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Abstract. Two different approaches to (Kostant-Leites-) super Riemann surfaces 
are investigated. In the local approach, i.e. glueing open superdomains by super- 
conformal transition functions, deformations of the supereonformal structure are 
discussed. On the other hand, the representation of compact super Riemann 
surfaces of genus greater than one as a fundamental domain in the Poincar6 upper 
half-plane provides a simple description of super Laplace operators acting on 
automorphic p-forms. 

Considering purely odd deformations of super Riemann surfaces, the number of 
linear independent holomorphic sections of arbitrary holomorphic line bundles 
will be shown to be independent of the odd moduli, leading to a simple proof of the 
Riemann-Roch theorem for compact super Riemann surfaces. As a further conse- 
quence, the explicit connections between determinants of super Laplacians and 
Selberg's super zeta functions can be determined, allowing to calculate at least the 
2-loop contribution to the fermionic string partition function. 

1. Introduction 

In recent years, the theory of super Riemann surfaces has gained some attention, 
mainly motivated by the study of fermionic strings and superconformal field 
theories. As is well known, Polyakov's functional integral describing the 9-loop 
contribution in the perturbation expansion of the fermionic string partition func- 
tion can be reduced to a finite dimensional integral over super moduli space J//g, 
the space parametrizing all super Riemann surfaces of genus g. The integrand 
contains some determinants of super Laplace operators acting on p-forms, which 
may be expressed via Selberg's super zeta functions in the case of genus greater 
than one. The explicit structure of these relations depends on the number of linear 
independent zero modes of the super Laplacian. 

Two basically different approaches to supermanifolds exist: the one introduced 
by DeWitt [8] and the theory of graded manifolds in the sense of Kostant and 
Leites [27, 28]. I will follow the second approach, because it allows to use a lot of 
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standard methods of complex analysis and algebraic topology, generalized to the 
712-graded case. Furthermore the Kostant-Leites description seems to be phys- 
ically more natural (see e.g. [30]). 

Besides having physical applications, the theory of super Riemann surfaces is 
interesting on its own from the mathematical viewpoint. The intention of this paper 
is, on the one hand, to present two different descriptions of (Kostant-Leites-) super 
Riemann surfaces and their connections: namely the representation as a collection 
of open superdomains glued via superconformal transition functions, and for genus 
greater than one, using uniformization, the representation as a fundamental do- 
main in the Poincar6 upper half-plane. On the other hand, considering purely odd 
deformations of a super Riemann surface, it will be shown that the number of 
linearly independent holomorphic sections of arbitrary holomorphic line bundles is 
independent of the odd moduli, a statement allowing to generalize the Riemann- 
Roch theorem to the case of compact super Riemann surfaces [35]. 

This paper is organized as follows. At first, I review some basic facts concerning 
supermanifolds and Berezin integration. After defining super Riemann surfaces in 
the local approach and holomorphic line bundles over it, deformations of super 
Riemann surfaces respecting the superconformal structure will be discussed in 
order to determine the dimension of super moduli space. The following section 
deals with hyperbolic geometry on the super Poincar6 upper half-plane and 
automorphic forms. Finally the connection to fermionic string theory will be 
pointed out, ending with the calculation of the 2-loop contribution to the fermionic 
partition function. 

2. Supermanifolds 

In this section some basic facts about supermanifolds will be reviewed, e.g. split- 
ness, Batchelor's theorem, volume forms and Berezin integration. A more detailed 
treatment can be found in Leites [27] and Manin [28]. 

At first recall the following 

Definition. A Z2-graded commutative ringed space (M, 5~ i.e. a topological mani- 
fold M and a sheaf 5PM of supercommutative rings, is called a supermanifold of 
dimension m t n, if 

(i) (M, 5PM/W) is an ordinary 5r of dimension m. W c 5r M denotes 
the subsheaf of nilpotents Y = 5PM, T • (SPM, i) 2. 

(ii) Y/JV 2 is a locally free sheaf of 5PM/JV-moduls of rang 0 [ n. 
(iii) The structure sheaf 5PM is locally decomposable, i.e. locally isomorphic to the 

symmetric algebra of JV/Jff 2, 

~'~PMIU '~ S~M/JV(JV'/J[/'2)Iu , U c M .  (2.1) 

The ordinary manifold (M, 5#M/Jff) is often called the reduced manifold 
Mr~a and arises (loosely speaking) by "setting all nilpotents of ~M to zero." 
Condition (iii) means that the structure sheaf 5PM is locally generated by linear 
independent sections (x 1 . . . . .  x m  ~ 1 , . . . ,  ~,) which are subject to no other rela- 
tions than supercommutativity. Therefore locally every superfunction (i.e. section 
of 5PM) can be uniquely represented as 

f (x ,  4) =fo(x) + ~if~(x) + ~i ~ f j(x)  + ' " ,  fo, f ,  f i je F(U, 5zM, rCa) �9 (2.2) 
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A supermanifold is said to be decomposable or split, if the isomorphism (2.1) 
holds globally. The meaning of this notion can be easily seen by considering the 
effect on the transition functions between two intersecting open domains 
U, V c M. Let ( x l , . . . ,  x m, 41 . . . . .  4") and (yl . . . . .  ym, ~/1 . . . .  , ~/") be local co- 
ordinates on U and F, respectively. On a general supermanifold they are related by 

yk(x, 4) = ak(x) + ~i~Jak(x) + ' ' ' ,  

rll(x, 4) = ~ib~(x) + ~ir + ' ' ' .  (2.3) 

However on a split supermanifold the global ;g-grading of $aM results in a reduction 
of (2.3) to 

yk(x, 4) = ak(x) ,  rlk(X, 4) = ~ib~(x). (2.4) 

For this reason on a split supermanifold the component decomposition (2.2) of an 
arbitrary superfunction f e  F (M, 6eu) is globally well defined, and each component 
is a section of a vector bundle on the reduced manifold Mre d. Whereas complex 
analytic supermanifolds are in general not decomposable, in the differentiable 
category one has the following 

Theorem. (Batchelor [5]). Every differentiable supermanifold (M, gM) is decompos- 
able. 

