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In this paper we present the complete calculation of the order as correction in the MS
scheme to the Drell-Yan K-factor. All channels represented by the qq, qg, gg and qq
subprocesses have been included now . One of our conclusions is that the O(as) part of the
K-factor is dominated by the qq as well as the qg reaction . The latter leads to a negative
contribution over the whole energy range under investigation (0.5 TeV < VFS < 50 TeV). It even
overwhelms the positive qq contribution at large collider energies characteristic for LHC and
SSC . It turns out that the order a. corrected K-factor is quite insensitive to variations of the
factorization scale M over the region 10 GeV < M < 1000 GeV. We also compare our results
with the data obtained by UA1, UA2 and CDF.

The theoretical justification for perturbative strong interaction corrections to the
parton model [11 and their summation by renormalization group techniques in the
framework of QCD lead to a wealth of radiative corrections to numerous processes
(for a review see ref. [2]) . The most interesting outcome of these calculations was
that some of the corrections turned out to be rather large . This can mainly be
attributed to the considerable size of the running coupling constants as(R2 ) which
decreases slowly as R2 grows. Because of these large corrections one can question
the predictive power of perturbative QCD. However, experiments show that there
is a considerable discrepancy between the predictions of the Born approximation
and the experimental data . Nowadays it is commonly accepted that the ratio
between the measured cross section and the Born approximation, generally called
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the K-factor, can be explained by including the higher-order corrections . For most
processes only first-order corrections have been calculated . They give a reasonable
agreement with the experimental data . Nevertheless, corrections beyond the order
of as are needed for practical as well as for theoretical reasons .
The practical reason is that the statistics in the ongoing and future experiments

will improve so that the higher-order corrections might become noticeable . This is
expected because the size of the various K- and R-factors can become rather
large. It is also interesting to see how the K-factors will behave at very large
energies, which are characteristic for future accelerators like LHC and SSC. Here
we expect processes with gluons in the initial state to play a very important role .
From the theoretical point of view higher-order corrections are interesting because
we can learn something about the behaviour of the perturbation series, in particu-
lar about its convergence . One also wants to know by which terms the series is
dominated . An example of such a striking term is the soft-gluon part of the
K-factor, which is present in reactions with one or more gluons in the final state .
Knowledge about these dominant parts can provide us with useful information
about which techniques are needed for their resummation . Another possibility to
improve the perturbation series is the choice of a suitable mass factorization and
renormalization scale. These scales can for instance be determined in optimized
perturbation theory . Examples are the principle of minimal sensitivity (PMS) [3]
and the method of fastest asymptotic convergence (FAC) [4] . The drawback of
these approaches is that they are based on extrapolations of the lowest-order
terms, ignoring the effects coming from higher-order corrections . Moreover, we
expect that cross sections, calculated in higher order of a, will be less sensitive to
variations in the factorization and renormalization scales than the lowest-order
ones .

In this paper we will present the full order a2 correction to inclusive massive
lepter: pair prodüction (Drell-Yan process) . The first experiment to study this
reaction was carried out by the Columbia-BNL group [5] in 1970 . From that time
onwards this process attracted the attention of many experimentalists as well as
theorists in elementary particle physics . Before the pp collider at CERN became
operational in the beginning of the eighties all experiments were of the fixed target
type . One of the aims was to study the structure of hadrons . When the Drell-Yan
reaction takes place at relatively low energies (S < 20 GeV), the hadrons are
probed by a highly virtual timelike photon which is experimentally observed
through its decay into a massive lepton pair . Therefore this process is complemen-
tary to deep inelastic lepton-proton scattering where the exchanged photon is
spacelikc . An advantage of massive lepton pair production is that it allows us to
study the structure of unstable particles like pions or kaons . This is not possible in
deep inelastic lepton-hadron scattering where the target particles (like the proton
or the bound neutron) have to be stable . On the other hand the latter process
provides us with much butter statistics . Both reactions belong to the class of hard
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processes which means that at increasing energies all kinematical variables get
large while their ratios stay fixed. In such a case one can apply the methods of
perturbative QCD.
The first successful description of massive lepton pair production in the context

of the parton model (lowest order QCD) was given by S.D. Drell and T.M. Yan [6].
Later on, this production mechanism, called Drell-Yan (DY) after their inventors,
was supplemented by perturbative QCD. Using renormalization group methods
and the mass factorization theorem, for which an all order proof exists [7], one can
compute QCD corrections to this process . Between 1978 and 1980 the first order
as corrections were performed by many groups [8-13] . At the same time (1979) the
NA3 group [141 found a discrepancy between the data and the zeroth-order parton
model, a result which was confirmed by other fixed target experiments (for a
review see ref. [15]). Later on a second confirmation came from the pp collineas at
CERN and FERMILAB [16]. At the energies of these machines, exceeding those
of fixed target experiments by two orders of magnitude, the lepton pair is
produced through the W- and Z-bosons . Comparison of the data with the theory
revealed that the discrepancy, generally represented by the experimental K-factor,
could be rather well explained by the existing order as corrections . In spite of this
success one might question the reliability of perturbation theory, as the corrections
turned out to be rather large (- 70% at fixed target energies and - 30% for the
SpPS). Therefore higher-order corrections are necessary to put the order as
predictions on a firmer ground . Unlike other QCD processes the DY reaction
seems to be one of the few cases where the calculation of the order as corrections
is feasible, a property it shares with deep inelastic lepton-hadron scattering. This
is because the maximum number of particles appearing in the final state of the
parton subprocesses which contribute to these two reactions does not exceed three .
Notice that the most complicated parts of these calculations are the many body
phase space integrals . If there are more than three particles in the final state the
number of these integrals as well as their complexity get completely out of control .
In the case of collinear finite processes like R, defined in the reaction e + +
e - -> "X", the situation is a little better. The optical theorem, which relates this
quantity to the absorptive part of a two-point function, makes it even possible to
calculate its radiative corrections up to order a [ 17] . Another example is the order
aj correction to the two-jet cross section of the same process [18] although here
the used methods resemble those used in the DY calculation . However, note that
in the last two cases no mass factorization is involved, hence, these quantities only
depend on the chosen scheme for the strong coupling constant . Therefore one can
study their dependence on the renormalization scale only . In deep inelastic
lepton-hadron scattering and the DY process we also have to perform mass
factorization rendering the Wilson coefficient dependent on two separate scales .
In this way the DY K-factor provides us with a beautiful opportunity to investigate
the dependence on the mass factorization as well as on the renormalization scale.
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Finally notice that in order to obtain the order as correction to the K-factor, we
need the two loop corrected splitting functions to remove the collinear divergences
from the parton cross sections . This is the first time that the higher-order splitting
functions show up in a perturbative calculation.

This paper will be organized as follows. In sect . 2 we present the results of the
complete order as correction to the DY K-factor, which is calculated in the MS
scheme . The latter refers to coupling constant renormalization as well as mass
factorization. In particular we have included the contribution of the hard gluon
radiation to the qq process and the order as correction to the qg reaction which
were not presented previously . In sect. 3 we discuss the effect of the higher-order
corrections on heavy vector boson production at current and future accelerators .
The long expressions for the hadronic structure function and the DY correction
terms, not presented in sect . 2, can be found in appendices A and B respectively .

2. The as correction to the

	

process

Massive lepton pair production in hadronic collisions proceeds through the
following reaction :

H, +H 2 -> V+ "X"

	

(2.1)
L_~' e, +e2

where V is one of the vector bosons of the standard model (y, Z or VII) which
subsequently decays into a lepton pair ( f1, (2). The symbol "X" denotes any
inclusive finial hadronic state allowed by conservation of quantum numbers. The
colour-averaged inclusive cross section is given by

do'
dQ2 = rw(Q2 , M2v)Wv(T,Q2 ),

Q2

r S (2 .2)

The quantity °'v is the pointlike cross section (see eqs. (A.l)-(A .3)) . The variablesr and ,Q2 stand for the c.m . energy of the incoming hadrons H,, H2 and the
invariantmass of the dilepton pair respectively . The hadronic structure function is
represented by WV(r, Q2). According to the DY mechanism it can be written as

Wv(r,Q2)
-

. .J 1
dx, J I dx2J I dx5(r-xx,x 2 )PDv(x,,x 2,M 2 ),j;j (x,Q 2,M 2 ) .

(2 .3)

The functions PDv(x,, x2, M2 ) stand for the usual combination of parton distribu-
tion functions, which depend on the mass factorization scale M. The indices i and
j refer to the type of incoming partons. Furthermore the PDv contain all the
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information on the coupling of the quarks to the vector bosons, such as the quark
charges, the Weinberg angle Bw and the Cabibbo angle ®C (the other angles and
phases of the Kobayashi-Maskawa (KM) matrix are neglected). The explicit way in
which the functions PD combine with the correction terms 'dij is given in eq.
(A.20). Notice that the parton distribution functions not only depend on the mass
factorization scale M, but also on the renormalization scale R, because the
calculation of their scale dependence originates from operator renormalization
(= mass factorization) as well as from coupling constant renormalization. How-
ever, in the existing parametrizations of the parton distribution functions the two
scales M and R are always set to be equal. Also the DY correction term
®lj(x,Q2,M 2 ) (Wilson coefficient) depends on both scales . This can be seen by
expanding the DY correction term in a power series in the running coupling
constant as(R2 )

00

®ii(x,
Q2' M2) =

	

as( R2)®~;'(x,Q2?. M2~ R2) .
n=0

(2 .4)

When as(R2 ) is expanded in a power series in as(M2), the explicit R-dependence
in eq. (2.4) drops out.
The DY correction term ®;j can be obtained from the DY partonic structure

function Wj through mass factorization

W;(z, Q2 , M2 , £) _

	

f 1 dxl f 1 dx2 f 1 dx S(z -xx l x2 )
k,l 0

	

0

	

0

x rk;(xl, M2, E)rlj(x2, M2, E)®kl(x ,Q2 , M2 )

	

(2.5)

where Wj is determined by the parton subprocess

i+j-> V + "X" (2 .6)

and rki represents the transition function (parton i -3- parton k) . In eq . (2.5) we
assume that coupling constant renormalization has already been performed. Like
the DY correction term presented in eq. (2.4) the quantities big and T can be
expanded in a power series in the renormalized coupling constant as(R2 ) and
therefore implicitly depend on the chosen renormalization scale R . The collinear
divergences present in W and T are handled using n-dimensional regularization
and manifest themselves as pole terms of the type 1/E (E = n - 4).
The parton subprocesses contributing to the DY cross section up to second

order in a, are listed in table 1 .
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TABLE 1
List of Drell-Yan processes up to O(as )

q+q->V

Drell-Yan subprocesses

2

	

as:

	

q + q --> V

	

(one-loop correction)
3

	

q+q->V+g
3

	

q(q) + g -> V + q(q)
4 a2 q+q~V
5

	

q+q->V+g
6

	

q+q->V+g+g
5

	

q(q) + g --> V + q(q)

	

(one-loop correction)
6

	

q(q) +g->V+q(q)+g
7,8

	

q+q-~V+q+q
8,9

	

q(q) + q(q)

	

V+ q(q) + q(q)
6

	

g+g~V+q+q

Fig . 1 . The Born contribution to the subprocess q + q -> V.

W
q
~' , = S(1 -x) .

Fig . 2 . The mie-loop coj -recti( )n to the process cl + r e-, V.

(two-loop correction)
(one-loop correction)

In zeroth order in a . the only parton subprocess is given by quark-antiquark
(qq) annihilation (see fig . 1) and the resulting expression for W is given by

(2 .7)

The first-order corrections, calculated using n-dimensional regularization, can be
found in refs. [8,12] . The order a, correction to the qq process receives contribu-
tions from virtual (fig . 2) as well as real gluon (fig . 3) graphs . Furthermore, the qg
subprocess (fig . 3), showing up for the first time in this order, has to be computed
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too . The partonic structure functions can be expressed in the following form:

Fig . 3 . Diagrams contributing to the subprocess q + q -> V + g. The graphs corresponding to the
subprocess q(q) + g -> V + q(q) can be obtained from those presented in this figure via crossing.

Here as stands for the unrenormalized strong coupling constant . It is related to
the renormalized running coupling constant a5(R 2 ) in the following way:

au - as( R2)

	

1
-~ as( R2 ) 2ßo S

	

R2
F/2

F 2

	

(2.11)47r 47r 47r E N,

The constant /3 () is the lowest-order coefficient of the ß-function, equal to

ßo = ilCA - 2n f . (2.12)

In the following we will denote as(R 2 ) by a s and refer to R as the renormalization
scale . The residues of the collinear divergences are given by the Altare11i-Parisi
splitting functions P;j' [19] . In lowest order they are

The definition of the distribution -9, ;(x) can be found in appendix B [eq . (8.5)] .

