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The energy spectrum of a system of two particles enclosed in a box with periodic boundary
conditions is characteristic for the forces between the particles . For box sizes greater than the
interaction range, and for energies below the inelastic threshold, the spectrum is shown to be
determined by the scattering phases at these energies. Simple exact formulae are derived which
can be used to compute the energy levels given the scattering phases or, conversely, to calculate
the scattering phases if the energy spectrum is known.

1. Introduction

There is a wealth of experimental information on low-energy hadron-hadron
scattering processes. Yet it has been impossible so far to compare these data with
QCD, the current fundamental theory of strong interactions, except for those
aspects which are determined by symmetry. In particular, some spectacular dynam-
ical effects, such as the p-resonance, remain largely unexplained up to now.

In the so far most promising attempt to solve QCD at low energies one puts the
theory on a lattice and computes the functional integral by numerical simulation .
With regard to calculating scattering amplitudes, this method meets two funda-
mental difficulties. The first is that the theory lives on a euclidean lattice so that
the real time evolution of two-particle states is not immediately accessible . Sec-
ondly, the lattices which can be simulated with the presently available computers
are quite small. They are certainly too small to contain two well separated slowly
moving one-particle wave packets . A direct simulation of low-energy scattering
processes is therefore excluded.
For quantum field theories in 2 space-time dimensions, a general method for

computing elastic scattering amplitudes has recently been proposed [3,81 (for other
ideas see refs . [10,11]). It is based on the fact that the energy spectrum of
two-particle states in a finite volume of size L with periodic boundary conditions is
related to the associated scattering phase shift 8(k) in a simple manner. Since the
spectrum is relatively easy to compute, using standard techniques, the phase shift
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can thus be determined. This method bypasses the difficulties mentioned above. In
particular, the finite size of the lattice, initially thought to be an obstacle, is used to
probe the system .

It is of course crucial for the success of the method that a simple exact formula
exists which expresses the scattering phase in terms of the spectrum of two-particle
states in finite volume. Explicitly, for any observed level with zero total momen-
tum, definite internal quantum numbers and energy W, the corresponding scatter-
ing phase shift 8(k) at momentum k in the center-of-mass frame is given by

where k is determined through

and m denotes the mass of the scattered particles, which I have assumed to be
identical for simplicity . Eq . (1 .1) holds provided W is in the elastic region and if
polarization effects and scaling violations can be neglected (cf. refs. [1-3,8]) .

In 4 space-time dimensions the situation is substantially more complicated,
because the rotational invariance of the system is broken by the finite spatial
volume which is usually taken to be a 3-dimensional torus, i.e . a cube with linear
extension L and periodic boundary conditions in all directions. It is for this reason
that the derivation of eq . (1 .1) cannot simply be carried over by passing to an
angular momentum basis . Instead the spectrum of two-particle states is expected
to depend on the scattering phases 3,(k) for all angular momenta l which are not
excluded by the cubic symmetry of the states.
The only universal formula for the connection between the scattering matrix and

the spectrum of two-particle states in 4-dimensional quantum field theory so far is
an expansion of the lowest levels in powers of 11L [3-5], a result which has
already been used to compute scattering lengths by numerical simulation [6,7,91 .
In the present paper, a new set of relations is derived which can be regarded as the
4-dimensional analogue ofeq . (I .1) . To avoid inessential complications, I shall only
discuss the case of two (stable) particles with spin 0 and mass m, whose dynamics
can be described by a simple scalar field theory . But it is not difficult to generalize
the results to any two-particle channel in an arbitrary massive quantum field
theory.
To get a flavour ofwhat has been achieved, let us suppose for a moment that all

scattering phases 8,(k) with 1= 4,6. . . . are negligible in some energy range
W, < W<W2 below the inelastic threshold. Up to corrections which are exponen-
tially small at large L, the finite volume energy spectrum can then be described by
a set of simple rules . In particular, an energy value Wwith W, < W<W2 belongs
to the spectrum in the subspace of cubically invariant states with zero total

e2,n«> = e-,FL (1 .1)

W=2 m2 +k'- (1 .2)
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momentum (the A; sector) if and only if the associated momentum k> 0, defined
through eq . (1 .2), satisfies one of the following two conditions.

(a) k is a solution of the equation

where

and the zeta function

is initially defined for Re s > 3/2 and otherwise through analytic continuation .
(b) The parameter q defined above is equal to In1 for some non-zero integer

vector n . Furthermore, there is another integer vector n' with In' I = In l, which is
not related to n by a cubic rotation /reflection. The smallest value of q with these
properties is 3 [n = (3, 0, 0) and n'= (2, 2,1) in this case] . In the free theory, this
corresponds to the 9th level in the A, sector, all lower levels being non-degener-
ate.
The rules for the other symmetry sectors will be given later in the paper. Eq.

(1 .3) is the first in a sequence of compatible relations, which incorporate the phase
shifts S1 (k) for increasing angular momenta 1 . In this way their influence on the
spectrum can be systematically controlled . For example it is possible to show that
the low-lying levels in the A, sector are correctly given by eq . (1 .3) [and rule (b)]
up to terms which are of order L- " at large L.

Although the final result is simple, its derivation is complicated. In the follow-
ing, I shall first consider a non-relativistic system and work out all the details there.
After that the results can be carried over to quantum field theory by invoking the
effective Schr6dinger equation established in refs . [3,8]. A summary of the most
important formulae is given in subsects . 5.4 and 6.1 . For the translation of these
results to the relativistic case see sect . 7.

2. The non-relativistic model

The system studied here is exactly the same as in sect. 2 of ref. [3] . The notations
employed are also the same, but to make this paper self-contained all the
necessary definitions will be given below.

7 (l ;q 2 )+i 7r 3
/
2c/e2tn u(kl=

'
(1 .3)

e7nn( l ; g 2 ) - i7r'/Zq

kL
g (1 .4)

27r

1
.Zuo(s ;g 2 ) ° (n - -q

)_,
(1 .5)4~r ItE~ j
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2.1 . PROPERTIES OF THE MODEL IN INFINITE VOLUME

Consider two spinless bosons of mass m in 3-dimensional space which interact
through a short-range force . The state of this system is described by a scalar wave
function +i(x, y) where x and y are the positions of the particles. In the following
we are interested in states with zero total momentum so that the wave functions +1

depend only on the difference vector r =x -y. The hamilton operator is taken to
be

1
H= - -4+V(r),

	

r= Irl,

	

(2.1)

where d denotes the laplacian with respect to r and p, =m/2 is the reduced mass
of the system. The potential V(r) is assumed to be of finite range, viz .

V(r)=0 for r>R,

	

(2.2)

and we shall also take it for granted that it is smooth . This latter property saves us
from unnecessary technicalities ; for the validity of the final result it would be
sufficient to know that the potential is square integrable .

If the particles are identical, the admissible wave functions must be even under a
reflection r - -r . To be able to discuss states with arbitrary parity, we shall
therefore assume that the particles carry a flavour quantum number, such as
isospin, which makes them distinguishable. No loss of generality is implied by this
assumption, because it is straightforward to project onto the sectors with definite
parity, at all stages of the analysis .

Elliptic regularity implies that any locally square integrable solution 1A(r) of the
stationary Schr6dinger equation

H+/i = E+r

	

(23)

is necessarily smooth (see e .g . ref. [12], theorem IX.26). The expansion in spherical
harmonics

x l

+G(r)= ~ ~ Yha(8 .~)+Gr~~~(r)~

r = r(sin 0 cos cp, sin 0 sin ~p, cos 0) ,	(2 .5)

is hence rapidly convergent. Furthermore, the coefficients +G,�,(r) are smooth
solutions of the radial Schr6dinger equation

(2 .4)

d2	2d

	

I(/ + 1)
~j7+ r dr

	

r2

	

+k2 -2 1a,V(r)~ ,�,(r) = 0,

	

(2.6)
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where the momentum k is related to the energy E through

E=k212A .

	

(2.7)

It does not matter here whether E is positive or negative, and we shall in the
following allow k to assume any complex value.
The radial Schrtidinger equation has only one linearly independent solution

ut (r ;k) which is bounded near the origin r = 0. Its normalization can be fixed by
imposing the boundary condition

From uniqueness we then conclude that

lim r-tut(r ; k) = 1 .

	

(2.8)
r-0

+lrr,a(r) = br�,ur(r; k) (2 .9)

for some constants b,�, .
For r > R, the potential vanishes and the solution u,(r ; k) is a linear combina-

tion of the spherical Bessel functions jt (kr) and ni(kr), viz.*

ui(r ;k) =a r(k)jt(kr) +/6t(k)nt(kr) .

	

(2.10)

The amplitudes al(k) and ß1(k) have a number of important properties which
follow straightforwardly from the radial Schrödinger equation and the normaliza-
tion condition (2.8). In particular, for any given non-zero value of k, they cannot
both vanish, and it is also possible to show that the combinations Vat(k) and
k-t- '6 t (k) are entire analytic functions. Furthermore, it is obvious that the
symmetries

ai(k)*=at(k*), ai(-k)=(-1)iar(k),

ßr(k)*=131(k*), 6t(-k)=(-1)t+'ßr(k),

hold .
For real k > 0 and angular momentum l, the associated scattering phase is given

by

e2,s,(F ) = at(k) +i,ßt(k)
al(k) - ißr(k)

It follows from the properties listed above that e2,s,tki is a well-defined
analytic function of k. Similarly, for -ik > 0 (negative real energies E),

(2 .12)

real
it is

* All conventions regarding Legendre polynomials. spherical harmonics and spherical Bessel func-
tions are as in ref. [13]. appendix B .
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natural to introduce the phase

where

e2ia,c~l= al (k) +ßt(k)

at(k) - 6t(k)
(2.13)

which is also non-singular . tr,(k) is equal to -7r/4 (mod -rr) if (and only if) there is

a bound state with angular momentum I at the corresponding energy. Other-
wise qq,(k) does not have any direct physical interpretation, except that it is related
to the scattering phase, analytically continued to the imaginary axis, through
tan o,,(k ) = -i tan 3,(k ).

In the limit k -> 0, eq. (2.10) reduces to

1

	

(21+ 1)!!

i

	

21+ 1
(r>R), (2 .14)

a','= lim , k'a,(k) ,

	

6',' = lim~k -"ßt(k) .

	

(2 .l5)

In most instances a ; does not vanish, and it is then customary to define the
threshold parameters

In particular, a � is referred to as the scattering length . These parameters are
important, because they determine the leading low-energy behavior of the scatter-
ing phase 5,(k). Explicitly, from the discussion above one infers that

for some integer v, .

2.2 . ENERGY EIGENSTATES ON ATORUS

The Hamilton operator, defined by

at = ßïlai -

	

(2.l6)

S,(k) = v,Tr+a,k 2111 +O(k 2i + ; )

	

(2.l7)

We now enclose the particles in a box of size L X L XL with periodic boundary
conditions . The states with zero total momentum are then described by wave
functions qi(r) satisfying

#r(r+nL) = qi(r)

	

for all n E ZL' .

