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Abstract. The existence of Miura-type free field realizations is established for the 
extended conformal algebras W(sl(n)) at irrational values of the screening para- 
meter. The problem of the "closure" of the algebra is reduced to a finite dimen- 
sional quantum group problem. The structure of the Fock space resolution and the 
character formula are obtained for the irreducible modules. As graded vector 
sjpaces these modules are shown to be isomorphic to the space of sl(n) singlets in 
sl(n) affine level 1 modules. The isomorphism is given by the ~bfly free field 
realization of sl(n). 

1. Introduction 

Certain classes of low dimensional field theories are exactly soluble due to the 
presence of infinite dimensional Lie algebras in these models. Besides their appear- 
ance in 2-dimensional conformal field theories or their 3-dimensional topological 
counterparts, also the massive, respectively, non-topological perturbations thereof 
are expected to carry remnants of this algebraic structure. W(g) algebras are, 
besides the affine Kac Moody algebras 0, the second known class of infinite 
dimensional Lie algebras descending from simple finite dimensional ones g [1-4]. 
In general they are intrinsically non-linear in that the commutation relations close 
only on the enveloping algebra of the modes of the generating fields. This 
accounts for both the variety of applications, as well as certain difficulties in 
handling them. 

In particular, the construction of realizations in terms of an underlying linear 
oscillator or affine algebra is non-trivial. The major obstruction lies in proving that 
the algebra of the proposed field generators closes. Associativity is then guaranteed 
by the associativity of the underlying oscillator or affine algebra. The existence of 
a realization turns out to be closely related to the structure of a characteristic 
Hilbert space ~ ( g )  associated with it. The space 2/tg(g) encodes the information 
about the operator product expansion of the proposed set of generating fields. If 
2/~(g ) contains a sufficient number of independent states (w.r.t. some graduation), 
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the operator product algebra is forced to close. Once the algebra is known to exist, 
the space ~ ( g )  can be identified with the vacuum representation space for generic 
central charge. In the first part of the present paper this strategy will be adopted to 
prove the existence of a free field realization for all members of the W(st(n)) series. 
The required completeness property of the space ~,uf(g) will be traced back to 
a finite dimensional quantum group problem. This is achieved by employing 
a quantum group structure appearing in the multiple integrals of screening oper- 
ators used in the Fock space construction of singular vectors [7, 8]. 

The procedure also leads to Fock space and Verma module resolutions for 
a class of "irrational" W(sl(n)) modules. The irreducible modules s (I(A +, A_ )) of 
that type are labelled by a pair of sl(n)-weights and an irrational parameter sZ+, 
related to the central charge. Their characteristic property is that the embedding 
pattern of their singular vectors coincides with that of the underlying simple Lie 
algebra. The space ~ ( g )  is recovered as the singlet module ~(I (0 ,0) )  and is 
characterized as the intersection of the kernels of the screening operators on the 
Fock module. In particular, a basis of W(sl(n)) is obtained in which the structure 
constants are polynomial in the central charge. In this basis the decoupling of 
nullfields, which may occur for special values of the central charge, as well as 
certain pathological features associated with it can be discussed systematically. In 
the second part of the paper the irrational W(sl (n)) modules are shown to be related 
to the extended Sugawara construction in level k = 1 affine algebras. As graded 
vector spaces, the modules LZ(I(A, 0)) turn out to be isomorphic to the space of 
sl(n) singlets in an affine level one module. The isomorphism can be made explicit 
by employing an infinite dimensional analogue of the Harish-Chandra theorem. 
Essentially it is given by the qS/~? free field realization of ~(n). This leads to an 
infinite dimensional abelian subalgebra in the space of sl(n) singlets [37]. 

The paper is organized as follows. In Sect. 2 extended conformal algebras are 
defined in relation to their highest weight representations. Sections 3 and 4 are 
devoted to the construction of the free field realization and the modules 

(I (A +, A_ )) of irrational type. Section 5 discusses the pathological features at 
exceptional central charge and Sect. 6 deals with the extended Sugawara construc- 
tion. 

2. Definition of W(g) Algebras and Highest Weight Representations 

For technical reasons it is appropriate to define W-algebras as special meromor- 
phic conformal field theories. Basically a meromorphic CFT (mCFT) or vertex 
operator algebra [14, 15] is an infinite dimensional Lie algebra which contains the 
Virasoro algebra as a distinguished subalgebra and for which all fields have integer 
or halfinteger conformal weight. In more detail, a mCFT consists of a (pre-)Hilbert 
space 9 f  and an assignment IP) --* P(z), which associates a unique field operator 
P(z) to any state ]P) in (a dense subspace of) ~ .  The Hilbert space ~ is a vacuum 
representation space of the Virasoro algebra, i.e. there exists a distinguished state 
IL) for which the modes L,,  n ~ 7l. of the associated field L(z) form a copy of the 
Virasoro algebra and which define a unique su(1, 1) invariant vacuum by 
L, Iv) = 0, s = 0, + 1. The dense subspace _~ is that of finite Lo grade and for an 
element [ P) ,  the associated field operator satisfies P (z) [0) = e zL-11 P )  ( * ) as well as 
a number of additional conditions. The additional conditions force the spectrum of 
Lo on ~ to be integer or halfinteger and in particular guarantee the injectivity of 
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the assignment (,). Let Yt~ = {IP) e Jg': Lo IP)  = A IP)} denote the subspaces of 
fixed Lo-grade, where A is called the (conformal) weight of IP)  or P(z). The 
operators P(z) are linear operators which map ___~ to infinite sums of elements in 

i.e. P(z) :W ~ @~3f~.  They are completely determined by their matrix ele- 
ments (Pnn,)~, 4' ~ +, where P~A': JfA ~ Jf~" The product P(z)Q(w) exists (for 
Izl > [w[) if the series ~4(PilP~a~Q~a~lP k)  is absolutely convergent for all l 
P~) E Yf~,, IP k ) e Jf~A~, which is the last condition stipulated. The associativity of 
the product is then guaranteed by the absolute convergence. For the product of 
two fields P(z), Q(z) of weights Ap, A e one has the series expansion 

P(z)Q(w) = ~, (z - W)k(P-k-a,Q-~Q)(W), [Z] > ]Wr, (2.1) 
k= -3F--AQ 

where (P-k-~r Q-~)(w)  is the field corresponding to the state P -k -4 ,  Q - ~  Iv). In 
particular, (P, Q)(z):= (P-k-~,Q-a~)(z)  is a natural definition of the normal or- 
dered product of both fields. The usual contour deformation argument then shows 
that (2.1) amounts to the specification of the Lie brackets [Pro, Q,]. The Jacobi 
identity is implied by the associativity of the operator product expansion and hence 
is guaranteed whenever the product is well defined on ~,~. A convenient basis for 
the Lie algebra is obtained by decomposing the Hilbert space ~r w.r.t, the action of 
the su(1, 1) subalgebra of the Virasoro algebra generated by {L+I,Lo}.  (For 
notational simplicity we will from now on drop the distinction between ___W and ~ . )  
The su(1, 1) highest weight states satisfy L~ [P)  = 0 and such states (or the corres- 
ponding fields) are called quasiprimary. The subspace of quasiprimary states in 
YF will be denoted by ~ .  The su(1, 1) descendences L"_~ IP) of a basis in ~ make 
up a basis of Yr. 

W-algebras are special mCFTs. The basic point is that one does not take all 
quasiprimary fields as the generators of the algebra but allows the use of normal 
ordered products to generate the algebra�9 

Definition. A W-algebra of rank r is a meromorphic CFT which is generated by the 
operations ~? and ~# from^r quasiprimary fields W 1 (z) = L(z), WE(z) . . . .  , Wr(z). 
The bilinearform on @~f~n~, 1 <-i < r induced by the Shapovalov form is non- 
degenerate. 

The last condition takes care of certain pathological features which may occur for 
special values of the central charge (cf. Sect. 5). X ( ,  ) is a su(1, 1) covariant normal 
ordering prescription. It differs from (,) (induced by (2.1)) by a finite number of 
derivative terms. The choice of the normal ordering is in principle irrelevant, but 
. X ( ,  ) is a convenient one [15]. The basis I W i) is unique up to linear transforma- 
tions in the sector. @ _ ~ ,  1 _< i _< r. A basis I~ i is called a Cartan basis if its zero 
modes satisfy [W'o, W+] = 0, 1 < i,j <- r. A drawback of the above definition is 
that it does not specify the commutator of arbitrary monomiats in the modes W~. 
To study the representation theory commutators of the type [JC'(W h � 9  

�9 . .  W,~] are needed, which cannot directly be traced back to the operator 
product expansion. The evaluation from the [ W~, W~] commutators on the other 
hand involves infinite sums of generators, whose convergence at intermediate 
stages is not guaranteed. This means that a regularization prescription is required. 
Clearly the detailed form of the regularization should be irrelevant and, if possible, 
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direct reference to it should be avoided. In the case of the so-called Casimir 
algebras we shall therefore adopt the following, slightly stronger definition. To 
prepare this set 

Cr = {0 < c <- rlc = r - 12p2(sZ+ + s+ z - 2), s 2 irrational} , (2.2) 

where p is the Weyl vector of g and r the rank. Further take of (g)  to be the 
(completion of the) span of the lexicographically ordered states of the form 

WX_vl... W~_~lv), with 

v i~Par(Ai ) :={v=(n t  . . . . .  n t ) e 2 ~ l ' n j > n j + l > d i ,  l < j < l , l > O } . .  = = = = (2.3) 

Definition'. For a complex Lie algebra 9 a Casimir algebra W(g) is a W-algebra for 
which the weights of the generating fields coincide with the orders of the independent 
Casimirs of g. For c ~ C, the algebra is of rank r and the Lo-graded highest weight 
module satisfying W~lv) = 0 iff n > - Ai is irreducible and coincides with of(g). 

The additional condition guarantees that any regularization prescription em- 
ployed to evaluate the missing commutators yields the same answer which is 
moreover compatible with the parts directly fixed by the operator product expan- 
sion. In Definition' weight spaces refer to the Lo-graduation only. For Casimir 
algebras with a Caftan basis one can introduce weight states as simultaneous 
eigenstates of ff/~. This leads to a lW-graduation in terms of Weyl invariant 
polynomials. We expect that every Casimir algebra possesses a Caftan basis. For 
W(sl(r + 1)) (r < 4) this is the content of Proposition 4.2. Let A+ e P+ be dominant 
integral weights of g and s+ be real parameters s.t, s+s_ = - 1. Fix a Weyl 
chamber, i.e. a set of simple roots {~ . . . . .  a~} c h* in the dual of the Cartan 
subalgebra of g and set 

xi = s+~i'(A+ + p) + s_oci'(A_ + p) , (2.4) 

where p is the Weyl vector and " '  is the inner product in h*, sometimes also 
denoted by ( , ) .  Let I i (A+ ,A_)  = P(xz . . . . .  x,.), t < i _< r be polynomials of 
degree i + 1 that generate the ring of Weyl invariant polynomials in xz . . . . .  x~ 
(but not necessarily the standard basis obtained from the Casimir operators). 
A state L I )  = I I (A +, A_ ))  is called a highest weight vector for W(g) if it satisfies 

W~,II)=6o, o P ( A + , A - ) I I ) ,  n > O .  (2.5) 

These states can be regarded as highest weight states w.r.t, a triangular decomposi- 
tion induced by the - a d L o - g r a d i n g  on the modes of composite fields 
W(g) = { W+ ~ Wo | W_ )(g). The corresponding highest weight module 

V( I (A+ ,A_) )=  ~ ( g f f 7 ~ . . .  1~'--~1I) (2.6) 
v l  . . . . .  v r ~ P a r ( 1 )  

is called a Verma module for W(g). Define a shifted action w * A = w(A + p) - p 
of the Weyl group of g on h*, so that (wcq, A + p) = (~i, w-  1 ,  A + p) for w e W. It 
follows that I(A+, A_)  and hence the Verma module is invariant under the 
diagonal action of the Weyl group W of g, 

I ( w , A + , w , A _ ) = I ( A + , A - ) ,  w E W ,  (2.7) 

and in particular, does not depend on the choice of the Weyl chamber, 
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The Verma module V(I(A +, A_ )) provides a reducible representation of W(g) 
if the central charge is in the interval 0 < c < r. Irreducible highest weight repres- 
entations 5r should be obtained by dividing out the maximal singular sub- 
module SV(I(A+, A_ )), 

~o( i )=  V(I)/SV(I). (2.8) 

The characteristic space i f ( g )  can be identified with the singlet module 2,e(I(0, 0)). 
The irreducible representation spaces ~ ( I )  are endowed with a unique non- 
degenerate hermitian bilinear form, which we normalize by ( I l I ) =  1. With 
respect to this bilinear form the decomposition into quasiprimary and derivative 
states on ~ ( I )  may thenbe regarded as an orthogonal decompo@ion of 5q(I) into 
a quasiprimary sector s and its orthocomplement 5r = 5r174 ~ ( i ) z .  Let 
for IP) in Y ( t )  denote Y IP) the projection onto the quasiprimary part. 