Pqq = 4C F [2 -Po,(x) - 1

Pq = 8Tf [(1 -x)2 +x 2 ]

-x + ;S(1 -x)] ,

,

(2 .13)

(2 .14)

(1 - x)2 + 1
P6~~ = 4CF (2.15)

x

PO~,
1

= 8CA I . 9()(x) + - - 2 +x -x 2 + ;;-',S(1 -x) I - ~nfö( 1 -x) . (2.16)

F/2

W99 )
a' Q 2 2 _

= 4
SF + + ETr 2

E
Pqq Wqq Wq9 (2 .8)

Il

a"
s/2

s Q2 1
= (i) =qgqg L qg 4 S Po + w o + Ew°

1
7 A2 ~ 2E qg qg qg

~
(2.9)

where SF is defined by

SF = eF(yE-In4~r)/2 . (2.10)
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The SUM Casimir operators are given by
N 2 -1

CA
N, CF 2N '

	

(2.17)

w~crc r' is the number of colours. The number of flavours is indicated by nf and
Tf (= 2) is the normalization corresponding to the fundamental representation .
For completeness we have also presented Pq and Pg since they will be needed
later on. The calculation of the non-pole terms in eqs. (2.8) and (2.9) yields the
expressions

as,1

	

_

	

(1)

	

2 -
4Tr wqq

	

®qâ(M

	

Q2),

as w° = ®(1)(M2 = Q2),

	

(2 .19)4Tr qg qg

	

'

ivq-q-=CF{8-9~2 (x) -6C(2) . ,(x) + (1 +x) [ -41n2 (1 -x) +3«2)]

1 +x 2
+ 1 -x [-41n x 1!n(1 -x) + In2 x] + 4(1 -x)

(2.18)

+S(1 -x) [16- 2'x(2)1

	

,

	

(2.20)

w" = T

	

' ( 1 + 2x 2 - 2x) In2

	

(1 - x) 2	-
qg r z x

3~(2)

2

+1(1-7x2+6x)In
(1 _X)2

	

3

	

.	(2 .21)x

The functions w°- and w° are equal to the DY correction terms ®(') and ®(') (seeqq qg

	

qq qg
eqs. (B.2) and (B.17) respectively) provided the latter are calculated in the MS
mass factorization scheme . The E-parts wqû and w~ are also given, as we will need
them for the order a2 calculations .

In second order of as the set of possible parton-parton reactions is completed
by the qq and gg subprocesses. This exhausts all possible combinations of i and j
in Wj. A part of them has already been presented in the literature . The first
calculation was done for the qq process [201 (see figs . 8 and 9) . Its results also hold
for the qq scattering subprocess where a gluon is exchanged between the quark
and the antiquark line . Thereafter the soft and virtual gluon contributions from the
qq process with two gluons or a quark pair in the final state were determined
[21-24.1 (see figs . 4-7) . Finally, we recently finished the computation of the gg
subprocess [251 (see fig . 6) . All calculations mentioned above have been performed
in the DIS mass factorization scheme . However, the results can easily be trans-
formed to the

	

scheme. The latter procedure only requires the knowledge of
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the DY partonic cross sections, whereas in the DIS scheme one also has to
calculate the deep inelastic partonic structure functions. In both schemes the
following reactions were missing until now:
(a) the hard gluon contribution to the qq subprocess (figs. 5-7);
(b) the order as correction to the qg subprocess (figs. 5 and 6), and
(c) all possible interference terms between the various qq --+ qqV subprocesses
(figs . 7-9) .

In order to complete the as correction to the DY process we include these
missing pieces, which is the main goal of this paper. The calculation of the
subprocesses listed in table 1 can be outlined as follows. While computing the cross
scenens ,;rresponding to the graphs in figs. 1-9 one encounters three types of
singularities, namely ultraviolet (UV), infrared (IR) and collinear/mass singulari-
ties . They are all dealt with using the technique of n-dimensional regularization.
According to the Bloch-Nordsieck theorem [26], which holds for massless quarks
only [27], the IR divergences are cancelled in the sum of virtual and radiative gluon
graphs . The UV divergences are removed by the renormalization of the strong
coupling constant, which is performed in the MS scheme . Since we consider an
inclusive reaction only, there are no final-state collinear divergences left as stated
by the KLN theorem [28] . The initial state collinear divergences are extracted from
the cross section by absorbing them into the parton distribution functions, for
which we choose the MS scheme, too. The mass factorization in the DIS scheme
requires the computation of the partonic deep inelastic structure functions for the
Vq and Vg subprocesses . The calculation of these structure functions is of the
same level of complexity as the one encountered in the DY process and will
therefore be postponed to the future .
The calculation of the squared amplitudes was performed in n dimensions using

the algebraic manipulation programs REDUCE [29], SCHOONSCHIP * and FORM".
Since we also compute W- and Z-production we had to deal with the Y5 matrix
which cannot be trivially extended to n dimensions. Following the procedure
discussed in ref. [31] we can distinguish the following types of trace structures .
Defining the general electroweak vector boson quark coupling Vqq by

Vq ;gj : igvyjvv + avY5)

	

(2 .22)

we distinguish three types of matrix elements :
(1) One fermion trace matrix elements, where the fermion trace contains two

vertices of the form given in eq. (2.22) . Matrix elements of this type appear in the
computation of the graphs in figs . 1-6 and in the interference terms AC, AD, BC,
BD, CE, CF, DE and DF in figs. 7-9;

" SCHOONSIrHIP is an algebraic manipulation program written by M. Veltman, see ref. [301 .
** FORM (version 1.0) is a symbolic manipulation program writtep by J.A.M . Vermaseren (NIKHEF-H,

Amsterdam).
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(2) Two fermion trace matrix elements, where one of the traces contains both
vertices of the form (2.22) . They appear in the terms A2 , B2, C2, D 2 , E2 and F 2 in
figs . 7-9;

(3) Two fermion trace matrix elements, in which each trace contains one vertex
of the type given above . Contributions of these type originate from the combina-
tions AB, CD and EF in figs . 7-9.

Traces of types (1) and (2) can be performed by anticommuting the ys with all
Dirac matrices y,,, so that the matrix element is proportional to the one obtained
for a virtual photon (V = y) multiplied by v? + a2 . Traces of type (3) have to be
dealt with more care . However, since the partonic structure functions W corre-
sponding to the combinations mentioned in (3) are manifestly collinearly finite, the
trace can be calculated in four dimensions . In this case the vector-vector (vivj ) and
the axial-axial (aiaj) parts of the matrix element are in general not equal to each
other.

After having computed the traces we have to integrate the matrix elements over
all internal-loop and final-state momenta which is the most difficult part of the
calculation. In this paper we take all partons to be massless . The case of massive
quarks (e.g . when heavy flavours are produced in the final state) will be discussed
at the end of this section. Even if the partons are massless the integrals are very
numerous and far from trivial. This in particular holds for the two-loop integrals
appearing in the quark form factor (fig . 4) and the three-body phase-space
integrals showing up in the calculation of the graphs in figs . 5-9. Some of them
even have to be expanded up to order E4 .

Starting with the two-loop graphs in fig. 4 we had to evaluate 107 different types
of scalar integrals [32] . Note that they are not linearly independent . The irre-
ducible set contains 36 elements only and can be found in ref. [33] . Apart from one
misprint in the scalar integral corresponding to diagram 4C in the appendix of ref.
[33], we agree with their result . The final result for the quark form factor is
presented in eq. (2.49) of ref. [21] (see also appendix A of ref. [23]). This result
agrees with the one quoted in ref. [18] . Finally we would like to comment on the

Fig. 4. The two-loop corrections to the process q + 4 -; V.



R. Hamberg et al. / DYK-factor 353

Fig . 5 . The one-loop corrections to the process q + q - V + g . The diagrams corresponding to the
one-loop correction to the subprocess q(q) + g -), V + q(q) can be obtained via crossing .

vertex graphs in fig. 4 containing the triangle fermion loop . These graphs only
contribute in the case of Z-production with massive quarks in the loop . Notice that
one always has to sum over all flavours in a quark family in order to cancel the
anomaly arising from this type of graphs.
The two-body phase-space integrals emerging from fig. 5 constitute the easiest

part of the calculation . They can be expressed in the following way:

Tr l- "/2

	

s - Q2f d
~n-3

	

7r

PS(2) 1 ~11~ 2 = 2a-2n

	

- 1

	

2f

	

0(sin e)~~-~~~1~~2 ,

	

(2 .23)
T(2 n ) s

	

U

where s is the c.m. energy of the incoming partons and ® is the angle between one
of the incoming and the outgoing parton . The amplitude 1,g12 contains all
one-loop integrals. The scalar loop integrals can be found in appendix F of ref.
[24] . It turned out that we had to evaluate 89 integrals of the kind in eq. (2.23),
which however do not form an independent set. Distinguishing them in soft
(singular at s =Q2 ) and hard (regular at s = Q2 ) gluon integrals we count 8 and 81
respectively. Again the graph containing the fermion loop in fig. 5 only contributes
in the case of Z-production with a massive quark loop . As for the two-loop
diagram of fig. 4 one has to sum over the members of a quark family in order to
cancel the anomaly.
The most difficult and laborious part of the calculation is due to the purely

radiative subprocesses given in figs . 6-9 which contain three particles in the final
state . They involve the calculation of the three-body phase-space integrals of the
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form

i
~Q449Q42

	

i

	

2

IR.4QQQQQSè2 0909999
1

IQQQQSU2QSb2

Fig . 6 . Diagrams contributing to the subprocess q + q -> V + g + g. The graphs corresponding to the
subprocess q(q) + g -> V + q(q) + g can be obtained from those presented in this figure via crossing .
By crossing two pairs of lines one can obtain the diagrams corresponding to the subprocess g + g -->

V+q+q.

4Tr ) r(n - o

	

Q3

	

~
1

	

S I -n/2

	

71'

	

7r

	

it -3

	

Opyt-4

	

S,

dPS(')

	

f

	

dO f

	

d(A(sin 0)

	

(sin

	

dsf

	

,(	z)

	

o

X fS+QZ-S ' dS2 «SIS2 -SQ2)(S +
Q2 -S1 -S2-2

.

	

(2 .24)»31Z
SQ`//SI

This expression has been derived in the c.m. frame of the incoming partons, where
s; denotes the invariant mass of the vector boson combined with one of the final
state partons i . In many cases it is more convenient to evaluate the three-particle
phase-space integrals in other L.orentz frames like the c.m. frame of the two
outgoing partons [21,23,24,34] or the c.m . frame of the vector boson and one of
the outgoing partons [35]. In order to perform the angular integrations the matrix
element 1.,g 12 has to be decomposed in such a way that only two factors contain

A

Fig. 7. Annihilation graphs contributing to the subprocess q + W -V + q + q.
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C

Fig. 8 . Gluon exchange graphs contributing to the subprocesses q + q

	

V+ q +q and q(q) + q(q)
V + q(q) + q(q).

the angular variables 0 and 0. The angular integrals are of the form

(sin ®)" -3( sin O )n-a

il,, ~,~~ = J

	

d8 J

	

d~

	

''
, (2.25)

0

	

0

	

(a+bcos0) (A+Bcos0+Csin0cos0)

where a, b, A, B and C are functions of the kinematical invariants s, Q2, st and
s2 . These integrals can be found in appendix C of ref. [36] . For n = 4 + E and
either a 2 O b2 or A2 OB2+C2 the expressions are very cumbersome, let alone
when both a 2 0 62 and A2 OB 2 + C2. Fortunately the latter case can be avoided
by choosing an appropriate frame. The partial fractioning of 1

.012 leads to 217
three-body phase-space integrals, each of them containing four integration vari-
ables. We did not bother to see how they could be reduced to a linearly
independent set. Due to the vast amount of integrals we are not able to publish
them . Among these integrals only 10 were of the soft gluon type (singular at
s = Q2); they can be found in appendix G of ref. [24]. Some other three-body

E

F

Fig . 9 . Gluon exchange graphs contributing to the subprocess q(q) + q(q) --> V + q(q) + q(q) with
identical quarks in the initial and/or final state .

