermitian matrices M and M’ [27].

4. Eigenvalue distribution in different regions of the phase diagram

We use the non-hermitian version of the Lanczos algorithm described above to
find the eigenvalues of M and M}y for the two models. Symmetries exist in both
models which can be used to reduce the dimension of the Lanczos vectors.

For the Z(2) model the eigenvalues of M appear in complex conjugate pairs as
eMe =M" (M is of course real in this model). Since eM e = — M, the eigenval-
ues of M/, appear in + / — pairs. In addition, because of ¢M . = — (M), the
eigenvalues of M, have the same complex conjugacy symmetry as M.
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For the SU(2) model in the absence of a Wilson term the eigenvalues of the
fermion matrix M are four-fold degenerate and appear as complex-conjugate
pairs. This can be seen by the following. Performing a spin diagonalization [28]
replaces the y-matrices in the hopping term by the site-dependent phase factor
7, The Yukawa term is unaltered on even sites, but P and Py are interchanged
on odd sites. Writing the fermion matrix in this representation in a block form with
respect to even/odd sites one can then easily convince oneself that if A is an
eigenvalue, A* is also an eigenvalue of this matrix. The four-fold degeneracy is a
combination of the two-fold degeneracy arising from the symmetry within the
right- and left-handed Dirac subspaces, and another two-fold degeneracy resulting
from the pseudo-reality of the SU(2) scalar fields. A similar argument leads to the
same symmetry and degeneracy for the eigenvalues of M’ and M. As in the Z(2)
model the eigenvalues of MJ; also appear in + /— pairs, because ysM iy =
— My, or eM e = — My

With non-zero Wilson term the generic four-fold degeneracy disappears. The
+ /— symmetry remains and also the eigenvalues still appear in complex conju-
gate pairs as can be shown from the pseudo reality of SU(2), charge conjugation
and vy transformation.

An important property of M and M’ is that their zero modes are related by the
transformation (2.8) or (2.10). Note also that their determinants are equal (up to a
sign in the Z(2) model), so they vanish simultaneously.

At the beginning it is useful to look at the eigenvalues of the fermion matrix in
the limit of the free theory (k - », @ — 1). For free Wilson fermions with bare
mass y and Wilson parameter w the eigenvalues of the fermion matrix on a
hypercubic lattice of volume L* are given by

y+4w—w) cos p, +i [} sin’p,, (4.1)
o w

where the allowed momenta with periodic or antiperiodic boundary condition are
p,=2nm/L or p, = (2n + Dw /L, respectively with n=0, 1, 2,...,L — 1. For
example, the eigenvalues on a 4* lattice in the case of naive fermions (w = 0) are:
y, v+i, v+v2i, y+v3i and y + 2/ (with periodic boundary conditions in all
directions) or y + V2 (with antiperiodic boundary conditions in all directions). In
an interacting case the eigenvalue distribution will naturally be different and tend
in the limit x = o to the free distribution.

However, if one chooses periodic boundary conditions in all directions, real
eigenvalues of the free theory at y = 0 still appear for the interacting theory in the
spectral distribution of M. This can be seen as follows. The matrix M/, can be
written as M =M, (P, + Pg), where M 4P, couples to the scalar field and
M Py is free. Hence any eigenfunction of M, which is purely right-handed will
give rise to its corresponding free eigenvalue (and those which are not will have
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eigenvalues differing from the free case). In the free theory with periodic boundary
conditions in all directions, there are exactly real eigenvalues at 0, +2w and +4w,
as can be easily seen from eq. (4.1). Their eigenfunctions are also eigenfunctions of
vs and hence we can construct eigenfunctions which are purely right- or left-
handed. The right-handed modes survive in the interacting theory. In addition, at
w=0, "W . will be a left-handed eigenvector of M/, with zero eigenvalue if,
and only if, ¥, ;.. is a left-handed eigenvector of the free fermion matrix
M(k = =) at y = 0 with zero eigenvalue. Therefore these zero eigenvalues will also
remain in the spectra of M/, for all values of «.