These definitions do not, of course, imply the existence of the objects referred to. 
For low rank cases W-algebras can explicitly be constructed by solving the 
associativity condition. The complexity of the resulting commutation relations, 
however, hinders a direct access to the representation theory. Conversely, a free 
field realization provides a powerful tool to study the representation theory, but 
/eaves the construction of the realization as the nontrivial task. The major obstruc- 
tion constructing such a free field realization lies in proving that the proposed set of 
field generators closes. Associativity is then guaranteed by the associativity of the 
underlying oscillator algebra. A candidate for a free field realization of W(sl(n)) has 
been proposed by Fateev and Lukyanov to take the form of a generalized Miura 
transformation [3]. Despite sample calculations [30], considerations of the large 
N limit [35] and the argument [12] 1, no conclusive proof of the existence of this 
realization seems to exist. We shall later argue that the problem of the closure of the 
algebra can be reduced to a finite dimensional quantum group problem, thereby 
establishing the existence of the free field realization. In preparation some results 
are needed on intertwining operators for the quantum groups ~llq(sl(r Jr 1)). 

3. q-Intertwiners 

Let ogq (g) denote the standard q-deformation of the (enveloping algebra) of the 
complex simple Lie algebra g, with generators e~, f ,  h~, 1 _< i _< r[10, 11, 23]. Let 
ql~ (g) = Y/q (n + ) | • (h) | q/q (n _ ) be a triangular decomposition. The q-Verma 
module is defined as M~--~ where VA is a (highest weight) vector s.t. 
egq(n+)vA = 0 ,  h~'VA=(A,h~)VA (where the identifications q/q(h)~ ~#(h) and 
h -~ h* were used in the inner product). Suppose two q-Verma modules MR and 
M ]  to be given. The homomorphisms M q ~ M} commuting with the action of 
Jllq(g) on MR and M} are called q-intertwining operators. To describe the set of 
such intertwiners Homvq(o)(M~, M}) some preparations are needed. 

1 The reasoning in [12] apparently is insensitive to the value of the central charge, which 
diminishes its conclusiveness. The closure of the OPE can be affected by the presence of nullfields 
in the sector Yg~, A < 2maxi Ai -- 1; which may happen for rational screening parameter. See [13] 
on this point for the case of coset realizations and Sect. 5 for the free field realizations of 
Fateev-Lukyanov-type 
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Lemma 3.1. For q not a root o f  unity: 

a) Given A,  A ~ h*, there exists a 1-1 correspondence between elements of  ql~(n_) 
and Hom%t,_) (M~,  M~). 
b) There is a 1 - 1 correspondence between elements of  Hom%(o)(M~, M R )  and 
singular vectors in M ]  of  weight A. Moreover, every such intertwiner is injective, i.e. 
defines an embedding MqA ~ M ] .  

We include the proof to illustrate the concepts (see also [-22]). 

Proof. a) The maps Q ~ Horn% t,_ )(M~t, M~) are completely determined by their 
action on va; so suppose that Q(va) = xvTt, for some x ~ ~ ). Then 

Q(yva) = yQ(va)  = yxv2 ,  Vy e q lq (n_) .  (3.1) 

Conversely, every x ~ q/q (n_) determines a map Q e Horn% (,_)(M],  M } )  by (3.1). 
Define now a representation p of qlq (n_) on M ]  by right multiplication 

p ( f ) ( y V A ) =  -- y f v A ,  i =  1.  . . r ,  (3.2) 

and a "translation operator" Ta~: M a --+ M2 by T~(yvA)=yvT~.  The map 
x ~ p ( x )  T~ then gives a 1-1 correspondence between q/~(n_) and 
Horn%(,_ )(M~, M]) .  

b) Requiring that Q in (3.1) intertwines also with ~/(n+ ) amounts to n+ ( x v l )  = 0, 
which means that xvT~ should he a singular vector in MR of weight A. Injectivity 
follows from (3.1). [] 

To find elements x a~/q(n_) which give rise to an intertwiner Q 
Horn% (g)(M~, M~) one will try first to incorporate the intertwining property with 
~q(h). This is to say that it suffices to consider elements in ~/q (n_) of isospin A - A. 
Every p ( f )  in (3.2) should thus be accompanied by a change in the highest weight 
A ~ A = A + ai. Defining si = p ( f ) T ~  +~, every polynomial in these "screening 
operators" will give rise to a map intertwining with ~r (h) �9 ~r (n_). The subset of 
such polynomials that intertwines with the action of all of ~q (g) is in principle fixed 

�9 q l i  - l i  

by the remaining commutator [e~,sj] = - 6 i j  - q  T~ +~. On a general - 1  q - - q  

monomial in the screening operators the action of e~ is (on MR) given by 

[ e , ,  s i ,  �9 �9 �9 s i ~  ] = - ~ q ' ' - "  - q -  ~' + ' '  j:ij=i q _ q_ ,  si, �9 �9 �9 gi~ �9 �9 . s i~TJ +~`, (3.3) 

where l~ = (A, cq), aj = a~j~j+, + . . .  + a~j~ and '^' denotes omission. One can 
check that [ei, (s~) ~j+~ ] -- 0 and M~,,A,  so ~that 

sh+l Hom%t~)(M~,,A, M~) (3.4) 

provides a set of intertwiners. In the context of Lemma 3.1, the intertwiners (3.4) 
correspond to the singular vectors f~' + t va of weight r~ �9 A in Ma,  which generate 
the maximal singular submodule of M ~ [263. Other intertwiners are more difficult 
to find from (3.3) directly. A systematic description is possible by means of a partial 
ordering on the Weyl group W of 9. Recall that the Weyl group of sl(r + 1) is 
isomorphic to the symmetric group &+ z. The generators r~, 1 < i -< r permute the 
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ith and i +  1 th site and cor respond  to reflections in the simple roots  ~ .  An 
expression w = r h . . .  r~, for w e W is called reduced if it contains  the minimal  
n u m b e r  of  reflections required. In  this case l = I(w) is called length of w e W. For  
wl,  w2 s Wwri te  Wa ,-- Wz ifwx = r~w2 for some e E A + and l ( w l )  = l(w2) + 1. The 
Bruhat  ordering on Wis  then defined by: w <~ # i f f there  exist w t , . . . ,  wk s Ws.t.  
w +-- Wa ~ �9 �9 +-- Wk +- ~. In the appendix  a number  of  related facts have been 
summarized.  As in the undeformed case [18, 19] one then has 

Proposit ion 3.2. F o r  A ~ P + ,  q no t  a roo t  o f  unity:  

dim Horn% q { 1 if # -< w 
( g ) ( M ~ * A ' M a w * A ) =  0 otherwise.  

Fo r  # ~ w let QT~w denote the intertwiner. This s ta tement  is equivalent  to certain 
rea r rangement  identities in q/q (n_)  to which we will re turn later. 

If  q is not  a root  of  unity, the Verma  module  M~ is reducible if 
[(A + p, ~) - m ] ~  = 0, where ~ = 2a/(ct, c0, q~ = q(~'~)/2 and [n]q = q" - q - " /  
(q - q -  ~). In this case there exists a q-singular vector  Q)  | va and an associated 
direct intertwiner Q)  = Q~,~ with w , A  - # , A  = (lj + 1)e and lj = (A,  c~j). We 
first give an enumera t ion  of the intertwiners Q~J. Let  e e A + be a positive root  of 
height k, i.e. ~ = ~ + . . .  + ~ + k - ~  for 1 _< i < r - k + t. To  each inequivalent  
way of writing c~ as a simple root  with a string of fundamenta l  reflections applied to 
it, there exists an intertwining opera to r  Q~J, where j = j ( e )  is the index defined in 
(A.2). The associated presentat ion of the roo t  e is given by 

= ri, . . .  rik_lct, j ,  r~ = w r j w  -~ = ri~ . . .  rik_~r~r~_~ . . .  ri~. (3.5) 

M odu lo  Weyl-equivalent  forms this is explicitly 

= ~ i  q -  . �9 �9 "l- O ~ i + k _  1 -~- r i . . . r j _ l r i + k _  1 . . , r j + l O ~  j . 

Thus, the set of  direct intertwining opera tors  is enumera ted  by 

l j  . .  . Q~,+ .. . +,,+k, j = i, . , i + k (3.6) 

In total  these are ~ a +  h t e  = ~r ( r  + 1)(r + 2) = 2p 2 operators .  
The  existence has been established in 1-43] by using an Ansatz in terms of single 

root  space vectors only, corresponding to the form r~ = w r ~ w -  1 in (3.5). Explicitly 

li, + 1 lit + 1 

e~ ~ =  ~ " ' "  Z c , ,  s f ! , ,+a - s ,  . f l i , + ~ - , , f , ~ + l f s ,  . . . . . .  � 9  i, , j  J i , . . . f I ~ ,  (3.7.a) 
~1=0 S t=0  

( l h + l )  ( l , ,  + 1 )  
C = ( - ) s ' + " ' + ~ ' C ' \  sz ~ " "  s~ q 

[(A + p)07,,) L [(A + p)(JT~,)]~ 
X([A + P)(ff~,) - Sx]q " " " [(A + p)(Fti,) - st]q' (3.7.b) 

f h ~ +  . . .  + h ,  l < s < j - 1  
(3.7.c) 

} t h i + k - 1  + " " " + h i + k -  s j -< s -< k -- 1 = : t  ' 

where the subscript  q refers to q-dimensions and q-binomials  and Ct are constants.  
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1 

qq r2q 

rl r2 r~ 

Fig. 1. Embedding diagram for irrational u//(sl(3)), ~/q(Sl(3)) and ~(3) modules 

By suitably combining the intertwiners, the irreducible modules L~ can now be 
described as the only nonvanishing cohomology class in a complex of q-Verma 
modules. The result is a resolution form-identical to the undeformed case (BGG- 
resolution [18, 19]). In particular, the resolution gives an exhaustive description of 
the singular submodules of MA as well as their mutual embeddings. A systematic 
procedure to explicitly work out the embedding pattern of the singular modules is 
the following: First express the reflections corresponding to the positive roots in 
terms of the fundamental reflections r~ and likewise write down reduced expressions 
for the Weyl group elements. For given w e W then work out all # ~ W s.t. v~ ~ w. 
Clearly the relation # ~ w in the Weyl group corresponds to direct embeddings of 
the modules, i.e. those for which there is no singular module M ~ in MR s.t. 
M ~ ,  M ~ A ~ ~ M ~ ,  A. These direct embeddings will also be represented by an 
arrow, pointing to the submodule. The diagrams for sl(3) and s/(4) shown in Figs. 1, 
2 have been obtained in this way. For A+ not dominant integral, the number of 
singular vectors is less than (r + 1)! and the embedding diagrams (forming subdiag- 
rams of the dominant integral ones) can be worked out similarly. Observe that for 
wl, w2 ~ Ws.t. l(wt) =/(w2) + 2 the number of elements w e Ws.t. wl ~- w ~ w2 is 
either zero or two. In the latter case the quadruple (wl, w, #, w2 ) is called a square 
and the embedding diagram is composed of such squares. In the BGG resolution to 
each arrow one assigns a sign s(#w) = + 1 s.t. for each square in the complex the 
products of signs equals - 1 .  This can be done consistently throughout the 
diagram. 