,

1 3 1 3

V
2 ~ô 4 2 ô 4

1 16, 3 1 Iô 3
p

2 F 4 2 2 4

1 4 1 fô 4

2 3 2 3

1 ~ô 4 1 c~ 4

2 3 2 p 3
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phase-space integrals are listed in appendix A of ref. [25] . All scalar integrals can
be obtained from us on request.
The partonic structure functions W j calculated up to second order in a s can be

divided into two classes . The first class originates from the matrix elements
corresponding to types (1) and (2) mentioned below eq. (2.22). It contains all Wj

which have collinear divergences . To the second class belong all partonic structure
functions which are collinearly finite (type (3) and some of type (1)) . In order to
perform the mass factorization according to eq. (2.5) for the Wj (class I) we need
the transition functions T;j . These functions describe the transition of a parton j
into a parton i . The qq and qq transition functions are divided into a non-singlet
(NS) and a singlet (S) part in the following way:

-1

	

Srj_

	

qs
+ qs9; '

	

Fq,Q j
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_

	

qqs
+ qsqj

	

(2.26),

	

2 .27

where the indices i and j refer to the flavour of the (anti)quark. As the expressions
for the transition functions do not explicitly depend on the flavours, we will
suppress the flavour indices from now on. in the MS triass factorization scheme the
F;j can be expressed in terms of the Altarelli-Parisi splitting functions as
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where M is the mass factorization scale. To obtain the above expressions in terms
of the renormalized coupling constant as(R2 ), one has to perform coupling
constant renormalization (see eq. (2.11)). Notice that at ®(as) the transition
functions s and Tq9 are equal, which is not necessarily true at higher orders. The
convolution symbol ® is defined by

(f®g)(x) = f l dx l f i dx2S(x - xlx2)f(x l )g(x2)-

	

(2.15)
0 0

The lowest-order Altarelli-Parisi splitting functions have already been listed in
eqs. (2.13)-(2.16) and the expression for 80 can be found in eq. (2.12). In the
next-to-leading order we need Pqg and the singlet (S) as well as the non-singlet
(NS) part of Pqq. They can be obtained from eqs. (16) and (17) in ref. [37] (see also
refs . [38-41]) . Since we use a little different notation we will list them here below,
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Pqg = - 8CFTf {2(1 - 2x + 2x2 ) [21n x ln(1 -x) + 2C(2) - In2(j -x)j

-(1 - 2x + 4x 2 )ln2 x - 8x(1 -x)ln(1 -x) - (3 - 4x + 8x2 )ln x
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.	(2 .39)x

The relation between the anomalous dimension of the composite operators de-
noted by y,j) and the splitting functions P;j is given through a Mellin transforma-
tion

y~(n) = - J 1dxx
" -'Pi~(x) .

	

(2.40)
0

In the literature the expressions y~grrs + ( -1)"yqq-

	

stand for the non-singlet
anomalous dimension. The singlet anomalous dimensions we need for our calcula-
tion are given by yâq"s + (-1)"y411,^ + ygqs and y,',, respectively. The reason that
the splitting functions Pkg in eqs. (2.30)-(2.32) are multiplied by an extra factor 2
can be attributed to the fact that the corresponding anomalous dimensions yg
receive contributions from the quark as well as the antiquark. The same applies to
Pq'q,s in eqs. (.2.30) and (2.31). Notice that the splitting functions

	

gqPk and

	

gSPk are
only needed up to first order in as since the vector boson V does not couple
directly to the gluon.
For the mass factorization of lVij it is convenient to split Wqq , W9q , ®qq and Aqq

into non-singlet and singlet parts as has been done for the transition functions (see
eqs. (2.26) and (2.27)). Then the mass singular partonic structure functions can be
classified as

(i) W(y)' Ns, which gets contributions from the graphs in figs . 4-6 and A2, AC and
AD in figs . 7 and 8.

(ü) Wqq), s . It receives contributions from C2 and D2 in fig. 8. Likewise Wqq2),
s

which is determined by C2 , D2, E'- and F'- in figs . 8 and 9.
Wqq), rrs, which receives its contributions from CE and DF (see figs . 8 and 9).

(iv)

	

gz2) . It gets contributions from the graphs in figs . 5 and 6.
(v) Wgg ), which receives contributions from the graphs in fig. 6.
Since the partonic structure functions Wj, calculated in this paper, satisfy the

mass factorization theorem, the unrenormalized and mass singular expressions can
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be written as follows (where SE is defined in eq. (2.10))
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(2.45)

In the above equations «s is the unrenormalized strong coupling constant, which
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has to be renormalized using the relation in eq. (2.11). The UV divergencies are
due to the loop diagrams appearing in the calculation of Wqq~°Ns and W(g) . Notice
that the gg subprocess can be made finite by using the lowest-order splitting
function l'gS only . The various non-pole terms w~ are equal to

The expressions for the DY correction terms AQ), calculated in the MS scheme,
can be found in appendix B (see eqs . (13.7), (13.21), (13.24), (13.18) and (13 .28)
respectively) .
The remaining contributions to W j (class II) which are not collinearly divergent

do not need mass factorization . They originate from the combinations of the
graphs B2 , BC, BD, CD, CF, DE and FE in figs . 7-9. In the case of Z-production
also the combination AB contributes . It vanishes if one sums over all flavours in
one family unless the final-state quarks are massive . This situation is akin to the
virtual graphs in figs . 4 and 5 except that here no anomaly term appears . The class
II partonic structure functions W j are equal to the DY correction terms ®;j (see
appendix B) which implies that they are scheme independent at least up to
order a?.

Summarizing the content of this section we conclude that the calculation of the
order a2 correction to the inclusive DY cross section has been completed now in
the MS scheme . As already mentioned in this section there is another popular
scheme to present the correction terms to various QCD processes, namely the DIS
scheme. In our case ^this requires the calculation of the deep inelastic partonic
structure functions -9-2. and -9-2 b , which is as laborious as the calculation of the
DY structure functions Wj . A part of this work has already been published in the
literature . The soft plus virtual gluon part of J72u is given in ref. [23] . The part of

11

.72 , due to the

	

IS counterparts of the diagrams A in fig . 7 can be found in ref.
[24] . Ten years ago the contribution to . 2u corresponding to the graphs obtained
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by crossing the diagrams in figs . 8 and 9 were calculated in ref. [20] . Left over are
the hard gluon part of '9_2q coming from the diagrams found by crossing the vector
boson and a quark in figs . 5 and 6 and the full order as contribution to .9."-2g . The
graphs for the latter can be found by appropriate crossings in figs . 5 and 6. Their
calculation will be presented in the near future . In principle we also need the
three-loop contribution to the anomalous dimensions yij in eq. (2.40). The coeffi-
cients of the perturbative expansion in the running coupling constant as(Q2 ) of the
renormalization group improved Wilson coefficient are only scheme independent if
®~ as well as yk+ 1 are known (see refs. [38,42]) .

Finally we want to comment on heavy flavour production in the DY process. In
this paper we assume all heavy flavours to be massless . This in particular is a crude
assumption for top-quark production. A part of this problem is investigated in ref.
[43] where the contributions due to triangle graphs of figs . 4 and 5 have been
calculated in the case of heavy quarks. The calculation reveals a correction of
0.025% for qq -, Zg and 0.005% for qg --> Zq at CERN col_lider energies coming
from the last graph of fig. 5. The contribution of the two-loop triangle graph in fig.
4 is larger and amounts to 0.73% at most. These corrections become even smaller
at larger energies . They never exceed the contributions coming from the smallest
subprocess calculated above (qq scattering) and can therefore be completely
neglected. Still missing are the production mechanisms q +_ q -> Q +Q + V due to
graphs A and B in fig. 7 and g + g -+ Q +Q +V in fig. 6. Their contributions will
have to be calculated, but we expect that they are small .

3. Total cross sections for VV- and Z-production

In this section we will show results for vector boson production and compare
them with the most recent data from the UA2 and CDF experiments. The total
inclusive cross section is given by (see eq. (2.2))

atot(S) = f dQ2'row(Q`, Mv)Wv(r , Q2 ) .

The pointlike cross section o'v(Q2, M2 ) for V = y, Z, W is explicitly given in eqs.
(A. I)-(A.3). The hadronic structure function WV(T, Q2 ) can be obtained from eq.
(2.3) by combining the various combinations of the parton distribution functions
indicated by PD with the DY correction terms ®;; discussed in sect . 2. The
explicit expression can be found in eq. (A.20) . For our subsequent discussions it is
convenient to rewrite Wv in the following way:

~ T

WV('r, Q2 ) _ E f
1 d
x

x
-

	

(
Oi

i(x, M-) .j i; x , Q`, M`

	

(3.2)
r,J 7T
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where O11 denotes the parton flux which is defined by

~1 -( x, M2) =

	

i dy

	

x
PDv y,

	

,
M-	(3 .3)f. J

y ( y

At high energies the total cross section is dominated by W- and Z-production .
Since the widths of these vector bosons are small compared to their masses, the
integral in eq. (3.1) can be performed using the narrow-width approximation. The
integration becomes trivial and its result for at., is given by the expressions in eqs.
(A.10) and (A.11) .
We will now present the DY cross section and its K-factor for both pp and pp

collisions at the current and future high-energy colliders. The c.m. energies under
consideration are F= 0.63 TeV (SpPS), F = 1 .8 TeV (Tevatron), F = 16 TeV
(LHC) and F = 40 TeV (SSC). For the electroweak parameters we take the
following values: MZ = 91 GeV, Mme, = 80 GeV, GF = 1 .166 x 10 -5 GeV-2 (Fermi
constant), sin2 0W = 0.227 and sin e Bc = 0.05 . Further we assume the top quark to
be heavier than the W. For the running coupling constant, determined in the MS
scheme, we adopt the expression in eq. (10) of ref. [44] which is corrected up to
two loops with the heavy-flavour thresholds included . The number of flavours nf is
chosen to be five and the QCD scale parameter A is given below. Since the DY
correction terms are calculated in the MS scheme we need the parton distribution
functions in the same scheme. Here we have taken the HMRS parametrizations
[45,461, which are indicated by HMRSE+ , HMRSE, HMRSE_ (A = 100 MeV)
and HMRSB (A = 190 MeV). Furthermore, to make a comparison of the various
independent parametrization sets we also used the parton distribution functions
given in tables 12 and 14 of ref. [47], which we will refer to as MTE (A = 155 MeV)
and MTB (A = 194 MeV) respectively. Unless stated otherwise, all results are
obtained using the HMRSB parametrization. The renormalization scale R is
always taken to be equal to the mass factorization scale M (see the comment above
eq. (2.4)), for which we have chosen the canonical value 1W. Since the total cross
section is calculated in the narrow width approximation this implies that M= My
(vector boson mass). The dependence of the cross section on the chosen mass
factorization scale will be discussed at the end of this section. All numerical results
::: this paper are produced by our Fortran nrnarnm ?uIPR.OD, which can be... . . .
obtained on request.

For the discussion of various contributions to the Drell-Yan correction term it
is convenient to introduce the K-factor . In this paper the theoretical K-factor is
defined as follows

00

Kth -	K(n),
n=0

(3 .4)
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where K(n) is the O(as) contribution to the K-factor, which is given by
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(3 .5)

The functions W(n)(T, Q2) and Or(n) are the O(as) correction to the hadronic
structure function WV(T, Q2 ) and cross section respectively . They originate from
the O(aS) contribution to A in eq. (2.4). The order as corrected Kfactor is
defined by

(3.6)

where ai is the O(as) corrected DY cross section and o0 the Born contribution .
In the discussion of the results we will try to answer the following questions:

(1) How large is the O(as) contribution to the Kfactor (K(2)) compared with the
O(as ) one (K( 1))?
(2) What is the relative contribution of the four different subprocesses qq, qg, qq
and gg to the O(as) part of the DY cross section?
(3) How does the cross section depend on the various parametrizations chosen for
the parton distribution functions?
(4) How does the cross section depend on the different choices made for the
factorization scale M and the renormalization scale R?
The same type of questions can also be raised in the case of the other processes

like heavy flavour production [36,48,491, direct photon production [50] or jet
production [51] . Note that the answers to the first question and to a lesser extent
to the second and third one very heavily depend on the chosen renormalization
and mass factorization schemes (we use WS) and the scales R and M. A change of
schemes at a fixed value for M and R alters the coefficients in the perturbation
series of the Wilson coefficient. The same happens if in a given scheme M or R is
varied . This leads to an increase or decrease of the higher-order corrections with
respect to the lower-order ones . It also entails a redistribution of the contributions,
coming from the various production mechanisms, to the Wilson coefficient . There-
fore an investigation of the problems (1), (2) and (3) only makes sense if the
schemes and scales are specified . In this paper we have chosen the MS scheme and
have taken R = M = Mv, unless mentioned otherwise .

