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Periodic universe and condensate of pseudo-Goldstone field 
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The periodicity of galaxy distribution reported by Broadhurst et al. is connected to the stable condensate ofa pseudo-Goldstone 
field with the periodic distribution of energy density in the radial coordinate. The stability of this state is due to the angular nature 
of the Goldstone degree of freedom as well as to the metric of the closed universe. Alternatively the observed cosmological struc- 
ture can be related to the linear "fragments" of this state which appear to be meta-stable. 

1. The recent red shift survey reported in ref. [ 1 ] 
revealed the striking periodicity in the galaxy distri- 
bution with the period 128h-  1 Mpc. This phenome- 
non appeared to be so unexpected that the first at- 
tempts to explain it hazard the conjecture of  the 
periodic variation o f  the fundamental  constants o f  
physics [2,3]. In this letter I shall try to connect this 
possible periodicity with the large scale structure 
formed by the stable classical solution o f  certain sca- 
lar field which consists of  N concentric shells of  which 
~ 10 are observed at present. 

Generally, the possibility o f  the existence of  a large 
scale ( ~  100 Mpc) structure has been discussed in 
literature over the last few years [4-7  ]. Two theoret- 
ical ideas which have been put forward seem to be 
quite interesting. 

First is the hypothesis of  the late (Z~< l03, T~< 3000 
K)  transition which causes inhomogeneity in galaxy 
distribution [ 5,6]. Since by assumption the transi- 
tion takes place after the photon decoupling there is 
no contradiction to the homogeneity of  the micro- 
wave radiation. 

The second hypothesis [6 ] is that a certain pseu- 
doscalar field is responsible for the appearance o f  the 
large scale inhomogeneity. This field is condensed at 
the temperature T smaller than the decoupling tem- 
perature, T <  3000 K, say, at T ~  300 K. 

The natural scale o f  the structure would be the 
Compton wave length m -1 o f  the particle; for 
m - 1 ~  1-100 Mpc, m ~  1 0 - 2 9 - 1 0  -31 eV. Evidently, 
the height o f  the potential barrier (energy density) 

should be of  order V0~ T 4. On the other hand, 
Vo~ m2v 2, where v is the VEV. So one can estimate 
that for T ~ 3 0 0  K and m ~  10 -29  eV, V~ 1017 GeV. 
This matches the G U T  scale. It has also been sup- 
posed that the inhomogeneity in galaxy distribution 
appears due to gravitation coupling o f  the matter to 
the scalar field. 

The assumption of  the existence o f  a particle with 
such a tiny mass appeals for some specific mecha- 
nisms. One that I would like to advocate is the fol- 
lowing. A few years ago the notion ofmassless Gold- 
stone boson, arion, has been introduced [ 8 ]. Unlike 
the axion, the arion has no QCD contribution through 
the anomaly to its mass. However, it can have the 
weak anomalous contribution connected to the tri- 
angle diagram with two external W bosons. Owing to 
instanton effects the mass of  the arion could be imag- 
ined to be 

2 - 2 ;8 2 4 ( 8 2 g wJ' 
rn = c m w ~ - )  exp - ( i )  

where the coefficient C is likely to be somewhat 
smaller than unity. (At least it contains a small cou- 
pling constant of  the arion.) From ( I ), one has 

m =  1.7)< 10 -27 eV C I/2 (2) 

in a qualitative agreement with what is necessary. 
There are different opinions o f  the concrete reali- 

zation of  formation of  inhomogeneities. In ref. [ 5 ], 
where the idea o f  the late phase transition has been 
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first put forward, the author has considered the bub- 
bles of the new phase which appear due to the pertur- 
bative fluctuations. In ref. [6 ] the dynamics of the 
phase transition have been examined in detail, the 
possible role of the domain walls was particularly 
emphasized. Finally, in ref. [ 7 ] the large scale struc- 
ture is formed due to the specific dynamics of soft 
wave packets. However, the periodicity in galaxy dis- 
tribution is not explained by any of these mechanisms. 