	

(2.18)

1
y =--® +V,(r),

	

V�(r!= F, V(Ir+tzL1),

	

(2.19)
2 ju IIE~~
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takes into account interactions "around the world" and thus respects the periodic-
ity of the wave functions .
H can be regarded as an elliptic hermitian differential operator, which acts on

differentiable functions on a 3-dimensional torus. The spectrum of H in the
corresponding space of square integrable functions is therefore purely discrete and
there is a complete set of smooth eigenfunctions .
Suppose now that 4r(r) is such an eigenfunction with energy E=kZ/2p,, and let

us assume that L > 2R . It is then obvious that 4r(r) is a smooth periodic solution
of the Helmholtz equation

(A -r k2 )qi(r) = 0

	

(2.20)

.f2=IrER 3 1lr+nLI>R forallnaZL ;) .

	

(2.2l)

Furthermore, for 0 _< r < L/2, the spherical components 4f, (r), defined through
eq. (2.4), are regular solutions of the radial Schr6dinger equation (2.6). Since there
is only one such solution for fixed k and 1, it follows that

1P, (r) = bt,a{at(k)Jj(kr) +ßt(k)nt(kr))

	

(2.22)

for some constants b,� , and all R <r < L/2.
The eigenfunctions of the hamiltonian operator are actually entirely determined

by their properties in the exterior region 12. This is asserted by

Theorem 2.1.

	

Let qj(r) be a smooth periodic sohition of the Helmholtz equation
in the region .fl such that its spherical components +1,�, (r) satisfy eq. (2.22) for some
constants b,�, and all R < r < L/2. Then there exists a unique eigenfunction of H
which coincides with tP(r) on !2 .

The proof is given in appendix A. While the theorem is of no immediate
practical use, it does imply that the spectrum of H in any given energy interval
E, < E < E, is in principle calculable when the scattering phases 8,(k) land UM]
are known for these energies . We only have to find all smooth solutions of the
Helmholtz equation in .f2 with spherical components satisfying eq. (2.22).

2.3 . ANGULARMOMENTUM CUTOFF

In the following we shall introduce an angular momentum cutoff .1 on the
interaction . This may be considered as a mathematical device, which is to be
removed at the end of all calculations by taking the limit A ~ x . Alternatively, we
may interpret A as a parameter, which allows us to monitor the influence of the
higher scattering phases S,(k) on the spectrum of H. This is a useful point of view
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in those instances, where 8,(k) is not known beyond some maximal value of
angular momentum, a common situation when experimental data are the only
source of information.
The angular momentum cutoff is introduced into the system in infinite volume

by defining a modified hamiltonian H, through

where
.1 /

/=o 'n=-/

(2.23)

(2 .24)

denotes the projector on the space ofwave functions with angular momenta l <A.
Q., commutes with the potential and the cutoff Hamilton operator is hence
hermitian . In the same way as the original system, it describes two particles with
zero total momentum and a rotationally invariant interaction of finite range R.
The interaction term in eq. (2 .23) is non-local, because Q_, is an integral

operator at fixed r. But this is of little concern for the scattering theory which can
be developed without difficulty following the standard methods (Moller operators,
Lippmann-Schwinger equations, etc.). It then turns out that the scattering phases
are determined by the regular solution u,(r ; k) of the radial Schr6dinger equation
as before . For all 1 < A, the latter coincides with eq. (2 .6) and the scattering phases
are hence exactly equal to 6,(k), the scattering phases of the original system . For
greater values of l the angular momentum cutoff comes into effect and the radial
Schr6dinger equation reduces to the free equation . The scattering phases of the
modified system are thus equal to zero for all 1 >A.

In finite volume the cutoff hamiltonian H, is defined in the obvious way by
periodic repetition ofthe interaction term in eq. (2 .23) . All the statements made in
subsect . 2.2, including theorem 2.1, then carry over literally .
The spectra of H and H, are however not the same in general, although they

can be shown to approach each other in the limit A -> -. To make this plausible,
consider a non-degenerate eigenfunction +i(r) of H with energy E. Treating the
difference H

.
, -H as a perturbation, the first-order energy deviation AE is given

by
x / x

AE=c F, F I drr'V(r)I+y/ �,(r)l'`,

	

(2.25)
/= .1+> »>=-/ o

where c is some constant independent of A. We have earlier remarked that the
expansion coefficients +P,�,(r) go rapidly to zero (faster than any power of 1/1) for
1--> -, uniformly in the interval 0 \r <R. AE is hence rapidly vanishing when the
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cutoff A is sent to infinity, thus confirming our expectation that the spectrum of
H, converges to the spectrum of H.
The aim in the following is to find an expression, as explicit as possible, for the

finite volume energy spectrum in terms of the scattering phases. This problem will
first be solved for the cutoff system . If desired the limit .4 -> - can be taken after
that, and one is then guaranteed to obtain the solution of the original problem.

3. Singular periodic solutions of the Helmholtz equation

As shown by theorem 2.1, the energy eigenstates of the non-relativistic model in
finite volume are closely related to certain solutions of the Helmholtz equation . In
sect. 4 we shall construct all these solutions for the system with an angular
momentum cutoff. As a preparation towards this goal, we here discuss a class of
singular solutions of the Helmholtz equation, from which all other solutions will
eventually be built.

3 .1 . DEFINITION

In the following a function +#(r) is called a singular periodic solution of the
Helmholtz equation if it has the following properties.

(i) qr(r) is a smooth function which is defined for all r0 0 (mod L) and which
satisfies the Helmholtz equation

for some integer A, which will be referred to as the degree of +G(r).
In this section all such functions are listed and some of their properties will be

discussed. For values of k in the "singular set"

21r
.f = jk e R I k = ±LInI

	

for some n e 7Z ;) ,	(3 .3)

the Helmholtz equation has periodic plane wave solutions, and these tend to
complicate the situation. A separate treatment of these cases will therefore be
necessary.

(d +k - )t(r(r) =0 (3 .1)

for some (possibly complex) value of k .
(ii) qr(r) is periodic with period L [eq. (2.18)].
(iii) Near the origin, ip(r) is bounded by a power of 1/r. That is

sup Ir .'+i0(r)I<- (3 .2)
0<r<L/2
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The structure of the singularity at the origin of a singular solution 41(r) of the
Helmholtz equation is strongly constrained by the differential equation (3 .1). To
see this, first note that 0(r) is smooth for 0 < r < L/2. The expansion (2 .4) in
spherical harmonics hence converges rapidly and the coefficients 0,�,(r) satisfy the
free radial Schr6dinger equation . Thus there are constants b, �, and cl �, such that

t=0 »t= -t

where the remainder ~(r) is a smooth solution of the Helmholtz equation in an
open neighborhood of the origin r = 0.

3 .'..

	

'NERAL SOLUTION (REGULAR VALUES OF k)

We assume throughout this subsection that k is not contained in the singular set
.-/' . The Helmholtz operator on the torus then has no zero modes and the Green
function

eePr
G(r;k 2) = L -; T

	

2

	

(3 .8)
PErp -k-

is hence a well-defined distribution . The sum in eq. (3 .8) runs over the lattice

27r
1-=

~
p ER31 p =Ln

	

forsome nE 7L ; ~

	

(3.9)

and is taken in the sense of distributions. G(r; k-) is obviously periodic, and it
satiGfies

(A+k2)G(r;k2) =- S 8(r+nL) .

	

(3.10)
..21

01 (r) =b,�,k-'Jl(kr) +c,�,k"inl(kr) . (3 .4)

Furthermore, from the bound (3 .2) and the identity

+b t�,(r) = fdOd<psin0Y,�,(0,cp)*qi(r), (3 .5)

one immediately infers that

cl�, = 0 for all 1 > A . (3 .6)

We have thus shown that

r
0(r) = F~ Y. ct~aYn,~(0 , cp)k t+in,(kr) +~(r), (3 .7)
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In particular, for all r 0 0 (mod L), the Green function solves Helmholtz' equation
and this implies, by elliptic regularity, that it is infinitely differentiable in this
region. It is also well known that Green functions of elliptic differential operators
are bounded by a power of 1/r near the origin . We have thus found a simple
example of a singular periodic solution of the Helmholtz equation .
To determine the singularity of G(r; k'-) at the origin explicitly, first note that

47r
(A+k-)n � (kr) = - kS(r) .

	

(3 .l1)

Invoking elliptic regularity once more, we then conclude that the difference

must be a smooth function in an open neighborhood of the origin. In other words,
the representation (3 .7) for the Green function reads

and defining

k
G(r;k 2 ) -4T rt � (kr)

	

(3.12)

G(r;k 2 ) = -tt � (kr) +G(r;k 2 )

	

(3.l3)

(here and below the hat accent denotes the regular part of a function).
It is obvious that further singular solutions can be generated from the Green

function by differentiating with respect to r. To obtain linearly independent
solutions, we should however take care that the differential operators employed do
not contain terms proportional to the laplacian (Helmholtz' equation could other-
wise be used to reduce the number of differentiations). This can be achieved by
introducing the harmonic polynomials

%~»(r) = r ' Yj(0,,P)

	

(3.l4)

G,� ,(r ;k -') =/,�,(F)G(r ;k -') .

	

(3.l5)

It is trivial to verify that these functions are singular periodic solutions of the
Helmholtz equation of degree !.
To determine the precise form of their singularity at the origin requires more

work. The crucial identity is

Im( )ttu(kt') =( -k)'Yl~~i(0,~P)nl(kr),

	

(3.16)
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which will be established in appendix B. From eq. (3 .13) we then conclude that

l r

Gl"'(r
;k2) = (

4Tr)Yr",(e,çP)kr+'nr(kr)+Gn�(r ;k2) . (3 .l7)

It is clear from this result that the functions Gr�,(r ; k2 ) are linearly independent.
They are also complete in the sense that any singular periodic solution 4r(r) of

the Helmholtz equation of degree A is a linear combination of the functions
Gr� ,(r ; 0) with l <A. This is easy to prove. From eqs. (3 .7) and (3 .17) one infers
that

der

	

t r
X(r) =4t(r) - Y_ Y_ 47r( - I) lcrn~Gn'r(r

;k2)
r=o »t = -r

continuously extends to a regular function at the origin . X(r) is also periodic and a
solution of the Helmholtz equation . In other words, it is a smooth periodic
eigenfunction of the Laplacian with eigenvalue -k2. But since we have assumed
that k is not in the singular set .-/', no such eigenfunction exists and we conclude
that y(r) = 0, thus proving completeness.

3.3. GENERAL SOLUTION (SINGULAR VALUES OF k)

(3 .18)

For singular values of k, the set

I'R = (p EI'1p2=k2)

	

(3 .19)

is not empty and the plane waves

e'Pr,

	

P ETF ,

	

(3.20)

solve the Helmholtz equation .
Further solutions may be obtained by taking derivatives of the Green function

'	e P
G'(r;k2) =L_3

pel'P
2-k2 , (3 .21)

where the primed sum implies that all momenta p E T, should be omitted . It is
easy to show that

(A+k2)G'(r;k2) = - 1: S(r+nL) +L-' r_
�pr . (3 .22)

nEQ-, PEli

The Green function and its derivatives

G1�,( r; k2 ) = ~/j�,(®)G'(r ; k2) (3 .23)



are hence not themselves singular periodic solution of the Helmholtz equation . But
such functions can be constructed by forming linear combinations

with coefficients such that

M. Lfischer / Two-particle states on a tores

	

543

A l

t'!r»Grr»( r;E

	

F,

	

k 2)

	

(3.24)
1=0 m=-1

r
r1r»ir%1r»( p) = 0

	

for all pEF/,. .