Starting with W-production at pp colliders we show in fig . 10 the O(as) and
0(a?) corrections to the DY K-factor for 0.5 TeV < ~ < 50 TeV. Here the
Kfactor origiflates from eqs . (3.5) and (3.6) where the total cross section stands for
the sum of W+ and W- production . The figure reveals that the O(as) contribu-
tion to the K-factor, i.e . K(2), gets negative for ~S > 2.7 TeV which implies
K2 < K1 at high energies . Moreover, K(2) is much smaller than K(1) so that the
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Fig . 10. The K-factor for W + + W - production at a pp collider (see eqs. (3.5) and (3.6)) . (1) K 1 ; (2)
K2; (3) Kip) ; (4) K(2).

first-order corrected cross section o , , is hardly modified over the whole energy
range. The same phenomenon is also observed for pp collisions where K(2) e 0 atF > 2.0 TeV (see fig . 11) . The same behaviour of the K-factor is also observed
when other parametrizations of the parton distribution functions are used like
HMRSE, MTE or MTB. The property that K(2) gets negative at very large
energies can be wholly attributed to the qg subprocess . Notice that the latter leads
to a negative correction over the whole energy range, hence, the positive contribu-
tion of the qq subprocess is always compensated (see figs . 12 and 13) . Remember
that the 0(a,) part of the qg subprocess is negative too, but in this case its
absolute value is always smaller than the one computed for the qq reaction at the
same order of «. .
The separate contributions to the K-factor coming from the four subprocesses

are shown in figs . 12 and 13. From these figures we infer that the K-factor is
dominated by the qq and qg subprocesses . A striking result of our calculations is
the small contribution of gg fusion to the K-factor, in particular when we compare
it to the qg process . At first sight this might be unexpected since the numerical
evaluation of both reactions involves the gluon distribution function which steeply
rises at small x. As has been shown in a previous paper [25] the relative size of the
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Fig . 11 . The same as in fig . 10 but now for a pp collider .

contributions coming from the four subprocesses can be understood as follows.
The parton flux Oii (see eq. (3 .3)) steeply rises as x --~ 0 whereas it sharply
decreases for x -> 1 . This implies that x - T is the relevant integration region in
eq. (3.2). Therefore the cross section will heavily depend on the behaviour of
'A ;j(T/x, Q2, M 2 ) near x=T. The functional form of ® ;j(x, Q`, M2) near x = 1 for
the various subprocesses is given in appendix B. Qualitatively they behave like (see
eqs. (B.29)-(B.46))

The vanishing of the last two correction terms near x = 1 is caused by the absence

x11q a;-9- , ,(x) +b1 1n1 (1 -x) +cS(1 -x) +d . (3 .7)

X -j

®üq
X-1

(1
_X)"

In 2 (1 _X) (a > 0), (3 .9)

®99 X- 1 (1 --x)"ln2(1 _X) (b>0) . (3 .10)
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Fig. 12 . The various contributions to the K-factor for W'+ W- production at a pp collider (see eq .
(3 .5)). (1) Kqq) ; (2) -Kqg>> (3) Kqy) ; (4) -K(2). (5) K(2) . (6) Kqq) .

of gluons in the final state . In that case the timer,-body phase-space integrals do
not contribute at the boundary c~f phas° spat° . Now one can understand why the
contributions from qq and gg are small compared to those from qy and qg. The
Drell-Yan correction term ®gg tends to suppress the fast rise of the gg flux,
whereas ®qg enhances the behaviour of the qg flux . However, notice that the
suppression of the DY correction term near x = 1 is more and more compensated
at higher energies, due to the faster growth of the gg flux relative to the other
fluxes, as can be seen in figs . 12 and 13.
VVe also want to comment on the contributions coming from the distribu-

tions 9;(x) and 5(1 -x) in eq. (3.7) . The coefficients of these functions can be
determined by a soft gluon approximation, which means that only the contributions
coming from soft and virtual gluons are taken into account . As is known from the
literature, in the DIS scheme (with M = R =Mv ) the dominant part of the
K-factor can be attributed to the soft/virtua l piece of the Drell-Yan correction
terms (see tables 2 and 3) . However, in the MS scheme (also with M = R = Mv)
this is no longer true . This can be seen in figs . 14 and 15, where we have split the
contribution to

K,i',i Ns into a soft/virtual (K,I i
, s'v) and a hard (K,%,) ,1 ') part, as
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Fig . 13 . The same as in fig . 12 but now for a pp collider.

described in appendix B (see below eq. (B.7) . From these figures we infer that in MS
the hard part is much larger than the soft/virtual piece . Moreover, in the DIS
scheme the main contribution to K(' s + v can be traced back to the S(1 - x )
function . In the MS scheme, however, the O,(x) dominate the S + V part . The
above discussion implies that the exponentiation of the soft/virtual gluon contri-
bution only makes sense in the DIS scheme . These observations illustrate very
nicely that the answer to the question, which reaction or production mechanism is
dominant, depends very much on the chosen schemes and scales . As a further
illustration of this fact we have made a comparison between the MS and DIS
scheme results in tables 2 and 3. For the DIS parton distribution function we have
chosen the one given in table 13 of ref . [47] (A = 194 MeV), which is the DIS
scheme counterpart of MTB. Notice that the Born cross section for MS is always
slightly larger than the one obtained in the DIS scheme . Although the O(as )
contributions to the soft/virtual and hard gluon parts depend heavily on the
chosen scheme, the total qq result is hardly affected by this choice . For the O(as )
qg subprocess this dependence is stronger and we find that the MS result is always
more negative than the one obtained for DIS. Contrary to the Born cross section
we find that the O(as) corrected cross section in DIS is slightly larger than in MS.
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TABLE 2
Comparison of NIS and DIS scheme results at SppS and Tevatron

W'+ W- production (nb)

From tables 2 and 3 we infer that the difference is about 5%. In the DIS scheme
the second order contribution to the K-factor from the hard gluon part of the qq
subprocess is only partially known and no O(a2 ) result exists for the qg process.
Therefore we have put in tables 2 and 3 a question mark in the entries correspond-
ing to these subprocesses . At second order we find that the numerical results for
those DY correction terms, which are known for both the DIS and the MS scheme,
depend considerably on the chosen mass factorization procedure. Furthermore,
assuming that the scheme dependence of (.c2' is comparable to that of o,-('), we
find that in the DIS scheme only for the SppS ( .S = 0.63 TeV) one can approxi-
mate the second-order contribution to the cross section by the soft/virtual part of
the qq- subprocess . At higher energies this approximation seems to become very
bad . In order to make a full comparison between both schemes the calculation of
the still missing contributions in DIS (i .e . the hard gluon part of qq and qg) will be
necessary .
The same discussion applies for

	

-production at pp as well as at pp colliders,
therefore we will not give separate figures or tables for this case .

SppS Tevatron
MTB, MS MTB, DIS MTB, MS MTB, DIS

Born Born

qq 4.93 4.90 16.0 15.7

O(as ) O(as)

qq, S + V 0.61 1 .79 1.16 5.66
uq, H 0.93 -0.21 3.41 -0.97
qq, total 1 .54 1 .58 4.57 4.69
qg -0.18 -0.10 -1 .57 -0.98

1 .36 1 .48 3 .00 3.7i
6.29 6.38 19:0 19,4

0(a2) O(as)

qq, S + V -0.05 0.59 -0.12 1 .87
q°q, H 0.49 ? 1 .35 ?
qq, total 0.44 ? 1 .23 ?
qg -0.13 ? -1 .06 ?
99 2.2 x 10 - ; 0.6 x 10-3 4.3 x 10-2 2.0 x 10 -2
qq + qq 2.1 x 10 - ; 1 .3 x 10- ; 1 .6 x 10-2 2.5 x 10 -2
~.(2) 0.31 ? 0.23 ?
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TABLE 3
Comparison ofMS and DIS scheme results at LHC and SSC

W++ W - production (nb)
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The size of the various contributions to the DY cross section depends very
heavily on the specific set of parton distribution functions . These functions are
mainly extracted from the data in deep inelastic lepton hadron scattering which
have been taken for x > 0.01 . However, vector boson production at future high-
energy colliders require the knowledge of the parton densities at x - Mv/F. For
LHC and SSC this implies x - 6 x 10 -3 and x - 3 x 10 -3 respectively. A recent
analysis [52] has shown that W- and Z-production at these future colliders even
probes sea quarks at x

	

10M2
I /S, which is about 5 x 10

__ 5 for SSC. Therefore
one has to extrapolate these densities to x-regions which were not accessible to the
deep inelastic experiments carried out up to now. In the future this situation will
probably improve, when the HERA machine is put into operation . Moreover,
there is some theoretical uncertainty how to parametrize the gluon distribution
function at Q 2 = Q� . One often assumes that xG(x, Q� ) --> constant for x -> 0 .
However, there are some theoretical reasons to believe that a more correct
behaviour for small x would be xG; x, Q� ) --> 1 / ~X [53] . Notice that such a
change of the parametrization of the gluon at Q� will also strongly influence the

LHC SSC
MTB, MS MTB, DIS MTB, MS MTB, DIS

Born Born

qq 120.0 119 .0 262.0 260.0

O(as) O(as)

qq, S + V 7.5 42.7 14.8 93.3
qq, H 26.2 -7.8 58.3 -17.8
qq, total 33.7 34.9 73.1 75.5
qg -21 .0 -15.5 -48.3 -37.8
01(

i ) 12.7 19.4 24.8 37.7
(T i 132 .0 138 .0 287.0 298.0

O(as) O(as)

qq, S + V -0.8 14.1 -1 .8 30.8
qq, H 9.9 ? 21 .5 ?
qq, total 9.1 ? 19.7 ?
qg -14.9 ? -33.5 ?
99 1 .5 1 .1 4.4 3 .6
qq+qq 0.4 1 .0 1.0 2.6

-3.9 ? -8.4 ?
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Fig. 14 . The soft +virtual (S + V) and hard (H) gluon part of Kyy for W++ W- production at a. pP
collider (see eq . (3 .5)) . (1) Kyl~).s+v, (2) K(y).H ; (3) K(y).s+v ; (4) KQ"i.

small-x behaviour of the sea quarks at higher Q2, because the sea quarks are
coupled to the gluons through the Altarelli-Parisi evolution equations . This
implies that at high energies considerable differences in the size of the ICY cross
section can be expected, even at the Born level, if one changes the x--3-0

behaviour of the gluon at Q� . To incorporate this kind of uncertainties in our
predictions for the W- and Z-production rates we have taken a wide range of
different parametrizations . The HMRSE and HMRSB parametrizations [451 corre-
spond with a xG(x, Q)) --:, constant behaviour for x ---> 0 . The HMRSE, and
HMRSE _ behave like C and 1/ C for x-->O and are referred to as the
valence-like and singular gluon distribution functions in ref. [521 . For the
pararni�tïizatiun of the gluon densities in the case of MTE and MTB one even has
included a logarithmic dependence on x, viz . xG(x, Q2) -> Xa(- In x )O for x --> 0,
with a and ß some negative exponents (see tables 12 and 14 of ref. [471) .
The total cross sections for W-production are displayed in table 4 for V~S_ = 0.63

TeV (SpPS), S = 1 .8 TeV (Tevatron), F r 16 TeV (LHC) and F = 40 TeV
(SSC) . From this table we infer that the O(as) correction is much smaller than the
O(as ) one . Moreover the cross sections obtained with the different parton densi-



0.25

0.20

0.15

0.05

0.0

-0.05

R. Hamberg et al. / DYK-factor

	

371

0.5 1.0

	

5.0 10.0

	

50.0
N/S ( TeV )

Fig. 15 . The same as in fig. 14 but now for a pp collider.

ties differ from each other by at least the same order of magnitude as the
second-order correction. Although at SppS and Tevatron the results for the
various parton distributions do not differ very much, these discrepancies do not
allow to discern clearly the O(as) corrections . This situation becomes worse at
LHC and SSC, where it even might become difficult to identify the first-order
corrections . For these colliders this is mainly due to the uncertainties present in
the small-x behaviour of the parton distribution functions. Unless these uncertain-
ties are reduced, it will not be possible to learn much about QCD corrections at
the future colliders by studying W- and Z-production . In table 5 we have listed our
results for Z-production . Roughly the same comments apply here as for VV-produc-
tion . However, note the slightly improved possibility to see O(a2) corrections in
the case of Z-production at F = 0.63 TeV. The reason for this improvement can
be attributed to the dominant contribution of the uvüv channel in Z-production,
whereas the W cross section is mainly determined by the uvdv and ûvdv
subprocesses . It seems that the mutual agreement of the various parton densities
for the uv-quark is better than for the dv-quark. Summarizing the above we can
state that the uncertainty in the cross sections can be estimated to be about 10%
for SppS and Tevatron and 150% and 250% for LHC and SSC, respectively .
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TABLE 4
The total cross section for W-production at SppS, Tevatron, LHC and SSC

HMRSE + HMRSE HMRSE_ HMRSB MTE MTB
a s(Mw ) 0.107 0.107 0.107 0.117 0.114 0.118

To get a better impression of the size of the corrections we give in tables 6 and 7
the first- and second-order K-factors for W- and Z-production . Notice that for the
K-factor a large part of the uncertainty due to the various parametrizations of the
parton densities drops out . In this case the main reason for the discrepancies can
be traced back to the different values for a s . Only at very high energies the
K-factors start depending on the specific choice of the parton distribution function,
mainly through the variation of the size of the qg contribution . Therefore while
studying radiative corrections it is better to look at the K-factor than at the cross
section . From these tables one can also observe that the K-factors are roughly the
same for W- and Z-prod!iction . This implies that the ratio

is hardly affected by QCD corrections .