In general at small y periodic boundary conditions in all directions give rise to
small eigenvalues which cause strong finite-size effects in various observables and
are responsible for the lack of convergence in inversion algorithms of the fermion
matrix. For this reason an antiperiodic boundary condition in at least one direction
is to be preferred, since then such zero modes do not exist on a finite lattice. On
the other hand, with periodic boundary conditions the spectra may appear closer
to their form in the infinite lattice limit. Of course, in the infinite lattice limit, the
spectral distributions should be independent of the choice of boundary conditions
and we therefore change the boundary conditions to get some idea of the strength
of finite-size effects.

Because of the technical limitation on the lattice size due to the re-orthogonali-
zation of the Lanczos vectors we cannot perform large-volume calculations with M
or M’, but in order to get an estimate of the finite-volume effects on the
eigenvalue distribution we study the matrices with various boundary conditions for
the fermion fields.

In the following we describe the eigenvalue spectra in the different regions of
the coupling parameter space for the different models.

4.1. SU(2) MODEL AT w=0

In fig. 2 we show the eigenvalue distribution of the matrices M and M for the
SU(2) model at w =0 in different regions of the phase diagram. The eigenvalues
are in general complex and are represented by the dots in fig. 2 where the
abscissae corresponds to the real and the ordinate to the imaginary part. For M
the eigenvalue distributions from several independent scalar field configurations
are superimposed whereas for M; we display data for only one configuration. The
eigenvalue distribution for the matrix M’ is obtained by shifting that of M, along
the positive real axis by y. Since the determinants of the matrices M and M’ are
equal, the appearance of a zero mode in one should signal its appearance in the
other. A similar general description applies also to figs. 3 and 4 to be discussed in
subsects. 4.2 and 4.3.

Ferromagnetic phase. Fig. 2a shows the eigenvalue distributions in the FM phase
at k=032 for M on a 4* lattice and for M, on a 6 lattice. In all cases an
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Fig. 2. The eigenvalues of M in nine different regions of the coupling parameter space and the
eigenvalues of MY (right column) in the SU(2) ® SU(2) fermion-Higgs model at w = 0. The plots for
M contain 10 configurations on a 4* lattice and, for M, 1 configuration on a 6* lattice. (a) FM phase
at « = 0.32. The eigenvalues of M are shown (from left to right) at y =1.0, 1.32 and y = 2.0 calculated
on rotated ¢-field configurations. Antiperiodic boundary conditions (a.p.b.c.) were imposed only in one
direction. (b) PM phase at « = 0.20, a.p.b.c. in one direction, the same values of y as in (a). (¢) AM
phase at k = —0.32, a.p.b.c. in all directions, the eigenvalues of M are shown now at y =1.30, 1.42 and
y = 1.50.

antiperiodic boundary condition in one direction is imposed on the fermion fields.
Because of the drift of the scalar field magnetization in the broken phase (no
spontaneous symmetry breaking occurs on a finite lattice) we obtain the eigenval-
ues of M from equilibrated scalar field configurations rotated by an SU(2) ® SU(2)
transformation so that the magnetization always points in one predetermined
direction. It is easy to see that the eigenvalues of M are invariant under such a
rotation.
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The eigenvalues of M, nearly form a ring at the chosen value of k = 0.32 with
no real eigenvalues resulting in a small gap in the ring around the real axis at
A = t+y* But there are eigenvalues very close to the real axis meaning that there
will be eigenvalues of M’ close to zero when y =y*. The eigenvalues of M at
y = 1.32 in fig. 2a show also the appearance of small eigenvalues. The crossover
region in the FM phase, therefore, shows no exact zero modes but there exist small
eigenvalues causing slow convergence of the conjugate gradient algorithm. For
y >y* (strong coupling region) and y <y* (weak coupling region) the origin lies
respectively outside or inside the ring of eigenvalues of M'. Hence small eigenval-
ues do not appear deep inside these regions as also evidenced by the eigenvalues
of M at y=1.0 and y =2.0. As « increases the gap around the real axis in the
M distribution grows and in the limit k — o they end up on the imaginary axis
with their free values. As y — 0 the eigenvalues of M for any value of « approach
their free values on the imaginary axis.