In this paper I will not consider the dynamics of 
the formation of inhomogeneities. The purpose of this 
work is to describe a new periodic structure: the clas- 
sical state of  pseudo-Goldstone field stable due to a 
certain topology. The state corresponds to the uni- 
verse being "wrapped up" in this field with the num- 
ber of periods N which remains constant in the pro- 
cess of  expansion. In fact, N is the conserved winding 
number. Its existence is due to the closed character of 
the universe and also to the angular nature of the 
Goldstone degree of freedom. 

Actually, the possibility of formation of such a state 
in the whole universe seems to be rather dubious if 
not impossible. However, we shall see that some lin- 
ear fragments of this state can exist and still remain 
stable to the variation of the field inside the volume 
it occupies. It is only variation at the ends that causes 
instability of these states. So the fragments of the 
whole state turn out to be meta-stable with a rather 
long life time. Therefore it is possible that these frag- 
ments bear a relation to the observed periodic 
structure. 

2. To be concrete, I consider a pseudo-Goldstone 
field with self-interaction: 

V =  - - m Z v  2 COS --~ , (3) 
v 

which reflects the angular character of the pseudo- 
Goldstone degree of freedom q~. 

The metric of the closed universe has the Robert- 
son-Walker form: 

d s Z = d t  2 

- a Z ( t ) { d x Z + s i n 2 x  [ (d0)Z+sin20 d~o2]}, (4) 

where the radial coordinate r =  a sin Z. We are look- 
ing for the stationary solution q)= q~(X) which de- 
pends only on X. The equation for q)(Z) is 

1 1 d F .  2 {d~'~2q 
a2 s in2zdzL s'n X ~d-z-X) .J 

+m2v sin ~ = 0 .  
v 

(5) 

In eq. (5) we neglect the implicit time dependence of 
q~ which is due to the cosmological expansion. We 
shall comment on this question below. 

In what follows I assume that ma >> 1. This is in- 
deed correct for rn - ~ < 100 Mpc and it is also neces- 
sary condition to have the homogeneous universe 
with the Robertson-Walker metric. 

The solution given below has the period of order of 
unity in the variable p = m a x ,  which corresponds to 
the period ~ m  -1 in r = a s i n z .  At ma>> 1, eq. (5) is 
simplified and reduced to the case of the fiat metric: 

d2~° (J~ + n .  (6) 
clp2 +s in~o=0,  p = m a x ,  ~o= v 

This equation is valid for all Z but the small neigh- 
bourhood near the poles: 0~<X<~, n > x > n - O ,  

d~  (ma) -~  where s inx~0.  In this region, however, 
s i n z ~ x  [or s i n x ~ m a ( n - z ) ] ,  so that eq. (5) is 
nothing but the radial sine-Gordon equation: 

1 d ( p 2 ~ ) + s i n g = O  
p2 dp (7) 

The same equation is valid at Z~,n but p--, 
p' = ma ( n - Z). For p >> 1 this equation coincides with 
(6). We discuss first the solution ofeq. (6) and then 
bind it to the solution of (7) at small p. For the solu- 
tion of eq. (6) one easily gets 

~0=2 s in - l  (sne-~--~) , 

p = m a x = m a  sin -1 r ,  (8) 
a 

where sn is the elliptical sine of the modulus k. 
The solution (8) is not periodic for the field 9 it- 

self but only for sin ½¢. However, it is just this quan- 
tity that has physical meaning because of the Gold- 
stone character of  the field q~. Thus, for instance, one 
obtains for the energy density distributions from eq. 
(8) 
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1 2 . 
~= ~ \-a-#j -m2v2 c o s - ,  

2 2[ - l + k :  e - e o = z m v  [ ~ 5 - -  - 2 s n 2 ( P - ~ ) ]  . (9) 

Here eo is the density of the vacuum energy which 
corresponds to @=0 and equals eo= - m y  2. In the p 
variable, the period of the function sn 2 is 2K(k)k,  
where K(k)  is the full elliptical integral of  the first 
kind. This gives for the period in radial coordinate: 