R. Hamberg et al. / DY K-factor

W++ W- production (nb)

SppS (VS_ = 0.63 TeV)

R

	

aw BR(W -fv~)
® o,z BR(Z->e-Y -)

Born 5.51 5.31 5.20 5.03 4.84 4.93
O(a s ) 6.81 6.60 6.48 6.41 6.13 6.29
O(a2) 7.06 6.86 6.74 6.72 6.41 6.61

Tevatron (C = 1 .8 TeV)

Born 14.7 15.1 14.7 15.8 15.5 16.0
O(a,) 17.0 17.6 17 .1 18.7 18.3 19.0
O(as) 17.1 17.7 17.3 18.9 18.5 19.2

LHC ( = 16.0 là eV)

Born 49.3 75.8 112.0 104 .0 114.0 120 .0
O(a s ) 53.7 81 .9 122.0 114 .0 128.0 132 .0
0(a 2)) 52.7 79.5 118.0 110 .0 126.0 129 .0

SSC (vfS- = 40.0TeV)

Born 85.1 151 .0 303.0 225.0 257.0 262.0
0(a,) 91 .7 161 .0 324.0 244.0 288.0 287.0
O(a 2) 90.6 157.0 313.0 236.0 284.0 278.0
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TABLE 5
The total cross section for Z-production at SppS, Tevatron, LHC and SSC

Z-production (nb)

HMRSE + HMRSE HMRSE_ MHRSB MTE MTB
as(MZ) 0.105 0.105 0.105 0.115 0.112 0.115

SppS (C = 0.63 TeV)
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For F = 0.63 TeV and 1 .8 TeV (CERN and FNAL) we compare our predic-
tions with the measurements by the UA1 [54], UA2 [55] and CDF [56,571
collaborations (see tables 8-10). In particular we are interested in the decay
channels W --* f v,, and Z --* f +( - for f= e or f = A . In this case we have to
multiply the total cross sections in tables 4 and 5 by the branching ratios
BR(W -~- f v,,) and BR(Z -)- f +f -) respectively. Starting with the CERN collider
we find that the central values of the UA1 results for W- and Z-production [54],
which were obtained in the muon channel only, are well below our second-order
predictions . However, due to the large statistical and systematic errors all our
approximations are compatible with their data . In case of UA2 [55] we find that for
Z-production the second-order cross sections are in very good agreement with the
experimental values, although the first-order corrected ones can accommodate the
data rather well, too. However, for W-production the theoretical predictions at
O(a2) lie systematically above the UA2 data but this discrepancy is not dramatic .

Born 1.66 1 .61 1.58 1.54 1.60 1.55
O( -,Y s ) 2.06 2.00 1.97 1.96 2.02 1.98
0(as) 2.14 2.08 2.06 2.06 2.12 2.09

Tevatron (S= 1.8 TeV)

Born 4.62 4.66 4.52 4.79 4.74 4.86
O(as ) 5.38 5.45 5.30 5.69 5.64 5.81
O(as) 5.44 5.51 5.37 5.78 5.74 5.92

LHC(F= 16.0TeV)

Born 15.8 23.5 33 .1 31.7 34.6 36.2
0(a,) 17.2 25.4 35.8 34.9 38.9 40.1
O(as) 16.9 24.8 34.9 33.9 38.5 39.1

SSC (C=40.0TeV)

Born 27.5 47.4 89.5 69.8 79.2 80.7
0(a,) 29.6 50.6 95.9 75.7 88.7 88.2
O(a2) 29.3 49.4 93.1 73.6 87.9 86.0
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TABLE 6
K-factors for W-production at SppS, Tevatron, LHC and SSC

W'+ W - production

HMRSE + HMRSE HMRSE_ HMRSB MTE MTB
as(Mw) 0.107 0.107 0.107 0.117 0.114 0.118

SppS(C = 0.63 TeV)

For the Tevatron collider [56] the Born approximation as well as the higher-order
results agree with the data due to the large systematic errors in the CDF
experiment . For completeness we give in table 10 the values for the ratio R,
defined in eq . (3.11). As mentioned above, the QCD corrections do not change the
value of R very much. The theoretical values of R for SppS tend to be larger than
the result obtained by UA2 [55]. This was to be expected, because our results for
aw - BR were also larger than the cross section found by the UA2 collaboration .
The agreement is better with the UA l value of R [54], but in this case the
experimental errors in R are rather large. For Tevatron we find good agreement
with the measurement by CDF [57]. In this case one can observe that by studying
the ratio R instead of the separate W- and Z-production rates, as advocated in the
literature, the uncertainty due to the choice of the parton distribution functions is
reduced . However, this does not apply to the results given for CERN . In this case
the spread in the values obtained for the ratio R and the cross sections are of the
same order of magnitude .
Summarizing the discussion above we conclude that the current experiments

carried out at the SppS and 'I'evatron do not allow us to distinguish between U(a,)

K I 1 .24 1 .24 1 .25 1.27 1.27 1.28
K2 1 .28 1 .29 1 .30 1.34 1 .32 1.34

Tevatron (C = 1 .8 TeV)

K I 1.16 1 .16 1.16 1 .18 1 .18 1 .19
K2 1 .17 1 .17 1.17 1.19 1 .20 1 .20

LHC (C = 16.0 TeV)

KI 1 .09 1.08 1 .08 1 .10 1 .13 1 .11
K2 1.07 1.05 1 .05 1 .06 1.11 1 .07

SSC (F=40.0TeV)

K, 1 .08 1 .07 1 .07 1 .08 1 .12 1 .09
K2 1 .07 1 .04 1 .03 1 .05 1 .11 1 .06
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TABLE 7
K-factors for Z-production at SppS, Tevatron, LHC and SSC

Z-production
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and O(as) corrected cross sections. This is due to the large systematic errors in the
existing data, the uncertainty in the parton distribution functions and the fact that
the second-order correction is smaller than has originally been expected from the
result obtained by the O(as) calculation . Unless the higher-order corrections
beyond the O(as) turn out to be very large, the convergence of the perturbation
series does not seem to be a problem for W- and Z-production at the current and
future hadron colliders. Therefore we are now able to give a firm prediction for
the total cross section ; the main limitations to our predictions are set by the
uncertainty in the parton distribution functions.

Finally we want to investigate the dependence of the DY cross section on the
chosen mass factorization scale M. In a previous paper [251 we studied the
variations of the cross sections when the mass factorization scale M is varied
independently of the renormalization scale R. This we will not do in this paper as
there is no distinction between these two scales in the current parton distribution
functions. Moreover, the dependence of the cross section on M is much larger
than on R, because the Born approximation does not depend on the coupling

as(MZ)
HMRSE+

0.105
HMRSE HMRSE_
0.105 0.105

HMRSB
0.115

MTE
0.112

MTB
0.115

SppS (C = 0.63 TeV)

K1
K2

1.24
1.29

1 .25 1.25
1 .30 1.30

1 .28
1 .34

1.27
1.32

1 .28
1 .35

Tevatron (r = 1.8 TeV)

K1
K2

1 .17
1 .18

1 .17 1.17
1 .18 1.19

1 .19
1 .21

1.19
1 .21

1.20
1 .22

LHC (yS = 16.0 TeV)

KI
K2

1 .09
1 .07

1.08 1.08
1.05 1.05

1 .10
1 .07

1.13
1 .11

1.11
1 .08

SSC ( V~S_ = 40.0 TeV)

K I
K2

1 .08
1 .07

1 .07 1 .07
1 .04 1 .04

1 .08
1 .05

1.12
1 .11

1.09
1.07
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TABLE 8
aw, - BR and o-z - BR for SAPS [551. We have used BR(W -3- e ve ) = 0.109 and

BR(Z -e +e - )= 3.35 x 10-2 . vfS-- = 0.63 TeV

HMRSE +

	

HMRSE

	

HMRSE _

	

HMRSB

	

MTE

	

MTB

constant a s . This is contrary to what one observes in pure hadronic cross sections
like heavy flavour production [36,48,491 or di-jet production [51] where the Born
cross sections do depend on a s and therefore are much more sensitive to the
choice of R . In principle, physical (experimentally observable) quantities like the
hadronic structure function WV ( ,r, Q2 ) (eq . (2.3)) should be scale independent .
However, the theoretical result for WV ( ,r, Q2 ) does depend on the chosen scale .
This can be attributed to the fact that the logarithmic terms of the type In( Q 2/M Q2/M2)
(see appendix B) in the Wilson coefficient 3 ;ß(x, Q 2, M 2 ) are only calculated up to
finite orders of a, whereas they are resummed in all orders for the parton
densities using renormalization group methods . This introduces the problem of
choosing an appropriate scale . There are many discussions in the literature
concerning the choice of the right scale. Some groups prefer PMS [3] whereas
other physicists advocate PAC [4] . Another possibility is to vary the scale between
some canonical values in order to give an estimate for the theoretical error . The
best solution to the problem would be to show that the resulting expressions
exhibit a very small variation under a wide range of scale choices . This might be

UA1
UA2

aw,BR(W -eve) (pb)

609 ± 41 ± 94
660 ± 15 ± 37

a,(Mw ) 0.107 0.107 0.107 0.117 0.114 0.118

Born 600.0 579.0 567.0 549.0 528.0 538.0
0(a,) 743 .0 720.0 706.0 699.0 668.0 686.0
O(a 2) 770.0 748.0 735 .0 733.0 699.0 720.0

o-zBR(Z -> e+e -) (pb)

UA1 58.6±7.8±8.4
UA2 70.4±5.5±4.0

a,(Mz) 0.105 0.105 0.105 0.115 0.112 0.115

Born 55.4 53.8 52.9 51 .4 53.4 51 .8
0(as) 68.9 67.0 66.1 65.8 67.8 66.4
O(a 5) 71 .6 69.8 68.9 69.2 71 .0 69.9
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TABLE
o,w - BR and QZ - BR for Tevatron [56] . We have used BR(W - eve ) = 0.109 and

BR(Z - e+e - ) = 3.35 x 10-2 . vfS-- = 1.8 TeV

TABLE 10
The ratio R (see eq . (3.11)) for SpPS [55] and Tevatron [57]

HMRSE + HMRSE HMRSE_ HMRSB

aw BR(W - eve) (nb)

MTE MTB

CDF 2.06+0.04+0.34

as(Mw) 0.107 0.107 0.107 0.117 0.114 0.118

Born
O(as)
O(as)

1.60
1.86
1.87

1.65
1.91
1.93

1.61 1 .73
1.87 2.04
1 .88 2.06

1.69
1.99
2.02

1.74
2.07
2.10

o-ZBR(Z - e +e - ) (nb)

CDF 0.197+0.012+0.032

as(MZ) 0.105 0.105 0.105 0.115 0.112 0.115

Born
0(as)
O(a 2)

0.155
0.180
0.182

0.156
0.182
0.185

0.152 0.160
0.178 0.191
0.180 0.194

0.159
0.189
0.192

0.163
0.195
0.198

HMRSE+ HMRSE
The ratio R

HMRSE_

CS =0.63TeV

HMRSB MTE MTB

UA1 10.4 11-8 + 0.8

UA2 9.38± ; ;.72+0.25

Born 10.8 10 .8 10.7 10.7 9.9 10 .4
0(a,) 10 .8 10 .7 10 .7 10.6 9.9 10 .3
O(a, 1

1 10 .8 10 .7 10 .7 10.6 9.9 10 .3

C= 1.8TeV

CDF 10.2±0.8±0.4

Born 10 .4 10 .6 10 .6 10.8 10.6 10.7
0(a,) 10 .3 10 .5 10 .5 10.7 10.6 10.6
My 2) 10 .3 10 .4 10 .5 10 .6 10.5 10.6
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Fig . 16 . Mass factorization scale (M ) dependence of Qw + +w- for SppS, VfS = 0.63 TeV. Solid line :
Born ; dashed line : O(a s ) ; dotted line : O(a?).

achieved provided the QCD corrections can be computed beyond the leading
order in as . The Drell-Yan and deep inelastic lepton-hadron cross sections are
good candidates for satisfying this condition, since their Born cross sections are
independent of a y and the radiative corrections can be computed up to O(a2).
Using the HMRSB structure functions we have plotted the DY cross section for
W + plus W - production in the range 10 GeV < M < 1000 GeV. Starting with the
SppS (F = 0.63 TeV, see fig . 16) we observe a considerable improvement in the
scale independence of the cross section ow when it is computed in higher order in
a s . Note the maximum at M = 40 GeV in 62 (PMS point) which is not present in
the lower-order results o-() and cr, . As has been mentioned before, the difference
between o-, and o-2 depends on the chosen scale although it never becomes very
large ( < 0.6 nb) . Finally, the difference ( o'2)n,ax - (0"2)min in the range 10 < M
1000 GeV is about 0 .4 nb which can be considered as a theoretical uncertainty of
our calculation due to the uncertainty in the scale . The same features are also
observed for W-production at the Tevatron (F = 1 .8 TeV, see fig . 17) although
here the difference between the o-, and (r2 is extremely small . The PMS point is at
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Fig . 17 . Mass factorization scale (M) dependence of Qom,+ +w - for Tevatron, VS_ = 1 .8 TeV. Solid line:
Born ; dashed line : O(a s ) ; dotted line : O(as ).

M = 200 GeV, where ~2 exhibits a minimum and (O', )max - (0"2)min - 0.3 nb . Notice
that at both energies Q2 - o,, becomes zero at a certain M whereas 0i -0o 0 0
(i = 1, 2) over the whole range of scales .
When we study the DY process at higher energies like r = 16 TeV (LHC, fig.