	

(3.25)
1=o r»=-1

Since there are only a finite number of points in FR, these conditions can always be
satisfied if A is sufficiently large. In any case, they are just a set of equations which
determine a linear subspace in the space of all possible linear combinations of the
basic functions G,�,(r ; k2 ).
The plane waves (3.20) and the linear combinations (3 .24), (3.25) form a

complete set of singular periodic solutions of the Helmholtz equation. To prove
this, we note that eq . (3.17) remains valid if we replace Gl �, and G1�, by their
primed versions. For any given singular periodic solution +i(r) of degree A, the
function

A 1

X(r)
d
=
e(
+j(r)- 1:

	

F,

	

t�r»G%»(r;k2),

	

t � ,» =4ir(-1)lcl»r,

	

(3.26)
r=o rn=-1

is therefore everywhere regular and periodic . Furthermore, it satisfies

(A+k 2)X(r) = -L-; S e

	

r,

	

E t 'lmtl flnr(p)
pel"

	

l=11 m=-1
(3 .27)

If we multiply this equation with e -'°' and integrate over r, one immediately
concludes that the coefficients l'1�, solve the constraints (3 .25). In particular, the
right-hand side of eq. (3.27) vanishes and X(r) is therefore a linear combination of
the plane waves (3.20). We have thus established completeness as asserted.

3.4. EXPANSION IN SPHERICAL HARMONICS (REGULAR VALUES OF k)

We have shown in subsect. 3.2 that the general singular periodic solution of the
Helmholtz equation for k .1' is a (finite) linear combination of the functions
Gl,r,(r;k2). The aim here is to work out the expansion of these basis elements in
spherical harmonics.
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From the discussion in subsect . 3.1 and the known structure (3.17) of the
singularity at the origin, one infers that

Glnt(r;k2)= 4Tr
k " ( Ylnt( 0 ,~)nt(kr) +

	

.lftrn .l9n'YI'ra'(B~tP).%('(kl')~
l'=0 "'- -P

(3 .28)

for all 0 < r <L/2 . The matrix

	

occurring here plays a central role in the
analysis of the two-particle spectrum in finite volume, and it is therefore important
to compute it as explicitly as one can.
To this end it is useful to start with the simplest case, the expansion of the

Green function

k
G(r,k 2 ) 4--ltn(kr)+

	

gt»tYrrrt(0, ~p )Jt(kr) . (3 .29)
l=o r»= -l

In appendix Da simple relation between the coefficients g, �, and the zeta function
.-,�,(s; q2 ) is established . For complex s with Re2s > 1 + 3, this function is defined
through

2trrt(S , g 2 ) = ''%nrt(n)(n2-q2)
- .,

	

(3.30)
nEQ'

where the convention -Tr < arg(n 2 -q'
-) < Tr has been adopted . By analytic con-

tinuation it then extends to a meromorphic function in the whole complex plane.
In particular, there is no singularity at s = 1 and the announced relation is

i l

	

_
kL

ghrt-7Lg7~1rrt(1 ;q2 ),

	

q- 2rr'

	

(3.31)

The zeta function is not expressible in terms of elementary functions, but there are
well-conditioned integral representations which allow one to compute it numeri-
cally to any desired precision (appendix C).
To obtain the expansion in spherical harmonics of G,�,(r ;k 2 ), we apply the

differential operator to the series (3.29). The action of this operator on the
singular term is given by eq. (3.16). The corresponding identity for the regular
terms reads

kt ;+r r
lirrt(T7)Yj,(&,~G)1,(kr)=

	

C~rrt .~, .rrrfYrrrf(®,~P)Jr(kr)7 F_

	

F_

	

, (3.32)
t'-41-f{ raâ =-l'
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where the tensor

	

is related to the Wigner 3j-symbols through*

ch". Js.17rt'(21 + 1)(2,1+1)( 2~+1)

The proof of these formulae is deferred to appendix B. Here we only note that for
all values of the indices, the tensor is equal to a rational number times
the square root of a positive integer .
We now collect all contributions and obtain the final result

( _ 1),

	

r+r'

	

1

	

i!

Atable of all matrix elements .

	

; with angular momenta 1,1' < 4 is given in
appendix E. As a consequence of the cubic symmetry, to be discussed later, one
has the selection rules

if m0m' (mod4)

	

or

	

1 :A1' (mod2),

	

(3.35)

and it is also possible to show that the identities

hold for arbitrary values of the indices.

X (0 0 0)(m s
1m,) .

2
7T3/2

	

q
j=11-r1 s= _~ 9

3.5 . EXPANSION IN SPHERICAL HARMONICS (SINGULAR VALUES OF k)

1
e'P'=41rr r 1' YI~n(en"en)* YIo~(0, tp)JI(pr) .

r=o m= -r

where Op and cpp denote the polar angles of p.

(3 .33)

(3 .34)

(3 .36)

According to subsect . 3.3 there are two types of singular periodic solutions of the
Helmholtz equation when k is singular. Consider first the plane wave solutions
(3 .20) . Their expansion in spherical harmonics is given by the well-known formula

(3 .37)

*The notations and sign conventions concerning Clebsch-Gordan coefficients and wigner symbols
are as in ref. [13], appendix C.
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The other solutions are the linear combinations (3 .24) with coefficients v, �,
satisfying the constraints (3.25). It follows from these that

n I

	

n r
E L'I»rGlr»(r ; k2) = lim E

	

E VImGlm(r ;h z )
1=0 rrr = -1

	

h-k1=0 »t = -t

The desired expansion in spherical harmonics may therefore be deduced from the
expansion (3 .28) . In particular, if k = 2tr{n j /L for some non-zero integervector n,
one obtains

,t

	

r

	

n

	

r

	

_1 I

L~IrF,

	

F,

	

nGlm(r ; k 2) -
Y

»7 (4a)
k"' (YI,»(B,tP)nl(kr)

1=0 »r=-1

	

1=0 nr = -

/ I,/

+ j

	

.l~I~» .r»rY1»~~(B,rP)Jr(kr)~ (3 .39)
r=0 ""= -r

The matrix

	

in this equation is determined through the expansion

1

(3 .38)

, n2'

	

2-n2) .

	

(3 .40)
., ~1»I q`-n -

We shall not need an explicit expression for this matrix later on, but it will be
useful to know that the residue of the pole term in eq . (3 .40) is given by

2

	

,-,-

	

, :
pel;~

(cf. appendix B) .
For k =0 the situation is somewhat special and requires a separate treatment.

Note that the constraints (3.25) in this case are equivalent to c�� =0. Accordingly,
the singular solutions of the Helmholtz equation are the functions Gl� , (r; 0) with
I>- 1 . These coincide with G,�,(r;0) and from eq. (3 .28) we thus deduce the
expansion

(-1)1 21r 1+i~

	

(21+1)ll
GIJr;0) =

	

4~r

	

(L)

	

YI"»(®"P) (21+1) P-,
-I

(3 .41)

x I'

	

p,.

t'=()»r' =
-LI~,°,.r»tYr»r(®,IP) (211+1M ~' (3 .42)
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where p=2ar/L. The matrix

	

appearing here is defined through

Ilm ql+l'+
'
/
/lni.lYa' e

	

(I-> 1),
q-.o

(3 .43)

and it would be easy to write it down explicitly in terms of zeta functions and
Wigner symbols by inserting the general expression (3 .34).

4. Construction of energy eigenstates

We are now well prepared to discuss the energy spectrum of the nonrelativistic
model in finite volume . As explained in sect . 2, it is sufficient to consider the
system with a finite angular momentum cutoff A, the original system being
recovered in the limit A -> x. In the following, the box size L is always assumed to
be greater than 2R, and k denotes the momentum determined through eq. (2.7).

4.1 . ENERGY EIGENSTATES ANDSINGULAR SOLUTIONS
OF THEHELMHOLTZEQUATION

We have already remarked that the calculation of the spectrum of H, in finite
volume is equivalent to finding all solutions of the Helmholtz equation in the outer
region .fl with some additional properties, which could be regarded as boundary
conditions along the sphere r =R. The presence of the angular momentum cutoff
now allows us to simplify the situation even further, as the following theorem
shows.

Theorem 4.1 .

	

There is a one-to-one correspondence between the eigenfunctions of
H. , in finite volume and the singular periodic solutions 41(r) of the Helmholtz
equation, which have degree A and whose spherical components 41l�,(r) satisfy
eq. (2.22) for all 1 < A and 0 < r <L/2. The relation is that any such function
restricted to .f2 coincides with a unique energy eigenfunction, and vice versa.

To determine the energy spectrum it is therefore sufficient to construct all
singular periodic solutions of the Helmholtz equation of the specified type . Note
that the number of conditions to be satisfied is finite and that all reference to the
interaction range R has disappeared.
The proof of the theorem is simple. If we first assume that we are given a

singular solution of Helmholtz' equation with properties as stated, its restriction to
,f2 trivially satisfies the hypotheses of theorem 2.1 and the existence of the
associated eigenfunction of H, is thus guaranteed .
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Conversely, if we start from an energy eigenfunction X(r), its spherical compo-
nents in the interval R < r < L/2 satisfy

a,(k)j,(kr) +,6,(k)n,(kr)	if 1<A,
Xr»>(r') =6r~» X { (21 + 1)!!k-rjl (kr)

	

otherwise.

The desired singular solution #r(r) of Helmholtz' equation is then defined in three
steps. For r e d2 we set qi(r) = X(r). In the region 0 < r < L/2, 0(r) is defined
through the expansion (2.4), where the spherical components 0,�,(r) are given by
the right-hand side of eq. (4 .1). And, finally, in all other places llr(r) is fixed by
periodicity .
The crucial point here is that the expansion in spherical harmonics, with

coefficients 4r,�,(r) as specified above, is rapidly convergent for all r in the interval
0 < r < L/2. This is a consequence of the fact that the spherical Bessel functions
j,(kr) are monotonically rising functions of r for sufficiently large 1, in any fixed
bounded range of r (cf . appendix A). Once the series converges for some r = ro, it
is hence automatically convergent for all r < r�.

It is obvious that the so constructed function has all the required properties, and
we have thus proved the theorem.