The nilpotency of the operators in the complex is then equivalent to certain 
compatibility relations for the intertwiners, which express the commutativity of the 
squares in the embedding diagram (see also Theorems 4.5, 4.6). There are two 
principle types of squares in the embedding diagram, which are shown in Fig. 3.a, b, 
where in 3.a the positive roots c~, fl are such that also c~ + fi s A +. Other types of 
squares are obtained from them by reflection in the diagonals. The commutativity 
of squares of type b does not give rise to an integrability condition for the involved 
intertwiners, due to the invariance of the resolution under ei ~ c~r+ ~-i. Squares of 
type 3.a give rise to an integrability condition of the form 

(2~+~Q~ = (~+~O~d, ~ +/~ ~ ~+. (3.8) 

These relations can be traced back to the sl(3) case [43], which has been verified 
in [7]. 
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1 

,2, ~ \ ."< II > / / ~ ,  ~ 

r? q r2r3 ra rz r~ rz r2 r~ r3 r 2 rl r2 r3 r2 r2 r3 r~ r~ 

r2 rl r2 r3 r2 rl r~ r2 r3 r I r2r3r2 q r~ 

~rl r3r2) 2 

Fig. 2. Embedding diagram for irrational ~(s/(4)), J#q(Sl(4)) and ~(4) modules 

(ol (b) 

Fig. 3. Fundamental squares in the embedding diagrams 

4. Realizations and Resolutions 

4.1. Free Field Realization.  In t roduce  r scalar fields c~a(z) 

1 
~b~(z) -- q~ -- ip~lnz + i ~ - a ~ z - "  , 

n + O  n 

~"(z)Ob(w) = - 6 ~ b l n ( z -  w) + . . .  

with modes having free oscillator commuta t ion  relations 

[a~, a~] = rn6"~ 6,+,, ,o,  [pa, qb] = _ i6ob 

(4.1) 

(4.2) 
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For A+A_ ~ h* let IA+, A_ } be a vector satisfying 

c~ .a , " tA+,A_)=O,  n > 0 ,  

(2Soe'p + e . p ) l A + , A _  ) = x ~ ( A + , A _ ) I / + , A _ ) ,  (4.3) 

for some eigenvalue x , (A+,  A_).  We choose normalizations s.t. 
A+~A_" = A+ "A_ = ( A + , A _ )  is the bilinear form on h*. The corresponding 
Fock space module is denoted by Fa+a_. In the enveloping algebra of the 
oscillator algebra (4.2) introduce r field operators W~(z) by means of a symmetrized 
Miura transformation 

= -  i Wi(z)( 2soa)~-i' (4.4) 
/ = - 1  

where = : i j + l -  s  = f;1)defines _<j__<r + eso = s+ + s_ and 
normal ordering shall be implicit, z projects onto the sector invariant under the 
automorphism z: ei-o - e r + l - i ,  s+ ~ - s +  of the Dynkin diagram, which is 
implemented by the maximal element of the Weyl group (for simplicity we use the 
same symbol for the automorphism and the associated projection operator). This 
symmetrization turns out to be crucial in many respects (cf. Sects. 4.5, 6 and [37]). 
For  the generators one finds, in particular, W-1 = _ 1, W ~ = 0 and 

1 
L(z) = W ~ (z) = - ~O~q)" O~4) - 2isap" O~ d) (4.5) 

generates a Virasoro algebra of central charge c = r - 4 8 s 2 p  z. The fields 
W ~, 1 < i < r are of Lo-weight i + 1, but in general neither primary nor quasiprimary 
relative to L(z). By adding suitable normal ordered products of W ~- ~ . . . . .  W * to 
W ~ one can try to promote W ~ to a qnasiprimary or primary field. Since 
"cL(z) = L(z) the invariance under z is clearly a necessary condition for this to be 
possible. As there is no possible "counterterm," W e is always primary. For the 
other generators the projection onto quasiprimary or primary fields is nontrivial. 
The projection onto quasiprimary fields turns out to be unproblematic and will in 
the following often implicitly be assumed to be performed. The projection onto 
primary fields may fail for certain values of the central charge and will be discussed 
in Sect. 5. The main result to be proved in Sect. 4.3 is now simply 

Theorem 4.1. (Existence) The (quasiprimary projection of the) symmetrized Miura 
fields W~(z) generate a W(sl(r + 1)) algebra in the sense defined. The structure 
constants are polynomial in the central charge. 

The characteristic Hilbert space will be a certain subspace 2(foo of Foo, which 
implies the bounds 0 _< c N r on the accessible range of the central charge. (In a free 
field realization one has 0 < (L,  L )  = c/2 and the upper bound is required for 
condition (2.3).) After the commutation relations have been reconstructed, the 
range of definition of the algebra can be extended to all values of the central charge, 
due to the polynomial form of the structure constants. 

The Miura fields Wi(z) do, however, not form a Cartan basis. A Caftan basis 
can be obtained as follows: Let O be the generator of the cyclic group Z~+ ~ acting 
by f2: ( c q , . . . ,  ~r, - 0) --+ (~2 . . . . .  c~, - 0, cq) on the root system; where 0 is the 
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highest root. In terms of the fundamental reflections r~, 1 < i _< r of the Weyl group, 
f2 is given by the Coxeter element f2 = rl r2. �9 rr. The Dynkin automorphism r is 
implemented by the maximal element of the Weyl group. Together (2 and r gener- 
ate a Coxeter subgroup of the Weyl group with relations 

~c2r+l = 1, ~2 = 1, (f2~) 2 = 1 . (4.6) 

These are the defining relations of the dihedral group D~+ 1, i.e. the symmetry group 
of a regular polygon (r + 1-gon). Let P[so, ~" O~qS] be a (normal ordered) func- 
tional in So, cq-q~. By f2P[so, a i '~O]  = P[so, (~2~i)'0~q~] and zP[so,  c~i '~b] 
= P [ -  So,(rct,)'Oz~b] one has an induced action of the dihedral group. Let 

D~+ ~ denote the projector onto the dihedral invariant subsector and set 

D,+, [2So8~ + i/~,+, " e , r  [2Soa~ + i / ~ , ' 8 , r  [2So8~ + i/~1 "0~r 

= -  ~ Di(z)(2SoQ) ~-i . (4.7) 
i = - 1  

In particular, D - t  = -- 1, D O = 0, D 1 = -�89 The fields are not quasi- 
primary relative to L(z) in (4.5), Define 

Wi(z) = Y O ' ( z ) ,  (4.8) 

where dg denotes the projection onto quasiprimary fields (i.e. Lllff /~) = 0). 

Proposition 4.2. (r < 4) The fields Wi(z), 1 <-i <-r form a Caftan basis of 
W(sl(r + 1)). The structure constants are polynomial in the central charge. 

We expect this to be correct in general. We will return to this statement in Sect. 3.4 
when discussing the projection onto primary fields. See also [37] for the relation to 
infinite dimensional abelian subalgebras. The Cartan basis is the canonical basis to 
study the representation theory. In particular, one has free field realizations of 
highest weight vectors, Verma modules etc. The labels P(A +, A_ ) are calculated 
explicitly as the eigenvalues of the zero modes ff'~ on J A+, A_ ). From the 
definition (4.8) it can be shown that I ~ generate the ring of Weyl invariant 
polynomials in the variables x~, defined in (2.4). In particular 

I I (A+,A_)  = ~x i (a -1 )ux j -  2sZp z 

1 2 p2 =~s+(A+,A+ + 2 p ) +  - ( A +  + p , A _  +p)  

1 2 +-~s_(A_,A_ + 2 p ) ,  (4.9) 

where a -  1 is the inverse of the Cartan matrix. One has the isomorphisms 

F w , A +  A " ~ F A + , w - I , A _ ,  F* " ~ F _ ( A + + 2 p ) ,  (410) , - A + , A -  ~- - ( A - + 2 p ) ,  �9 

as modules over the W-algebra (where F 3 . .  4- denotes the dual of Fa+ A- w.r.t, the 
standard inner product). 



4.2. Resolutions and Character Formula. For  ,~+, 2_ e h* introduce the vertex 
opera to r  

V.~+,~. :FA+A_ "+FA++,~+,A_+Z_ 

V~+ ,~_ = exp(is+ 2+" qb(z) + is_ 2_" O(z)), (4.11) 

~ v ~  . . . v + v ;  . . . v , ~  ; t e )  

where again no rma l  ordering shall be implicit. The "screening opera tors"  
V~ + = V- , , , o ,  V~- = Vo. - , , ,  1 < i < r cor respond  to minus  the simple roots. Fo r  
any state I P )  e FA+ a -  consider now the vectorspace Me spanned by all states of 
the form 

= f dw, . . ,  dw~ azk. . ,  dzl v + (w,) . . .  v l  (wl) vg (~k)... v~ (zl)1 e ) ,  
F 

(4.12) 

where the con tour  is given in Fig. 4.a. The  integrand is defined by analytic 
cont inuat ion  f rom the region 0 < z, < . . .  < zl on the real axis, where the 
in tegrand is t aken  to be real. The  presence of a cut a long 0, 1 will be seen later. 
The  mot iva t ion  for this choice of contours  and a discussion of some of its 
propert ies  can be found in [71. The m o n o d r o m y  propert ies  of the in tegrand 
can be exhibited by complete  no rma l  ordering. F r o m  this one deduces that  
the q-Serre relat ions are valid within the con tour  integrals [ . . .  ] [7], i.e. the 
relat ions 

ViViVj - (q+q-1)ViVjV~+ VjV~V~=O if a~j= - 1 

Vi V~ -- Vj Vi = 0 if ai~ = O, 
(4.13) 

1 

hold in the sense that  inserting the r.h.s, into an arbi t rary  con tour  integral of Me ,  
causes it to vanish. Here  Vi stands for either V + or V/- with q = q + = e i~sg or 
q = q _ = e i"s2 , respectively. Similarly A shall be shor thand  for the respective of the 
weights A + or A _. In  the same sense the s+ and s_ sectors decouple within ~. . .~ as 
the opera tors  V~ + and V~- have no relative m o n o d r o m y  

V + V ; -  V ; V  + =0, l < i , j < _ r .  (4.14) 
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Fig. 4a, b Contour in multi-screening integrals. Deformed contour Fig. a. 
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The significance of the operators V~ for the W-algebra lies in the operator product 
expansions 

w'  (w) + o(1) (4.15) W (z) yaw) = < 

W~'J(z) Vj(w) = o(1), Izl > [wl (4.16) 

- ~ ff/"J(z)(2soS:) ~-~= v 1--[ [2So8~ + i / ~ ' 0 . r  
i=--i k 4 j ,  j + l  

where, except for the deletion the order in the product is the same as in (4.4). They 
imply the following commutator (to be compared with the affine case [7].) 