For defining integration on supermanifolds, remember that objects which can 
be integrated over an ordinary (orientable, compact) manifold Mre d are sections of 
the maximum exterior power of the cotangent bundle 

(7 E iT' (Mred, A max O 1 Mred), (2.5) 
locally 

a = f ( x ) d x  I /x . . .  /,, d x " .  (2.6) 

Therefore under a change of coordinates f ( x )  is multiplied by the Jacobian. 
On a supermanifold, however, because of the presence of anticommuting 

coordinates, no maximum exterior power of the cotangent bundle exists, but 
volume forms can be consistently defined to look locally like 

a = D*(dx, de)"f(x ,  ~) ,  (2.7) 

withftransforming on the intersection of two coordinate neighbourhoods accord- 
ing to 

sdet d(y' ~/) ~-1 f ( y ,  rl) = ( ~(--~,~)j f ( x ,  4) .  (2.8) 

The sheaf of volume forms is also denoted as the Berezinian Ber M of M 

a ~ F (M, Ber M ) .  (2.9) 

Finally, the Berezin integral over a (super-) domain (U, 6eM I C) with local coordi- 
nates (x 1 . . . . .  x m, 41 . . . . .  4") can be defined as [16] 

9" 
I 0":= I d x l  A .  . A d x  m f ( x ,  ~) .  (2.10) 
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This definition is independent of the choice of local coordinates, and obviously the 
Berezin integral depends only on the coefficient function of the maximum degree 
monomial ~ 1 . . .  4" in the component decomposition off(x,  4). In complete anal- 
ogy to the classical case, the integral over the whole supermanifold (M, 5eM) is 
obtained by glueing superdomains using a partition of unity and the additivity of 
the Berezin integral. 

3. Super Riemann Surfaces 

Imposing a superconformal structure on a complex 11 1-dimensional supermani- 
fold leads to an object, which in spite of having a complex dimension greater than 
one, shows many features of ordinary Riemann surfaces. This construction enables 
one to build a first order differential operator valued in the half-volume forms, 
a fact being of some interest in fermionic string theory [16, 17, 18]. From the 
viewpoint of string theory, the presence of the gravitino field makes it necessary to 
have additional odd parameters besides the odd coordinates. It is therefore quite 
natural to consider families of super Riemann surfaces. Finally in this section some 
basic properties of holomorphic line bundles over families of super Riemann 
surfaces will be treated. 

3.1. Superconformal Structure. More precisely one has the following [15]. 

Definition. A super Riemann surface (M, (9~t) is a complex 1 J 1-dimensional super- 
manifold, with the property that in local coordinates 

(i) the transition functions are holomorphic 

z'  = f ( z ,  0), O' = O(z, 0 ) ,  (3.1) 

(supercomplex structure), 

(ii) the differential operator D = ~0 + OOz transforms homogeneously 

D' oc D ,  (3.2) 

(supereonformal structure). 

Since D 2 = 0z this means: there exists on a super Riemann surface a nonintegr- 
able distribution of rank 011, and therefore no single "good" coordinate r/can be 
found to write D as D = ~, [18]. 

Using the chain rule one finds 

D = (DO')D' + (Dz' - O'DO')D '2 , (3.3) 

so the condition (3.2) characterizing superconformal coordinate transformations 
can also be written in the form 

Dz'  = O' DO' . 

Calculating the Jacobian of the coordinate transformations 

sdetO(z"0') DO' 
~(z, O) 

(3.4) 

(3.5) 
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the transformation law for the D-operator reads explicitly 

a ( z , , o , ) l _  1 
D ' =  sdet 0(z, 0) J D.  (3.6) 

With regard to (2.7) this relation shows that 

~:= D*(dz, dO) | D (3.7) 

is an invariantly defined first order differential operator, valued in the "half-volume 
forms" [18]. Such a differential operator can be considered as an analogue of the 
Cauchy-Riemann operator on ordinary Riemann surfaces, because for an arbitrary 
superfunction f, 

D* (dz, dO)D* (de, dO)" (Of)  (Of) (3.8) 

is a volume form, which can be integrated over a super Riemann surface using no 
extra information besides the supercomplex and superconformal structure and 
containing only first order derivatives. This is a special feature of super Riemann 
surfaces. On ordinary complex two-dimensional manifolds no first order differen- 
tial operator valued in the half-volume forms exists. 

The possibility to define a functional on the set of functions, which is indepen- 
dent of the local structure of the super Riemann surface and is invariant under 
worldsheet supersymmetry transformations, is the reason for considering super 
Riemann surfaces in the context of fermionic string theory. 

3.2. Families and Line Bundles. So far every super Riemann surface, defined as 
described in the previous section, is trivially split, for if the odd dimension equals 
one, the coordinate transformations (3.1) are by reasons of parity necessarily of the 
form 

z' =f~(z), 0 ' =  Ofo(z). (3.9) 

But for applications in the fermionic string theory there is the need for allowing the 
coefficient functions of a superfunction (2.2) to have odd parity. This demand can 
only be realized by introducing families of super Riemann surfaces. 

Definition. Let m be a submersive map between complex superspaces 

(X, d )  , (Y, ~ )  (3.10) 

such that ~ is proper. Furthermore let 

dim(X, d )  - dim(Y, N) = 1[ 1. (3.11) 

The map w is called a family of compact super Riemann surfaces, /f there exists 
a Oil-dimensional distribution ~ in the relative tangent sheaf ~--~c~X, such that the 
supercommutator mod 

[ ,  3..~: ~ ~ ) f f ~  ~ ~'-relX/~ (3.12) 

is an isomorphism. Here the relative tangent sheaf is defined as the sheaf 
~--~clX c 3 - X  of derivations which annihilate t)(~). Finally call sections z, 0 of d ,  
such that dz, dO are a basis for ar , r~lX, a relative coordinate system [13, 26]. 
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The connection with the previous definition is given by a lemma of LeBrun and 
Rothstein [26], which states that for every family of compact super Riemann 
surfaces a relative coordinate system (z, 0) can be found, such that ~ is generated 
by O0 + 00z. In this sense a super Riemann surface, defined as in the beginning of 
Sect. 3.1, agrees with a family of super Riemann surfaces, where (Y, ~ )  consists of 
a single point, and thus will be further on denoted as a "single" or "isolated" super 
Riemann surface. 

If only local properties of the parameter space (Y, ~ )  are of interest, it is 
possible [34] to consider single super Riemann surfaces with enlarged structure 
sheaf instead of families of super Riemann surfaces, i.e. demanding a local isomor- 
phism 

(~ml U ~ S(gM/,A/'('JI/"/~ @ Ao,~/x(IR") , U c M ,  (3.13) 

which provides the structure sheaf with the necessary additional odd parameters. 
The explicit form of superconformal coordinate transformations can be derived 

by imposing the condition (3.4) on holomorphic transition functions 

z' = f (z )  + Ot~(z) Oil(z) O' /Of(z) O~(z) 
x/ Oz = ~(z) + 0 + ~(z) (3.14) 

' x /  Oz Oz 

Here the convention is used that functions with values of odd parity are denoted by 
Greek letters. 