If periodic boundary conditions are imposed, the shape of the eigenvalue
spectrum of M, remains as shown but with an additional delta function like
distribution at the origin due to the free zero modes as described above.

Paramagnetic phase. In the PM phase at « = 0.2 (fig. 2b) the ecigenvalues of M
now form a closed ring intersecting the real axis at y *. This is consistent with the
observation that the gap around the real axis vanishes as one approaches the
critical line from above. Unlike in the FM phase the matrix M’ has zero
eigenvalues at y =y *. The matrix M in fig. 2b also shows very small eigenvalues at
y = 1.32. Examination of the distribution of eigenvalues of M, around the real
axis shows approximate real eigenvalues in the range y = 1.2-1.4. The density is
peaked at the outer edge of the ring.

The appearance of the zero modes as « decreases through «_ at y close to y*
is consistent with the observed behaviour of the conjugate gradient algorithm. In
this region the number of iterations required to invert the fermion matrix increases
dramatically. The algorithm will actually fail to converge if it hits an exact zero
mode near y*. Of course this is very unlikely in practice.

Antiferromagnetic phase. The eigenvalue distribution in the AM phase at « =
—0.32 is shown in fig. 2c. The same blocking of the fermion matrix M as used in
deriving the symmetries and degeneracies of its eigenvalues in the beginning of
sect. 4 shows that the transformation @, — ¢, ®,, which takes k > —« in the pure
O(4) scalar action in eq. (2.3), corresponds to a rotation of 90 ° in the eigenvalue
spectrum. Thus the spectrum at « = —0.32 with antiperiodic boundary conditions
in one direction can be found by rotating fig. 2a. In fig. 2c we show the spectrum at
x = —0.32 but with antiperiodic boundary conditions in all directions so that the
effect of varying the boundary conditions on M, in this phase can be seen.
Comparing fig. 2a (rotated) with fig. 2c we find no significant difference in the
distribution of the eigenvalues of M/ except for a slight shift in the position of the
crossover. The eigenvalues of M show that the crossover for antiperiodic boundary
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conditions in all directions is around y = 1.42 whereas for antiperiodic boundary
conditions in only one direction it is around y = 1.32.

42. 7Z(2) MODEL

The eigenvalues in the Z(2) model in different regions of the phase diagram are
shown in fig. 3. The lattice size is 6* for M and 8 for M., with antiperiodic
boundary conditions only in one direction in figs. 3a, b and in all directions in fig.
3¢. Similar to the SU(2) case, we find small eigenvalues of M and M’ at
y =y* = 1.4, However, this crossover region differs in certain details as described
below.

Ferromagnetic phase. The eigenvalue distributions in the FM phase at « = 0.08
are shown in fig. 3a. Corresponding to the rotation of the scalar field in the SU(2)
model a reflection of the scalar fields ¢, — — ¢, is performed if tunneling occurs.
The distribution of M for small eigenvalues shows a structure similar to the SU(2)
model in dependence of y. There are also features in the distributions of M
common to both models, in particular the approximate circular shape close to ..
However, in the Z(2) model there is, at this value of x, no gap around the real axis
in the ring of eigenvalues of M. Indeed there are exactly real eigenvalues in an
interval around 1.4. As a result M’ has exact zero eigenvalues at certain values of
y in the crossover region. Zero eigenvalues of M have also been detected around
y = 1.4. This will lead to a lack of convergence of the conjugate gradient algorithm
for Yukawa couplings in the region y = 1.2-1.6, as observed in ref. [7]. However,
we find that the width of the interval of real eigenvalues of M shrinks from a 4*
to an 8* lattice. At the same time the density of real eigenvalues of M, does not
change appreciably as the volume is increased. Another feature of the M spectra
in the Z(2) model is the appearance of lines of exactly imaginary eigenvalues even
at values of k very close to «_.