/ q  t,~-N+~_ q < + N - ~  

/ 

x ~ V ~ . . ,  l ~ . . .  V~,~IP),  (4.17) 

where 

- 1  
8u(z) = /~i'~/(1) Vj(1)q zJ+~ q - q z -  1 ' (4.18) 

a k  ~ a i k i k + l  -~- �9 �9 �9 + a i k i n ,  (~ ~ E aizik , 
14=k 

li = (A, ai), ( }a i '8~r  = (1, + N ) I P )  , (4.19) 

and '^'  denotes omission. Equation (4.16) implies that the product in (4.18) is well 
defined and independent of the order. Comparing (4.17) with (3.3) one sees that 
Wi(z) acts by commutation on W V~l . . .  Vi,~ [ P ), [ P ) e Fo, a or FA, o in a similar 
way as e~ does on f ,  . . .  fi~.va. Although the actions do not coincide, the r.h.s, of 
(4.17) vanishes whenever the r.h.s, of (3.3) does. To check this, it suffices to observe 
that in both cases the strings of type f~, . . .  2~ . . .  f .  with some fixed fi removed 
have to cancel separately for each k, so that it is irrelevant whether their overall 
factor changes with k or does not. The relations (4.13), (4.17) therefore suggest the 
following result: 

Proposition 4.3. For fixed A_ e P+ there exists a 1-1 correspondence between 
elements in Horn% (g) (M~t, MS)o q not a root of unity and Hom,~-(g) (F~ + A_, F~+ A_ ), 
C e C~. In terms of the elements in qlq(n_) associated to the qlq(g) intertwiners 
through Lemma 3.1.a) it reads 

It is clear that every qlq(g) intertwiner will give rise to a W(g) intertwiner. For 
example one can check from (4.17) that 

Q l i  = O r i , 1  = ~(  ] / - + ' 1 / + + 1  I~ . L " *  * (4.20) r i 1~ ] A . X r ~ , A + , A _  --+FA+,A_ . 

provides a basic set of intertwiners. The point in Proposition 4.3 is the claimed 1-1 
correspondence, which unfortunately requires a lot more work. Ultimately it is this 
1-1 correspondence which guarantees the completeness property (2.3) in the 
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definition of the W-algebra, and hence the existence of the free field realization. It is 
therefore necessary to prove this result without presupposing the closure of the 
W-algebra. This forces one to an indirect line of reasoning, which will be detailed in 
Sects. 4.3=4.5. Given this result Proposition 4.3 implies 

Proposition 4.4. For given A +_ one has 

dimHomur(g)(Fw,A+A_ Ff f , ,A+A_)={~ i f l ~ _ _ W  
' otherwise. 

For ~ ~ w let Qwr denote the intertwiner. Set 

dtk)  I ;(WW)Qwr if  ~ *-- W (4.21) 
w,~ = otherwise, 

% 

(k) 
with the sign pattern s(w~) = +_ 1 as in the BGG resolution and consider c l~  as the 
matrix elements ofd(k): ~(k) ~ ~(k+l) l(w) = k, l(k) = k + 1, with ~ A + A  Z A + A - ~  

F (~) A -  = @ f w ,  A+ , A -  . (4�9 
(w: l (w)=k}  

The integrability conditions (3.8) are then equivalent to d (k) d (k + 1) = 0. One obtains 
a Fock space resolution form-identical to that of the finite dimensional case (e.g. 
[27-]). 

Theorem 4.5. Let 2P(I) be an irreducible W(sl(r + 1)) module with highest weight 
state I17 = I I ( A + , A _ ) ) ,  A+ ~ P+ and c e C~. There exists a complex of Foek 
modules 

d(O) d(t - D 

0 --"~ ~'(~ ) ) F ~ I ) + A _  "--~0 ~t A+ A _  �9 , . 

s.t. H(k)(F) ~ { f ( I )  / f k = 0  
otherwise. 

In particular, 

--~A+ A-:= z ~ Ker([(V~-)i+~+I~:FA§ ~ Fr~,A+, A-) 
i = l  

= z ~1 Ker([(VF)'7+I~ :FA+A " - - ~ F A + , r i * A - ) '  (4.23) 
i=1 

provides the required Fock space model of the irreducible module 5((I). Here 
l + = (A• ~), t = IA+[ and z again projects onto the sector invariant under the 
Dynkin automorphism. This is necessary, for example, to avoid an overcounting of 
solutions. The equivalence of both characterizations of J:a+ A- follows fi'om the 
invariance under the diagonal action of the Weyl group. As a consistency check we 
note that, in particular, the highest weight state I A +, A_ ) of FA + A-  solves Eqs. 
(4.23)�9 This is to say that the corresponding type of multiple screening integrals 
have to vanish 

�9 v , )  ' ~ + A -  [[V~ 1 ..  V~,( k• [ A + , A _ ) = 0  iffk~ > I ~  (4.24) 
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Let ~ . . .  ~, 1 denote the screening integral with the contour deformed to that 
shown in Fig. 4.b and consider only one of the screening sectors. Then 

k i - 1  

~ V~t . . . Vi,( V~)k' VA, o(Z)~ =g(q)  l~ (@ -- q-h+ 2J)~ Vh " " " V,.(v,)k' Va, o(Z) ~,~ , 
j = o  

(4.25) 

where g (q) is a nonzero polynomial coming from the deformation of the contours 
V~, . . .  V~. This is the multi-contour analogue of a transformation that appears 
also in the Hankel form of the F function [-8]. Notice that (4.24) can be interpreted 
as turning the space MIA + A_ > into an irreducible ~ + 1))-module. Lemma 
4.8.c) in Sect. 4.4 guarantees that the Fock space resolution can be "lifted" to 
a Verma module resolution. 

Theorem 4.6, Let 2'(1) be an irreducible W(g ) module of highest weight I (A +, A_ ), 
e ~ C,. There exists a resolution of L~(I) in terms of Verma modules, i.e. a complex 
(V(I), d) (with d (k) defined in terms of  the canonical embeddings) 

d(O) d(1) d(t) 

V;~)<'~ . . . , V ~ ) '  <-- O< 0 
I 

s.t. H(dk)(v) ~ { ~ ( I  ) / f k = 0  
otherwise 

with V(I k)= @ V ( I ( w * A + , A _ ) )  and t = [ A + [ .  
{w: 1 (w) = k } 

The character for the irreducible modules 5r now follows from the so-called 
algebraic Lefschetz theorem. If the character of the Verma modules is known, one 
would expect that the character of the irreducible modules can be obtained by 
suitably cross-subtracting the dimensions of the singular submodules. Generally, 
the algebraic Lefsehetz theorem states that also in infinite, one- or two-sided 
resolutions 

TrLA (9 = ~ ( - -  )kTr~<,,,(9(k), (4.26) 
k 

where the sum is over all constituents ~ )  of the resolution and (9(k) satisfies 
d(k)(9 (k+l) = (9(k+~)d(k), (9(0)[/~, = (9. TO apply this to the case at hand, with (9 (k) 
induced by the Lo-graduation, an expression for the degree of the singular sub- 
modules is needed. From (4.9) one has 

I I ( w * A + , A - ) - I I ( A + , A _ ) = ( A + - w , A + , A _  +p)  (4.27) 

and by (A.2) this equals 

= ~ (A+ + p, ~j(~>)(A_ + p, ~ )  

l 

= ~ (A+ + p , ~ k ) ( A _  +p ,  ri~.. .rik_l~i~) 
k = l  

(4.28) 
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with w = ri, . . .  ri, a reduced expression. Equation (4.28) has a simple interpreta- 
tion in terms of the embedding diagrams, in that the 1.h.s. depends only on the set 
A ~-~ not on the different ways to write it as ~ ~ A ~+~o for some # e W, w- ~ ~ # -  t 
and a ~ A +. By induction on I this means that any path of direct embeddings in the 
diagram - each step contributing a term to the sum in (4.28) - leads to the same 
answer, the degree of V(I (w  *A+,  A_  )). 

The (specialized) character of a Verma module of weight I ( A + ,  A_  ) is 
ch 2T(I)(z) = (~b(z))-'e 2~i~I1 (A+ A -  ) where ~b(z) is the Euler function 
1-[2=i(1 - t") - i  for t = e 2~i~. Using Eq. (4.28) for the degree and the algebraic 
Lefschetz theorem, the character of the irreducible modules is found as 

e2rciz l i  (A + A -  ) 

chJfA+a (Z)-- ~ (_)t(w) 
( 4 ( ~ ) )  ~ w ~ w  

xexp(2rciz ~ (A+ + p, as(~)(A_ + O, cO). (4.29) 

In the special case where A_ = 0 or A+ = 0 this is conveniently rewritten in 
product form: Recall that for # ~ P+ the specialization of type /~ of the formal 
exponential F, :  IE [e ( - ~ 1 ) . . . .  , e ( - ~,)] ~ C [e2=i~] is defined by F,  (e ( - 2)) = 
e z~i~(z'~) [28]. One may thus, for fixed A+ in (4.29) think of A_ + p as defining the 
specialization of the formal Weyl character. The denominator identity then implies 
product formulas for the principally specialized characters with A_ = 0: 

e 2rcizi i (A, O) 

ch~/gA,0(z) -- - -  ~I (1 -- e2~(A+P'~/) ; (4.30) ( 4 ( ~ ) )  r ~ +  

all this being for central charge c = r - 48s 2 p2 with irrational screening parameter 
s2+. 

4.3. Existence o f  the Free Field Realization. This section is devoted to the proof of 
the results given before. In particular, a proof of the existence of the free field 
realization (Theorem 4.1) will be given, in the course of which the other desiderata 
will follow. We shall adopt the following 

Strategy. The problem consists in showing that the operator product algebra of 
the proposed generating fields closes. This will be done by showing that the 
characteristic space ~ (g) = ~ o o  has the completeness property (2.3), i.e. that there 
are no other singular vectors than those implied by the relations Wi,_a~/v) = 0, 
n > 0. The study of singular vectors is in principle a representation theoretical task. 
Without the algebra known to close, one cannot talk about representation theory. 
However, any candidate for a singular vector has to be an eigenstate of L0 and to 
be annihilated by the positive modes Wi,, n > 0. In a Fock space realization one 
can find these candidates without knowing the commutation relations. By studying 
the structure of such "would be" singular vectors in 24%0 (or generally in modules 
#ga+a- ,  A_+ ~ P+)  the question of the absence of additional singular vectors 
can be reduced to a finite dimensional quantum group problem. The solution 
of the latter is provided by the explicit construction of the intertwiners 

q q 
Q~w ~ Hom% (o) (M ~. A, M w. a) satisfying the integrability conditions (3.8). 
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Introduce the vector space V,( I (A +, A_ )) generated by the modes of the fields 
Wi(z) in F~+ a 

V ~ ( I ( A + , A _ ) ) =  ~ C Wa_v~ . . . W L ~ I A + , A _  )* (4.31) 
v t  . . . . .  v r e P a r ( 1 )  

but strictly to be regarded as carrying only a (non-invariant) action of the oscillator 
algebra. The labels Ii(A+, A _ ) =  I i ( -  (A+ + p), - ( A _  + p)) are as before de- 
fined as the eigenvalues of the zero modes W~ on I A +, A _ )*, with I ~ given by (4.9). 
The relations Fw,A+,A_ ~--FA+,w-',A_,F*A+,a ~f-(A++ep),-(A-+2p) now 
hold in the sense that both sides lead to the same vector space V~(I(A+, A_)). 

4.4. ~z-Singular Vectors. In the present context, define a re-singular vector of 
FA+a_ as an eigenstate of Lo, annihilated by the positive modes W~, n > 0, 
1 < i _< r (with rc mnemotechnical for the Fock space projection). It is not part of 
the definition that these states are expressible in terms of W~_n, n > 0 modes. The 
(positive) difference of the weight to I 1 (A +, A_ ) is called degree and the vector 
space generated by it via (4.31) a ~z-singular subspace. The following proposition 
gives the well-known Fock space construction of ~-singular vectors [2]. 