Let ~v: X ~ Y be a differentiable family of compact super Riemann surfaces, i.e. 
the map w is differentiable. A holomorphic line bundle L over X is completely fixed 
by specifying a 1-cocycle {g,a} with coefficients in (_9 • the sheaf of even holomor- 
phic functions f such that f(p) mod JV" ~: 0, V p ~ X. Defining an equivalence rela- 
tion 

(x~, c~) ~ (xa, aa) : ~" (x~, ~ )  = (x a, g~a~a) , 

V(x~, o-~), (xa, oa) ~ (a-//~ n q/a) x C ill (3.15) 

for (q/,),~z an open covering of X, the bundle L can be represented as the quotient 
space 

L = U ~ ' / ~ x C l I 1 /  ~ ' "  (3.163 

In the further text I will use a notation which discriminates more explicitly 
between the relative fiber coordinates z, 0 and the coordinates t ~, ffJ of the para- 
meter space Y of the family m. Remember that m is a submersive differentiable map. 
and is therefore locally a projection. For a sufficiently small open set A c Y it is 
possible [25] to consider each fiber Mt.~:= ~77-1(t i, [J), V(t i, ~J)~A as a union 

Mt,~ = [_) U,,  (t ' ,[J)EA, (3.17) 
~61 r 

where each U, is independent of the parameters (t ~, [J), only the way of glueing the 
(U,) ,~  by superconformal transition functions of the form (3.14) depends on the 
parameters (t i, ~). 

The transition functions g,a(za, 0a; t ~, ~J) of a holomorphic line bundle L are 
holomorphic in the relative fiber coordinates z, 0 and differentiable in the moduli 
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t i, ~J. For fixed t i, ~J the 1-cocycle {g,p(za, Op; t ~, (J)} can be considered as the 
defining data of a holomorphic line bundle on the single super Riemann surface 
Mt,~ with enlarged structure sheaf. 

Rejecting the nilpotent part of the transition functions { g,a mud Y }, a holo- 
morphic line bundle L on M always determines a reduced bundle Lre d o n  Mred. 

As in the classical case, the canonical bundle co of a super Riemann surface 
M can be defined by splitting the bundle of volume forms 1 BerM using the 
supercomplex structure 

Ber M =: co | 03. (3.1 8) 

Observing that the superdeterminant is a multiplicative homomorphism, relation 
(2.8) shows the transition functions of the canonical bundle ~o to be 

f �9 - 1  g,a = ~ s u e t ~  j~ . (3.19) 

I close this section by stating some facts about the Cbern class c(L)  of 
a holomorphic line bundle L. It is defined as the coboundary map resulting from 
the exponential sequence on super Riemann surfaces 

c: H i ( M ,  (9• H2(M, Z) , L ~ 6* (L)  . (3.20) 

Since 2g (like every constant sheaf) is completely determined by the topological 
structure of M, the cohomology group H2(M, TZ) can be identified with 
H2(Mrea,  2g), and one finds [-33-] that the Chern class of L coincides with the Chern 
class of the reduced bundle 

c(L)  = c(Lred) . (3.21) 

Noting that 

�9 . O( z~ ,  0~ )  
s o e t ~ m o d J ~  = Da0,modJg" = 8 / - ~ p ( z p ) m o d X ,  (3.22) 

V 0z~ 

the reduced canonical bundle on a super Riemann surface is a spinor bundle on 
Mred 

e)ree ~ K �89 , (3.23) 

and therefore Eq. (3.21) yields 

c(e)) = g - 1 . (3.24) 

4. Deformation of Superconformal Structures 

Deforming the coordinate transformations of a split super Riemann surface in 
a way which respects the superconformal structure, makes it possible to calculate 
the dimension of the super moduli space Jgo, the space parametrizing all super 
Riemann surfaces of genus 9. The consideration of purely odd deformations leads 
to the fact that the number of linear independent holomorphic sections of a line 

1 Vector bundles and locally free sheafs are considered to be equivalent in the obvious way. 
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bundle Lt.~ over Mr. ~ is independent of the odd moduli ~J, a statement which can be 
used to establish a generalized version of the Riemann-Roch theorem, valid on 
super Riemann surfaces. 

4.1. The Dimension of Super Moduli Space. Denoting the derivative with respect to 
the even coordinate Ozf(z) by f'(z), the clutching functions of a split super Riemann 
surface Mo read 

z, =f~a(za), 0, = 0 a ~ .  (4.1) 

They don't contain any additional odd parameters ~J besides the odd coordinate 0, 
so the set of all split super Riemann surfaces is completely described by the reduced 
super moduli space Jgo. rod- Furthermore, as can be seen from (4.1), a split super 
Riemann surface contains exactly the same information as an ordinary Riemann 
surface equipped with a spin structure to fix the sign ambiguity of the square root. 

To find the number of linearly independent parameters describing different 
superconformal structures, one starts by deforming the transition functions (4.1) up 
to first order in the parameters t, ~ 1-12]. Proceeding this way, it is important to 
preserve the general form of superconformal clutching functions (3.14) 

z~ =f~p(z#) + tb,t3(zt3 ) + Op~e~#(z#)x/f'a(za) + tb'#(zr , 

O, = Opx/f'a(z#) + tb'~p(za) + ~e,#(za). (4.2) 

Considering the cocycle relations on a triple intersection U, c~ Ua c~ Ur 

z~{zp(z~, Or), O~(z,, 0~) }  : z~(z~, 0~), 
O,{z#(z~, 0~), O#(z,, 0,)} = O,(zr, 0~) (4.3) 

and neglecting terms of second order in t, ~, leads by comparing coefficients to three 
independent equations 

f~a { fp,(z,)} = L,(z,) , 

b,a { fp,(z, ) } + f{# { fa,(z, ) } b a,(z, ) = b,,(z, ) , 

c~{ft~,(z,) } + ~/f,'p{fa,(z,)}ct~,(z,) = %(z,) . (4.4) 

The first relation is the usual cocycle condition for the glueing functionss on the 
reduced manifold Mred, whereas the remaining two equations can also be written 
as (suppressing the argument z~) 