Paramagnetic case. The eigenvalue distributions in the PM phase at « = 0.04 are
shown in fig. 3b. We obtain again a closed circular pattern for M, as in the SU(2)
model. As in the broken phase, the spectrum has lines of real eigenvalues. The
width of the crossover does not show a strong volume dependence in this phase, in
contrast to the behaviour observed in the broken phase.

Antiferromagnetic phase. In tig. 3c we show the eigenvalue distributions in the
AM phase at « = —0.08 with antiperiodic boundary conditions in all directions.
The M/, distribution implies an appreciable band of y-values around 1.4 for
which there exist zero modes of M'. The large width of the crossover region is also
seen in the M distribution and this is why examples in the weak and the strong y
region in fig. 3c are shown well away from y = 1.4, viz. at y=0.5 and y = 2.0,
respectively.

As k — —oo the eigenvalues of M, for both models must migrate to the real
axis, corresponding to the free theory at k = = but rotated through 90 °. Decreas-
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Fig. 3. The eigenvalues of M in nine different regions of the coupling parameter space and the
eigenvalues of Mg (right column) in the Z(2) ® Z(2) fermion-Higgs model. The plots for M contain 5
configurations on a 6* lattice and, for M/, one configuration on a 8* lattice. (a) FM phase at « = 0.08.
The eigenvalues of M are shown (from left to right) at y =1.2, 1.4 and y = 1.6 calculated on reflected
¢-field configurations when tunneling occurs. Antiperiodic boundary conditions (a.p.b.c.) were imposed
in one direction only. (b) PM phase at x = 0.04, a.p.b.c. in one direction, the same values of y as in (a).
(c) AM phase at « = —0.08, a.p.b.c. in all directions, the eigenvalues of M are now shown at y = 0.5,

ing k, the circular pattern gradually becomes roughly elliptical, and in the limit
« — —oo will degenerate to discrete points at + ‘/Zu sin? p, dependent on the
lattice size and boundary conditions. This is consistent with the observed peaks of
the number of conjugate gradient iterations and the poles of the condensate

1.4 and y =2.0.

(¥'¥’"y at the corresponding values of y in the SU(2) model [24].
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Fig. 4. The eigenvalues of My, at x = 0.32 in the SU(2) ® SU(2) model with Wilson—Yukawa coupling
w = 0.5. We display 10 configurations on a 4% lattice with antiperiodic boundary conditions only in one
direction.

4.3. SU(2) MODEL AT w>0

The spectrum obtained for M/, at w = 0.5 in the FM phase at « = 0.32 on a 4*
lattice with antiperiodic boundary condition in one direction is shown in fig. 4. The
eigenvalue spectrum of M’ is obtained by shifting the spectrum of M ; by
y+4w=y +2. If the M}, spectrum had a width <4, the origin of the M’
spectrum would lie outside the eigenvalue distribution for y > 0 consistent with the
fact that at w = 0.5 the system is in the strong-coupling region for all y. In fact the
spectrum is slightly wider than 4 and so, for very small y, zero modes appear
leading to bad convergence of the conjugate gradient algorithm. The zero eigenval-
ues at y = 0 is thought to be connected with the criticality of the whole y = 0 plane
where a fermionic correlation length diverges at any « in accordance with the
Golterman—Petcher symmetry [17]. But the fact that there already appear zero
eigenvalues at small values of y is probably due to fluctuations usually expected in
small lattices.