Ar= 2K(k)km - -~ .  (10) 

Ar grows with k changing from k = 0  to k =  1. At 
k--, 1, K(k)  ~ln  4/k'--,ov (k' = x / l  - k  2 ). The case 
k =  1 corresponds to the finite total energy when in- 
stead of oscillations only one link remains. The soli- 
ton is then nothing but the domain wall: 

¢o = 2 s in  - ' th  ( p - p o )  = 2 gd  ( p - p o )  • ( 11 ) 

Let us now take into account that the solution (8) 
is not valid in the small neighbourhood of the origin 
X~ ( ma ) - ~, n - z ~  ( rna ) - L In p= rnaz variable this 
region is of  order unity and one should use eq. (7). 
At p--,O, ~o ~ a + b /p. Obviously, we can consider only 
non-singular solution with b = 0 since for b # 0 the en- 
ergy is infinite. That means that the binding of the 
solution (8) to the solution at small p should result 
in some relation between k and Po. This relation can 
be found without the explicit solving of eq. (7). One 
can easily see from (7) that the non-singular solution 
is an even function ofp. Hence we have 

s n ~ _ P 2 = s  n - P - P o  = _ s n P + P o  
k k ' 

so that po/k= + K(k) .  Finally one specifies eq. (8): 

~=  + 2 s i n - ' [ s n ( ~ - K ( k ) ) ] .  (12) 

One can easily show that the same consideration ap- 
plied for p ' =  ma(n-Z)-- ,O leads to the "quantiza- 
tion" of  k, namely to the equation 

nma 
=2K(kN)N,  (13) 

where N is an integer number. 

Eq. (12) is in fact the asymptotics of  the exact so- 
lution ofeq. (7). For the latter the origin ( p = 0 )  is a 
distinctive point which appears to be, so to say, "cen- 
ter of the universe". It is in the coordinate system with 
the origin in this point that the solution is spherically 
symmetric while in other reference frames, for ex- 
ample for an observer on the earth, it is not. Let us 
write down the explicit expression for the distribu- 
tion of energy density for the observer placed in the 
"center of the universe" and for one shifted from this 
point by a vector - t o ,  ro being the coordinate of  the 
"center of the universe" for the observer on the earth. 
In the first case, one has from (9) 

e--eo =2m2v2 [ l + k2k2 

r )] 
- 2 s n  / ~ - - s i n  - - K ( k )  . (14) 

a 

For the metric (3) the correct expression for the shift 
( - t o )  is given by 

r~r-ro[~fl- ~+(l- ~-  r2"~r'r°l 
aZJ r~ 3 .  

(15) 

The modulus of  the right-hand side of this equa- 
tion is to be inserted in eq. (14) instead of r. For the 
"immediate neighbourhood" r<< ro, a this leads to a 
simple formula: 

=2m2v2 [1 + k  2 
~--~o 

L k 2 

- 2 s n 2 ( k r C O s O + K ( k ) - s i n - l ~ ) ] ,  (16) 

where/9 is the angle between the direction of obser- 
vation and the direction to the "center of the uni- 
verse". Note that the angular dependence of the pe- 
riod of oscillations would be a clear indication of the 
existence of a certain distinctive point, or at least of 
a distinctive direction, in the universe. This could al- 
low to distinguish the present model from the models 
in which the periodic structure is explained by the 
variation of the physical constants [2,3 ] since these 
models predict spherically symmetrical structure in 
any reference frame. 

3. I pass now to the question of stability of  the so- 
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lution (12). Before giving the topological arguments 
I present the result of an explicit calculation of the 
second variation of energy. This is useful if one wishes 
to consider not the whole solution, for all the uni- 
verse, but a linear fragment for Zo < Z < Z0 + A;(. 

