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Scalar-fermion models with mirror pairs of fermion fields on the lattice are discussed. Numerical simulation 
data in a U(1)~ ® U(1)R symmetric model on the phase structure and on lower and upper limits for the 
Higgs-boson mass and perturbative estimates of the finite size effects are presented. 

1. INTRODUCTION 
In the standard model of electroweak interac- 

tions the Higgs self-coupling as well as the Yukawa 
couplings are related to the Higgs mass and fermion 
masses, respectively. In particular, if the Higgs or 
the top quark were heavy the corresponding cou- 
plings could be large. In this case nonperturbative 
methods would be needed to study the physics of 
these particles. Neglecting gauge couplings, which 
are weak, leads to Yukawa models describing inter- 

acting scalar and fermion fields. 
In past years the Higgs sector has been studied 

extensively in the framework of the pure ¢4 theory 
by various groups. It turned out that the triviality of 
¢4 theory implies cutoff dependent upper bounds on 
the scalar self-coupling such that it never becomes 
strong for physically reasonable cutoffs. The inclu- 
sion of fermions which couple to the scalar field via 
Yukawa couplings might, however, change the situ- 
ation. Therefore nonperturbative investigations of 
Yukawa models on a lattice are required. 

If fermions are put on a lattice the notorious 
doubling problem occurs. A Dirac field which is 
transcribed naively to the lattice turns out to de- 
scribe 16 fermions. The methods to remove the 
unwanted doublers include the Wilson term, which 
gives a mass of the order of the cutoff to the dou- 
blers. This term breaks chiral symmetry. It can 

be used for QCD, but for chiral gauge theories 

*Presented by I. Montvay and L. Lin. 

like the electroweak standard model it is important 
to have chira[ symmetry preserved on the lattice. 
Presently two approaches are popu|ar to remove 
doublers in a chirally invariant way. in the Stair- 
Swift model (see J. Smits contribution to this con- 
ference) the Wilson term is replaced by an anal- 
ogous chiral invariant Yukawa coupling. The sec- 
ond approach, which we follow, uses models with 
mirror fermions 1,2 In addition to the original 

fermion field ~ a mirror fermion field X is intro- 
duced, which transforms oppositely w~tb respect to 
the chirai symmetry group. Each fermion-mirror- 
fermion pair describes 32 fermions on the lattice. 
But now it is possible to write down a generalized 
Wilson term v¢~=+~X.c~ ÷ .... which mixes ~ and 
X and is chirally invariant. This term removes 30 
doublers by giving them masses of the order of the 
cutoffand we are left with one mirror pair. The mir- 
ror fermion method has the following advantages: 
i) the remaining mirror pair constitutes the minimal 
possible doubling, ii) the mirror field X is easier to 
control than the usual doublers since it is explicitly 
contained in the action and has its own couplings, 
iii) we have perturbation theory at our disposal to 
study the vicinity of the Gaussian fixed point, iv) re- 
flection positivity can be proven in large parts of the 
bare parameter space. 

Before we write down explicit actions for lat- 

tice models with mirror fermion fields we would 
like to discuss some general aspects of these rood- 
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els. There exists a symmetric phase in which chiral 

symmetry is unbroken. In the symmetric phase the 

masses me and m x of  fermions and corresponding 
mirror fermions are equal. On the other hand, in a 

phase with spontaneously broken chiral symmetry 

these masses are unequal. What happens to the 
mirror fermions in the continuum limit? Approach- 

ing the continuum limit in a phase with broken chi- 
ral symmetry different scenarios are possible: 

A. The mirror fermions remain in the physical spec- 

trum at some higher scale. Indeed, mirror fermions 
above 100 GeV are not excluded phenomenologi- 
cally 3. 

B. Mirror fermions are decoupled, i.e. completely 

removed from the physical spectrum 

BI. either i f  their masses go to infinity in the con- 

tinuum limit 
B2. or i f  their masses as well as their couplings to 

the other particles vanish in the continuum limit 4 

Which of  these possibilities can be realized in a 

given model has to be determined by nonperturba- 

t ire methods. 

The SU(2)c  ® U ( 1 ) r  symmetry of  electroweak 

interactions is a subgroup of  the chiral group 

SU(2)c ® SU(2)a ® U(1)B-L, where B -- L means 
baryon minus lepton number. In a model with a chi- 
ral SU(2)L ® SU(2)R symmetry we have a fermion 

doublet %hA, A = 1, 2, and a mirror fermion doublet 

XA, which transform as 

¢~ = UL¢~,  CR' = URCR, 

I t 
x L  = U R X L  , X R  = ULXR . ( L 1 )  

The pure fermionic part of the action is 

+/~¢× [( :~:¢:)  + ( '~-X~)]}  • (1.2) 

Here m is a lattice point and the sum ~ ,  runs over 

eight directions of  the neighbours. The term pro- 

portional to r is the generalized Wilson term. We 

always set r = 1 and normalize the mass mixing 

term by/~¢x q- 8 r K  = 1. The scalar field is a com- 

plex doublet which we write as 

3 
ip= = ¢0~ + i ~ T,¢,=, (1.3) 

where ¢ is a four-component real vector and Ts are 

the Pauli matrices. It transforms as 

¢ ' =  ULCG~'. (1.4) 

The action for the scalar field is 

1 + 

t (1.5) 
2 . j "  

- - ~'~ Tr(/%+# ip:) 

Written in terms o f  the components Cs this is the 

action of an O(4)-symmetric ¢4 model. Finally the 

Yukawa interaction is given by 

Sy = ~ {(¢R=G¢IP=*¢L=) + (¢L=IP=G~¢R=) 
x 

- G + -I-(XR:IPzGxXL~) + (XL~ ZiP: XR:)} (1.6) 

Here, for later purpose, the Yukawa couplings 
G¢, G x are considered to be 2 ® 2 matrices pro- 

portional to the unit matrix. The global symme- 

try of this model is sU(g)L ~ SU(2)R ® U(1)~, 
where F is fermion number. The gauging of  

SU(2)L ® SU(2)R ® U(1)~- or some of  its subgroup 

can be implemented in a standard manner. 