4 .2. ENERGY SPECTRUM (REGULAR VALUES OF k)

According to sect. 3, the general singular periodic solution of the Helmholtz
equation with degree A is given by

l r
0(r)= Y_

	

k -)
1=o m= -r

(4 .2)

with arbitrary coefficients

	

Among all these functions, the energy eigenstates
are those which satisfy eq. (2.22) for all 1 <A. Taking eq . (3 .28) into account, this
condition is equivalent to

A

m

	

1' (-1)h
blar(k) = T_

	

T_ r' r "»

	

l'm', lm
r'=0

	

=_r. 4zr
(4 .3)

(4 .4)

(1= 0,1, . . ., A). The second of these equations can be used to eliminate

	

After
that one is left with a homogeneous linear system for the coefficients b,�, . Since
the number of equations is equal to the number of unknowns, a non-zero solution
exists if and only if the associated determinant vanishes . This will happen for a
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discrete set of values of k, corresponding to the cigenvalues of H, . The computa-
tion of the energy spectrum has thus been reduced to the problem of finding the
zeros of the determinant of a certain k-dependent matrix.
To be able to write down this determinantal condition concisely, some further

notation is needed . Let //, be the space of complex vectors i- with components
where 1= 0,1,I__. , A andm= - l, - ! + I__1. A scalar product on this space

is given by

(4 .5)

The matrix .

	

canobviously be regarded as a linear operator M in //,. Two
further operators A and B may be defined through

[Av]!nt =a l( k) t'lm+ [Bt'], = ß1(k)flat ,

and from these one obtains the matrices

e-'" =(A+iB)/(A-iB),

(4 .6)

e-'-=(A+B)/(A-B)

	

(4.7)

(cf. subsect. 2.1).
The condition for the existence of a non-zero solution of the linear equations

(4 .3) and (4 .4) can now be written in the closed form

det[ A -BM ] = 0.

	

(4.8)

This equation is not entirely satisfactory, because it involves the amplitudes al(k)
and 6,(k) rather than the scattering phases 5,(k). To remove this defect, first note
that all eigenvalues of H j are real . The solutions k ofeq . (4.8) are therefore either
real or purely imaginary, depending on whether E is positive or negative . For
positive and non-singular k, the determinant

det[(A-iB)(M-i)]

	

(4.9)

is well defined and non-zero, because M is hermitian and because the eigenvalues
of A - iB do not vanish (cf. subsect . 2.1) . it is clear then that eq. (4.8) may be
divided by this factor without affecting the set of solutions .
We have thus shown that for non-singular k > 0, eq . (4 .8) is equivalent to

det[ez 'n -U ] =0, U=(M+i)/(M-i) . (4 .l0)
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In the same way, the condition for energy eigenstates with -ik > 0 becomes

det[e2- -V ] =0, V=(M+1)/(M-1) . (4 .l1)

Where needed, both matrices U and V occurring here are unitary operators in 7l'ß.
They are complicated but explicitly known functions of q.

4.3. ENERGY SPECTRUM (SINGULAR VALUES OF k > 0)

We now proceed to discuss finite volume energy eigenstates with k = 27TInI/L,
where n is some non-zero integer vector.

In this case the general solution of Helmholtz' equation with degree A is given
by

The plane wave

.t t

qi(r) =

	

r_ w,e'Pr + r_

	

r_ L 'Irr~Girr,(r ;k2) .
p.r"

	

l=0 rn =-/

wp can be chosen freely here, while the coefficients

	

are constrained by eq.
(3 .25) . Energy eigenstates are characterized by a further set of linear conditions,
which can be straightforwardly derived by inserting the expansions (3 .37) and (3.39)
in spherical harmonics . Explicitly, they are

birr~al(k) =4'rr r. wpi Yl (OP, gp)
W

Per"

A r' (-1)r
+

	

'I", 47T
k I +,i

rf,r,n,',Inr
l'=0 W= -I'

( -1 )
I

bt»~ßt(k) = t'I»,

	

k",
rr

(1=0,1, . . .,A).
It is obvious that a solution of these equations [and the constraint (3.25)] is

obtained if we set b,�, = r, �, = 0 and choose the coefficients wt, such that

r- wp1,�,( p)*=0

	

for all l-<A .

	

(4.15)
P E I"

ii(r) = r. wpe'Pr

	

(4.16)
PEI,

(4 .12)

(4 .13)

(4 .14)

then has all the required properties and thus corresponds to an energy eigenstate.
Such solutions always exist for any fixed cutoff A, because the number of points in
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T, will be greater than the number of equations to be satisfied for some suffi-
ciently large k. On the other hand, if we fix k and send A to infinity, there will be
no solutions, since the harmonic polynomials with I _< A eventually form a basis in
the space of all functions on F~ .

Besides the plane waves, there are in general further solutions with b,�, * 0. As
shown in appendix F, such solutions exist if and only if

lim

	

det[e-'s -U ] = 0

	

(4.l7)
'1-1 .1

[cf. eq. (4.10)]. As a byproduct of the proof of this statement, one finds that the
operator U is not singular at q = I nI, i .e . the pole of the matrix M at this point
cancels in the ratio (4.10). The energy values discussed in this subsection can thus
be regarded as special solutions of eq. (4.10).

4.4. SUMMARY

In this section we have shown that a non-zero energy value E=k212A belongs
to the spectrum of the cutoff Hamilton operator H, if and only if one of the
following conditions is satisfied.

(a) k > 0 is a solution of eq. (4.10). As discussed above, it does not matter
whether k is singular or not.

(b) k ~ 0 is an element of the singular set .1 and eq . (4.15) has a non-zero
solution wp.

(c) -ik > 0 and k is a solution of eq. (4.11).
It is of course possible that there are eigenstates of H, with energy E=0 in

certain instances. This is a marginal case and usually of little interest, but for
completeness the conditions for their existence are derived in appendix G.
No doubt the most interesting condition is (a), which together with (b) deter-

mines the spectrum in the range E>0. Eq . (4.10) can be regarded as the
4-dimensional analogue of eq . (1 .1) . In particular, if we are given the scattering
phases in some energy interval, this relation [and (b)] allows us to compute all
finite volume energy levels in that range, for all values of L greater than 2R.
The dimension of Jl, (and thus the rank of U) is equal to (e1 + 1) z . At first

sight, one may be led to conclude that the computation of the determinant in eq .
(4.10) is rapidly becoming a practical problem when the cutoff A is increased. As
we shall see in sect . 5, this is not true for the applications envisaged, because the
matrix U can be partially diagonalized by projecting on irreducible representations
of the cubic group. In the A, -sector, for example, the dimension of the associated
subspace is equal to 1, 2, 3, 4 for A = 2, 4, 6, 8, which is certainly manageable.
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5. Consequences of the cubic symmetry

The finite volume systems studied in this paper are symmetric under cubic
rotations and reflections. We can take advantage of this fact to considerably
simplify the expressions for the energy spectrum derived in sect . 4.

5 .1 . REPRESENTATIONS OF THE CUBIC GROUP

The special cubic group SO(3,7L) has 5 irreducible representations which are
denoted by A � A� E, T, and Tz. The dimensionalities of these representations
are 1, 1 . 2, 3 and 3, respectively . A, is the trivial representation and T, the vector
representation. The transformation matrices for the other cases can be inferred
from table 1 .
The irreducible representations of the full cubic group 0(3, Z) are characterized

by an irreducible representation of the special cubic group and the parity P= ± 1
which fixes the transformation behaviour of the states under reflections r -> -r .
These representations will be denoted by A;, A-,, and so on .

Representations of the cubic group arise naturally from representations of O(3).
To discuss this connection in more detail, consider the vector space rt of all
homogeneous harmonic polynomials in r E fib ; of degree l. The spherical harmon-
ics ,fir�,(r) with m = -1, -1 + 1, . . ., l form an orthonormal basis in this space.
Under the action of O(3) they transform according to the irreducible representa-
tion with angular momentum 1 and parity P= (-1) r. Explicitly, for any RE O(3)
we have

r
u~

	

(1n»( Rr)

	

r)

where the representation matrices D;;;,-(R) are unitary .
These matrices also define a representation of the cubic group O(3, ZL) which is

reducible in most cases. For 1= 0, . . ., 4 the decomposition into irreducible repre-
sentations is given by

The corresponding basis elements of r, are listed in table 1 .
In general we define N(ï, l) to be the multiplicity off the irreducible representa-

tion T' in the decomposition of the representation space :r, . The subspace

0=A I , (5 .2a)

1= Tj , (5 .2b)

2 =E+®Tz , (5 .2c)

3=A2 ®Tj ®Tz , (5 .2d)

4 =AI ®E''®Ti ®TZ . (5 .2e)
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TAm.r? 1
Decomposition of i t into irreducible representations l' of the cubic group

associated to the tith occurrence of I' is spanned by an orthonormal basis

IF, a ;1,it>,

	

a= 1, . . ., dim F

	

(5 .3)

[it = 1, 2, . . ., N(F,1)]. We may choose this basis such that the transformation
matrices representing the action of the cubic group are independent of l and n .
For 1` 4 it is straightforward to construct such a basis from table 1 (note that the
polynomials listed there are not orthonormal).

5.2. SYMMETRY PROPERTIES OF THE ZETA FUNCTION

From the transformation law eq . (5 .1) and the definition eq . (3 .30) of the zeta
function one immediately infers that

J
~nert'( R) 2,,,,,(s ; q2 ) =21 (s ; q2 )

	

(5 .4)

for all RE Oß,71) . By going through the list of all group elements, we can thus
obtain a set of linear relations between the zeta functions. In particular, we may
choose R to be one of the reflections

I l' Basis polynomials Range of indices

0 A, 1

1 T1 1, i=1 .2.3

2 E' (r .j)=(1 .2),(2 .3)
2 V (r .j)=(1,2).(2,3) .(3,1)
3 A : r,r_r,

3 Tj ~ , ,r; - ;r - r, i=1,2,3

3 T_ r,(r,2 -rk2) (t,j.k)=(1,2,3),(2,3,1),(3,1 .2)

4 A, r 4, +r;+r ,'- r 4

4 E' ra-r;; - r=(r,=-r,=) (i .j)=(1 .2) .(2.3)

4 T, r,r,3-r,'r, (i .j)=(1 .2).(23).(3.1)

4 T_ r,r,'+r;'r,-',r-r,r, (r,j)=(1,2),(2,3).(3.1)

r --r--r, r~(r,-rz,r3), (5 .5)

or a rotation by -rr/2 about the 3-axis. These transformations yield

Z,rrr(s;
q-'

) = 0 if I is odd, (5.6)

2 i»r(s ; q') = Z,-rn( s, q
,
), (5 .7)

21�,(s;q 2 ) = 0 if tit is not a multiple of 4 . (5 .8)
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There are further relations which are obtained by performing rotations about the
other axes. For 1 < 8 they are

5.3. REDUCTION OF THE MATRIX

For general angular momenta l, the number of linearly independent components
of the zeta function Zr �,(s ; q2 ) is equal to N(A; ,1), the number of cubically
invariant homogenous harmonic polynomials of degree 1.
We finally note that the symmetries (3 .35) and (3 .36) of the matrix

	

area
straightforward consequence of eqs. (5 .6)-(5 .8) and the known symmetries of the
Wigner 3j-symbols.