It follows from eq. (9) that the variation of the en- 
ergy in this interval is 

Xo+aZ 

a 2 E =  f d z  15qb (Z) 

xo 

X - a-- 5 dz--5 + q~) 5q~(Z), 

V" (q~) = m2 cos ~ 
/3 

= - m E  [ 1 - 2  s n 2 ( ~ - K ( k ) ) ] .  (17, 

Only the variations 8q~= 8~(Z)  are left in eq. (7), 
since the dependence of 3q~ on 0, ~ only increases the 
energy. It was also assumed in (17) that 5q~0Co) 
=Sq~(Zo+AZ)=0. This condition I shall discuss 
below. 

To examine the question of the sign of 32E one 
should solve the eigenvalue problem for the differ- 
ential operator in eq. ( 17 ). The differential equation 
for the eigenfunctions is 

d2~n + (e, + k 2 - 2 k  2 sn2u)q/~ = 0 ,  
d u  E 

u= p - K ( k )  (18) ~: 

where the eigenvalues e~ are proportional to the ei- 
genvalues 2n of the operator ( -  1/a =) d2/dx2+ 
V" ( qb), e,,=X,,kE /m 2. 

Here I shall only give the final result for the spec- 
trum while all the details of  its derivation will be pub- 
lished elsewhere [ 9 ]. Eq. (18) is the Schr6dinger 
equation with a periodic potential. Therefore it is 
natural to introduce the continuous quasimomen- 
turn p instead of n. It is necessary to trace the change 
e = e (p) when p grows from zero to infinity. 

The solution of this problem is given by two for- 
mulae which express both the quasimomentum and 
the energy through some auxiliary complex parame- 
ter or: 

1 
p= ~ [a¢(o~)-~o¢(a)l, 

e = } ( 2 _ k 2  ) 8d (t~) . (19) 
e I -- e 3 

The standard notations of the theory of elliptic func- 
tions are used in eq. (19). ~ and ~ are the Weier- 
strass functions, the ratio of el to e3 is determined by 
k: 

e~ 2 - k  2 
e3 - l + k  2 (20) 

while the common factor in el, e3 cancels out in the 
physical quantities. 2oJ is one of the two periods of 
the elliptic function ~ ( a ) ,  09= (e~-e3) - l l2K(k) .  

Eq. (19) describes the two-zone spectrum shown 
in fig. 1. In the lower allowed zone 0~<e~< 1 - k  2, the 
quasimomentum changes from zero to p = n / 2K(k).  
For the forbidden zone 1 - k 2 < e <  1, the quasimo- 
mentum is complex. The value ofp  for the bottom of 
the second allowed zone is again p = n/2K. The whole 
upper zone corresponds to 1 < e < oo. One sees that all 
e(p) >I 0, which means the local stability of the solu- 
tion (12). 

In the calculation of~2E we have fixed ~ ( g )  at the 
ends of the interval: ~qg(Zo)=8~(Zo+AX)=O. Ac- 
tually, the solution (12) is not stable if the ends come 
loose; it will be gradually getting smoothed starting 
from the ends. This becomes clear if one considers, 
for instance, the specific variation of the field corre- 
sponding to the change of the parameter k: 3~= (dq/  
dk)3k. In this case according to (14), the variation 
of the energy density does not vanish, de/dk# O. This 
seems to contradict the fact that our solution satisfies 
the extremum of energy. However, the paradox read- 
ily disappears if one takes into account the "surface 
contribution" coming from the variation of the ends, 
3~(d~0/dx) Ix xo+ax. The latter term is proportional in 
this case to the "volume", i.e. to the length of the in- 
terval AX, since ~ ~  dq~/dk~z at large Z. As a result, 
the variation of density Be(k)/3k turns out to be fi- 
nite, in accordance with the explicit expression (14). 