18) or r = 40 TeV (SSC, fig. 19), we find that some of the properties of the
higher-order as corrected cross sections change when compared to those obtained
for F < 2 TeV. First we observe that the scale dependence is much stronger at
these energies . Secondly the extremum in o-2 (PMS point) has disappeared but
now there is a value for M where either ~, or o,, becomes equal to uO (FAC
point) . Notice that u, = a� near M = 100 GeV for LHC as well as SSC energies.
The difference between the maximum and minimum value for 0-, equals 15 nb ata = 16 TeV and 35 nb at F = 40 TeV. The same features discussed for
W-production also show up for Z-production, therefore we will not present any
figures in this case . In tables 11 and 12 we give the variation of the cross section
for the various parton distribution functions when the mass factorization scale is
chosen in the range 10 GeV <M < 1000 GeV. This variation is expressed by the
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Fig . 18 . Mass factorization scale (M) dependence of ow + }w - for LHC, C= 16 TeV. Solid line :
Born ; dashed line : O(a s ) ; dotted line : OW).) .

S ( Oi)max
-

(0,i)min
i -

( ffi ) av
(3 .12)

where (o-i)a, is the average value of ai . In these tables one can observe that the
scale dependence is roughly the same for all parton distribution functions, except
for MTE. In the case of MTE we find at LHC and SSC that the inclusion of the
higher-order corrections does not improve the scale independence as much as in
the case of the other parton densities . Also notice the rather large value of S2 at
Tevatron for MTE. From the values of S, one can conclude that the O(a?)
corrected ICY cross section depends much less on the scale than on the chosen set
of parton distribution functions . Therefore an important outcome of the O(a; )
computation is that the dependence of the production rates on the scale choice is
considerably reduced . The main theoretical uncertainty can now be attributed to
the variations in the cross sections when different parametrizations of the parton
distribution functions are used . This is especially clear for the future hadron
colliders, the LHC and the SSC. At these colliders the parton distribution
functions are probed at very small x-values, for which our knowledge of these
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Fig . 19. Mass factorization scale ( M) dependence of Qw + +w- for SSC, VS_ = 40 TeV. Solid line
Born; dashed line : O(a s ) ; dotted line : O(as ) .

distribution functions is not very good yet. In particular we want to mention once
more the sizable, negative contribution of the qg subprocess to both the first- and
second-order corrections . At very high energies this subprocess is particularly
sensitive to the behaviour of the input gluon distribution function at small
x-values .

Summarizing the content of this paper we have presented the full O(as)
correction to the K-factor which is calculated in the MS scheme . To this end the
partonic structure functions W, (see eqs. (2.41)-(2.45)) had to be calculated to
second order in as . One then encounters new collinear divergences which have not
appeared in any calculation performed until now. To remove these singularities by
mass factorization one, for the first time, needs the O(as) corrected splitting
functions calculated in refs . [37-41]. The calculation reveals that the dominant
parton subprocesses are given by the qb (non-singlet) and qg reactions. This holds
for the O(as ) as well as for the O(as) correction provided the results are
presented for M =R =Mv . Further the qg contribution to K(') as well as to K(2)

(the O(as ) and O(as) corrections to the DY K-factor, respectively) is negative . For
K(2) it even overwhelms the positive contribution due to the q4 subprocess when
VS_ > 3 TeV. For this reason the O(as) part of the K-factor is much smaller than
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TABLE I1
Scale dependence of the cross section for W-production at SppS, Tevatron, LHC and

SSC (see eq . (3.12))

the O(a s ) contribution, contrary to what we have observed in a previous paper [25]
where the K-factor has been calculated in the DIS scheme . However, in the latter
scheme the O(as) corrections due to the qg subprocess and the hard gluon part of
the qq reaction have not been included yet . Notice that all these comparisons only
make sense when the renormalization scale R and the factorization scale 1V1 are
specified . The factorization scale dependence of the DY cross section has been
investigated and we found a considerable improvement by including the O(as )
correction. Finally we have seen that the DY cross section heavily depends on the
chosen parametrization for the parton distribution functions . A large part of this
dependence can be attributed to our ignorance about their small-x behaviour . The
main theoretical uncertainties in our predictions are just due to this phenomenon .
To complete the study of the DY process it is still necessary to compute the
correction term in the DIS scheme in view of the parton densities given in that
scheme. Moreover, one also has to investigate the effect of heavy flavour produc-
tion (massive quarks in the final state) . Both ealcuiations will be Presented in the
near future .

HMRSE+ HMRSE
W'+ W - production
HMRSE_ HMRSB

SppS (vlS- = 0.63 TeV)

MTE MTB

So 0.31 0.34 0.35 0.41 0.38 0.42
Si 0.17 0.18 0.18 0.23 0.20 0.23
S2 0.03 0.04 0.04 0.06 0.03 0.06

Tevatron (S = 1 .8 TeV)

So 0.26 0.22 0.19 0.19 0.27 0.17
S, 0.04 0.05 0.05 0.07 0.07 0.06
S2 0.03 0.02 0.02 0.02 0.12 0.01

LHC ( = 16.0 TeV)

S � 1 .44 1 .30 1 .08 1 .26 1 .27 1 .12
S 1 0.38 0.32 0.24 0.34 0.60 0.27
S2 0.16 0.14 0.08 0.13 0.33 0.15

SSC (F = 40.0 TeV)

S� 1 .77 1 .60 1 .24 1 .54 1 .53 1 .39
Si 0.50 0.42 0.28 0.45 0.78 0.38
S 2 0.17 0.16 0.10 0.15 0.43 0.19
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TABLE 12
Scale dependence of the cross section for Z-production at SppS, Tevatron, LHC and

SSC (see eq . (3.12))

41ra 2 1
Qy(Q2 )

-
- 3Q4

We thank W.J . Stirling for providing us with the programs to generate the
HMRS parton distribution functions .

Appendix A

BASIC FORMULAE FOR THE DRELL-YAN PROCESS

In this appendix we will present the basic notations and some formulae needed
for the calculation of the DY cross section . The pointlike cross sections Qv(Q2, M~)
defined in eq. (2.2) are equal to

~rra

	

1

	

Tz -~ eè-z(

	

2
M2z)

=

	

I
4Mz sin2 ® w cos2 ®w N

	

2-M2

	

+M2T2(Q

	

Z)2

	

z z
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(A.2)

aw
Q2'

M2

	

=

	

7ra

	

1

	

rw- " eV-t

	

A.3
(	w)

	

2Mw sin2 ®w N

	

2_M2 2+M2 r2
(Q

	

w)

	

w w

HMRSE + HMRSE
Z-production

HMRSE_ HMRSB

SppS (VS-- = 0.63 TeV)

MTE MTB

so 0.36 0.38 0.38 0.46 0.42 0.48
S, 0.18 0.19 0.19 0.24 0.21 0.25
S2 0.04 0.04 0.04 0.06 0.04 0.07

Tevatron (F = 1.8 TeV)

So 0.17 0.14 0.11 0.11 0.18 0.09
S, 0.06 0.07 0.07 0.09 0.04 0.11
S2 0.03 0.01 0.01 0.01 0.10 0.02

LHC (C = 16.0 TeV)

So 1 .37 1.25 1 .04 1.21 1 .22 1 .06
S, 0.36 0.30 0.22 0.31 0.56 0.23
S2 0.13 0.12 0.09 0.13 0.31 0.15

SSC (VS- = 40.0TeV)

So 1 .72 1.56 1.22 1 .50 1.49 1.35
S, 0.49 0.42 0.28 0.44 0.75 0.36
S2 0.11 0.12 0.09 0.13 0.41 0.17
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For completeness we also give the formula for the y-Z interference

We then find

where

?Ta2

	

1 -- 4sin2 8W	1

	

1

	

(Q2 --- MZ)
®yz

	

6

	

sin2 ®w COS2 ®w N Q2 (Q2_

	

Z)2 + 1VIZ

	

2
.

In these formulae rZ and rte, denote the total width of the Z- and W-boson
respectively (sum over all decay channels) and N= 3. The partial widths due to the
leptonic decay of the Z and W are given by

rZ -- ee

rW- eve

In the case of W- and Z-production the total cross section can be obtained using
the narrow width approximation in the integrand of eq . (3.1), i.e .

1

	

®,

	

7r

	

8 Q2 -Mv

	

.

	

(A.7)
--mz 2 +M 2F2

	

Mvrv (

	

)(Q2

	

v)

	

v v

w-* ff f2 =wBR(V -4e, e2)

	

(A.8)

(V --e 1 8 2 ) stands for the branching ratio

sR V-+f e = rv-,e,e2

	

A.9
FV

and the total rates av (sum over all leptonic and hadronic decay channels) are
given by

ir 2a

	

1

	

1

	

MZ
~Z

	

4sin2 ®W COS2 ®W N S WZ ( S

	

' MZ

	

'

rr 2a

	

1

	

1
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2 sin2 0W N S Ww
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' Mw

(A.4)

(A .10)

Notice that all particles into which the vector bosons decay are taken to be
massless . Since the electroweak radiative corrections to sin e ®w are not negligible,
it is better to replace sin e ®w appearing in the denominators of the above
expressions by

V2-Mw
sin 2 0W =

	

rra

	

r, ,

	

(A.12)

where G,: = 1 .166 x 10-5 GeV- 2 (Fermi constant). In the numerators we have put
sin' Ow = 0.227.

aMZ(1 + (1 - 4sin2 ®w)2)
48 sine ®w cos2®W

(A.5)

aMv,
12 sin2 8W

(A .6)
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Combining the various parton densities denoted by PDj with the corresponding
DY correction terms ®li in eq. (2.3) we can construct a compact formula for
Wv(r,Q 2). Before giving its expression let us first fix the notations. The coeffi-
cients vv and aY in eq. (A.20) are related to the vector and axial couplings of the
vector boson V to the quarks (see eq. (2.22)). For the u- and d-type quarks they are
equal to

vû = 2

	

aû = o,

vd = - 3, aâ = 0,

vÛ = 1 -- 3 sin2 8W ,

	

az= -1,

vâ = -1 + 3 sine OW,

	

ad = 1,

vW = vW = 1/F,

	

a`u =a~ _ -1/4 .

	

(A.13)

For the antiquarks the values for vv and av are the same as for the quarks .
Further we introduce three 2n f x 2n f matrices C", Of and Of . These matrices
contain the information of the coupling of the respective quark flavours to the
vector bosons. The indices i and f stand for initial and final; the combination in
which they occur with the C indicate the orientation of the quark line to which the
vector boson is coupled. For the y and the Z they are defined by

For the W t they are

C"(qk
I qr) -

Cff
(q k 9q!) =

	

1

	

lf qk = qt
~ 0

	

otherwise

C'f(gk,qi)

	

1

	

if--

	

Qk
-q, "

	

(A .15)
0 otherwise

1 Vgkqrl2

	

if eqk + e,,""= ± 1C"(qk
I qt) _

~ 0

	

otherwise

C'f
(gk, qt) _

	

1
Vgkq,l2

	

if eqk = ± 1 + eq,

	

(A.17)
0 otherwise

Cff(qk, qr) _

	

I VgkgI1

Vud ® Vc.. = cos ®'c ,

if
eqk

+ eq, _ + 1

otherwise
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(A .14)

(A.16)

(A.18)

where q k and q, stand for the (anti)quarks and eqk is the charge of q k . The symbol

Vg4.q, denotes the KM matrix, which in our calculation is approximated by

Vus = - Vcd = sin 0.

	

(A.19)
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with sin' ®c = 0.05. The remaining matrix elements are put equal to zero . Using
the convention that for example q u = q-6 = the up-quark density and q,, = qu = the
anti-up-quark density, the hadronic structure function can be written as

WV( r, Q 2 ) = fI dxl f
1 dx 2 f1 dx S(T -xx lx 2 )

0 0 0

where

x [&(q,,4ij)(vZ + a?) ®gq(x)
ti,jEQ,Q I

+

	

C'f(gi , gk)(V, +ak) ®g8( x )(gi(xl)g(x2) + gi(x2)g(xl))
i,kEQ,Q

+Ôij LI Cff(gti , '-i!)(L,
k +ak)®(gq,B2(x)

k,IEQ

+S ij

	

F

	

(Cif
(gi,gk) + C'f(gi , qk))(U 2+ ak)4gq,BC(x)

kEQ,Q

+Sij F Cff(gk,qk)(ViVk ®(gq,AB( x ) + aiak ®(gq,AB(x)) gi(xl)gj(x2)
kEQ

+

	

(C 'f(gi,gk)(v?+a?) +C'f(g ;,gk)(U~ +aj))_

	

_

	

1(2),C2(x)
l,jEQ,Q kc-Q,Q

+C'f(gi,gi)(U;
V
j®qgVCD(x) + aiaj ®<<iâ:cD(x)) lqi(xl)qj(x2)

+

	

C'f (g

	

u? + a?) + C'f

	

L'? +a?» j2)

	

xi,qj)( r

	

r )

	

(gj,qi)( 1

	

1 ))

	

gg,CE(

	

)
i,jEQ,Q L

+Sij F C'f(gi,qk)(U?+a?)®~gq,CF(x) gi(xl)gj(x2)
kC-Q,Q

+

	

Cff(gk,ql)(Vk +ak) ®(2)(x)g(xl)g(x2)
k,lc-Q

®q4(X)=S(1°x)+®(âq(X)+®<<iâ'tvs(X), (A .21)

®q6(X) =®qg(x) +®qg(x)

	

(A.22)

and the sets Q and

	

are given by

Q = (u,d,s,c) , Q = (Ti, d, s, c) .