We have obtained similar plots at other x values. There is no significantly
different structure in these plots other than the appearance of a gap for « > «_.
Exactly real eigenvalues appear for x =k, and smaller, but since the model at
w=0.5 is in the strong-coupling region the conjugate gradient algorithm should
converge except for very small values of y.

5. Volume dependence of the small eigenvalues

As emphasized above, the fact that re-orthogonalization is required to obtain
the eigenvalues of M and M/ restricts us to fairly small lattices (up to 8* in the
Z(2) case). However, to get some idea how the small eigenvalues will behave on
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Fig. 5. The y-dependence of the square root of the smallest eigenvalue of M™M for several lattice

volumes in the SU(2) ® SU(2) model in the symmetric phase with antiperiodic boundary conditions in all

directions. Also the data obtained from a 4* lattice with a.p.b.c. only in one direction are displayed.
The eigenvalues were calculated from 10 independent ¢-field configurations.

larger lattices, we give up the requirement to compute the whole spectrum and
study instead the appearance of zero modes. This information can be obtained
from the matrix MM because if M'M has a zero eigenvalue, so has M.
Furthermore MM is hermitian and is therefore more easily diagonalized than M.
We use the hermitian Lanczos algorithm on M ™M (or on its square root €M in the
Z(2) model). This algorithm has the property that the eigenvalues converge in a
well-ordered sequence. Usually the large eigenvalues and those close to zero
converge first and the algorithm can be stopped once the eigenvalues of interest
are obtained. Also no storage of Lanczos vectors is required. Therefore larger
lattices can be handled (up to 144), but we have to perform computations for each
value of y independently.

Fig. 5 shows at « =0.2 and w =0 for the SU(2) model in the PM phase the
behaviour of A, the square root of the smallest eigenvalue of MM, as a
function of y on lattices of varying size and with antiperiodic boundary conditions
in all directions so that zero modes are inhibited. The data are obtained on lattice
sizes ranging from 4% to 10* and indicate the presence of large finite-size effects.
As the volume is increased there are indications that zero eigenvalues exist for a
region around y*. In the Z(2) model measurements on lattices of size up to 14*
indicate that there is a finite region of y from 1.2 to 1.5 in which there is a
non-zero density of zero eigenvalues. In both models, for finite positive values of y
significantly smaller than y*, we find no clear sign of zero modes as the volume is
increased. This is in agreement with measurements of the condensate (¥'¥’)
which is very small in this region as will be discussed in sect. 6.

To show the dependence of the position of the crossover on boundary condi-
tions on small lattices we also display in fig. 5 the behaviour of A, on a 4* lattice
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Fig. 6. The volume dependence of the square root of the smallest eigenvalue of MM in the three
different y regions of the coupling parameter space of the SU(2)®SU(2) model with antiperiodic
boundary conditions in only one direction: (a) strong coupling region; (b) crossover region; (¢c) y
slightly less than y*. The smallest eigenvalues at « = 0.32 in (b) and (c) are rescaled by a factor for
1/10.

with antiperiodic boundary conditions only in one direction. On an 8* or larger
lattice the minimum of the lowest eigenvalue for the two types of boundary
conditions occurs at essentially the same value of y and is, therefore, not shown in
this figure.

To elucidate the volume dependence of small eigenvalues, following general
wisdom [21,29], we have plotted A, against 1/} in nine different regions. This is
shown in fig. 6 for the SU(2) model at w = 0. For lattices larger than V' = 4%, the
data for A, are consistent with the ansatz of a linear dependence on the inverse
lattice volume. In the following we assume the above volume dependence to be
also true for volumes larger than the ones (6%, 8¢, 10*) used in fig. 6.

In the strong coupling regions of the three phases (fig. 6a) A, when extrapo-
lated linearly with 1/V, approaches a non-zero value as the lattice volume goes to
infinity. This is consistent with the fact that the origin of the complex plane falls
outside of the ring of eigenvalues of M in the strong coupling region.