(4.5) 

which show, together with the transformation properties (4.1) of O, that defor- 
mations of the superconformal structure are described by the cocycles 

{b~ ~-~}~ZI((U~)~,,  (9(K-1)) , 

{Co;.60a ~ } ~ z l ( (u~)asi , C( K -  ~ ) ) . (4.6) 
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Under local superconformal reparametrizations 

z, ~ z~ + ts,(z,) + O,(r,(z,)x/1 + ts',(z,) , 

O~ ~ O~x/1 + ts'(z~) + (r,(z~), (4.7) 

these cocycles can be seen to change by coboundaries 

{ { b~p ~ b~p ~z + s~ ~z~ p , 

{c~pO~o-~} ~--* { c ~ p O ~  + r~O~-~- rpOp~ } , (4.8) 

so in fact they define cohomology classes 

[b~p~l~Hl(Mrea,  (9(K- 1)), 

[c~pO~,~l~Hl(Mrea, (9(K-~)) . (4.9) 

Using the Riemann-Roch theorem and Serre duality yields for compact Riemann 
surfaces M,ea of genus 9 => 2, the case of main interest in the further text, 

dim H~(Mr,a, (9(K-1)) = 39 - 3 ,  

dim H ~ (Mr~a, (9 (K - ~)) = 2g - 2 .  (4.10) 

Since higher order deformations of the superconformal structure are either com- 
pletely fixed by first order deformations or just linear combinations of them, the 
dimension of super moduli space is determined to be 

dimJ/go=(3g- 312g-  2), g > 2. (4.11) 

4.2. Purely Odd Deformations. In order to get some information about holomor- 
phic sections of line bundles over super Riemann surfaces, it is helpful to consider 
fibers of a differentiable family of compact super Riemann surfaces, which belongs 
to a fixed value (t 1 . . . . .  t m) of the even moduli parameters. Let M~ := to- l(ti, f J) be 
the super Riemann surface corresponding to the point (t i, (~) of the parameter 
space - the reference to the fixed even parameters will be omitted in this section - 
and Lr a holomorphic line bundle over Me. Then one finds the following 

Theorem. On a compact super Riemann surface the dimension of the space of 
holomorphic sections of a holomorphic line bundle dim H~ (9(L~) ) is independent 
of the odd moduli. 

Proof Denote by Mo a split super Riemann surface, i.e. a fiber over some fixed 
point of the reduced parameter space. The transition functions between two open 
domains U,, Up c Mo can be written in the form 

(z,, 0~) -- {s Or . (4.12) 
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A holomorphic line bundle Lo --+ Mo is described by a 1-cocycle with values in the 
nonvanishing holomorphic functions on Mo, 

Eg~p] ~ HI(Mo, C0~ ),  

9~#(zp, 0p; 0) = g~#, o(Z#) �9 (4.13) 

Varying only the odd moduli ( #1 , . . . ,  #,), one obtains a super Riemann surface 
M~ with glueing functions (the argument zp will be omitted) 

(z,, 0~) = {f~,o + {iOpf~, i  + {i{ j f~, ,~ + . . . ,  Opf~,o + { i f~ , ,  

+ { i~Opf~,~i  + . . . } ,  (4.14) 

and a deformed line bundle L~ -+ Me with transition functions 

loop] ~ H I ( M ~ ,  (P{ ) , 

9~p(zp, Op; ~) = 9~#,o + O~#i g,p,i + #i#Jg,p, ij + " " " �9 (4.15) 

Now consider a global holomorphic section of L~, represented by a collection of 
holomorphic functions 

{~r,} ~ H~ C(L~)) ,  (4.16) 

which are glued on the intersection of two open domains U, ~ Up ~ M~ by the 
prescription 

~r~(z,, 0~; ~) = 9,a(zt~, 0a; #)oa(z#, 0#; #). (4.17) 

Using the notation 

o~(z~, 0~; ~) = O~,o(Z~, 0~) + ~i~,i(z~,  0~) + ~i~Jo~,ij(z~, 0~) +"  �9 �9 , (4.18) 

a power series expansion of Eq. (4.17) with respect to the odd parameters ~i results 
in consistency relations for each of the finitely many coefficient functions of the 
section {o-a}. Namely, one has 

O~,o(f~,o,  Opf~ = 9~p, oOp, o(Z#, 0#) (4.19) 

in the lowest order. The first order terms yield 

z ~0"~ 0 z 0 0 6qO'~ 0 z 
p Jo:fl, O,t J~p, i o,,i(f~p,o, Opf~,o)  + ~ ( f , # , o ,  Oaf, p,o)O#fd#,i + - ' - ~  (f~p,O, 0 cO , r 

= 9,p, OOp, i(Zp, Ot~) -- Oag,t~,iap, o(Z#, 0#) ,  (4.20) 

and writing as a shorthand notation 

a , .  = a, , . ( f:p,o,  O a f ~ , o ) ,  ap,. = op,.(zp, Oa), (4.21) 

one finds in second order 

Oo~,i o t3a~ i z c~o~ o ~ c~o~ o o 

0 (4.22) = gatfl, OtYfl, ij -'1- Olggo:p, if':~, 1 "-'}- gap,  ijtY~, 0 �9 
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As can be seen easily, comparing coefficients of the k th order lead to a relation of the 
form 

a~,i . . . .  i~(f, Zp, o, Opf~,o) + {terms in ~r~, i . . . .  i, (1 < k)} 

= g,p, oa~,i . . . .  i~(zp, 0~) + {terms in 0"~, i . . . .  i, (1 < k)} . (4.23) 

The next step is a discussion of the possible solutions of the consistency 
relations restricting the coefficient functions of the section {a,}. At first notice that 
(4.19) characterizes {a~,o} as a section of the bundle Lo over the split super 
Riemann surface Mo. Secondly, if there exists a solution of Eq. (4.23), this solution 
is determined only up to addition of sections of the line bundle Lo ~ Mo. Therefore 
the lowest coefficient function {a,, o } of a section of Lr ~ Me fixes all higher order 
functions up to addition of further elements of H~ C(Lo)), so 

dim H~ (9(LO) < dim H~ (9(Lo)). (4.24) 

If solutions of (4.23) only exist for k < n, an ansatz of the form 

~ r , ( z , ,  0~;  ~)  = ~il . . . ~i . . . . .  cr~,i . . . .  i . . . . .  ( z , ,  0~)  + . . .  + ~ . . . ~iN~r~,~ . . . .  iN ( z , ,  0~)  , 

N := odd dim Jc'g = 2g - 2 (g > 2) (4.25) 

gives a global section of L~ ~ M~. In this case {a~,i . . . .  i . . . . .  } obeys relations 
analogous to (4.19), and the n th order equation, which was the reason for the 
obstruction, does not appear anymore. 