(A .20)

(A .23)

Furthermore, the scale to be used in the parton distribution functions is the mass
factorization scale M. The

	

Y correction terms Aij can be found in appendix B.
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They are listed in the same order as they appear in eq. (A.20). For the y - Z
interference the right combinations of the parton distributions can be found by
taking the photon formula and making the following replacements:

U2-~UiUZ ,

	

UlUl ~ 2(UiUZ +Ui Uz) .

Finally, we want to comment on the treatment of the distributions -gri(x) when
they appear in the convolution integral in eq . (3.2) . In that case one should use the
relation

by

f 1 dx f 1 de O(e, M2)
gy,

( x)S(T -x )
0 0

1
0(T'M2)(1+i)

In_

	

'(1-T)

+ f 1 dx
~
1
x
0(T/x, M 2

)
- 0(,r, M2

	

x)	(A .25)
1 -T

Notice that the convolution integral does not depend on the IR cutoff S.

Appendix rell-Yan correction terms

In this appendix we will present the explicit expressions for the DY correction
terms ® ;j the calculation of which is outlined in sect . 2 . In order to make the
presentation self-contained we also give the lowest-order contributions already
calculated in the literature [8-13]. We distinguish the following contributions to

®ij :
(i) quark-antiquark (non-singlet) ;
(ü) (anti)quark-gluon ;
(iii) the quark-antiquark (singlet) and non-identical quark-quark;
(iv) the identical quark-quark, and
(v) gluon-gluon .

Before presenting the results of the Drell-Yan correction terms mentioned
above, we want to make two remarks . Firstly, in the expressions below the scale in
the running coupling constant a s is always taken to be the renormalization scale
R. Secondly, for the interference terms, we use the convention that AC =AC * +
CA', etc .

B.I . THE QUARK-ANTIQUARK CONTRIBUTIONS (NON-SINGLET)

The lowest-order contribution originating from the Born graph in fig . 1 is given

®(qq-S(1 -x) .

(A .24)

The D(as ) correction to the qq subprocess which receives contributions from the
graphs in figs . 2 and 3 has been calculated in the literature [8-13]. Choosing the MS
scheme the expression for ®âû can be very easily obtained using n-dimensional
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regularization [8,12] . From the numerical as well as the theoretical point of view it
is convenient to divide it into two pieces, viz .

Agq( x ) -A(Â-),s+v(x)
+®(â-)+Y-)"'(X),

	

(B.2)

where the S + V part can be obtained by doing the calculation in a soft gluon
approximation (x --> 1), which means that one only takes the contributions from
the soft and virtual gluons into account . To obtain the remaining piece, denoted by
H one has to perform an exact computation . The expressions for A(q's+v and

The parameter S is introduced in order to distinguish between the soft (S)
(x > 1 - S) and hard (H) (x < 1 - S) gluon regions in the phase space integrals,
which have to be performed for the contributions from fig . 3 . The In S terms arise
when the factor (1 - x)- ' +~ appearing in these integrals is replaced by the
distribution

(1 - x)
-1+F -->

1
3'8(1 -x)

+ (1-x)_,+u®(1-x
-3)

.

	

(B.6
E

In the literature the In S terms are very often omitted and the distributions -gr,(x)
are then denoted by (ln'(1 - x)/(1 - x ))+, see e.g . ref. [8] . Note that the coefficient
of S(1 - x) in eq . (B.3) also receives contributions from the virtual gluon graph
depicted in fig. 2 .
The second-order correction to the non-singlet part of ®q, is determined by the

diagrams in figs . 4-7 and the interference between the graphs in figs . 7 and 8. It
can be split into two parts. The first piece is related through mass factorization to
the collinearly singular part of the partonic structure function Wqq and will be
denoted by

®(2), NS = ~(2), S+v +,à(2) , C'A + ®( 2) + ®(2)
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CF -4(1 +x)ln 4 In
M
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The distribution .gi(x) is defined by -

In' +'S ln'(1 -x)
x) S(1 - x) -
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where /3o represents the lowest-order coefficient of the 6-function (eq . (2.12)) and
Jqq is given in eq. (B.2). The symbols M and R stand for the mass factorization
and renormalization scales respectivCly . The appearance of the (3o term in eq.
(B.7) is a remnant of the fact that the calculation of this part involves coupling
constant renormalization to remove the UV divergencies .
The second piece consists of the DY corfection terms 4qß, B2, 1

~q2-q
)
, BC

	

A(2)

®(2q),vAB

	

qq,and 1~2),âB originating from those parts of the parton structure function
Wqq which are collinearly finite and therefore do not need mass factorization .

First we will discuss the contributions in eq. (B.7). As in the case of the first
order calculation a part of J9)- , 's can be obtained by a soft gluon approximation
[23] . This piece we have again denoted by S + V. For the remaining Drell-Yan
correction terms in eq. (B.7) an exact calculation is necessary. The contributions to

Jqq,
s+ v come from the two-loop virtual graphs in fig . 4, the soft gluon radiative

corrections due to figs . 5 and 6 and soft quark pair production due to diagrams A
in fig . 7 . The expression for this part is equal to

Z
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The hard gluon contributions from figs . 5 and 6 are denoted by Sqq' CA and ®(qq' CF
where the superscripts CA and CF refer to the two colour structures . The
expressions for these quantities are
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+64«2)ln x + 721n2 x ln(1 -x) - 124In2(1-x) in x + 561n x]
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The functions Li,,(x) and S,,, p(x) denote the polylogarithms and can be found in
ref. [58] .
The hard part of quark pair production due to the diagrams A in fig. 7 is equal
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Finally we have the interference terms corresponding to the combinations AC and
AID in figs . 7 and 8. For them we find
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1 +x 2
+
1-x [ 16Li 3(1 -x) - 36S1 , 2 (1 -X) + 3 In3 x - 12Li 2(1 -x)ln x

- 16L'20 -x)ln(1 -x) - 6Li 2(1 -x) + 2 In2 x - 81n2 x In(1 -x)
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Notice that for V= y and Z both the AC and AD interference terms always
contribute, whereas for W-production only one of the two gives a coat:ibution.
This is due to the fact that for W-production only one of the sets of diagrams, C or
D, is possible for a fixed choice of the initial- and final-state quark flavours .
The remaining parts of qq scattering are free of mass singularities . Therefore

they do not need mass factorization, which implies that their contributions are
scheme and scale independent. The contributions originating from the diagrams B
in fig. 7 and the interference terms BC and BD (see figs. 7 and 8) are

2
®(9q,B 2 -

	

«s

	

CFS(1 +x)2 [ - 32 L1 2( -x) - 3C(2) + 3 In2 x
( 47r

- 32 InxIn(1+x) ] +3(3+3X2 +4x)Inx+ 3°(1-x 2 )),

	

(B.13)

2
®gq .BC

	

®(gq,BD

	

47r

	

cF(cF

	

2 Cq )«l +X 2
)

	

+ 3x )[32 SI,2( 1 - x)

+ 16Li2(1 -x)ln x] + (1 +x)2[ -48S1, 2 ( -x) - 8Li 3( -X) + 24 L'2( -x)

+24Li2( -x)ln x - 48 L'2( -x)ln(1 +x) + 12~(2) - 24~(2)ln(1 +x)

+8«2)In x + 201n 2 x In(1 +x) - 241n2 (1 +x)ln x + 241n x In(1 +x)]

+36(1 -X 2 )Li 2(1 -x) + 3(1 +x 2 + 4x)In 3 x + 4(9 + llx)ln x

-2(-6+ 15x 2 +8x)ln2 x-2( -27+ 13X 2 + 14x)} .

	

(13.14)

The comment made for the interference terms AC and AD below eq. (13.12) also
applies to BC and 1313 .
The matrix element corresponding to the interference term AB (fig . 7) involves

the product of two fermion traces, each containing a vertex of the form y,,(v + ays).



Therefore it is a type (3) matrix element, described below eq. (2.22) and we have to
distinguish between the vector-vector and axial-axial parts, which we will denote
by A(gq;ÂB and n~gq;H�

.'

,D, respectively. The first part is zero due to Furry's theoremtheorem

A(2),V

	

=gq,AB o ,

whereas the axial-axial contribution is given by
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.15)

( as )2

	

1 +x2
AB-

	

47r

	

CF 16 1
-x

In x+32xlnx+16(3-x) .

	

(B.16)

It is clear from eq. (B.15) that this interference term does not contribute for V=7.
It does not give a contribution to W-production either because the diagrams Aand
B can never have the same initial-state quarks due to charge conservation . For
Z-production the contribution from eq. (B.15) vanishes by taking complete families
of quarks into account.
With the correction terms mentioned above we have exhausted all contributions

to ®qq except those belonging to the singlet part . Since the latter are equal to the
corrections Aqq calculated for the non-identical quark-quark scattering process,
we will present them there.

At O(as) the qg subprocess shows up for the first time. The Drell-Yan
correction term for this reaction has been calculated in refs . [8,12] and it is given
by

as
qg =

	

Tf 2(1 + 2x 2 - 2x)ln

	

( 1 -x)2
2
Q2

	

+ 1 - 7x 2 + ~x

	

.

	

(B.17)
47r

	

xM

The second order contribution to ®gg can be written as

®y2) = ®~?_

	

®c2),cA + ®~2),CF +
as

ßo®~' In

	

R2

qg qg qg qg 4v- gg

	

M2 (B.18)

The calculation of ®(9g requires both mass factorization and renormalization. The
latter gives rise to the ßo term in eq. (B.18). The two parts Jqg,

CA and ®~qg' CF are

a 2
J2),CA =

	

s

	

CATf

	

[4(l + 4x)ln x + 4(1 + 2x2qg

	

( 4,7T

	

-2x)ln(1 -x)

4

	

2
+3 3-31x2 +24x+ -	ln2

	

Q

	

+ (1 +2x2 +2x) [ -8Li 2(-x)
x M2

-8Inxln(1+x)] -8(1+3x)ln2 x+8(3+2x2 +6x)Li 2(1-x)

-16(1+2x2 -x)«2) + 8(1 - 2x2 + 10 .s)ln x ln(1 -x)
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'

	

8
+12(1+2 x 2 - 2x)In2 (1 -x) +i(9-71 x 2 + 54x + - In(1 -x)

x )

88

	

Q 2

+4(3 + 28x2 - 2x)ln x - s3
+ 196x2 - 3x +

9x
-I(ln

M2

+ (1 + 4x 2 + 5x) [8 Li e( -x) + 8 In x In(1 +x)]

1 +x 1 +x
+(1+2 x2 + 2x)-8Lî3( -x) + 16Lî3	- 16Lî3 -

1

	

( 1-x

	

1-x

+ 16 L'2( -x)In x - 16 L'2( -x)ln(1 -x) + 121n2 x In(1 +x)

-161n x In(1 - x)In(1 +x) I + 8(9 + 4x2 + 16x)S 1 , 2(1 -x)

-4(15 + 12x 2 + 34x)Li 3 (1 -x) - 4(1 + 2x 2 + 4x)C(3)

+8(7 - 2x)x Lî2(1 -x)ln x + 8(7 + 5x 2 + 10x)Li 2(1 -x)ln(1 -x)

+ 4 (33+44X 2 + 90x +
16

Lî2(1 _X)- 16(5 - 2x)x«2)In xx )

-32(1 + 2x 2 -x)C(2)In(1 -x) + 3(15 + 107x 2 - 84x -
8
x )« 2)

+ 3(9 + 20x)In3 x + 36(1 + 2x 2 - 2x)ln3 (1 -x) - (5 +36x 2 )In 2 x

-4(3-2x 2 + 14x)In2 x ln(1 -x) + 4(1 - 6x 2 + 22x)In2(1 -x)in x

8
+3 6-77x 2 +63x+ -)In2 (1 -x) - y(-354+457x 2 + 12x)lnx

x

+20(1 + 13x 2 - 2x)ln x In(1 -x) + 3 + 1-z.37
x2

- 1226 1169 x
2?x

88
+j ( -210+74x2+75x+

x )
In(1 -x

	

,	B .19
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2
®~2'CF =

	

as

	

CFT~g

	

f [12(1+2x 2 - 2x)ln(1 -x) - 6(1 + 4x2 - 2x)ln x
47r

2
-3(i - 4x) In2

	

Q )+[(1+2X2 - 2x) -8~(2) + 361n2(1-x( M2

	

[

	

)~

-48x2 Li 2(1 -x) + 8(1 + 4x2 - 2x)In2 x + 2(5 + 46x2 - 40x)ln x

-8(5 + 16x2 - 10x)In x In(1 -x) - 4(8 + 23x2 - 34x)ln(1-x)

2
+2(12+11x 2 -34x) In M

Q
2 +( -1+3x2+2x) -16Li2(-x)

-161n x ln(1 +x)] + (1 + 2x2 - 2x)[32Li3( -x) + 100C(3)

-16Li2( -x)ln x - 16C(2)ln(1 -x) + ° In3(1 -x)]

-4(11 + 34x2 - 22x)S1, 2 (1 -x) + 4( -1 + 18x 2 + 2x)Li3(1-x)

+4(1 - 2x)Li 2 (1 -x)ln x - 4(3 + 26x 2 - 6x)Li 2(1 -x)In(1 -x)

+2(3 + 40x2 - 28x)Li 2(1 -x) + 24(l + 4x 2 - 2x)C(2)ln x

+4(5-12x2 + 2x)C(2) - 3(17 + 52x2 - 34x)In3 x

+8(3+ 10x 2 - 6x)ln2 x 1-n(1 -x) - 2\--- + 4x 2 - 68x)ln2 x

-6(7+22x2 - 14x)ln2 (1 -x)In x - 2(23 + 63x 2 - 80x)In2(1 -x)

+4(13+48x2 -50x)lnxln(1-x)-(59+174x 2 -245x)lnx

+2(38+88X 2 - 147x)ln(1 -x) - '2 - 325x2 + 233x} .