In the crossover region (fig. 6b) we see a marked difference in the extrapolated
value of A, for infinite volume in the FM phase compared to the corresponding
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Fig. 7. Dependence of the square root of the smallest eigenvalue of MM in the crossover region on
the reduced temperature r =(x ~ k.)/k..

values in the PM and the AM phases. In the former A, linearly extrapolates to a
non-zero value, whereas in the latter phases the extrapolated value is consistent
with zero. The different behaviour in the FM phase indicates that the gap which
appears around the real axis in M, distribution for the SU(2) model (fig. 2a) on
small lattices will also remain on larger lattices.

The behaviour of A, at y =y ™ continues to y-values somewhat less than y*
in each of the three phases. This is shown for the SU(2) model in fig. 6¢c. It
indicates, as discussed above, that there is a region of y in which zero modes exist
in the PM and AM phases.

The same analysis in the case of the Z(2) model shows a similar behaviour of
the infinite-volume extrapolation of A_; at the crossover region in the PM and
AM phases, whereas in the FM phase it is different. For values of x somewhat
inside the FM phase the scaling curve for A, at the crossover is still consistent
with the extrapolation to zero with the inverse lattice volume. Only quite deep
inside the FM region it starts to shy away from zero.

To demonstrate the observed relation between the existence of small eigenval-
ues at and around the crossover and the scalar phase transition on a given lattice
in the two models we show in fig. 7 A_;, as a function of the reduced “tempera-
ture” 7= (x — k) /%, at a fixed value of y in the crossover region on an 8* lattice.
In the SU(2) model the minimum eigenvalue A, is consistent with zero for
k < k.. At k = k_ this behaviour changes and for « >k, A, increases monotoni-
cally with . In contrast there is no sharp change in the behaviour of A, at k = k_
in the Z(2) model, also shown in fig. 7. There the appearance of small eigenvalues
continues in the FM phase and A_ starts to increase very slowly deep in the FM
phase.

min
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An analysis of the spectral density p(A,,;,,) at the crossover at x = 0.2, i.e. in the
PM phase of the SU(2) model shows, similar to the findings of refs. [21,22], that
p(A ;) is nearly independent of volume for the investigated range from 6% to 104,
Similar results emerge also in the PM and part of the FM phase for the Z(2) model
at the crossover.

6. Fermion condensates

Fermion condensates on our finite lattices can be readily calculated from the
eigenvalues of the fermion matrices M and M. They agreed very well with the
condensate values calculated using other methods, for example, the noisy estimator
method [30]. In the following we discuss the fermion condensates of the SU(2)
model at w =0 specifically in the PM phase. A similar discussion applies in
general also for the Z(2) model.

As must happen in the PM phase, the symmetry of the M spectra requires for
all values of y a vanishing (V) given by

— 1 1
(Y¥) = S_VE—)\_’ (6.1)

where the sum extends over all the eigenvalues A of M.
In the PM phase it is more interesting to consider, from the eigenvalues of M,
the y-dependence of the condensate

1
Ngr+y '

_ _ 1
Ty =(P(DP+ PPL)¥) = - 1 (6.2)

where the sum extends over all the eigenvalues A of M. Please note that one
gets the whole y-dependence from only one set of eigenvalues A’ at y = 0. The
condensate {¥'¥’) in contrast to (¥¥), is invariant under the global SU(2), ®
SU(2)g transformations and therefore does not have to vanish in the symmetric
phase. Since from the discussion of sects. 4 and 5 there is enough indication that
fermionic observables in the strong and weak regions of the PM phase are not
analytically connected through the crossover at y =y* where there seem to
appear zero eigenvalues in the thermodynamic limit, the calculation of the invari-
ant condensate as a function of y is particularly relevant there.