Proposition 4.7. For c~ ~ A +, A+ ~ P, m+ positive integers, there exists a ~-singular 
vector s in F*+A_ at degree re+m_ whenever x~ = s+m+ + s_m_.  The Weyl 
invariants I i(xl ,  . . . , xr), xi = x~ separate different singular vectors (i.el I(x) + I(2) 
implies s(x) ~: s(~2)). 2 

In principle, the re-singular vectors of a given Fock module and their descendence 
pattern can be obtained from an iterated application of Proposition 4.7 and 
analysis of the multiplicities of the Kac determinant. Due to the somewhat indirect 
criterion in the condition of 4.7, this is feasible only in simple cases. For 
s2+ irrational, the iteration can be solved in terms of the Weyl group ofsl(r + 1) and 
provides a rudimentary form of Proposition 4.4. 

Proposition 4.4'. For s2+ irrational, the To-singular subspaces ofF*A+ A- , A+ ~ P + 
(provided by Prop. 4.7) are grouped into disjoint sets V , ( I (w ,  A+, A_ )) labelled by 
elements of the Weyl group W. Their descendence pattern is induced by the Bruhat 
ordering On W, i.e. V , ( I ( w ,  A+, A _ ) ) c  F*w,A+,a_ is a (set of) singular vector 
space(s) of F ~ ,  it +. A- iff W _____ #. 

Proof For s2+ irrational one can parametrize x~(A+, A _ ) U  s+(A+ + p, ct)+ 
s_ (A_ + p, e) and has x~(A+, A_) = x~(zi+,/~_) iff A+ = A+ ( , ) .  Suppose the 
Proposition 4.7 implies the existence of a ~-singular vector in Fa+a_ for some 

~ A+,A+ e P. Its degree is (A+ + p, e)(A_ + p, ~) = (A+ - G * A + , A -  + p) so 
that by (4.27) the Fock space labels are given by (r~ �9 A +, A _ ) or (A +, r~- 1 ,  A_ ). 
By iteration it follows, in particular, that the labels A+ of all 7r-singular vectors 
obtained in this way are integral weights. Every integral weight is Weyl equivalent 
to one and only one dominant integral weight. Thus, every such ~-singular vector 
of F-A+ A-, A_+ ~ P+ is labeled by some element of the Weyl group. Further, inside 
a fixed Weyl chamber, the map xi ~ I t is invertible (e.g. [16]). Together with ( �9 ) 
this means that different Weyl group elements correspond to different singular 

2 The converse is not correct in general 
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vectors (but still one element might lable a number of them). To obtain the 
descendence pattern of these 7r-singular vectors, fix A �9 P+ and set / i+ = w* A+ 
for some w~ W, A+ e P+.  The condition (c~,A+ + p ) >  0 is equivalent to 
w- 1 e > 0 (or ~ E A w-lr.+ , see Appendix) and by (A.1) one has l(r~w) > l(w). Equa- 
tion (A.2) implies, in particular, that the degree (A+ - w . A + ,  A_ + p) is strict 
monotonically increasing with l(w). If l(r~w) = l(w) + 1, the relation r~w ~ w there- 
fore corresponds to a direct descendence of vector spaces; i.e. those for which there 
is no ~-singular vector space V~ c F* s.t.  f**a+ ,A- C7. F* C F*w,A+ ,A- as proper 
submodules. Thus, V~(I(w . A + ,  A_)) c F; ,A+ A- is a (set of) ~z-singular vector 
space(s) of F ~.  a +, A_, whenever w ~ #. For the converse let V~(I(r, * A +, A_ )) 
be a (set of) singular subspace(s) of F; ,A+,A_ and take l(r~w)= l(w)+ k. By 
(A.4) there exists a sequence f l k , . . . , f i ~ � 9  s.t. r ~ w = r ~ . . . r ~ l w ,  
l ( r ~ . . . r ~ w ) = l ( w ) + i , l < i < _ k .  T h i s m e a n s r ~ w ~ w .  [] 

To proceed with the general discussion, a number of points should be empha- 
sized. First, the above Proposition 4.4' does not exclude that there are several 
~z-singular vectors labeled by the same Weyl group element, nor does it guarantee 
that all zc-singular vectors can be found in this way. Second, the ~-singular vectors 
and the corresponding vector spaces have been introduced as pure Fock space 
concepts and are in general not known to be elements of V~(I(A+,A_)), In 
particular # ~ w does not imply so far that V~(I(w.A+,  A_)) is a subspace of 
V~(I(# * A +, A_ )). Suppose further momentarily that the W(sl(r + 1)) algebra and 
its free field realization (4.4) are known to exist. Let re: V ~ V, be the linear map 
defined by the free field realization (if irrelevant, we will sometimes drop the labels 
I(A+, A_ )). In general ~ will be a projection: A ~z-singular vector either has 
a pre-image in the Verma module (which is then annihilated by W~,, n > 0) or it 
does not, in which case the mapping rc must be singular. For s2+ irrational, such 
situations can partially be excluded. As indicated above, the mapping from the 
Weyl invariant polynomials I~(x~ . . . . .  x~) to the pairs (A+, A_) �9 h* x h* is 1-1 
inside a fixed Weyl chamber. For given A_ e P+,  the weights A+ �9 h* can therefore 
be used to label the re-singular vectors. 

Lemma 4.8. For fixed A_ e P +, s2+ jrrational: 
a) rr-singular vectors exist only for A+ ~ W . A + ,  the Weyl orbit of A+ in h*. 
b) The u-singular vectors labeled by r~ * A +, A + �9 P + are unique and are elements of 
V~(I(A+,A_)). In particular V,(I (r~.A+,A_)) ,  1 <_ i <_ r are subspaces of 
V,(I(A +, A_ )). 
c) I f  the W(sl(r + 1)) algebra and its free field realization (4.4) are known to exist, the 
singular vector labeled by ri* A+, A+ �9 P+ in V is unique and is mapped onto the 
corresponding ~-singular vector in V~. 

This follows from the determinant of the bilinear form on V~(I(A+, A_ )) and its 
multiplicities. Using the basis (4.31) the determinant for V~ is evaluated from the 
oscillator algebra (i.e. without pre-supposing the closure of the W-algebra) [4, 31-1. 
The result is, up to a non-zero factor, given by 

de tS fN( I (A+,A- ) )  = H I-I [ x ~ - s + m + - s _ m _ ]  Pr(~c-m§ , (4.32) 
~ A +  {m+ra-<-_N} 

where x~ = s+ (e, A+ + p) + s_ (cq A_ + p) and P~(N) is the number of partitions 
of N into parts of r colours. Notice that the r.h.s, is invariant under the diagonal 
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action of the Weyl group in x~(A +, A _ ). The determinant therefore depends only 
on the invariants I ( A + ,  A _  ), as anticipated by the notation. 
P r o o f  o f  L e m m a  4.8. a) Vanishing of det5 f(N) is a necessary condition for the 
existence of at least one vector at grade N, which is either To-singular or ~c-co-singular. 
As in the proof of Proposition 4.4' one concludes that for s2+ irrational, the Fock 
space labels of the re-(co-)singular vector(s) are given by (r, �9 A +, A_ ) or (A +, r 2 1 .  
A_ ). The Fock module generated by (each of) it may again contain re-(co-)singular 
vectors. Upon iteration, one sees that for fixed A_ s P+,  the Fock space labels of 
~z-(co-)singular vectors are constrained to the Weyl orbit W .  A+ of A+ E h*. 
b) Generally the number of re-(co-)singular vectors that appear at grade N can 
not exceed the order to which det5 e(N) vanishes. Further, the re-singular vectors 
associated with grades for which the determinant vanishes for the first time (in 
order of increasing N) are known to be 7c-singular (not ~-co-singular) and to 
be elements of V~ [31]. Clearly the Weyl reflections corresponding to the simple 
roots yield the singular vectors of lowest possible grade. Take therefore 
N = m + m _  = (A+ + p ,o%)(A_  + p,o~ij), 1 <__j < k to be the grade at which the 
determinant vanishes for the first time with multiplicity 1 _< k _< r. The Fock space 
construction provides k re-singular vectors at that degree, which are thus known 
to be unique and to be elements of V~. To extend this to the remaining 
~-(co-)singular vectors labeled by r i * A + ,  i r {i l ,  �9 � 9  ik}, it suffices to show that 
the Fock space construction of the ri * A + To-singular vectors does not depend on 
the relative size of the Dynkin labels. For fixed i one can choose a basis in r- 

1 
dimensional Euclidean space s.t. cq = ,,fl2ei and r~, A + - A + - /~(Ii + 2)el,  if 

e~, 1 < i _< r denotes an orthonormal basis. Thus only the i t~ Dynkin label enters 
the Fock space construction of the ~-singular vector r~ * A +. 
c) This follows from b) and the fact that the Fock space operator defining the 
re-singular vectors labelled by r~ * A + is injective (cf. Eq. (4.24)). [] 

Since by (A.3) each Weyl group element w lies in the image of at least one 
fundamental reflection w.r.t, the Bruhat ordering, at least one of the ~z-singular 
vectors labeled by w ~ W is from a) known to be an element of V~. Part b) implies 
that if there are re-singular vectors in addition to that described by Proposition 
4.4', they have to appear at the same grades as the ones covered by the Fock 
space construction. If, in fact, there is a 1-1 correspondence between ~r-singular 
vectors and elements of the Weyl group, a nontrivial consistency condition 
arises: The mappings given by composition of the canonical embeddings 
~ :  V~(I(w �9 A+,  A _  )) ~ V~( I (#  �9 A+, A_ )) have to define commutative diagrams 
for each of the fundamental squares introduced before. Conversely if all of these 
compatibility conditions can independently be shown to hold, the mentioned 1-1 
correspondence follows: By (A.3) uniqueness of the highest weight state IA +, A_ )* 
implies that if all the squares with Weyl group elements of length 2 at the top are 
given to be commutative, the singular vectors corresponding to length 2 elements 
have to be unique and to be elements of V~. Induction in the length gives the 
uniqueness of all ~-singular vectors and by a) no other ~-singular vectors exist. The 
diagram summarising the descendence pattern of the ~-singular vectors in 
F**A+ .A_, w ~ W turns into an embedding diagram for the ~-singular subspaces 
V~(I(w �9 A+, A _ )). Finally, if the W(sl ( r  + 1)) algebra and the free field realization 
are known to exist, the canonical projection ~z: V--* V~ is non-singular at all grades, 
which implies Theorem 4.6. 
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For brevity we shall refer to the condition that all squares of the descendence/ 
embedding diagram form commutative diagrams w.r,t, composition of the canoni- 
cal embeddings, as the "integrability condition" for the embedding diagram. They 
will later be seen to form a sufficient condition for the existence of a W-algebra and 
for V. to be a W(sl(r  + 1)) module. 