	

(B.20)

Notice the absence of the functions S(1 - x) and -9i(x) in A g , which were present
in the expression for ®q.. Although the second-order contribution corresponds to
graphs with a gluon in the final state, these singular functions do not show up since
the lowest-order term ®(,'g is integrable in x = 1.

B.3 . THE NON-IDENTICAL QUARK-QUARK CONTRIBUTIONS

The reaction represented by the diagrams in fig. 8 describes quark-antiquark as
well as quark-quark scattering (without identical quarks). The contribution to the
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DY correction term can be split into two parts. The first part, represented by the
combinations C2 and D2, needs mass factorization . In this case the contributions
for qq, qq and qq are all equal and are givers by

®(q9, Cz

	

®(q9, D2 - ®(qq, C2

	

®(qq,D2

	

®(qq, C2

	

®(q9 "D2

A

« 2

	

2

_

	

s

	

CFTf

	

4(1 +x)ln x + ~ 3 - 4x 2 - 3x+ 4

	

ln2
41r

	

x

	

M2

+I(1 +x) [16 Lî 2 (1 -x) -8In2 x+ 16 In xIn(1 -x), +4(3+4x2 +6x)lnx

+ -~ 3-4x2-3x+
4
In(1-x)-y 39+22x

x

+ (3 - 4x2 -3x+
4
x

	

[)

	

~I In2 (1 -x) - ~C(2)1

+(1 +x)[48S1 ,2(1 -x) - 32Li 3 (1 -x) + 8Li 2(1 -x)ln x

22

	

Q2
-39x - -))]In(

M2

+32 Li 2 (1 - x)ln(1 -x) - 16~(2)ln x + 61n3 x - 161n2 x ln(1 -x)

+16In2(1-x)lnx] + ; 39+8x2+15x+
16

L'2( 1 _X)x )

- 5(3+8x 2 +15x)ln2 X+8(3+4x 2 +6x)lnxln(1-x)

22
+y(345+20x 2 -48x)lnx- y 39+22x 2 -39x- - ln(1 -x)

x ~

+ 593 + 703 x 2 - 866 x + 1 16
9 27

	

9

	

.

27x

The second part, which is collinearly finite, consists of the interference between
the graphs C and D in fig. 8. The matrix element is of type (3) (see below eq.
(2.22)), therefore we have to distinguish between the vector-vector (V) and the
axial vector-axial vector (A) terms which are represented by ®ââ; cD and ®(q2 )ïAD
respectively. The contributions to V and A are not equal to each other, like in the

case (see eqs. (13.15) and (13.16)). Further notice the relative minus sign
between the qq- and the qq (qq) in the V-part . The expressions for these interfer-
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_

	

_

	

_ Q's
)2

	

2
®~gg,CD - (gq,CD - ®~g4,CD

( 4,rr

	

CFTf (2 +x+ ~

	

[32 S 1 ,2(1-X)
)

-96S 1 , 2( -x) - 481n2(1 +x)In x - 48C(2)In(1 +x) + 40In2 x In(1 +x)

-96Li2( -x)In(1 +x)] + (1 +x) [80L2( -x) + 80 In x In(1 +x)

+40(2)] + 8 -6 + 3x +
4

	

Lî3(1 -x) - 16 -10 + 3x +
1®

Lia ( -x)
x

	

x

4
-24 -6+x+ -

x
ffl)+8(10-x)Li2(1-x)Inx- 3xIn 3 x

+32 2x+
5

Li e( -x)In x + 8(10 +x)«2)ln x + 8(5 - 4x)Li2(1 -x)
x

-52x In' x - 16(5 + 4x) In x - 160(1 -x)
)

,	(B .22)

a 2
®gq,CD

	

~~gq,CD

	

®gq,CD

	

41r ) CF Tf{(2+x)[32SI,2(1 - x)

-96S I , 2 ( -x) - 481n2 (1 +x)In x - 48~(2)ln(1 +x) + 40In2 x In(1 +x)

-96Li 2( -x)In(1 +x)] + (1 +x)[16Li 2( -x) + 161n x ln(1 +x)

+8«2)] + 8(2 - x)Li 3(1 -x) - 16(6 - 5x)Li3( -x) - 24(2 - 3x) f(3)

+8 Li,(1 -x) + 8(2 + 3x) L'2(1 -x)In x + 8(2 + 5x)«2)ln x

+128Li,(-x)Inx -'-xln3 x-4xIn2 X-161nx-32(1-x) ] . (B.23)

Finally we want to remark that in case of W-production only one of the two sets of
diagrams contributes (C or D, depending on the quark flavours in the initial and
final state) . This implies that for W-production there is no contribution from the
interference term CD.

B.4 . THE IDENTICAL (ANTI)QUARK-(ANTI)QUARK CONTRIBUTIONS

In case there are identical quarks in the initial and/or final state, we have in
addition to the graphs in fig . 8 also the ones in fig . 9 . As the results for E 2, F 2 and
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EF are equal to those for C2, D2 and CD (of course one has to implement the
right statistical factors), we will not discuss them here (see the section on non-iden-
tical quark-quark scattering) . The new contributions come from the interference
terms CE, CF, DE and DF. Before giving the results let us explain in some detail
how we have taken care of the statistical factors in our calculations .

In case of V = y or Z all four sets of diagrams C, D, E and F contribute and we
have a statistical factor 2 . However, in the case of V = W we have to distinguish
between two cases (remember that for W-production the diagrams C and D cannot
contribute simultaneously).

(i) Identical quarks in the initial state. In this case the contribution comes from
either the graphs C and F or D and E and there is no statistical factor .

(ü) Identical quarks in the final state. Now only the combinations C and E or D
and F give contributions . Moreover, in this case there is a statistical factor 2 .

For the expression of the hadronic structure function (see eq. (A.20)) it turned
out to be convenient to use the statistical factors of the W-production case .
Therefore a statistical factor i is included in the results for CE and DF, but this is
not the case for CF and DE.

Apart from the statistical factors there is another difference between CE (DF)
and CF (DE). The first contains collinear divergences and needs mass factoriza-
tion, whereas the latter is free of mass singularities .
The correction corresponding to the interferences CE and DF is equal to

®gq,CE -® qq, DF

	

®(gq,CE

	

j
qq, DF

a~ )2

	

1 +x 2
4Tr

	

CF(CF

	

ZCA)

	

1 + x
[4 In2 x - 8~(2)

n2
-16Li2(-x)-16Inxln(1+x)] +8(1+x)Inx+16(1-x) In 5

1

	

( M2

1 +x 2
+ 1 +x

	

32S � 2(1 -x) - 16 S1,2( _X) .- 32U30 -x) -8L'3( _X )

1 +x

	

1 +x
+32Lî3 1 -x

	

-32Lî 3 -

	

-x

	

-4«3) +24Lî 2 (1 -x)Inx1

+32Lî 2 (-x)In x - 32Li 2( -x)In(1 -x) - 16Li 2 ( -x)In(1 +x)

+ 12~(2) In x - 16~(2)In(1 -x) - 8«2)In(1 +x) - ~ In3 x

+81n2 x In(1 -x) + 281n 2 x In(1 1-x) - 8In 2 (I +x)In x



-321n x In(1 - x)In(1 +x)

+(1-x)[-16S1,2(-x) +8Lî3(-x)

+85(3) - 16Lî2( -x)ln(l +x) + 4~(2)ln x - 8~(2)ln(1 +x) - 3 In3 x

+41n2 x In(l +x) - 81n2 (1 +x) In x + 32 ln(1-x) - 34]

+(1 +x) [8Lî 2 ( -x) + 4~(2) + 161n x In(l -x) + 81n x In(l +x)]

+8(3 +x)Li2(1 -x) - 4(1 + 3x)In2 x - 2(9 - 7x)ln x) .

	

(B.24)

The expression for the interference terms CF and DE is

®gq,CF - 'à(gq,DE

	

'à gq,CF

	

®(gq,DE

«S
)2

=

	

CF(C F - 1CA){( 1 -x)2[-165 1 , 2(1 -x)47r

+ 16Li3(1 -x) - 24Li 2(1 -x) - 16U20- x)ln x - 3 In3 x - 121n2X]

-4(7-6x)lnx-2(15+13x 2 -28x)} .

	

(B.25)

Notice that the above expression is scheme and scale independent.

B.5 . THE GLUON-GLUON CONTRIBUTION
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The diagrams for the gluon-gluon subprocess can be obtained from the
quark-antiquark annihilation graphs in fig. 6 via crossing . This subprocess shows
up for the first time at O(«2). We have divided its Drell-Yan correction term into
two parts, viz.

®(2) -_ ®(2), CA -4- j2),CF .

	

B.26gg gg gg

The CA contribution is collinearly finite and is therefore scheme and scale
independent. It is given by

as ) 2

	

N2

	

2[16
®

),cA _

	

47r

	

N2 - 1
~(1 +x)

	

S1 ,,( -x) + 24 L'3( -x) + 16C(3)

+ L" Li 2( -x) - 24Li 2 ( -x)In x + 16Li 2( -x)ln(1 +x) + 8«2)ln(1 +x)

+ ~~(2) - 12In 2 x In(1 +x) + 81n 2 (1 +x)ln x + '; In x ln(1 +x)]

-8(1 -x)25,,2(1 -x) + .,(-2+25X 2 + 2x)In2 x

-2(6+75x 2 +38x)Inx-`7 +''x2-48x} .

	

(B.27)
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The CF contribution contains collinear singularities. After mass factorization in
the MS scheme we find

2

®g2ß.CF=

	

«4Tr

)2
[ -2(1+4x2+4x)lnx-4(1-3x2+2x)]In2 Q2

+ [(1+4x2 +4x)[ -8Li 2(1-x)+21n2 x-81nxln(1-x)]

+2(1 -4x2 --8x)Inx- 16(1 -3x2 +2x)In(1 -x)

2
+7-67x 2 +60x In Q

	

+(1+4x2 +4x) 16Li 3(1-x)
( m2
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-4Li 2(1 -x)ln x - 16 L'2(1 -x)ln(1 -x) + 4In2 x ln(1 -x)

-81n 2 (1 -x)In x] + (1 +x)[8Li 2 ( -x) + 81n x ln(1 +x)]

+(1 +x)2 [ -16S1,2(-x) - 16Li2(-x)ln(1 +x) --8«2)ln(1 +x)

+ 121n 2 x ln(1 +x) - 81n 2 (1 +x)In x] - 8(1 + 7x 2 + 1Ox)S 1 , 2(1 -x)

-8(1 -x2+ 2x)Li3( -x) -4(1-2x2 + 2x)~(3)
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- "(3+8x2+8x)In3x-2(3+4x2+7x)In2x

-16(1 -3x2 +2x)In2 (1 -x) +4(1 -4x2 +8x)InxIn(1 -x)

-(23- 105x 2 +64x)Inx+2(7-67x 2 +60x)In(1 -x)

-2(16-49x 2 +33x) ] .

	

(B.28)

13 .6 . THE 1)Y CORRECTION TERMS 1N THE LIMIT x - I

Before finishing this appendix it is also useful, in view of the discussion of eqs.
(3.7)-(3 .10), to present the behaviour of ®;.i(x, Q2, M2 ) in the limit x

	

1 . In this



limit the expressions in eqs . (B.2)-(B.28) become
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2
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(B.31)

a s
4-rr

2

	

Q2
n fC F

	

-~In2 (1 -x) -

	

~~ In

	

M2

	

- -'32 Iln(1 -x)

2
-

	

In2

	

Q

	

~
+ 'yh In

	

Q2+

	

~( 2) -

	

,M 2

	

M 2
j

	

3

	

27 (B .32)

a, . )2

	

Q
2

lim ®(2) _

	

C'

	

C - ;C

	

-1Gln 1 -x) - 81n

	

+ 12

	

,	(B .33)
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Q2 Q2
+ 21n2
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- 81n
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- 8~(2) + 16 (1 -x)

	

.	(B .46)

From the list above we infer that all corrections ®;j(x, Q2, M2) get zero in the
limit x --> 1 except for the non-singlet qq contribution in eqs. (13.2) and (13.7) and
the qg correction terms in eqs. (13.17) and (B.18) . This explains why the bulk of the
K-factor can be attributed to these two contributions.
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