Finally one observes that the glueing functions f~a(zp, 0p; () and the bundle 
transition functions g,p(za, 0p; () are per definitionem always holomorphic in the 
relative fiber coordinates z, 0. Furthermore a section {a,} ~ H~ (9(L~)) depends 
differentiably on the odd parameters (J, but since the property of being holomor- 
phic in the relative fiber coordinates z, 0 is a local property, one only has to ensure 
that each coefficient function in the power series expansion of {a,} with respect to 
(J is holomorphic. 

To summarize, an arbitrary holomorphic section of Lo ~ Mo always allows the 
construction of a holomorphic section of L~ ~ M~, which together with relation 
(4.24) leads to 

dim H~ C(L~)) = dim H~ O(Lo)) (4.26) 

and finishes the proof. 

A direct consequence of Eq. (4.26) is the following 

Theorem. (Riemann-Roch). Let M be a compact super Riemann surface of  genus 
g and L a holomorphic line bundle over M, then 

dimH~ (9(L)) - d imHl(M,  (9(L)) - (1 ] 1) 'c(L) = (1 - g l0).  (4.27) 

Proof Because of(4.26) the super Riemann surface M can be considered to be split. 
In this case by (3.22) and (4.1) the cohomology groups H'(M, (_9(L)) are direct sums 
of some cohomology groups on the reduced Riemann surface Mred, 

H'(M, 6(L)) = H'(Mred C(Lred)) O HH'(Mr~d, (-9(Lred | COred)), (4.28) 
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where the so-called parity change functor/7 [28] is used to achieve the correct 
parity of the second term. Therefore application of the ordinary Riemann-Roch 
theorem gives 

d i m  H ~  O(L))  - -  d i m H l ( M ,  (9(L)) - (1 I 1 ) ' c ( L )  = (1 - gl  1 - g + C((.Ored)) , 
(4.29) 

yielding the desired result with the help of (3.24). 

5. Hyperbo l i c  G e o m e t r y  on ~ t 11 

A more explicit way to represent compact super Riemann surfaces of genus 9 > 2 is 
the tessellation of the super Poincar6 upper half-plane by Fuchsian groups. As 
a preparation I will first consider superconformal automorphisms of the gener- 
alized Riemann sphere. Automorphic forms will be introduced as the analogs of 
sections of tensor powers of the canonical bundle over a super Riemann surface. 
The last part of this chapter deals with the super Laplace operator D p acting on 
automorphic forms, especially with the number of linear independent zero modes 
of [3p, which is of interest in the calculation of the fermionic string partition 
function. 

5.1. Uniformization. One of the classical theorems of complex analysis states that 
every simply connected Riemann surface is conformally equivalent to 
~2 = C vo {oo}, • or aft (Riemann, Poincar~, Koebe). As was shown by Crane and 
Rabin [7], unique generalizations G ill, ~111, jf111 of these Riemann surfaces exist. 
The reason is that the superconformal structure on ~2111, r or y f l l l  can always 
be described by coordinates, whose transition functions have the form (4.1), so like 
every split super Riemann surface ~111, Cll l  and 3//~ are  completely determined 
by their reduced spaces. 

The super Riemann sphere {~1ll c a n  be covered by two open domains, glued by 

But to determine the superconformal  a u t o m o r p h i s m s  o f  I~ 111 it is more convenient 
to use homogeneous coordinates and to think of 1~111 as a projective space, 

(Z1, Z2, t / )E (c21 l )  • :=  {XE~2[A I x m o d d g "  :fi 0} , 

(Z1, Z2, t/) ~ (Z1, Z2, t/t) " <=> ~ A E (~1[0)  x : (z1, z2,/1) = (/~z1, Az2, At/) , 

]pll 1(1~):= ((172] 1) •  (5.2) 

The notation A~ (~711~ • means that A is allowed to contain odd parameters, since 
implicitly always families of supermanifolds will be considered. Expressing the local 
coordinates on the two charts of ~2111 by the homogeneous coordinates of IP111012) , 

(z,O)=(ZI, Z2 Z2/I (zt, Ot)=(--Z2,~I)Z1 , (5.3) 
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Aut ~111 consists of invertible linear maps on IP all (IE), being superconformal in the 
local coordinates 2 (5.3), 

Aut I~ 111 c GL(2 [ 1, ~3). (5.4) 

(abe) X ' = ~ X ,  X, X t ~ ] p I I I ( c )  , ~)--~ c d eGL(2I  1, IE), (5.5) 

Writing 

yields 

az + b + eO az + fl + eO 
z' - 0' - (5.6) 

cz + d + 6 0 '  cz + d + (50 ' 

t 0 I if z, 0 and z,  are the local coordinates of x, x' e IP 111 (IE), respectively. Ensuring 
the map (5.6) to be superconformal, the condition (3.4) results in (defining 
k := ad - bc) 

k + f a  + 26~ = e 2 , 

ae + ~c - 3a = 0 ,  

fie + ed - 6b = 0 .  (5.7) 

Eliminating e, 6 and e, a square root ambiguity appears, which can be removed by 
introducing a character vr = _+ 1, 

e = _+ x / k ( 1  + 3 B a )  =:v,x/-k(1 + 3 B a ) ,  

a = - B e ) ,  

e = v~x /k (ab  - f la) .  (5.8) 

Calculating the determinant of the transformation 7, one finds 

sdet 7 = v,x/-k {1 + ( 3 -  2 ) a f t } ,  (5.9, 

but since 7 acts on homogeneous coordinates of Ipll X(~E), without loss of generality 

the choice sdet y = v~ = _+ 1 can be made, leading to 

k = 1 + aft. (5.10) 

Inserting into (5.8) one obtains the general form of a superconformal automor- 
phism on ~1L1, 

a b v , ( a b -  fia)~ 

7 =  c d v ~ ( a d -  t ic)] , ad - bc = l + a f t .  (5.11) 
] 

a fl v , ( l + f i a ) /  

2 Simplifying notation, I will write GL(2[1, C) even if the entries of a matrix are allowed to have 
odd parity. Odd variables will be denoted by Greek letters as usual. 
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In the absence of any odd parameters, 7 reduces to an ordinary M6bius trans- 
formation (with a d  - be  = 1) accompanied by a character v~ = _+ 1. 