The Green function G(r ; k'-) is invariant under cubic transformations and its
derivatives hence satisfy

r
Gr�,(Rr ;k2)= r. D�l,�(R)GI�,-(r ;k-')

	

(5 .14)

for all R e®(3,71). From the expansion (3 .28) in spherical harmonics we thus
conclude that

(5 .15)

In other words, the matrix

	

transforms covariantly under the action of the
cubic group.
To exploit this property it is advantageous to pass to the operator formulation

introduced in subsect . 4.2. The representation matrices D;;;,(R) define an opera-

'Z2o( s ;q2) = 0, (5 .9)

2a4(s;q2)=
70

"Z4o
(
s ;g 2), (5 .10)

14

44(s;q2)=-
14
2 en (s ;q 2),

(
5.11

)

154
2x4(s; q2) = 33 2x )(s ; q2) , (5 .l2)

2 1430=
(5 .13)

66



for D(R) in 7/', in the obvious way. Eq . (5 .15) then simply means that D(R)
commutes with the operator M. A partial diagonalization of M can thus be
achieved by diagonalizing D(R), i .e . by projecting on the irreducible representa-

tions of the cubic group.
To this end we first note that //, can be identified with the space of all

harmonic polynomials of degree l S A through the mapping

where

as in sect . 4.
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CE ï/, --~ E

	

F, t'/rnlrnr(r)
1=o --f

(r,a ;l,nIMIr',a' ;IV)=Srf°5 «,...//(r)f» .r~r (5 .17)

5.4 . TWO-PARTICLE STATES WITH DEFINITE CUBIC SYMMETRY

(5 .16)

In this way the basis (5.3) becomes a basis of //, . It now follows from Schur's
lemma that

The reduced matrix .//(r),� ., .�. occurring here is given explicitly in appendix E for

all angular monienta /,I'-< 4 .

Since the Hamilton operator H, is rotationally invariant, its eigenstates in finite
volume come in multiplets which transform according to the irreducible represen-
tations of the cubic group . The energy spectrum in the subspace associated to a

particular representation r can be determined straightforwardly by going through

the steps in sect . 4 once more, keeping track of the transformation properties of

the wave functions constructed.
As a result one finds that a non-zero energy value E = k-/2p, belongs to the

spectrum of H, in this sector if and only if one of the fû.lowing conditions is

satisfied .
(a) k > 0 is a solution of

det[e2'n - U( r) I = 0,

	

(5.l8)

u(r)=(M(r)+i)/(M(F)-i) . (5 .19)

The operators occurring here are linear transformations of the space 71-,(r) of all

vectors e with components

t'f� > 1=0, . . .,A, n=1, . . .,N(r,l) .

	

(5.20)

In particular, M(r) denotes the operator with matrix elements .11(n,, ., and

e 2,61]1"

	

2,a
'
(F)

= e

	

1,1" (5 .21)
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(b) k = 2-rrjnl/L for some non-zero integer vector n and eq . (4.15) has a
nontrivial solution wn which transforms according to the representation I' under
cubic rotations/ reflections of the momentum p.

(c) -ik > 0 and k is a solution of

where

6.1 . BASIC EQUATIONS

where

det[e'-'°- V( F)] =0,

	

(5.22)

V(T)=(M(I')+1)/(M(T)-I) .

In addition to the energy values covered by the above rules, it is possible that
E=0 belongs to the spectrum of the Hamilton operator (cf. appendix G).

6. Energy spectrum in the A; sector

We now specialize to the case l'= A; and discuss conditions (a) and (b) in more
detail for A < 6, using the tables in appendix E. The other symmetry sectors can be
worked out in the same way without difficulty.

The dimension of -;7/ (A',) is equal to the number of cubically invariant har-
monic polynomials with degree less than or equal to A. For A < 4 the only such
polynomial is the constant and //,(A ;) is hence one-dimensional in these cases.
Eq . (5 .18) then reduces to

e2,s � = man +1
m�� -i

where m�. is a shorthand for the matrix element

	

From table E.2 we
have

1

	

__kL
mon = ;3/_2201)(1 ; q2),

	

9

	

27r ,

	

(6.2)

so that eq. (6.1) coincides with the result quoted in sect . 1 .
When A is equal to 4 or 5, there are two invariant harmonic polynomials and eq .

(5.18) becomes

The matrix elements m�4 and m44 are given in table E.2.

(5 .23)

(
se2,,5,,

~~-u(H,)(e
2rs
a_u44)=uo4,

1,2 (6 .3)

U(H) - [(MOO +')(M44 - t) -mn41IA (6 .4)

u44 =[(MOO - î)(m44+i) -mâ4]14 , (6 .5)

u�4 = u4o = -2imo4/4, (6 .6)

4= (MOO
- i)(m44 - i) -mû4 (6 .7)
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Let us now briefly consider condition (b). The independent solutions wP of eq.
(4 .15) with

are not difficult to find . We first note that !',, decomposes into disjoint orbits
Tk . . . . . .rk under the action of the cubic group. The invariance of wP is equivalent
to the statement that

6.2. QUALITATIVE DISCUSSION

WRp=wp	forall R (=- 00,Z)

	

(6.8)

These tensors are invariant under cubic transformations, in the same way as the
zeta function is. In particular, for 1 < 6 there are only two independent compo-
nents, y;�) and y4�.

Since y' , is just a constant times the number of points in rk, it is clear that eq .
(6 .10) has a non-zero solution, for A < 4, if and only if there are at least two orbits .
The smallest value of q where this happens is 3. For A=4 or 5 there are two
conditions to be satisfied . This will always be possible if there are more than two
orbits, a situation which occurs at q = 41 for the first time . There are in fact no
other solutions below this value of q, as one may easily check by inspection.

We first assume that A< 4 and discuss the solutions of eq. (6 .1). To this end it is
useful to introduce the angle O(q) through

e-," =
m," + i

0(0) = 0,

	

(6.12)
M(H) - i

and the requirement that it depends continuously on q. O(q) is a smoothly rising
function which passes through a multiple of 7r when q = In I for some integer
vector n (see fig. 1). At very small q it is proportional to q; .
Eq . (6.1) can now be written in the form

nar- S,) (k) ° ¢(q),
kL
2zr

(6.13)

where n is an arbitrary integer . If we fix L and suppose that SJk) is known, the

wp = c, for all p E rk' (6 .9)

and some constants c, . Eq. (4.15) thus becomes

v
E C' ytn,=0 for all I-< A,

)
(6 .10)

where

yt" ,, = E ln»( P) - (6 .l1)
Pl["
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4Tt

3Tt

2Tt

Tt

t144 = 1 .

4

Fig. 1 . Graphical solution of eq . (6.13) for n = 2 and fixed L. Eq . (6 .13) is satisfied at the point where
the curves cross .

solutions of eq. (6 .13) can be determined graphically. This is illustrated in fig . 1 for
n = 2 and a fictitious scattering phase 3n(k). By running through all values of 11,
one obtains the complete spectrum in this way, as far as it is described by rule (a).

For A =4 or 5, eq . (6.1) is replaced by eq. (6.3) which is not as easy to analyse.
Let us first look at this equation for the case b4(k) = 0. There are two types of
solutions. One class of solutions is such that 11 44 is not equal to 1 . We may then
divide eq. (6 .3) by the factor 1 -1144 and find, after some algebra, that the
condition reduces to eq . (6 .1). This is, of course, the expected result .
The other type of solution occurs when

(6.14)

The unitarity of the matrix ti ll , then implies that u04 vanishes, i .e . a solution of eq .
(6 .14) automatically yields a solution of eq . (6 .3). It is easy to check that eq . (6 .14)
holds if and only if k is singular and the number of orbits T,' is greater than 1 . The
solutions of condition (b) for A < 4 thus become solutions of eq . (6 .3) when
A = 4,5. This neatly matches with the fact that condition (b) is more restrictive for
A=4,5.
Let us now turn to the case where 54(k) does not vanish. Especially at low

energies the higher scattering phases are often very small (modulo a) and it is
then a good approximation to treat 54(k) perturbatively. For the levels that have
formerly been described by eq. (6 .13), the first-order c6rrection is obtained from

z
n7r-So(k)=0(9)+o-(9)tan54(k),

	

Q=
mo4 2 .

	

(6.15)
1 +M2
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6

4

2

Fig. 2. Plot of the sensitivity Q(q) [eq . (6.15)].

As shown by fig . 2, the sensitivity a(q) is a function with sizeable variation. In
particular, for q -> 0 it grows proportional to 1 /q ° . This singularity does not
normally cause any problem since it is cancelled by tan S4(k) which is of order q9
at small q. For all other values of q the sensitivity is finite, although it may be
strongly peaked when qz passes through an integer.

If the scattering phase shift S,(k) is not close to an integer multiple of 7r, the
spectrum must be determined from eq . (6.3) without any approximation. In this
case there is no reason to expect that the result will be approximately equal to the
spectrum computed by solving eq . (6.1).

Let us finally discuss the inverse problem of how to extract the scattering phases
if the energy spectrum is known. In general this will be quite impossible, because
the energy levels in a given sector depend on all scattering phases S,(k) that are
not excluded by symmetry . But as is often the case, a single scattering phase
dominates in the channel considered, and in these instances a computation is
feasible .
Let us assume, for example, that S()(k) dominates in the A, sector (this will

always be the case at sufficiently low energies). We may then use eq . (6 .1) to
compute So(k) at those energies where an eigenvalue has been found. To check
whether the contribution of S,(k) is indeed negligible, we can perform the
following two tests.

First, from table E.2 one infers that S4(k) is the lowest scattering phase on
which the spectrum in the T, sector depends. Any observed level with these
quantum numbers hence allows one to compute S4(k) through an equation
analogous to eq . (6.1) (assuming S4(k) dominates in the T; sector). After that the
data can be inserted in eq . (6.15) to estimate the error on So(k) implied by our
ignorance of the higher scattering phases.
Another way to control the applicability of eq. (6.1) is to vary the box size L. If

we fix k the energy E=k2/211 coincides with an energy eigenvalue for a sequence
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of values of L, including say L= L, and L=L2. Accordingly we have two values
q� q2 of q, both ofwhich determine the scattering phase S�(k) through eq . (6 .1). If
the results of these two calculations differ significantly, it is clear that the
contribution of the higher scattering phases cannot be neglected. We may then
obtain an improved estimate for S,,(k) and a first value for 84(k) by inserting
q =q� q2 in eq . (6.3) and solving for the scattering phases.

6 .3 . LARGE-L EXPANSION

In ref. [3] it has been shown that the low-lying energy levels in the A; sector can
be expanded in a power series of 1/L with coefficients related to the scattering
phase St,(k).

It is almost trivial to derive these expansions from eq . (6 .1). We first note that
the curve representing 27r - S�(k) in fig . 1 becomes flatter and eventually ap-
proaches 27r when Lgoes to infinity . The crossing point is hence driven to q2 = 2.
In general the solutions of eq . (6 .13) satisfy

q2

	

= n2+0(1/L),
L - . x

(6 .16)

where n is some integer vector.
For the levels described by eq . (6.1), the corrections to the leading term (6.16)

can be computed as follows. We first rewrite eq . (6.1) in the form

7r3/2q
tan so(k)=

	

2

	

.