4.5. re-Intertwining Operators. In the present context define a u-intertwining oper- 
ator for V~(I(A+,  A _ ) )  as a map 

Q~w: F* --+ F~ # -< w (4.33) ~ * A + , A -  * A + , A - ~  - -  

s.t. the image Q~w I# * A +, A_ )* is (one of) the re-singular vector(s) labelled by w in 
Proposition 4.4'. If the free field realization were already known to exist, these 
operators would become proper intertwiners of the W(sl(r  + 1)) algebra. Notice 
that because of ( V 3 )* = V3 the rc intertwiners remain unchanged when taking the 
dual, although we shall adopt the convention Q~,~ = Q ~  for # < w. The definition 
guarantees in particular that a set of direct ~z-intertwiners exists for each positive 
root ~EA+ acting o n  F**A+,A_ s.t. c~eA~ -~"~, 

z +  * * (4.34) Qg,o,: F . . . .  a + a -  -'-~ F w , A +  A _  �9 

Here l + is the (for given w e W) unique Dynkin index paired to the positive root J(~) 
in (4.28), (A.2). Again we will drop the +_ labels whenever possible. Q) will be 

realized as a polynomial in multi-screening integrals of the form (4.12). The 
integrability conditions for the ~z-intertwiners coincide with that of the q-inter- 
twiners (3.8). In particular, the commutativity of squares of type b does not give rise 
to an integrability condition for the involved intertwiners. This is because if the free 
field realization of the W-algebra exists at all in the required form, the states in 
V~(I(A +, A_ )) and its singular submodules are z invariant. Thus, the oscillator 
algebra may be supplemented by So and only the z invariant sector needs to be 
considered. 

A first consequence of the integrability relations (3.8) is that the u-intertwining 
operators obtained from the al lq(n+)  operators are unique, well defined and 
non-vanishing: The discussion following Lemma 4.8 together with the relations 
(3,8) implies that the set of re-singular vectors labeled by w ~ W in Proposition 4.4' 
contains one element only. The unique u-singular vector labeled by w e W can be 
expressed in a variety of different, but mutually consistent ways as products of 
direct intertwiners acting on [w * A +, A_ )*. In particular one can choose 

Qw, l l w , A + , A _ ) * = o h ~  O ~ ' ~ [ w * A + , A - )  * (4.35) 

where w ~ r~ ~ . . .  *-- ri~ *-- 1. This is because by (A.3) each w e W lies in the 
image of at least one path in the embedding diagram consisting of fundamental 
reflections alone. A contour deformation of the type leading to Eq. (4.24) shows 
that these states are nonvanishing. For the operators Qt] the intertwining property 
is known from (4.20). Alternatively, one can in this case deform the contour in 
Fig. 4 to that used in [21], where the intertwining property is manifest. Thus, 
Qw, t is a well defined, nonvanishing ~-intertwiner for all w ~ W. By considering 
squares in the embedding diagram which contain a single ~-intertwiner Q~J with 
hte = k and others of height smaller than k, one obtains by induction on k that all 
Q~ are well defined and non-vanishing. By Lemma 4.8.b) the u-singular vectors 
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they generate are unique, are elements of V~(I(A +, A_ )) and by a) no others exist. 
This also implies that there is in fact a 1-1 correspondence between singular vectors 
in M~+ and n-intertwiners. In summary one arrives at: 

Proposition 4.4". For fixed A_ ~ P+, q not a root of unity: There exists a bijective 
map from the set of singular vectors in M q of weight w * A to ~-intertwining operators 
r ~ w  "(-- W 

l + 
Q J ~ "  �9 --~ F * * A + , A _  

given by 
f i t  " �9 " f i ~ ' V A +  ---> ~ V +  " �9 �9 V+~A+A-~. �9 

Here {v ~ Mqa[hl "v = ((A - 2, hi)v) is the subspace of M~ of weight 2. Moreover 
introduce the (ll + 1 , . . . , l r  + 1) graduation on M~, i.e. set d e g f  = l~ + 1, 
1 < i _< r. In this graduation, the degree of a n-singular vector of weight w * A in 
M~ coincides with the degree of the singular vector Qw, I [ w * A + , A - ) *  in 
V~(I(A +, A_ )). For the simple roots Eq. (4.20) provides the explicit form of the 
n-intertwiners. As a last step in exploiting the integrability conditions (3.8) for the 
n-intertwiners we arrive at the following criterion: 

Proposition 4.9. For fixed A_ ~ P +, the integrability conditions (3.8)for the oper- 
ators Qlj on the qlq(n_ ) module M~+ , A+ ~ P+ are a sufficient condition for the 
existence of the free field realization (4.4) of the W(sI(r + 1)) algebra with 
2/f A+ A-forming an irreducible W(sl(r + 1)) module. 

Proof The n-singular vectors Qw, 11 w * A +, A_ )* to w e W are already known to 
be unique, well defined and non-vanishing and no other n-singular vectors exist. 
Further they are elements of V~(A +, A_ ) which generate n-singular vector spaces 
of V~(I(A +, A_ )) with the embedding diagram induced by the Bruhat ordering. All 
states in the quotient V=/SV= are thus known to be expressible in terms of 
lexicographically ordered creation modes of  the Miura fields (4.4). The ordering 
may be taken as in (2.1). Now consider the singlet case, i.e. A• = 0. Generally, 
l - [ ~ +  (1 - e 2~i(p'~)) : H r = l  ( H ~ L l l ( 1  -- e2nirk)), where A~-  1 are the exponents 
of g. The character formula (4.30) thus shows that ~ ( s l ( r  + 1)) ~ ~Xr as graded 
linear spaces, so that condition (2.3) in the definition of Sect. 2 is satisfied. This can 
be used to reconstruct the operator product algebra of normal ordered products of 
W~(z) and their derivatives. In particular all fields which appear in the operator 
product algebra can be expressed in terms of normal ordered products of the fields 
W~(z) and their derivatives. Picking a regularization prescription to regularize 
infinite sums, the commutator of normal ordered regularized sums of V/, modes 
closes on regularized sums of such modes. On any state of a highest weight 
representation only a finite number of terms contribute and the regulator can be 
removed. The W-algebra is thus known to close on the closure of the universal 
enveloping algebra of the modes W~ w.r.t, the topology induced by taking matrix 
elements in ~oo .  After projecting the generators onto quasiprimary fields (see also 
Sect, 5) the postulates for a W(g)-algebra given in Sect. 2 are satisfied. For general 
A + G P  +, this W-algebra has a well defined action on the vector space 
~A+A- -~ V~z/SVr:. The "would be" representation theory of this subsection be- 
comes the proper representation theory and the space ~ut~ A + A_ exists as irreducible 
W(sl(r + 1)) module. [] 

In principle one would expect the integrability conditions (3.8) also to be 
a necessary condition for the existence of the free field realization. However, 
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without the conditions (3.8) to be given, it seems to be difficult to show that the 
intertwiners are well defined and non-vanishing, so that the question for (3.8) can 
not be asked properly. 

5. Pathologies at Exceptional Central Charge 

In this section we discuss two pathological features of Casimir algebras which may 
occur for special values of the central charge. The first is that the rank of a Casimir 
algebra is actually a discontinuous function of the central charge. For a finite number 
of points the rank will be smaller than that of the underlying finite dimensional Lie 
algebra. The second pathology is that the number of independent primary fields may 
be smaller than the rank for another finite set of exceptional points. 

The structure constants of a Casimir algebra are functions in the central charge 
and depend on the choice of basis fields. In the basis of Miura fields one infers that 
the structure constants are polynomial in the e. This is a consequence of the 
definition of normal ordering (induced by (2.1)) and the z-invariance. In particular, 
this allows to extend the range of definition of the commutation relations from C,. 
to all values of c and also renders the projection onto quasiprimary fields unproble- 
matic. By Proposition 4.2 the same holds for the Caftan basis (4.8), which is the 
preferred basis to study the representation theory. In contrast, the structure 
constants in a basis of primary fields will be complicated roots of rational fun- 
ctions. Call a basis regular if the structure constants are polynomial in c. Besides 
the practical advantages, such bases can be used to calculate the rank of a Casimir 
algebra. Recall from Sect. 2 that the rank of a Casimir algebra is the minimal 
number of quasiprimary fields required to generate the mCFT. For c ~ Cr one has 
the expected rank, i.e. rank W(g) = r = rankg. For a finite set of c values the rank 
of the algebra may actually be smaller than r. At these values one or more of the 
generating fields becomes composite, i.e. some linear combination of generators 
decouples from all conformal blocks. Consider the commutators [P~, P~] of the 
quasiprimary fields of weight A. The coefficients of the c-number term form 
a matrix Da which yields a metric on the corresponding vector space. The vanishing 
of the determinant of this metric gives a criterion for the decoupling. 

Lemma 5.1. For a Casimir algebra in a regular basis the rank is given by r - s, where 
s is the number of 1 <_ i < r for which det D~, vanishes. 

As a non-trivial example consider the sl(4) case and set L = W 1, W = W a, 
. I  

V =  W 3. TheCar tan  basis is given by i =  L, I ~ =  W, [7= V + 8 A  + ~ 0 2 L ,  

where A = JV (L, L) = (L, L) - ~o 02 L. From the explicit form of the commutation 
relations in this basis [9] one finds 

1 
detD: = ~ c ,  

detD3 = l e ( e  + 7), 

1 
detD4 = l ~ c ( c  + 2)(c + 7)(7c + 114). (5.1) 



Irrational Free Field Resolutions for W(sl(n)) 271 

This means that the algebra is of rank 3 except for c = 0, - 2, - 7, - 114/7, where 
it is of rank 0, 2, 1, 2, respectively. Notice that these points lie in the W(sl(4))- 
minimal spectrum. 

A second source of exceptional c-values is the projection onto primary fields. 
The use of primary fields gives a realization-independent way to determine the 
structure constants of W-algebras of low rank by explicitly solving the associativity 
condition. This allows also the investigation of W-algebras for which the weights of 
the generating fields do not coincide with the exponents of some Lie algebra. The 
principle can be summarized as follows (cf. [33, 34] and references therein): Starting 
with the Virasoro algebra, one adds a number of fields __W i primary relative to it 
with weight A~, normalized as <wk, w k) = c/k. Further one uses the su(1, 1) 
covariant normal ordering ~2. This allows one to write down an su(1, 1) covariant 
Ansatz for the commutator of any two fields W k, with only a few structure 
constants undetermined. Imposing the Jacobi identity (on a computer) gives a set of 
algebraic equations for the structure constants. These equations turn out to have 
either none, a finite number, or a 1-parameter family of solutions (with the 
parameter corresponding to the central charge). In this way, the resulting algebraic 
structure (if any) is uniquely determined by the weights of the generating primary 
fields and the postulated covariance properties. 

For the sl(r + 1) series, the method has been applied to s/(3) and s/(4) [33, 34] 
and confirms that the Jacobi identity generically has a 1-parameter family of 
solutions. The structure constants are roots of rational functions of the central 
charge. For a certain finite set of exceptional values of c, the structure constants are 
ill defined due to the presence of poles. These poles indirectly signal two different 
types of defects. For some of the singular c-values the algebra turns out to be not of 
maximal rank as described before. For another set of c-values the number of 
independent primary fields is smaller than the rank and hence smaller as the 
number taken as input for the calculation. 

Consider again the s/(4) case for illustration. Let W k denote the projections of 
the Cartan field generators onto primary fields, normalized s.t. (wk ,  w k> = 
c/(k + 1). In the above sl(4) example one finds 

10 ff~ 
__w= 4c -  , 

~_( 300(5c + 22) ( 
V =  7c + 114)(c + 7)(c + 2) 17 

7c + 114 \ 
40(5c + 22) A)" (5.2) D 

We have verified explicitly that the transformation I~ g ~ W  k leads to the commuta- 
tion relations given in [7]. For the c values { - 2, 22 114} - ~-, - 7, - the basis 
transformation is singular which introduces a corresponding set of singularities in 
the structure constants. Three of these singular points can (a posteriori) be removed 
by relaxing the normalization condition, but at c = - 22/5 the projection onto 
primary fields fails. Notice that this point does not lie in the W(sl(4))-minimal 
spectrum. Algebraically the pole at c = - ~2 arises from 

[Lm, A,] = (3m - n)A,~+, + ~ c + m(m 2 - 1)Lm+,. (5.3) 
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From detDa =I= 0 for A = 2, 3, 4 one also verifies that A(z) is not a null field at this 
point and thus does not decouple from representation spaces or correlation 
functions. Quite generally, in the commutator of L, with some normal ordered 
composite field, the coefficients of the fields on the right-hand side will be poly- 
nomials in the central charge. At the zeros of these polynomials, the linear system, 
defined by the elimination of unwanted higher pole terms in the operator product 
expansion, degenerates and the projection onto primary fields no longer exists. The 
contribution of the subleading terms in the primary projections of the Caftan 
generators leads to a central term which is a rational function of c. The final 
normalization to (__W k, W k) = c/k introduces the remaining poles found in [33, 34] 
as well as the square roots in the structure constants. It is often useful not to insist 
on this normalization, in which case one is left with a set of singular points 
C2 arising from the projection onto quasiprimary fields. 