To characterize Aut ~111 as a subgroup of GL(211, C), notice that every 
7 ~ Aut t~ 111 leaves invariant the canonical alternating bilinear form on ~2l 1, 

(~ I :=  - 1  0 , 

0 0 

(5.12) 

i.e. for all 7 ~ GL(211, C) fulfilling sdet 7 = +-- 1 the relations (5.7) are equivalent to 

TStlT = I .  (5.13) 

Matrices 7 having this property make up the superanalogue OSp(2I 1, C) of the 
symplectic group [1; 28, 33], and since 7 and - 7 describe the same element in 
Aut ~111, finally 

Aut ~111 _ OSp(211, C) { ___ ~} (5.14) 

Acting on local coordinates, a superconformal automorphism of the super 
Riemann sphere takes the form 

a z  + b a z  + fl 
z '  - - -  + v~ 0 (cz c z  + d + d) 2 ' 

v~,O O' - ~ z  + f l  + _ _  

cz  + d c z  + d ' 

The transformation rule for the D-operator (3.6) can be seen to be 

D ' =  F~D,  F ~ : = ( D O ' )  - l = v ~ ( c z + d + 6 0 ) .  

(5.15) 

To find the supereonformal automorphisms of the super Poincar6 upper halfplane 
~111 := {(z, 0)6C1111 ~(z)mod JV > 0}, one considers the two conditions ?(z, 0)~ 

111 111 2 111 ~,~ , u 0 ) S ~  and ~ s A u t ~  , which can be fulfilled by choosing all 
coefficients in the map (5.15) to be real 

Aut ~111 _ OSp(211, IR) (5.17) 
{+ 

In complete analogy to the classical case, every compact super Riemann surface 
M of genus ff > 2 can be represented [3, 23] as a quotient space ~ l l l / F ,  where 
F denotes a discrete subgroup of Aut ~,ugl 11 having no fixed points. F is isomorphic 
to the first homotopy group of the reduced Riemann surface F ~ gl(Mred). A trans- 
formation (5.11) is said to act discretely and without fixed points, if the correspond- 
ing transformation 7 m o d X s S L ( 2 , 1 R )  has this property. Therefore F-{11}  
contains only hyperbolic elements, i.e. 7 mod JV, V 7 s F -- {~} is hyperbolic in the 
usual sense (la + d ) m o d X I  > 2). 

Choosing for some element of Aut ~ 111 a representative with str 7 mod X > 0, 
it is always possible [1] to achieve the form 

(e ~ ~ 
7 ~ 0 e-~  (5.18) 

0 0 v~ 

(5.16) 
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by conjugation in Aut j ~ l l l  Since the supertrace is invariant under conjugation, 
comparing with (5.11) yields 

2cosh~  = a + d + vrc~fl. (5.19) 

1 v can be interpreted as a generalized length of the shortest geodesic in the 
homotopy class corresponding to 7. 

5.2. Automorphic Forms. Let M = 2/FII1/F, F c m u t ~  111 be a super Riemann 
surface of genus g. Differentiable sections of powers of the canonical bundle co (in 
the sense of tensor products) can be represented on ~ut'l 11 by automorphie forms of 
weight (p, q), 

~(p, q):= n~  ~(coP | a3q)) 

= {f:  .kr~ 111 ~ I~ lll [f(7Z) = F V f ~ f ( Z ) ,  V T e F } ,  (5.20) 

where the shorthand notation Z := (z, 0) for the coordinates on the super Poincar6 
upper halfplane is used. Defining 

g 
Y : = Y + 2 0 6 -  - - 0 0 r  (5.21) 

2i 

it is possible to construct an OSp(211, IR)-invariant volume form on ~111, 

d V  := D*(dZ)  | D*(dZ)  (5.22) 
Y 

In contrast to the classical case, the scalar produet on g(p,  q), 

( f g ) : =  ~dVYP+qfg,  V f g ~ g ( p , q )  (5.23) 
M 

is not positive definite, ( f  f )  can even be complex-valued. 
The operator / ) =  8G + 0-Be transforms under the action of 7 ~ F, Z ' =  7Z 

according to 

D ' =  FrO (5.24) 

(compare_(5.16)_), therefore/) maps an automorphic form of weight (p, 0) to g(p, 1). 
Writing Dp -= D to indicate more clearly the weight of the automorphic forms on 
which / )  acts, the scalar product (5.23) allows to define the adjoint opera tor / )  + , 

/)p: g(p, O)~-~g(p, 1):/) + , ( / 5 + f  g ) :=  ( -  1 ) f ( f  Opg) 
{ i_}  

D+ = - YD + ~p(O - O) , (5.25) 

fdenot ing  the parity of the values (!) o f f  Us ing / )  + , the Laplace operator on the 
super Riemann surface M reads 

Dp:g(p,  0 ) ~ g ( p ,  0),  Dr :=  - 2 / 5 ~ - / S p ~ D p = Z Y D D + i p ( 0 - 0 ) D .  (5.26) 

Comparing with the ordinary Laplacian 

Ap: ~ r e d ( P ,  O) --* gred(P, O), Ap:= 40 + Op = - 4y2azO~ d- 2ipyO~ (5.27) 
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the relation 

D 2 m o d Y  = Ap (5.28) 

holds. 
A consequence of the scalar product (5.23) failing to be positive definite is that 

at first sight there is no such simple connection between dim ker [] p and dim ker/)p 
as the corresponding one in the classical case 

ker A v = ker~- v = n~ (9(KP/2)), (5.29) 

i.e. classically the harmonic p-forms are just the holomorphic forms of weight p. In 
order to determine dim ker []p one proceeds as follows: For  a Fuchsian group 
F = Aut jq~ll 1 containing no odd parameters - in this case the super Riemann 
surface M = ~f l l l /F  is split - automorphic forms can be invariantly decomposed 
as 

f (Z ,  Z) =fo(z, e) + Ofx(z , z) .4_ Of 2(z, e) + OOf3(z, ~), (5.30) 

where eachf~(z, i )  is a well defined classical automorphic form. Evaluating [] p f  '-  0 

leads to 

AJo = 0, f 3 = 0 ,  

(z - e)Oefl = - P f2, {(z - ~)0= + P}f2 = 0 .  (5.31) 