	

(6.17)
_Z,x,(I ; q

After expanding the left- and right-hand sides of this equation in powers of k and
q- In I respectively, the desired expansion of q2 in powers of I/L is obtained
straightforwardly by comparing coefficients .
As discussed in sect . 2, the behaviour of the scattering phase at low energies is

given by

tan so(k) =a�k +b�k; + 0(k5).

	

(6.18)

To expand the zeta function around q2 = 1:'-, we define a subtracted zeta function
through

Zno(s;n2 ) = lim { 47r.Z,n,(s;g2)-N(n2-9(6.l9)
q-1.1

where N denotes the number of integer vectors n' with In'I = In l . This function
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coincides with the zeta function introduced in ref. [3]. Now it is obvious that

N
47r

	

,n(1 ;92) =

	

, +Zoo(l ;n2
)+(q

2
-n2) Zrn)(2 ;n

2 ) +
n~ -

	

. . .,

	

(6.20)
q -

and for the asymptotic solution of eq . (6 .17) one then finds

qz = n '- -Nt{1+tZ��(1 ;n 2)+12 1
Z oo(

1 ;n 2 ) - NZ,x,(2 ;n')1)+O(1/L4) .

In particular, t = u�/7rL for the lowest level* n = 0.
The expansion (6.21) completely agrees with the formulae which have been

derived in ref. [3] on the basis of an all order analysis of perturbation theory. The
results obtained here show that the series is actually valid on a non-perturbative
level and, in particular, if there are bound states.
So farwe have assumed that the contribution of the higher scattering phases can

be neglected at large L . The perturbative analysis of ref. [3] shows that this is
correct up to terms oforder L - ' in the expansion (6 .21) . Actually, the phase shifts
S,(k) with l > 4 perturb the spectrum only at a much higher order. This can now
be proved from eq. (6.3) which may be written in the form

f

	

mô4

	

tan 84

	

l

	

1
II+-

J
tanS �=- . (6.23)

m �� 1 - m44 tan S4

	

Moo

For L -> -, the square bracket is equal to 1 plus a term of order L - ' ° or L - ",
depending on whether n vanishes or not. The expansion (6 .21) accordinglyreceives
a contribution from ô4(k) at order L- " if n = 0 and L ` y in all other cases. This
underscores our general expectation that the spectrum in the A; sector is
dominated by the S-wave phase shift at low energies.

*When the scattering length a, ) is positive the state with n =0 has negative energy at large L and
thus falls under condition (c). However, for purely imaginary k eq . (5.22) is equivalent to eq. (6.17),
if we insert the analytically continued scattering phase S�(k) and if we keep away from the zeros of
nt( ,) - i . This latter condition is satisfied for small q, and the large L expansion of thelowest level is
hence given by eq . (6.21) independently of the sign of a� .

(6 .2l)

The expansion parameter t occurring here is defined through

tan So(k)
t -

)
(6 .22)

7rkL R=2-iniit.
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7. Two-particle states in quantum field theory

As compared to the quantum mechanical model studied so far, there are some
important new physical effects in quantum field theory which must be taken into
account. The aim here is to discuss these and to explain how the relations between
the scattering phases and the spectrum in finite volume can be carried over . We
assume throughout that there are no massless (physical) particles in the theory
considered. This part of the paper draws heavily on earlier work, especially refs .
[1-3,8], and the reader is thus referred to these publications for further details .

7.1 . POLARIZATION EFFECTS

It is well known that a stable particle in quantum field theory polarizes the
vacuum . The associated polarization energy is unobservable in infinite volume,
since it just adds to the rest mass of the particle. But the surrounding cloud of
virtual particles gives a finite extension to the particle which could be measured, in
principle, by performing scattering experiments with weakly interacting test parti-
cles . In a finite volume with periodic boundary conditions the cloud is squeezed
and the particle's rest mass hence depends on L. This effect has been extensively
studied in the past (a partial list of references is [1,2,6,7,151; for an introduction
to the problem see ref. [16]).
The basic result is that the finite size mass shift goes to zero exponentially in the

large L limit. What happens is that the finite extension of the system is felt
through processes where a virtual particle is exchanged "around the world" . The
amplitude for such a process is exponentially suppressed, because the particle is
required to travel a distance of order L along a classically forbidden path in
space-time .
Not only the particle masses, but also form factors, low-energy coupling con-

stants etc . are subject to volume-dependent polarization effects. In all these
instances the underlying physical process is the same, and the associated finite size
corrections are exponentially suppressed at large L [6,7,171 .

It is quite obvious that a discussion of two-particle states and scattering wave
functions in finite volume is only meaningful if polarization effects can be ne-
glected . In the following this will always be assumed . Essentially what one requires
is that the box is large enough to contain two particles together with their
polarization clouds . In QCD one expects that values of L greater than about 3 fm
will do . But there are no general rules as to which is the minimal acceptable box
size . In each case one has to carefully study the properties of the one-particle
states before one can proceed to the two-particle situation .

7.2. IDENTIFICATION OF TWO-PARTICLE STATES

In quantum field theory there are states which describe an arbitrary number of
particles . Barring exceptional cases, the particle number is, however, not conserved
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in scattering processes . Particle counting is hence only possible if the particles are
far apart from each other so that their interactions can be neglected . It is therefore
not totally obvious what exactly one means by a two-particle state in finite volume .
To answer this question let us first consider the theory in infinite volume and

suppose that a particular symmetry sector in the space of physical states has been
selected. Specifically we are interested in states with zero total momentum,
definite cubic symmetry and fixed internal quantum numbers, such as baryon
number, G-parity and so on. If we look at the energy spectrum in this sector,
starting from the bottom, there will first be a number of discrete energy values
corresponding to the vacuum and the stable one-particle states, as far as they have
the required quantum numbers . At some energy W, the continuous part of the
spectrum begins . Initially it arises entirely from two-particle scattering states .
Then, at some energy W=, inelastic processes set in and the spectrum receives
contributions from many particle states.

It is clear from these remarks that all states in infinite volume with energy W in
the elastic region W, _< W < W, are two-particle states . In a large but finite volume
the continuous part of the energy spectrum is replaced by a densely spaced ladder
of discrete energy eigenvalues . Some of these energy values lie in the elastic region
(or just a little below if the interaction is attractive) and the associated energy
eigenstates are thus referred to as the two-particle states in finite volume . Note
that this merely defines what a two-particle state in finite volume is. Nothing is
implied on their properties at this point except that they are certain energy
eigenstates in a particular symmetry sector.

At energies above the inelastic threshold, it is in general impossible to tell the
number of particles in a given energy eigenstate in finite volume. The problem is
that such states describe stationary scattering processes on a torus, and in these
reactions the number of particles may not be conserved if the energy is sufficiently

high .

7.3 . TWO-PARTICLE ENERGY SPECTRUM

We now proceed to discuss the relationship between the scattering phases and
the energy spectrum of two-particle states. For simplicity we shall only consider the
case of two bosons with spin 0 and mass tn, whose dynamics can be described by a
simple scalar field theory of the 0''-type. We shall also take it for granted that the
reflection symmetry 0 - -0 is unbroken and that the single-particle states are
odd under this transformation. It is not hard to generalize the results to other
situations such as the pion-nucleon system .

In infinite volume the elastic scattering amplitude T can be decomposed into
partial waves and the scattering phases S,(k) are then defined in the usual way (cf.
refs . [2,3]). An important result obtained in refs . [3,81 is that there exists an
effective Schrödinger equation which yields exactly these scattering phases when
one works out the associated scattering solutions.
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Explicitly, the stationary effective Schrödinger equation in the centre-of-mass
frame reads

-
2

d(r(r) + i

	

d;r'Ut,-(r,r')lr(r') =EO(r),

	

(7.1)
Ft

where the parameter E is related to the true energy W of the system through

W=2 iir+inE .

	

(7.2)

The "potential" Uc(r, r') is the Fourier transform of the modified Bethe-Salpeter
kernel ÛE(k, k') introduced in ref. [3]. It depends analytically on E in the range
-in < E < 31n and is a smooth function of the coordinates r and r', decaying
exponentially in all directions*. Furthermore, the potential is rotationally invariant
so that one can pass to the radial effective Schrödinger equation. The correspond-
ing regular solution behaves exactly as in quantum mechanics, except that the large
r form (2 .10) only holds up to exponentially small corrections, because the
potential does not strictly vanish for r greater than some radius R.
Up to polarization effects, the spectrum of two-particle states in finite volume is

also described by the effective Schrödinger equation (7.1). periodically extended in
the obvious way. An almost complete matching with the quantum mechanical
model studied previously has thus been achieved. The essential differences are
that the potential depends on E and that it does not exactly vanish for sufficiently
large r . The first of these is not disturbing at all since the relation between the
finite volume spectrum and the scattering phases is obtained at fixed energy.
To get around the second difference, we multiply the potential Ut,(r, r') with

some smooth cutoff function which vanishes if r or r' is greater than some large
radius R and which is equal to 1 if both r and r' are smaller than say 0 .9R. As a
result of this modification of the potential, the finite volume energy levels and the
scattering phases change by terms vanishing exponentially for large R . For the
analysis of the previous sections it was only required that L is greater than 2R . In
other words, we may choose R to be of order L and the errors induced by the
cutoff are then exponentially decreasing with L .
We have thus established

Theorem 7 .1 .

	

Up to terms which vanish exponentially at large L, the relationship
between the scattering phases and the two-particle spectrum in finite voltane is exactly
the saine as in quantian mechanics. We only have to replace the nose-relativistic
enemy momention relation E = k'/ 211 by the relativistic formula W = 2 m' + k' .

} From ref . [3] it only follows that the potential falls off faster than any inverse power of r and
r'. The more rapid exponential decay is obtained if we replace the cutoff function h(k) intro-
duced in sect . 3 of ref. [3] through an energy-dependent analytic expression such as h(k)=
exp((mE -kZ)/mZ].
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The conditions for energy eigenstates listed in subsect . 5.4 (and sect. 6) then carryover
literally.

This result supersedes theorem 3.4 of ref. [3] . It applies to any symmetry sector
and to all levels in the elastic region, as discussed above. In particular, what has
been said in sect . 6 about the relation between the scattering phases and the
energy spectrum in the Ai sector remains valid in quantum field theory . We
should of course not forget that there are exponentially small corrections stemming
from polarization effects and the tails of the effective potential U,.(r, r'). But the
numerical experience gained so far shows that these do not cause any serious
problem (6-8]. One only has to make sure that the particles studied fit into one's
box without being squeezed.