In terms of the characteristic space ~ ( s l ( r  + 1)) = g/g00 in the definition of 
Sect. 2 one is faced with the following situation: Even for the part of the c-spectrum 
where the algebra is of maximal rank, the attempt of a decomposition of JFoo into 
irreducible Virasoro modules might fail for certain values of the central charge. 
The known proofs that a basis of primary fields can always be chosen in conformal 
field theory explicitly assume unitarity [32]. Conversely, this seems to imply that 
at the exceptional points only non-unitary representations of the W-algebra can 
exist. 

Beyond that we can only offer the following tentative partial result: The set 
C~ of exceptional points of the W(sI(r + 1)) algebra arising from the projection 
onto primary fields satisfies 

C c { c =  l -  24soEIsZ+= p-,q p, qcoprime, m i n ( p , q ) < r } .  (5.4) 

The following argument tries to model the exceptional situation c s C~* within 
the framework of the free field realization. Let a W(sl(r + 1)) algebra be given, in 
the sense of the definition in Sect. 2, with generic central charge. Let 
~ o o =  Jf(sl(r + 1)) denote the Fock space construction of its characteristic 
space and Hoo = @m+m 24~ . . . . . .  The sum is over some set of s/(2)-weights 
#+ = m+/,,f2 ~ P, with 1/~f2 the fundamental weight of s/(2). Each of these 
irreducible representations can be obtained as the unique non-vanishing cohomol- 
ogy class in a complex of Fock spaces of a single boson q~ (see [211 and references 
therein). The complex is defined in terms of intertwining operators of the form 
[(V) m+l 1, with V = e -is+ ,/g0. The free field realization of the Virasoro algebra is 
L(z) = -�89 - -  ix/2So6q2~p with c = 1 - 24So 2. Any fixed of these representa- . 
tions can be regarded as a subspace of a single boson sector in afoo: Let 
~b = (~bl . . . . .  qSr) denote the Euclidean vector of bose fields from which ~ is 
constructed. One can choose a basis in root space for which r ~b -- ,,/2~bl, so that 
the W(sl(r + 1)) screening operator Vi may be used to define a complex for the 
Virasoro algebra. The Fock vacuum for the boson qS~ may contain modes of all 
other qS;, j =t= i. The Fock space resolution of 24~ may (a posteriori) be defined in 
terms of intertwiners ~(Vi)" + ~ ~, 1 <_ i <- r, 0 < mi < ni only. Here n~ denotes the 
maximal "power" of Vi required. Clearly, maxl (nl + 1) is the maximal difference in 
the levels of two singular modules labelled by w, r~ * w s.t. r~ * w ~ w. By (A.5) one 
has maxi(n~ + 1) = r. 
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Now consider the limit, where c approaches one of the exceptional points in C;. 
By assumption, the different irreducible Virasoro representations in 
@ . . . .  W . . . . .  can then no longer be matched to reconstruct ~oo (because the 
"Clebsch Gordon" coefficients appearing in the decomposition develop zeros/ 
poles). But this means that at least for one 1 < i _< r and 0 =< m~ < nz the singular 
vector ~(Vi + )~,++ 1 ~ ] ri * # +, # -  >*, rrt + = (#+, ~i) is either ill defined or vanishes. 
From (4.24) or by direct evaluation of the integral against a basis of symmetric 
polynomials [21J one finds: For s+ > 0 the state is always well defined and 
vanishes iff s2+ = p/q, q < m/-- + 1. Here the screening operators of the s+ sector 
were used, but the same has to hold on the s_ sector, as also the invariance under 
the diagonal action of the Weyl group F~.~+ ,u- ~ Fu+, w-~ .~_ must not fail in 
the complex, to allow the reconstruction of-X0o. In summary, one concludes that 
a necessary condition for the failure of the attempt to reconstruct ~'%o from its 
irreducible Virasoro components is that s2+ = p/q, min(p, q) < maxi(nz + 1) = r. 
The relevant parametrization of the central charge is that of (one of) the single 
boson Fock space(s) where the reconstruction fails. As the vacuum for ~bz is itself 
a nontrivial Fock state, the usual positivity bound does not apply. 

6. Extended Sugawara Construction 

The irrational Miura-type realization of W(sl(r + 1)) is closely related to affine 
Kac-Moody algebras at level k --- 1. These are particularly relevant for applica- 
tions, for example to KdV-type hierarchies. 

Let O denote a simply laced affine Lie algebra and L[ the irreducible module of 
affine weight 2 = (2, k), 2 e P+.  Any such module can be decomposed w.r.t, the 
horizontal subalgebra. For level k = 1 modules it reads [28] 

L~ = @ L I ( A ] A ) @ L A  �9 (6.1) 
AeP+ n(Q+ )O 

Here, )~ = (2, 1) is an integrable weight of 0, Q is the root lattice of g and La the 
irreducible g-module to A ~ P + .  LI(2[A) are subspaces of g singlets. Let 
L [ x ]  = v - z ~ a ( x " x a ) ( z ) ,  v2= k + h be the usual Sugawara operator with x"(z) 
a linear basis of the current algebra. For the (homogeneously specialized) character 
of L~ (21A) one has [28] 

1 
e2uiz.  ~(A, A) 

chLI(2IA) = TrLI(~IA) e2"i~(L~ -- qS(~)r I-[ (l - -  e 2 ~ i ~ ( A + p ' c O )  . (6.2) 
cteA + 

This can be used to show that L 1 (2JA) is an irreducible W(g) module with central 
kdim 9 

charge c - ~ -+  ~ k= 1 = r. The field generators are given by 

1 
C'(z) = ~ d  . . . . . .  ,(x~ x~ (6.3) 

with the d-symbols chosen symmetric and traceless and N is a normalization factor 
to be specified later. These fields are primary w.r.t. C z = LI-x] (cf. [4J) and close 
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under operator product expansion. For  the proof one has to show that the states of 
the form (2.1) built from the modes of CZ(z) are independent. This can be done in 
the level 1 vertex operator realization of 0 ([32]; the argument is reproduced in 
[13]). 

Now observe that (6.2) coincides with the character of the irrational 
W(sl(r + 1)) modules (4.30), i.e. 

1 
e 2~'~(s2+ -1)(A+~ 0)) -- chL1 (2[A) 

1 
= e 2~ir' g(s2- -1)(n+o'P)ch c~(I(0, A)),  (6.4) 

where A ~ P+ c~ (Q + ;t) and 5~(I(A+, A_)) is the irrational W(sl(r + 1)) module 
of central charge c = r -  48sZp z. This means that LI()~IA) and ~(I(A,O))  are 
isomorphic as graded vector spaces. In fact, the isomorphism can be made explicit 
and is essentially given by the free field realization of 0 in terms of r free bose fields 
and I A +l bosonic 137 pairs. This can be regarded as an infinite dimensional 
analogue of the Harish-Chandra isomorphism. 

Let g in the following be sl(r + 1) and g -- n_ | h G n+ a triangular decomposi- 
tion. Let E+,  be Caftan step operators and H~, 1 < i _< r be any basis of the Cartan 
subalgebra. The Poincar&Birkhoff-Witt (PBW) theorem states that a basis of the 
universal enveloping algebra ~#(g) of g is then given by the lexicographically 
ordered monomials E ~  . . .  E ~  H~ ~ , . . H~ ~ E~ . . ,  E~;, with the step operators 
written in an arbitrary but fixed order of the positive roots ~1 > - �9 �9 > C~s. One 
has the following simple facts (see e.g. [29]). 

a) S#(g) = Og(h)O(ql(g)n + G n  o-g(g)). 
b) For  elements C in the center fif (g) of g, the projection onto the second factor in 

a) lies in q/(g) n +. 

Let 7: q/(g) ~ q/(h) denote the projection onto the first factor in a) s.t. C - 7(C) lies 
in ql(g)n+ for C e N(g). Set o- (H) = H - (p, H) for H e h. 

Theorem 6.1. (Harish-Chandra). The map o o 7: ~l(g)-~ ~ (h )  is an algebra isomor- 
phism of ~L,V (g) onto the algebra of WeyI invariant polynomials in ~ll (h). 

A proof can be found in any textbook, for example [29]. In particular, the theorem 
allows to calculate the eigenvalues of the Casimir operators from the Weyl 
invariant polynomials by a simple shift o--~ in the Cartan subalgebra generators. 
For  comparison with the infinite dimensional case, consider sl(3) as a nontrivial 
example. In terms of the Chevalley generators the Casimir operators read 3 

C 2 ~ (~abXaX b 

= ~[hl + hlh2 + h 2] + [fie1 +Ae2 +Aea + (e§ (6.5.a) 

= - - - + - + el +Ae  + A e 3 ,  (6.5.b) 

3 We do not agree with the expression for C 3 given in Eq. (4.4) of [36] 
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2 , b c C 3=~d.bcx  x x 

= 2-~ [2h~ + 3h2h 2 - 3h~h2 - 2h~] 

1 
+ g [ f ( h l  + 2hz)el - fz (2h l  + hz)e2 +f3(hl - hz)e3 

+ (ftf2 + f z f t ) e l  +f2e3ft  +fle3f2 + e3(ftf2 + A f t )  + (e~--,f)] (6.6.a) 

= - + - + 

+fth~el  +f2h2e2 +f3]~3e3 +Ae~e2 +ftAe3 + f t e l  +f2e2. (6.6.b) 

Here e 3 = [ e l , e 2 ] ,  f 3 = [ f 2 , f t ]  and our d-symbols are normalized s.t. 
It,, tb]+ = �88 + 2dabctc, if t,, a = 1 , . . . ,  8 are the Gell-Mann matrices. The 
second form of C 2, C 3 is obtained respectively by rewriting all monomials in the 
PBW basis. For convenience we also switched to the usual overcomplete basis/~i, 
1 _< i _< r + 1 in the Cartan subalgebra. The relation to the Chevalley basis is 
hi-=~i+l-hi+2(h~+2=hl). Besides 2 i h i = O  one has for this choice 
[ei, hi] = 0 = [ f ,  hi]. The first term in brackets is respectively the Weyl invariant 
polynomial and one can verify from the PBW forms (6.5.b), (6.6.b) that the 
eigenvalues of C z, C a on some highest weight vector are in fact obtained by the shift 
o-~ from them. Generally we normalize the Casimir operator C k s.t. the leading 
term in ~ (h) is given by minus the symmetric polynomial of power k in/~i. 

Let howl(z),  hi(z), ei(z) be Chevalley field generators of ~(r  + 1) at some level 
k and define overcomplete Caftan subalgebra fields by 

hi(z) = v(hi+~ - hi+z)(Z), V = x / k +  h. (6.7) 

Let 0 = t~+ @/~O r~_ be a triangular decomposition of~(r  + 1). The above form of 
the PBW basis is also valid on the enveloping algebra of normal ordered products 
of the affine field generators. We adopt a right nesting convention for repeated 
normal ordered products, i.e. ABCD shall be shorthand for (A(B(CD))) etc. Con- 
sider now the generalized Sugawara fields (6.3). They are not Casimir operators of 
the affine algebra. In fact, for k ~a _ h an affine algebra does not admit Casimir 
operators other than the quadratic [38]. (Instead theta functions separate the Weyl 
group orbits [39].) For k = - h, an infinite set of Casimir operators exists and is 
given by the modes of generalized Sugawara-type fields [40]. For level k = 1 one 
has the following weaker analogue. Let ~denote the projection onto the Cartan 
subalgebra piece in the PBW basis of sl(r + 1). Remarkably, as in the finite 
dimensional case, this Cartan subalgebra piece can be given in closed form. 