The last two relations can be rearranged to give 

p = 0 :  c~ef l=0 , C3zf2=0 , 

p , 0 :  Ap+lfl = 0 ,  f 2 =  -1- (  z -  z )oef l ,  (5.32) 
P 

but using (5.29) one findsf2 = 0 for p 4= 0. So on split super Riemann surfaces the 
number of linear independent harmonic p-forms is given by 

dim ker [] o = (dim ker A o 12 dim ker ~1 ) ,  

d imker  []p = (d imkerAp[dimkerAp+l) ,  Vp # 0 .  (5.33) 

To calculate dimker []p in the case of M being a non-split super Riemann 
surface, the same formalism as in Sect. 4.2 applies. Namely, deforming a split super 
Riemann surface in the "odd direction," and using the fact that the property of 
a section a s H ~  g(ov)) to be harmonic is a local one, the invariance of 
dim ker []p can easily be seen. So the classical Riemann-Roch theorem yields for 
super Riemann surfaces of genus g 

weight dim ker [] v 

p_-< - 2  
p = - I  
p = O  
p = l  
p = 2  
p > 3  

(OLO) 
(o11) 
(112q) 
(qlg) 

(gl2g - 2) 
( ( p -  1)(g-  1)[p(g-  1)) 

(5.34) 
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The number of linear independent Dirac zero modes or harmonic spinors 
q := dim ker ~1 is not topologically invariant. Therefore it is impossible to calculate 
q using the Riemann-Roch theorem. But on a Riemann surface with fixed spin 
structure, q rood 2 is invariant under deformation of the complex structure, i.e. 
independent of the moduli [2]. In [22] it is shown that generally q is a discontinu- 
ous function of the moduli, restricted by the relation 

1 
q __< 5(g + 1). (5.35) 

6. Application to the Fermionic String 

The investigation of super Riemann surfaces was originally motivated by the study 
of fermionic string theory [10, 11, 20, 24]. In this section I will point out the 
connection between worldsheet supersymmetry and the introduction of anticom- 
muting coordinates, as well as the necessity of considering families of super 
Riemann surfaces in order to describe a ghost-free fermionic theory. Reducing 
Polyakov's functional integral to a finite dimensional integral over super moduli 
space, the string integrand contains some determinants of the super Laplace 
operator, which can be expressed by Selberg's super zeta functions. The explicit 
structure of these relation depends on dim ker [Ep, calculated in the preceding 
section. 

6.1. Supersymmetry.  Using Polyakov's bosonic string action 

S[hmn , X u] = ~ d2ax//-hhm"C?mXUt?,X" , (6.1) 
M 

the g-loop contribution to the partition function of the closed string can be written 
as a functional integral 

Z o = ~ ~ h m , ~ X "  e - S [ h . . ,  X " 3  (6.2) 

over all metrics h,,, on the worldsheet M and all embeddings X: M ~ IR e of M into 
d-dimensional euclidean spacetime. The Polyakov action is invariant under 
a change of the worldsheet coordinates and Weyl rescalings of the metric h,,n 

hm.(~ k) --. A(~k)hm.(ffk). (6.3) 

A detailed treatment shows a Weyl anomaly, which exactly cancels by choosing the 
dimension of spacetime to be d = 26 [31]. So in the critical dimension the 
contribution of each surface M to the partition function only depends on the 
conformal structure, leading to a reduction of (6.2) to a finite dimensional integral 
over the moduli space ~/0 gF parametrizing all Riemann surfaces of genus g. 
Unfortunately the Fock space of the quantum theory described by the action (6.1) 
contains state vectors of negative norm (ghosts). Due to this fact a consistent 
probability interpretation seems to be impossible. A possible way out is a restric- 
tion of the Fock space by imposing the Gupta-Bleuler condition 

(b] Tm,,[b) = 0 ,  (6.4) 
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i.e. for all physical states I b)  the expectation value of the energy-momentum tensor 

1 6S 
Tin, - x~ ~ ahm, (6.5) 

has to vanish. 
In order to describe fermions too, one introduces some anticommuting sections 

@" of spinor bundles over M besides the "bosonic fields" X" and extends the 
Polyakov action (6.1) to 

SF[h,X,  @3 = I d2zx/h(hZeazX"O~ Xu - @~-OeO"+ - @U-Oz@U-). (6.6) 
M 

In addition to reparametrization- and WeyMnvariance, the new action also is 
invariant under global worldsheet supersymmetry transformations 

6 X " = ~ +  @u+ + ~-@,_ , 6@u+ = _~+OzX u,  (6.7) 

where ~ +- denotes a spinor, constant with respect to the worldsheet M. In the 
fermionic case, it has been found [6, 29, 32], that a cancellation of the Weyl 
anomaly can be achieved by choosing the dimension of spacetime to be d = 10. To 
eliminate ghost states in the quantized theory, one demands 

( f I T , , I f ) = O ,  ( f l J m ,  l f ) = O ,  (6.8) 

the second Gupta-Bleuler condition arising from an additional conserved current 
Jm, corresponding to the worldsheet supersymmetry. 

Calculating the commutator of two global supersymmetry transformations 
(6.7) results in (considering only the simpler case ~- = 0) 

[as,, 6s2]X u = 2 ~  ~ Oz Xu , 

[aS1, aS2] 0% = 2~i ~ r O=@~_. (6.9) 

Since the partial derivative Oz can be considered as the generator of spatial 
translations 

6rf(z)  :=f(z  + e ) - f ( z ) =  e~?zf(Z) + O(e2), (6.10) 

and spatial translations commute among themselves as well as with global super- 
symmetry transformations, the supersymmetry algebra reads 

[ a r l , a r 2 ]  = 0 = [as, aT], [asl ,as2]  = 2a r .  (6.11) 

Searching for a differential operator generating the supersymmetry transforma- 
tions (6.7) fails on an ordinary Riemann surface, because as mixes X u and @u. But 
introducing an anticommuting complex coordinate 0 besides z on the worldsheet, 
and putting bosonic and fermionic fields together to build one superfield 

�9 U(z, ~, O) = XU(z, ~) + O@U(z, ~),  (6.12) 

the transformations (6.7) can be written as 

as q~u=~+D~ u, D = ~ 0 + 0 ~ z .  (6.13) 
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Especially, acting on the coordinates z, 0 one sees that supersymmetry transforma- 
tions are generalized "translations" in superspace 

6sZ=~+O, ,SsO=~+ 

6sOb" = •(z + ~+ 0, 0 + ~+) - cb"(z, 0). (6.14) 