One should now realize that the solution (12) can 
not be literally applied to the whole universe. First 
the term a -3  02(a3t2))  has been neglected in eq. (5) 
and this is correct only for distances smaller than the 
horizon: az< c(ft/a)-l.  Second, there is a problem 
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F o r b i d d e n  zone 

P=~, 

P=~, 

OC:Wf, ~'= I , ~Cf = Snu 

~- =OJ+LU ~, E=l-k2,~/=Cn[ 

Fig. 1. 

with the causality for the longer distances. However, 
we can use the fact that only the variation of the field 
at the ends of the interval causes instability. It is then 
obvious that the lifetime of the state described by the 
solution (12) cannot be smaller than L/c,  where L is 
the linear length of the interval. This gives rather long 
lifetimes of such objects. For example, for L ~  600 
Mpc (five periods), L / c = 2 ×  10 9 yr. Therefore it 
seems conceivable that such linear fragments of  the 
whole solution are related to the observed periodicity 
in galaxy distribution. 

As to the solution defined at the whole interval of  
the variable Z it is stable. One can make the cyclic 
variable Z change in the interval 0 ~< Z ~< 2n so that Z= 0 
and Z=2n correspond to the same physical point. 
Then in the whole interval of  Z, the field ½ ~ should 
rotate by a certain integer number of  cycles: 
[ ½ (0 (Z= n) - ½ ~ (X= O) ] = 2nN. For the solution ( 12 ) 
which has a period AX= 4 K ( k ) k / m a  in the variable 
Z the number N is defined by the equation 

2n n 
N= AZ - 2K(k )k  ma" (21) 

To see this one should realize that the function ½q~ 
acquires an additional 2zr when the variable p / k  
changes by one period: Ap(k) =4K(k) .  Eq. (20) de- 
fines the same discrete set of  k=kN as in eq. (13). 
This corresponds to the topology I-It (St)=ZN. The 
number N is the winding number which provides the 
stability of  the solution. 

Thus the stability of the solution given above is due 
both to the topology of the metric of the closed uni- 
verse and to the Goldstone nature of  the field ~. This 
means, for example, that for the interaction 2 ~  4, 
where ~ is not an angle variable, one should not ex- 
pect stability. I have checked this by an explicit cal- 

p= O, Oc:CO~ E=O, I/f=dnu 

culation of the spectrum of the corresponding differ- 
ential equation [9]. There is, indeed, a negative 
eigenvalue for the energy. 

I f  one accepts that the stable solution is realized in 
nature one can also admit that at the time of phase 
transition the parameters k ~  1 and K ( k ) ~  1. Then, 
according to eq. (10), the period in energy distribu- 
tion would be of order of  the Compton wave length, 
Ar~ m - t .  During the expansion of the universe Ar 
would grow with the growth of kK(k) .  One can see 
this when kK(k)  is expressed through the conserving 
winding number N using eq. (21). Inserting kK(k)  
into eq. (21), one has 

N/  r2 Ar= 1 . (22) 
N a - ~-~ 

Thus Ar increases with a(t) .  Note that if  the phase 
transition took place at Z ~  10 2, the present value of 
k should be extremely close to unity. Indeed, the 
asymptotics of  K(k)  near k ~ l  is K ( k ) ~ l n 4 / k ' ,  
k' = l ~ - ~ - k  2. Thus one gets 

k'  ~ 4 e - Z ~ 4 e  -l°° . (23) 

However, the configuration of the field is quite dif- 
ferent from the single kink ( k =  1 ) since N is large. 
Note also that N can be determined through the pres- 
ent values of  Ar and a: 

N ~  - -  (24) 
2Ar present time 

The last comment concerns the possibility to con- 
nect the average energy density of  the scalar field to 
the problem of dark matter. From eq. (9), one easily 
gets for the average density 
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1 2E(k) g-eo=2m2v 2 1- ~ + ~ - ~ ) ] ,  (25) 

where E(k) is the full elliptical integral of the second 
kind. At k--, 1 

g-eo= 1--~6 Nmv2 (26) 
/~ a 

Thus the density decreases as a -  1. For m ~ 10 - 30 eV 
and v~ 1017 GeV, m2v2~ 10 -27 gcm -3. If this value 

has decreased by two orders of magnitude, we have 
for the present value p ~  10 -29 gcm -3 close to pc= 
2)< 10-29gcm -3. 
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