To have a better intuition of the y-dependence of this condensate the following
analogy with two-dimensional electrostatics is useful. The condensate is given by
the electric field as would be produced at the origin by a distribution of negative
unit charges exactly in the place of the eigenvalues of M’. The closed ring
structure of the ecigenvalue distribution (which looks almost uniform) of M’
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immediately indicates that (¥'¥’) is zero for all y <y*, whereas at y >y*
(¥'¥') is non-zero and decreases as 1/y due to the Gauss law in two-dimensional
electrostatics. We have actually calculated the primed condensate according to eq.
(6.2) and indeed find it to be very small in the weak coupling region growing quite
suddenly at the crossover and then falling off as 1/y in the strong coupling region.
In a previous paper [24] we have shown fermion masses to be consistent with zero
in the PMW phase whereas fermions are massive in the PMS phase.

7. Fermion masses

Fermion masses are to be derived from the large-distance behaviour of the
fermion propagator. Nevertheless, let us consider the following simple-minded
exercise. Let us try to estimate an effective free fermion mass parameter m from
the eigenvalue distribution by comparing the fermion condensate as obtained from
the eigenvalues to that of a free fermion. This is of course not a valid procedure in
general for determining the fermion mass since the condensate is a local observ-
able and will also have contribution from all higher states.

Let us consider the eigenvalues of the scalar-fermion theory and of the free
theory only in the upper half of the complex plane of eigenvalues and compute the
complex condensates in the interacting and the free theories and match them on
the same sized lattice and with the same boundary conditions, i.e.

<¢W>=Z<Wlp>freea (71)

where Z is a real normalization constant and the condensates are obtained from
their associated eigenvalues only with positive imaginary parts. If exact real
eigenvalues appear, only half of them are taken into account. In the SU(2) model
we then estimate the effective free fermion mass parameter m by making a choice
for the effective Wilson parameter r and solving the equation

m+4r—rc

Re[(FW)(x, y,w)|  Re[{¥¥)gee(m, r)] ,Z:L(_m_-tél_r—m)firs_z

Im[(@‘P}(K, y, W)] N Im[<alp>free(ma r)] - -3
P (m+4r—rc)2+s2

(7.2)

_ 5 B .
where s =X, sin® and ¢ =X, cos p,. In the Z(2) model the sam.e equ.atlon is
applicable, but of course with r = 0. In the trivial case of a free fermion with mass
mpg the parameter m would of course be equal to my.
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Fig. 8. The condensate mass on a 4* lattice for the SU(2)® SU(2) model as a function of « for different
values of y around y*.

We have used this definition to estimate m from the condensate (¥'¥ ') since
its associated spectrum is Z(2) ® Z(2) or SU(2) ® SU(2) invariant. Also, My is
independent of y and hence we can obtain in the quenched theory the y-depen-
dence of m from the set of eigenvalues at a chosen «. The «-dependence of m
estimated this way is shown in fig. 8 for the SU(2) model at w = 0 (for which of
course r=0) for various values of y in the broken phase. The parameter m
reflects the same qualitative behaviour as the renormalized fermion mass: for
y <y* it decreases as x s k., whereas it increases for y >y ™ [8].
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Fig. 9. The condensate mass and the propagator mass as a function of y at w = 0.5 for several values of

x in the SU(2)® SU(2) model. The propagator masses are calculated on a 6° X 12 lattice (symbols) and

the condensate masses are obtained on a 4* lattice (lines). Representative error bars for the condensate
mass are displayed for three y-values.



410 I. Barbour et al. / Eigenvalue spectra

The estimate of m with Wilson fermions requires knowledge of r. We take the
ad hoc choice r =w which is reasonable in the vicinity of the crossover [11]. Fig. 9
shows the parameter m (lines) and the propagator mass (symbols) as a function of
y for fixed values of x at w=10.5 in the FM and PM phases. There is remarkable
agreement between the two observables. For small values of y we enter a region
where zero eigenvalues appear in the spectrum of M’ (see fig. 4), making mass
estimates unreliable.