The Gupta-Bleuler conditions (6.8) so far imposed "by hand" can be built in the 
theory by demanding the fermionic string action to be locally supersymmetric. This 
can only be done by introducing a superpartner of the worldsheet metric, the 
gravitino field X, which is an anticommuting section of the bund le / (  | K -~. Now 
writing 

S [E, q~] = S d(vol) sdet EM A D 4) u/5 ~ " ,  (6.15) 
M 

where the superdeterminant of the frame field EM a is a function of the worldsheet 
metric and the gravitino field, describing the different geometries on the world- 
sheet, one has an action which is locally supersymmetric, i.e. invariant under 
a generalized version of the transformations (6.7) with ff -+ not necessarily constant 
[11]. Furthermore, the relations 

1 6S 1 6S 
~ - ~ =  x / ~ - -  = 0 (6.16) T:= 0 ,  J : =  6Z 

can be deduced from the action by using all invariances of S[E, ~].  So the 
corresponding string theory is free of ghosts from the beginning. 

Investigating all invariances of the action (6.15), one observes, that S[E, ~] 
only depends on the superconformal structure on M, so in complete analogy to the 
bosonic case the functional integral expressing the g-loop contribution to the 
fermionic partition function can be reduced to a finite dimensional integral over the 
moduli space J/d0 parametrizing all super Riemann surfaces of genus 9 [4, 9, 21] 

5 1 
Z o = S d ( sWP)[sde t ' ( -  [ ]o2)]-~[sdet ' (  - Z3_22)]~, (6.17) 

d(sWP) denoting the integration measure in Jr the Weil-Petersson measure, and 
the primes indicating suppression of zero modes. 

It should be noted that the fermionic string has to be well distinguished from 
the Green-Schwarz superstring. Since the spectrum of the fermionic string - also 
denoted as the Ramond-Neveu-Schwarz string [20] - contains a tachyon, a trun- 
cation by means of the GSO-projection is necessary to obtain a consistent theory. 
This somewhat unnatural procedure can be avoided by using the Green-Schwarz 
superstring, which in addition to the worldsheet supersymmetry possesses a space- 
time supersymmetry from the very beginning. Using the light-cone gauge quantiz- 
ation, it has been found that the spectra of the Green-Schwarz superstring and 
the Ramond-Neveu-Schwarz string with additionally imposed GSO-projection 
coincide [20]. 

6.2. Calculating the Partition Function. In the case of genus g > 2 the determi- 
nants s d e t ( -  [2p 2) can be expressed via Selberg's super zeta functions [21] 

Z,(s):= l~I f i  [1--v~e-(s+k)l'],  ~ R ( s ) > l ,  r = 0 , 1  (6.18) 
{'~ eF}p k=O 
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(cf. (5.19)). Defining 

An(P):= ( #  bosonic zero modes of Dp) 

- ( #  fermionic zero modes of ~ v ) ,  

table (5.34) shows that  

H. Ninnemann 

Using the relation 

(6.19) 

An (-2) = 0, An (~ -- 1 - 2q .  (6.20) 

Zo(1 + e)Zo(e) 82_ 20 (6.21) s d e t ( 8 2 -  r~oZ ) = [-~-l~z + ~ j ] ~  , 

one finds, since ords=�89 ) = - An (~ ZI(�89 + ~) '~ :a '82q-1 and Zo(s)  has a zero 

of order  2g - 2 at s = O, 

< 1 1 Zo(l)Zg2g-2)(O)82_4q 
sdet(e 2 -  Do ~)" "~ . (6.22) 

(29 - 2)! a2 

A consequence of the functional relation of Selberg's super zeta functions 

zl(�89 - s)Zo(s) z~(o) 
ZI(�89 + s)Zo(1 - s) ZI(1) 

(sin ~S) 20 - 2 (6.23) 

is 

Z~o2O- z)(0 ) = (_  1)A.'~ 2 (29 _ 2)! Zo(1) Z1 (0___)) (6.24) 
Z~(1) '  

so suppression of the zero modes leads to 

F Zo( l )12  Z1 (0) 
s d e t ' ( -  D 2) = ( -  1)~-2~1n9-~ 

L 
(6.25) 

For  p = - 2 no zero modes appear,  and 

lim sdet(~ z - [] _22) = 41-~ - 4)! Zo(2)Z(o60-6)( - 1) 
~-~o (69 - 6 T Z 3 Z(4O-4) ). i (2) ,  ( - } )  

results in 

(6.26) 

sdet( -  [~_2 2) = ZI (3) j  ZI(1 ) . (6.27) 

Separating 

f 7.(2q_ 1) / 1, "-'1 [~) 
( 2 q -  1)! ' a =  

lira e l - Z ~ z l (  �89 + e),  
~ 0  

2 q - 1 > 0 ,  

2 q - 1 < 0 ,  

(6.28) 
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and using the relation (5.35), the 2-1oop contribution to the fermionic partition 
function can be written as 

Zo=2 = \2~z4j I d(sWP) ~ Zl(2~)[Zo(1)35 
, A / g  = 2 

( - i ) [ reSs= �89  even spin structure on Mroa, 
�9 (6.29) 

i[Z](�89 5 , odd spin structure on Mred. 

However, since the Selberg super zeta functions are defined in terms of the 
geometrical structure, i.e. the length spectrum of the underlying surface, the lack of 
information about the complex structure makes it impossible to carry out the 
GSO-projection explicitly. 

7. Summary 

In this paper super Riemann surfaces were discussed from two different points of 
view. The description via glueing open superdomains was found to be very 
convenient for deforming the superconformal structure in the sense of the 
Kodaira-Spencer approach [25]. Representing super Riemann surfaces as a funda- 
mental domain in the super Poincar6 upper half-plane results, on the other hand, in 
quite explicit relations offering (in my opinion) the simplest way to consider 
properties of the super Laplacian. 

The central result proved in this work, the invariance of dim H~ (9(L0) 
under purely odd deformations of super Riemann surfaces, has led to two conse- 
quences. On the mathematical side, a generalized version of the Riemann-Roch 
theorem has been established for compact super Riemann surfaces, and on the 
physical side, by giving the explicit relations expressing determinants of super 
Laplace operators in terms of Selberg's super zeta functions, at least the 2-loop 
contribution to the fermionic string partition function has been stated. 

Acknowledgement. I would like to thank Jens Bolte for many stimulating discussions, as well as 
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