8. Concluding remarks

The connection between the scattering phases and the spectrum of two-particle
states on a lotus established in this paper can be expected to be useful in many
respects. In particular, a computation of the scattering phases through numerical
simulation is certainly feasible in simple bosonic theories and perhaps also in
lattice QCD, although here it seems that progress in simulation algorithms and
hardware would be required for reliable results .
The most explicit formulae for the spectrum in finite volume have been obtained

under the assumption that the scattering phase shifts 5,(k) with I >, 5 are negligi-
ble in the energy range of interest . It would not be difficult to generalize these
results so as to include the contributions of the higher scattering phases up to
some maximal angular momentum A _> 5. One only has to work out the matrix
ArQ, for

all
JF,<A, and this can be done algebraically on a computer,

starting from the analytic expressions in subsect. 3.4.
Some of the most interesting physical effects in QCD are associated with the

occurrence of unstable particles such as the p meson and the J(1232) resonance.
Generally speaking the problem with resonances is that they do not correspond to
some particular eigenstates of the Hamilton operator in any simple way. But it is
known that My give do to a characteristic pattern in the finite volume energy
spectrum around the resonance mass [18,16] . With the formulae derived here it
will now be possible to work out in further detail what exactly these effects are.
The hope is that on the basis of this analysis a practical method can be found
which allows one to compute the resonance mass and perhaps its width in an
unambiguous and correct manner .
The methods developed in this paper could also be applied to compute electron

bands in regular crystals. In particular, the so-called muffin-tin potentials lead to
eigenvalue problems of the type considered here, for wave functions on the
Wigner-Seitz cell with Bloch periodic boundary conditions . Such a calculation
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would be quite effective, since the influence of the angular momentum cutoff A on
the spectrum can be proved to go to zero faster than any power of rl '.

I have benefitted from stimulating discussions with Uwe Wiese, and I would also
like to thank Pierre van Baal for his enthusiastic and useful comments.

Appendix A

In this appendix theorem 2.1 is proven by showing that the function O(r),
initially defined for all r E S1, can be smoothly extended to a unique periodic
eigenfunction of H.

It is obviously sufficient to specify the extension in the ball r<L/2. The
spherical components 0,�,(r) of the function to be constructed solve the radial
Schrödinger equation in this range. Taking eq. (2.22) into account, it follows that

0n�(r)=b,� ,ill( r;k)

	

for all r<L/2 .

	

(A.1)

The crucial step in the proof now is to show that the series

def x

	

t
+ff(r) _ ~

	

~ Yna(B,rp)+~r~~~(r)
t=o n- -t

Lemma A.I .

	

Forany fixed radius r r and sufficiently large l, the regular solution
it,(r, k) of the radial Schrödingerequation is non-negatire and monotonically rising in
the interval 0 < r < rr .

Proof.

	

It is well known that the function

is absolutely and uniformly convergent for r < L/2. If true the so-defined function
tp(r) solves the Schrödinger equation in the sense of distributions, and by elliptic
regularity, we then conclude that it must be a smooth eigenfunction of H. We have
thus found the desired extension, and since the construction is unique, the proofof
the theorem is complete.
To establish the convergence of the series (A .2), we make use of the following

t'r(r ; k) =r-r�r(r ;k)

	

(A.3)

is a solution of the integral equation

c,(r ;k) = 1 +

	

rds
21
s

	

(s/r)-1+ 1

	

211[k _2N-V( s)j t. t(s , k) (A .4)
0 +I
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(see e.g . ref. [14]). For any continuous function w(r) on the interval 0<r< r� , let
us define the norm

that

for some constant c, independent of 1 . Provided 1>c, it follows from this
inequality that

1w, - Ills

	

C,

	

.

	

(A.7)

and t-,(r ; k) is hence close to I for sufficiently large l, uniformly in the interval
0 < r < r�. in particular, the solution u l(r ;k) is non-negative in this range.
We still have to prove that tt,(r ; k) is monotonically rising. From

def d

	

`
rt " 1 (r ;k) _ -Js ds(s/r)'t +, [k`-2uV(s)]r1(s;k)

	

(A.8)

and the boundedness of rt (r ; k), one infers that there exists a constant c, such

for all l. The square bracket in the equation

Ili.; II < c,

	

(A.9)

u;(r;k)=1r1- [ct(r;k)+(r/1)c,(r;k)]

	

(A.10)

therefore converges to 1 for 1- -, uniformly in the interval 0 < r < r�. in particu-
lar, u;(r; k) is non-negative for sufficiently large l and ul(r ; k) is hence monotoni-
cally rising in this range.

The convergence of the series (A .2) is a simple consequence of the lemma. We
first remark that absolute convergence is guaranteed for all r with R< r < L/2,
because in this range we are just expanding a given smooth function +1(r) in
spherical harmonics . The lemma implies that 1411� ,(r)1 is a monotonically rising
function of r for sufficiently large l and all r <L/2. The convergence properties
of the series therefore improve as we make r smaller, and it is hence absolutely
and uniformly convergent in the whole range 0 < r < r� for any r�<Ll2.

llwll= sup jw(r)! . (A.5)
o«-"

From eq . (A .4) we then deduce that

Il 1 "1- 11l s 1` Il 1,1 11 (A .6)
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The action of the differential operator Y,�,W) on spherical Bessel functions is
described by the identities (3 .16) and (3.32). The aim here is to prove these
relations, using some well-known properties of the Bessel functions and the
spherical harmonics.
To this end we need

holds.

Appendix B

Lemma B.I .

	

Forany stnooth function f(r) and all r > 0 the identity

7(rrr(F)f(r)=1(rrt(r)(r dr)tf(r)

	

(B.1)

Proof.

	

Differentiation is a local operation, and it is hence sufficient to consider
the case where f(r) is supported on a compact interval on the positive real axis .
The Fourier transform

f(p)=fd're-""'f(r)

	

(B.2)

is then smooth and rapidly decaying for p -> x. It follows from this remark that

Eq . (3 .16) is an immediate consequence of the lemma. We only have to set
f(r) =n�(kr) and to recall that the identity (B.5) also holds if we replace jl(z) by
n,(z) on both sides of the equation.

~(wr(F)f(r)=f
d
;p2erPrtllLra(p)f(p), (B .3)(77r )

and after inserting the expansion (3 .37) we get

.~Inr(F)f(r)=Ylm(e, ~p )
(_1)r

fxdppl+2jl(prfp) . (B .4)
2Tr - o

The identity

1 d I
jl(z) =zl(_ dz) jo(z), (B .5)

z
now yields

1 d I I
~brr(F)f(r) =.`%̀Irrr(r)( I. ) 4,xdpp2jo(pr)f(p) . (B .6)

dr 2rr-'
The integral in this formula is independent of I and hence equal to f(r) .
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To prove ed. (3.32), we begin by noting that

Y,,(O, ~p)j,(kr)

	

_01

	

d0A. d~p4 sin 0A Yjo& .~pk ) e"'

	

(B.7)
47r

	

f
[cf. eq. (3 .37)] . After acting with the differential operator /, (r) on this equation,
one obtains an integral with an integrand proportional to the product of two
spherical harmonics. It is a standard result of the representation theory of the
rotation group that such a product can be expanded according to

I

	

), (B.8)YJ (0 .,F)Y

	

E

	

E

	

i)'

	

~P" (O"P) = 1/4-

	

(-

where the tensor C_ , is given by eq . (3.33) (see e.g . ref. [13], eq . (CID).
When this identity 6 inserted in the integral . one may use eq. (B.7) again and one
then arrives at eq. (3 .32), the desired result .

Ap ndix C

The zeta function 2, (s;q 2) introduced in subsect . 3.4 is a meromorphic
function of the variable s in the whole complex plane. Its value at s = I is of
particular interest in this paper. The aim here is to derive an integral representa-
tion for 2, ( 1 ;q2), which is suitable for numerical evaluation .
Mall t>Owd reR3, the heat kernel .110,0 of the Laplace operator on a

torus with L= 27r is defined by

,71(i .r) = (27r)-3

	

E

	

exp{inr - tn2 } (C .1)

nE_

An alternative representation of the kernel is

and its derivatives

1
t, r) = (47rt)-312

	

E

	

exp

	

-
4t(r

- 2T,-n)2

	

-

	

(C.2)

The series (CO is rapidly convergent when t is large, while (C .2) is useful for small
t . In addition to the full heat kernel, we shall also need the truncated kernel

r) =,e(t, r) -3 _
- (21r) Y, exp(inr tn 2) ,

(C.3)

MA

1t, r) = ( -j) V) .;7/'( t, r) . (C.4)
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The sum in eq. (C.3) runs over all integervectors n in the specified range and the
cutoff A > 0 is chosen such that A2 > Re q2.
As long as Re2s > l + 3, it is obvious that

3
(S ;

	

9/

	

-s (27r) x

	

_
lm g2) =

	

y, Jlrn(n)
ln2-q2

)

	

+
h(S) ~0

dit' -l era .î'h,(1,0)

	

(C .3r)
Inl<

\
A

is a valid representation of the zeta function . Note that the integrand vanishes
exponentially for large t. For t -> 0 the leading asymptotic behaviour is

era .%{lm(t+®)=almt- ;/2+®(t-1/2),

	

alma-Slllsna0(4n)

	

(C.t))

It follows from this observation that

2lrn(s; g2) - E fl~n( I=)(n2- g2) -s
Inl<A

+ (27r)

	

~

	

alm

	

+fl dtt`jerq .!%ua(t+®) - alrnt-312 1
r(s) s-3/2 00

+IxdIts-1 etq _
~

A
nr(t,0)( (C .7)

JJJI

for all 1 and all s in the half-plane Re s > 1/2. In particular, for s = 1 we have

('rna~I ;q2)= E %na(n)
(
n2- q2)

-1

Inl<A

+(27r)3 fxdt erq .z'A

	

t o

	

sl llsna(1

Jll

	

I

	

lm(

	

,

	

) -
(47r )2t3/2

~, (C .8)

which is the desired integral representation .
The integral in eq . (C.8) can be computed numerically using standard routines.

To evaluate the integrand, one makes use of the series (C.1) and (C.2), depending
on whether t is greater or smaller than 1 . The only potential problem is that a
substantial loss of significance can occur when adding up all contributions to the
zeta function, especially for large q2. Working with extended precision numbers, it
is however straightforward to obtain accurate results for say l < 8 and IqI <3.
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t~p

	

ndlX D

In this appendix the identity (3.31) is established . The notation introduced in
appendix C is taken over. For dimensionafl reasons, gt�, must be equal to some
function of et divided by L. In the following we choose units such that L=2%.
We shall first compute the coefficient

To work ouE the short distance beha:viour of the Circen function, it is advantageous
to pass to the heat kernel representation

From the properties (C .1}~(C .3) of the heat kernel one infers that

wardly and one then obtains

where the dots stand for a function which is smooth for all t , 0 and all r in a
neighborhood of the origin . Next sve note that

dt 4rt ;~'

	

I ,	1
(

	

)

	

exp --y._

	

__
u

	

~ 4t } 4rrr
(D.4)

Subtracting this integral from eq. (D.2D, the limited r -> 0 can be taken straightfor-

This expression matches with the integral representation (C .8) of the zeta function
..Z';x,(1 ; g2) and we have thus proved eq. (3.31} for l =0.