We find it surprising that the mass estimate from fermion condensates has the
correct qualitative behaviour. It indicates that the fermion propagators in our
system are quite close to free propagators at all distances.

8. Summary and outlook

The analysis of the eigenvalue spectra of the operators M, M'M and M’
provides additional insight into the phase structure of the Z(2) ® Z(2) and SUQ2) ®
SU(2) fermion—Higgs models. In many previous publications the authors reported
on the bad convergence properties of the conjugate algorithm around the crossover
line in the FM and PM phases. The analysis of the eigenvalue spectra shows that
this problem is caused by the appearance of small eigenvalues around the crossover
line.

Assuming that our extrapolation ansatz for A, is correct upto infinite volume
and the spectral density does not depend strongly on the volume as we find it in
the range of our investigated volumes, we can also make statements about the
thermodynamic limit, namely that there exist zero eigenvalues at the crossover in
the PM phase even in this limit. The PM phase then is separated into two distinct
phases PMW and PMS. In the Z(2) model the line of zero eigenvalues in the PM
phase seems even to continue some distance into the FM phase while in the SU(2)
model at the crossover in the FM phase there exist small eigenvalues, but not
exactly zero eigenvalues in the thermodynamic limit.

An effective free fermion mass parameter extracted from the fermion conden-
sate has, interestingly, correct qualitative behaviour and points out that the
fermion propagators in these systems probably resemble quite well the free
propagators at all distances.

The results summarized above are obtained from the quenched version of the
theory. Inclusion of the fermion determinant in the simulations must modify these
conclusions, since configurations with small eigenvalues will be suppressed. The
extension of the analysis to the full dynamical theory has been discussed for QCD
[31] and can be extended to the two models discussed above. For both of these
models, the partition function can be written as a polynomial in the Yukawa
coupling whose coefficients are determined from the eigenvalues of the fermion
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matrix M. The complex zeros of this polynomial, in particular those closest to
the real axis, determine the physical properties of the model like e.g. the phase
structure and the critical exponents. Furthermore, the knowledge of the coeffi-
cients of the polynomial allows one to calculate, from the partition function,
thermodynamic quantities as functions of the Yukawa coupling. An investigation
of the complex zeros and their scaling behaviour with respect to lattice volume is
underway for the Z(2) ® Z(2) model. Of course one expects differences between
the phase structure of the quenched theory and that of the dynamical theory. But
the question is whether such differences change most of the conclusions in this
paper qualitatively.

One solid conclusion of this investigation in the quenched approximation, that
the two PM regions PMW and PMS are to be regarded as two distinct phases,
remain unchanged as the phase diagram with dynamical fermions [24] reveal them
to be really separate phases. The advantage of knowing e.g. that PMS is a phase
distinct from PMW even in the quenched approximation has several conveniences.
Much of the success of the approach to chiral gauge theories on the lattice using
the so-called Wilson-Yukawa coupling seems to depend crucially on the results of
several precision measurements in the PMS phase [13] and these can be performed
with moderate resources in the quenched approximation. Our findings in this
paper make these measurements in the PMS phase meaningful.

The significance of the PMS phase is not clear. As has been pointed out in sect.
1, with usual Yukawa couplings only, this is a phase where all the fermions
decouple in the continuum limit leaving a pure scalar theory. With the introduc-
tion of the chiral-invariant Wilson-Yukawa coupling, the PMS phase seems
natural for the construction of asymptotically free chiral gauge theories [9] because
the doublers apparently can be decoupled there satisfactorily [13]. On the other
hand, there exist, in the PMS phase, massive Dirac fermions [13]. The scaling
properties of these fermion masses are not convincingly known. It is not yet clear
what kind of a theory would finally emerge in any of the strong regions, especially
in the PMS phase. These issues, discussed quite comprehensively in ref. [18], are
being investigated at the moment.

A part of the results presented in this paper has already been reported in ref.
[32].
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