Theorem 6.2. The analogues of statements a), b) hold for ~#(0) at level k = 1 with 
~ ( 9 )  replaced by the 9 singlets L~(2[A). The Caftan subalgebra piece 

W k [/~] Sugawara fields Ck(z) = ~---~d . . . . . .  ~ (x ~ . . .  x~ )(z) is e v e n  o f  the 

by 

a = + / ~ + a  . . .  a~+/~a = - Z wk [ /~ ] ( z )  va= . (6.8) 
k = - 1  
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Remark. hi(z) does not obey the same commutation relations a s / ~ i ' ~ b  in (4.4). 
I 

Nevertheless (6.8) is form-identical to a Miura transformation with 2s0 = -  
V 

= (h + 1)-1/2. 

Proof The first part is shown as in the finite dimensional case. For the second part, 
note that, with the above normalization, the leading term of ~ C k (z) will be given by 
minus the (normal ordered) symmetric polynomial of power k in hi(z). Rewriting 
unordered monomials in the PBW form, additional ~//(h) terms are generated with 
a derivative for each power less than k. The result follows by comparison of the zero 
mode pieces. The eigenvalue of the zero mode of ~ C k (z) coincides (up to a factor) 
with that of 7C k. In the basis /~i the shift factors h] - ~r-1/~i+~ come in pairs 

P'/~i+1 = -P ' /~ i+1,  i =  1 ,3 , . . .  ,r, r odd; P'/~,+1 = -P' /~ i+1,  i =  1 , 3 , . . . ,  
r -  1, r even. In the differential operator (6.8) this sign pattern arises from the 

~(-t  ~/~i]  = --1/~i+1, with the r even/odd subcases as above. ~ symmetrization 
\ v  2 V 

The absolute values of p" hi account for symmetry factors and, for example, by 
using the formulae of [35] one can check that they come out correctly. [] 

As an example, consider again W(sl(3)). Calculation gives 

C 2 = -/~h~ -/~2/~3 -/~/~3 -i0~(/~ -/~2) +Ae~ +f2e2 +f3e3, V 

C 3=  - /~1/~2]~3 -2~Iy(~z(]~3(]~1- ]~2))-~ hl~z/~2 - ]~2~z/~I ) + ~v2 ~z2]~3 

1 
+ ~ [a~(f~e~) - a~(f2e2) + a=Ae3 - f3aze3] ,  (6.9) 

as it should. 
Although the (modes of the) fields/h(z) in (6.8) and i/~i" 0~b in (4.4) do not obey 

the same commutation relations, both can be set in correspondence by means of 
a free field realization of sl(r + 1). This realization employs r free bose fields ~b" and 
[A+[ bosonic/~7 pairs [41, 5]. One associates to each positive root ~ e A + a first 
order bosonic/~7 pair 

= /Lz , 7~(z)= ~ ~ .z -" ,  fie(Z) S ~ - n - 1  
hE7/ neZ 

satisfying [7~,/3, ~ ] = 7~6,,+m,O �9 This realiAzation has been used in [5, 6, 71 to derive 
Fock space resolutions for irreducible sl(r + 1) modules. There also the explicit 
expressions for therealizations ~ei, ~hi, ~f of the Chevalley fields generators can be 
found. The fields hi take the form 

(6.10) 
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From Theorem 6.2 one therefore expects the fi?-independent part of nC k to be just 

given by the Miura fields W k = W k [4)] in (4.4), with 2So = -.1 This is not entirely 
v 

trivial, because also the q[(0)fi+ part in Ck(z) will develop f17 independent terms. 
The character identity (6.4), however, tells that these have to drop out, whenever 
2so = 1/v amounts to an irrational screening parameter s~+. For level k = 1 this is 
the case if and only if r + 2 + (m + 2)(m + 3), m > 0 (where equality would give 
s~+ = (m + 2)/(m + 3)). Together one arrives at 

Corollary 6.3. Let r + 2 ~= (m + 2)(m + 3). The map 

=: LI(21A)--, 2'(1(A, 0)) 

ak 
( x . ~ . . .  x.~)10> -* (x2~. . .  x,2)[44~r] 10>le,=o 

defines an isomorphism between 9raded vector spaces. 

(6.11) 

The structure of the singular vectors in both modules, of course, will be entirely 
different. The identity (6.3), however, implies that the infinitely many singular 
submodules of LI(2[A) are contained in the finitely many singular submodules 
whose images under n are already present for c generic. In terms of the commuta- 
tion relations this implies that the point c = r is a generic point for the structure 
constants, i.e. that none of the composite fields on the r.h.s, of [ W~,,, W~ ] will drop 
out, compared to the case c ~ C,. For example, this can be used to lift the 
existence of infinite dimensional abelian subalgebras from 5e(I(0, 0)) to LZ(210) 
[37]. 

By regularity in So, the fact that ~Cklp~=o = wk[~b] can be extended to all 
values of s2+ (although, of course, for s2+ rational, the isomorphy 6.3 will in general 
cease to hold). Once again, consider s/(3) for illustration. With/3~ = fli, 7r = ?i, 
i = 1, 2, 3, c~3 = cq + c~2, one finds 

/rC 2 - 
i 3 
2c~b'c~q~-102q~ - ~ /?k07k, 

1) k = l  

~C 3 = Wa[~b] + C3m,x + --1 C3 [fiT], (6.12) 

where W 3 [qS] is the r-invariant Miura generator and 

3 

C~mix -- )-2, i s  k -- i(t;3 -- s162  2 
k = l  

+ 1(~/3~a7~ + &2~72 _ 0/~3~7~72 _ 2p~p2& 3) 
z.; 

] 2 2 3 fl3(~2~/3 /~302~1 +~( /~  a ~ + + y2).  (6.13) 
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One can check that rcC 2, rcC 3 are sl(3) singlets and that ~C 3 is primary w.r.t, the 
bosonized Sugawara field rcC 2. 

7. Conclusion 

The existence of Miura-type free field realizations of W(sl(n)) has been established. 
The problem of the closure of the algebra has been reduced to a finite dimensional 
quantum group problem, for q not a root of unity, which is solved by direct 
construction of the intertwiners. The extension at least to Casimir algebras W(9) 
based on simply laced 9 is unproblematic. For q a root of unity additional 
intertwining operators are present. The representation theory of the W-algebra 
would then presumably be characterized by a suitable analogue of the affine Weyl 
group. The structure of the irreducible representations for irrational values of the 
screening parameter has been found to be form-identical to that of the underlying 
simple Lie algebra; paralleling the ~(n) modules for irrational level k. As graded 
vector spaces these irrational W(sl(n)) modules are isomorphic to the space of sl(n) 
singlets in integrable sl(n) modules at level k = 1. The isomorphim is given by the 
~bfl7 free field realizations of sl(n). One might expect the pure f17 pieces C k [fly] of 
the images rcCk to form again a realization of W(sl(n)). A calculation (using (6.13), 
(6.14) and the closure of the C a, C 3 algebra) shows, however, that this is not the case 
for W(~(3)). The fly Fock space is closely related to the singular sl(n) modules at 
k = - h, so that the fields C k [/37] may have significance there [5, 42]. Theorem 6.2 
should extend to all Casimir algebras. This would provide a very systematic way to 
define free field realizations as the images of the set of Sugawara operators under 
rc in (6.12). These realizations would automatically possess the correct symmetries 
of the Dynkin diagram. Further, no fermions would be needed for non-simply laced 
algebras, reflecting the corresponding property of the ~bfl7 free field realization 
[22]. In extension to the sI(n) situation the intrinsic significance of these bases 
should lie in the fact that they are members of the equivalence class of bases in 
which the structure constants are polynomial in c. The existence of a Cartan basis 
then provides a route to infinite dimensional abelian subalgebras. 

Appendix 

Here we summarize some facts related to the Bruhat ordering on the Weyl group of 
a simple Lie algebra. Let ~ ,  1 _< i _< r be a system of simple roots and r~ the 
associated fundamental reflections that generate W. For w s W set 

A ~ ; = { ~ A + l w ( ~ ) < 0 } = A + c ~ w  1A_ 

with A + being the positive/negative roots. The following facts can, for example, be 
found in [18, 28, 29] 

A.1. For e t A + ,  r~ the reflection in c~, w e  W: l(r~w)> l(w) iff w - l ( ~ ) >  0, i.e. 

Further, the length of a Weyl group element equals the order of A'; [29, Prop. 
3.18]. This implies [-28, Lemma 3.11.b] 

A ' ;  = { ~ , ,  r~ ,c~  . . . . . . . .  r~, . . .  r ~ c ~ i , }  , 
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where w = rz~ . . .  ri, is a reduced expression. In particular, A + = A~ ~ if w0 is the 
element of maximal  length in W. One sees that  for ~ s A~,  the sequence 
~, r~, e . . . .  r ~ , . . . ,  r~,e contains a unique simple root. Denot ing it by ~j(~), one has 

A.2. 2 - -  w - 1 2  = ~ _ , ~ A ~  ~ ( 2 ,  0~ j (a ) )0~  , )~ E h* . 

[Use the identity 2 - w r y 2  = 2 - w2 + w(2 - ri2) and induct ion on/(w). ]  
Directly f rom the definitions follows, 

A.3. Each 1 # w e W lies in the image of at least fundamental  reflection w.r.t, the 
relation ' +-- ', i.e. w = r i #  for some i e  {1 . . . .  , r } ,  O f  W ,  l ( w )  = l ( # )  + 1. 

[Otherwise l ( r i w )  > l ( w )  for all i so that by (A.1), w ( ~ i )  > 0 for all i, which forces 
w to be 1.] By induct ion it follows that for each w e W, there exist fundamental  
reflections r~, , . . . ri, s.t. w = r,, . . . r l ,  +-- . . .  +-- r~zrl ~ ~ r~, +-- 1, where 
w = r~ , . . ,  r~, then is a reduced expression. 

A.4. If ~ ~ A +, l ( r ~ w )  = l (w )  + k ,  there exists a sequence fix . . . .  flk e A + s.t. 

r ~ w  = rpk . . . rl~l w ~ r~k_ 1 . . . r p l  w <--- r ~ 2 r ~ l  w <--- r ~ l  w +-- w . 

[This can be extracted from the p roof  of Theorem 2 in [18].] 

A.5. max(wp - r ~ w p ,  p) = r, where the maximum is to be taken over all w ~ IV, 
~ A + ,  s.t. r ~ w + - - w .  

[Let  e e A + be a positive roo t  for which ( w p  - r ,  w p ,  p )  takes its maximal value. 
As any two positive roo t  systems are related by a unique Weyl group element, one 
may  -w.l.o.g. take e = ei to be a simple root. Then ( w p -  r ~ w p , , p ) =  (wp~ e i ) .  

Let ~ be the permuta t ion  corresponding to w, in the basis h i , . . .  ,hr+~. 
^ V r + l ( r  + 2 i )h i  and w p  ~i=z~  + 2 -  that with Then, p = / ~ i = 2  - -  : X-~r+l[r 7r(i))]li, SO 

( h j ,  ~k )  = ~ j ,g  - -  ~ j - l , k  one finds max(wp, ~i) = (r + l) - 1 = r.] 
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