For l , 1 the starting point is

gt �, =(21+1)!!lim(kr) -~IdBd~psinBYt�,(B,cp)~G(r;k-) . (D .6)
r --~b



572

	

.M. Liischer / Two-particle stares ort a fonts

After inserting the heat kernel representation (D.2) for the Green function, the
integral over the angles can be performed and the limit r-0 be taken. The
singular term (D .3) is annihilated by the integration, because it is rotationally
invariant . In all other terms we may use the identity

lim
O
r-t Jdadtpsin0Y1�,(01tp)x e' Pr =

(21+1)11 (P) >

	

(D.7)

which is a straightforward consequence of eq. (3.37). In particular, together with

P)x=~/1JP'), P'=(PI,-P2,P :)>

and the cubic symmetry of the momentum lattice, eq . (D.7) leads to

4ré
lim r-1I dadlpsin0Y1�,(0,y~)*.xA(t,r) ° (2l+ 1)11"y1"'(l,0)

.	(D .9)

As a result of these calculations one obtains an integral formula for gr� ,, which
turns out to be identical to the right-hand side of eq . (C.8) up to an overall factor,
thus proving eq . (3 .31) .

Appendix E

4ri1

(D.8)

According to eq. (3 .34) the matrix element

	

is a linear combination of
the zeta functions

dd {r ;/,(2j+ 1)'12g1 +, } - ~ 2jj1,g2)

	

(E.1)

with coefficients given by eq. (3 .33). The Wigner 3j-symbols occurring in this
expression can be computed algebraically using Racah's formula (see e.g . ref. [13],
appendix C). Table E.1 contains a complete list of the independent matrix
elements with l, l' < 4. Matrix elements which vanish because of the selection rules
(3 .35) have been omitted from table E.1, and only one of the index combinations
related through the symmetries (3.36) has been included .
To compute the reduced matrix elements ..11(F)1�,1.� . we have to make a choice

of basis I I>, a ; l, n >, as discussed in subsect. 5.1 . It is possible to adopt a phase
convention such that the reduced matrix is symmetric . A complete list of all
independent (non-zero) matrix elements with l, l' < 4 is given in table E.2 . Since
N(T, l) < 1 for these values of l, the counting indices n and n' of the matrix
elements listed are equal to 1 .
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TA13LE E.1

Elements of the matrix for angular momenta 1,1' S 4
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1 m 1' na'

0 0 0 0 7r 1w1
$ 0 1 0 7/ lal

1 I 1 I 7t 1 .1

2 0 2 0 7/ 1 ., + ; ~110

1 2 1 ï%
c_

-1.1 7 ~/111

2 2 2 -2
1; ./7111

7 2 2 2 i/Iql
a

+ '~ï 1i1

3 0 1 t) - , 21 71 1�

3 1 1 I ; 14 77111

3 3 1 -I j 2107110

$ !) 3 !) .7 ,n1 +
~~ÎI ~~ NI +

uel
i, ~1 n0

3 1 3 1 +ÎI~1 10 - Î1~/n0

3 2 3 -2
1 ;
i1~1 10

~u
- 11~1no

3 2 3 2 "
i11.1

.
` 1 '. "40

01
+ ;1 77n0

3 3 3 -i 157/1i1 + ; 157/nu

3 3 3 3 1~1 .1 +ii/1m - n7n0

4 0 (1 1) 3i/1u

4 4 0 0 i; 70 77411

4 0 2 0 - 77~71 411 - i1V57/n0

4 1 2 1 - 17C//411 +ii C6 77nu

4 2 2 _2
7-7
i~ 07 10 + W rd1

4 2 2 2 ui
3 7140 - ì 1 ~7/ n0

4 3 2 -1 7i 427/40 - ;, 427/MI

4 4 2 0 77 14 7141 , + ;; 14

4 0 4 () 7/Ix1 + iiii 7/40 +ü 7/nu +iis 7/xn

4 1 4 1 711.1
+1,

wi7/10 - i1 71 n0 -Mï/ .1

4 2 4 -2 +iâ, 71 xo

4 2 4 2 i71.1 - ~7140 +ii 71 s0

4 3 4 - 1 ieit 7140 - 1'i vf7 ii ~7 1/,u1

4 3 4 3 71 1.. - -.41Z140 + ~
7 71n0 - .'417110

4 4 4 -4 3571 x1t

4 4 4 0 i,;1,î 70 714,, + 1( v'70 .7/(,) + w 70 71 x11

4 4 4 4 7/1 ., + âi.43/-/40 - i7/n +1-7/ .()
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TAULE E .2

Elements of the matrix ll( l'D,� ,,� for angular momenta /J<< 4

Yl� , = i , YI,"( 8,, 1 et, ) ', ,

Appendix F

We here discuss the solutions of the linear equations (3 .25), (4.13) and (4.14). In
particular, it will be shown that a solution with b,�, 0 0 exists if and only if eq .
(4.17) is satisfied .

It is useful to employ an abstract notation in the following. In subsect . 4.2 we
have already introduced the vector space //.t . Three more spaces are needed here.
First note that for any fixed p E FA, the vector y with the components

I=0,1, . . ., .1,

	

(F.1)

is an element of

	

Thesubspace spanned by all these vectors will be denoted by
.5;- and the associated orthogonal projector by P.

The complex vectors w with components wP, pE I'F , form another vector space
//'. The mapping

Y: // , H .f ,

	

(Yw)r�1 =4a E i'Y,I,I ( 0,,,çP,, ) *w,
P-G

(F.2)

l
'

1 1' /i(r),Lt ,

A', 0 0 71 ,.1

A; 0 4 -, 21 7/4,1

A; 4 4 i/ I�, + iia ~/so +
r~r-
11 ~/hSl +

Me .
lü~fNfl

AZ 3 3 7/, 1 � + 11 r/ntl

E * 2 2 +

E' 2 4 37/4o 7i~,

E' 4 4 7l, x1 +
z_4
uwn 7/4n - It~~nu + sa:~~ wo

T~ 4 4 +
I,,_
1i37/411

4
-i7/na1

43ri -.
- lâzi/ul

TI 1 1 77 ��

Ti 1 3 s-~ 21 7/4u

T ; 3 3 77 ��
+

IN
'17 7/714' . +

ligl ~.
iz ~~ nsl

T : 2 2

T, 2 4 - "Fl, C7/411 +iA' 377~11
T, 4 4 m__ -rr/4u

_, vl
+i1 7/ncl

T2 3 3 7/,N, r,_ T, 71 40
nal_
ÎII /MI
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is in general a non-trivial subspace of ï! .
After eliminating r~r�, through eq . (4.14), the equations to be solved can be

written in the compact form

is satisfied.

PBb=0,

	

( F.4)

where b e >~ c is the vector with components br �, . The operators A and B are
defined through eq . (4 .6} and M' denotes Ehe operator associated to the matrix
/~r~~t .r~r . In this language_ the plane wave solutions discussed in subsect. 4.3
correspond to b = 0 and cc~ E ïl t,. There are no other solutions with b =0.
We now proceed to dlSCUSS the conditions for the existence of solutions with

b ~ t). By acting with the projectors P and I - P, eq . (F.5) can be split into the
components

The first of these equations determines sa~ for given b. Since Y is surjective, the
existence of a solution is guaranteed . But in general it is not unique, because the
kernel ï/ ;, may be non-trivial. This degeneracy of the solution obviously corre-
sponds to the possibility of adding a plane evave solution .
We are then left with the problem to determine the solutions of the remaining

equations (F .4) and (F.7). These two equations can be regarded as the components
of

{(1-P)A-KB+iPB)b=0, Ka=r(1-P)M'(1-P), (F .8)

along .T and its orthogonal complement. A non-trivial solution of eqs. (F.4) and
(F.7) thus exists if and only if the condition

In the following we would like to show that eq . (F .9) is equivalent to eq . (4 .17).
To this end we first remark that



576

	

M. Liiseher / Tivopartie% states on a torus

where the operator Nsatisfies PN=NP =N [cf. eqs. (3 .40) and (3.41)]. Further-
more, on the subspace .î all its eigenvalues are strictly negative and N is hence
invertible there.
We now define an auxiliary operator

and deduce that

X=(q2 -n 2)P+(I -P)

	

(FA1)

lim U= lim [(M+i)X] [(M-i)X]-,
q-Iwl q-lal

=[N+(M'+i)(1-P)] [N+(M'-i)(1-P) ]-° . (F .12)

Since N is invertible on .T, the factorization

N+(M'±i)(1 -P)

_ [N+K±i(I -P)] x [I +PN - °PM'(1 - P)],

	

(F.13)

is possible and as a result one obtains

`tlimBl U=P+(I -P)-(1 -P) .

	

(F.14)

We have thus shown that eq. (4.17) is equivalent to

det[e= ""' -P-(1-P)-(1-P)I=0 . (F .15)

If we multiply this equation from the left with det(K - i) and from the right with
det(A - iB) one recovers eq . (F .9). This establishes the desired equivalence since
both factors are neither zero nor infinite.

Appendix G

For some potentials V(r) and box sizes L it can happen that E= 0 is an
eigenvalue of H, . The existence of such eigenstates depends on whether the
scattering matrix has certain properties at low energies . It is the purpose of this
appendix to derive these conditions explicitly .
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For /~ = 0 the general solution off I-¬eimholtz' equation with degree ~l is

where IVI, and F'1»e are arbitraï}' eoefflCtents, The C®edit!®nS for energy eigenStateS
are

t' 7 �Z, l'+t+iI

	

r

	

(_

	

-1)

	

~
btrrt~t!

-
~fl! ~'° i~'E! +

	

~

	

~

	

t,t'i0P'

	

~ �F

	

~

	

' f~l»f,1�t +

	

(CJ"2)
l' = 1 rr,' _ _ !'

(G .3)

if the scattering length ctl , v~tiii,iies (i,e, if ~;; _ (}), these equations have a trivial
solution. We just set

t' t,rr = btr., _ (l

	

for t = 1, 2, . . . . .1,

~t

	

fl

bENI - JYir .

	

~F,
_

~fl -

	

G

The associated wave function t~(r) is constant, and this case thus corresponds to
tüe plane wave solutions discussed in subsect. 4.3.
There can be further solutions with blp, = 0. To obtain these, we ffirst eliminate

f't� , through eq. (G .3) . After Ehat we are left with an equation which determines wl ,
and a linear system of equations for the coefficients bt�, with 1 ,l ,~I . A
necessary and sufficient condition for the existence of solutions of this type then is
that the determinant of the system vanishes.
To express this condition in a compact form it is useful to introduce the space

ii ~ of all vectors i " E if, with r "�� = 0. The matrix . llt; ;,,t'�, . defines a linear
operator M" in i~ ; and two further operators AI' and BE' are given by

7

	

27r

	

-t

	

2,rr

	

t+ 1

jAll t .
Jtm=~
L

)

	

fXt t' lm+

	

rBll t ,

]tm=~L)

	

ßt f'b»'
(G.5)

With the help of these notations, the condition for the existence of a solution with
b�� =0 becomes

If the coefficients a; do not vanish, we may divide this equation by det A° and
then end up with a condition involving the threshold parameters at (cf. subsect .
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2.1). Since M° is independent of L, it is clear that this equation in general has
solutions for a few isolated values of L at most .
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