The fermion determinant in this SU P)'L ® 

SU(2)R model is real, but in numerical simulations 

the Hybrid Monte Carlo algorithm requires a dou- 

bling of  flavours which leads to a positive fermion 

determinant. This means that we have two flavours 

%bO) ¢(2) o f  fermions and two flavours XO):X (2) of  

mirror fermions. The second flavour transforms 

with opposite chirality compared to the first flavour. 

The global symmetry now is SU(2)L ~ SU(2)R 
U(1)F~ ® U ( ] . ) F  2 since both flavours are conserved 

separately. 
In the framework of  the electroweak interac- 

tions tke-~!obal SU(2)R (neglecting gauge cou- 

plings) is broken through different masses within 

the fermion doublets. In the above model a break- 

ing o f  SU(2)R to its subgroup U(1)R3 can be 
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achieved by replacing the Yukawa couplings G,~ and 
G x by diagonal matrices 

0 Gv, d ~ 0 Gxd 

(1.7) 
This model with split doublets can be gauged with 

the physical gauge group S U ( 2 ) L  ® U(1)y by re- 

placing the SU(2)L ® SU(2)R lattice gauge fields 

uR(=,u) ~ ~Y(=,u) .  (1.8) 

The hypercharge of the fields is given by Y = 
2T~ + B - ]5. 

Even nearer to reality is the t~op-bo~om model  

where, in addition to the electroweak quantum 
numbers, 3 species of colour for the fermions are in- 
troduced, it has three degenerate fermion doublets 
with a heavy top quark and a light bottom quark 
each. The mirror doublets are all heavy. (For a 
fermion-mirror-fermion mass matrix consistent with 
phenomenology see 2.) Below the mirror-fermion 
mass scale (or if the mirror fermions are decou- 
pied) this scalar-fermion model describes the elec- 
troweak standard model with all small gauge and 
Yukawa couplings being neglected. Since the num- 
ber of doublet pairs is odd the fermion determi- 
nant is complex. Therefore the top-bottom model 
unfortunately can not be simulated numerically by 
presently available Monte Carlo methods. 

In our numerical work we have so far mainly 
considered a model with a chiral U(1)L ® U(1)n 

symmetry. The action looks like the one of the 
SU(2)j; ® SU(2)R model above with the difference 

that now the fermions are singlets and the scalar 
field has one complex component. The flavour 
doubling of the fermion fields leads to an exten- 
sion of the chiral symmetry from U(1)L ® U(1)R to 
U(1)L®U(1)R®U(1)z_2. If the model is described 
in terms of the left-handed fields (the right-handed 
fields are represented by the left-handed component 

of the charge-conjugate field as ~bd, - C ~ ) ,  then 
the quantum numbers of the 8 fermion fields and 

of the Higgs-field are 

U(1)L U(1)R U(1)I 2 

~(L i) : I 0 1 
z~/O) 
cL : 0 --I --I 

X~ 1) : 0 I 1 

Z~ i : -I 0 --i 

~(2_) ~b : --I 0 I 

X~ ) : ! 0 --i 
_ ( z )  
Xd, : 0 --I i 

~: 1 --! 0 

603 

(1.9) 

The mass terms allowed by the chiral symmetry 
U(1)L ® U(1)n ~ U(1),_2 are those connecting ~(1) 
with Z (1) or ~(2) with X (=) but not ~(~) with ~t2) 
and X (I) with X (2) (these latter are forbidden by 
U(1)z-2)- The vacuum expectation value of the 
scalar field breaks U(1)L ® U(1)R to its diagonal 
subgroup, but U(1)z-2 is not spontaneously broken. 
Therefore, after removing the mirror fermions XI,2 
even this doubled model is chiral in the sense that 
the mass terms are absent. This model has been 
discussed at length in 5,6,7 

2. PHASE STRUCTURE 
We explore the phase structure of our model 

both analytically and numerically (on 43-8 lattices). 
in this section, we report what we know about it 
in the Ising limit 3~ = oo. In our simulations, we 
always set T = 1 in order to make sure that in 
some parts of the parameter space we have site- 
reflection positivity. If T ~ 1, the procedure to 
prove site-reflection positivity simply does not go 
through 7 

There are four limiting cases in which the model 
reduces to the pure 2-component ~4 model at 
A = oo, i.e.: K = 0,oo, and iG~,l = iGxi = 0,oo. 

In these four limits, the model has a second or- 
der phase transition from the ferromagnetic phase 
(clenoted by FM phase) to the symmetric phase 
(denoted by PM phase) at ~0 "" 0.15, and from 
the PM phase to the anti-ferromagnetic phase (de- 

noted by AFM phase) at ~0 ~ --0.15. In the FM 
and AFM phases, the chiral symmetry 
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U(1)L ® U(1)R is spontaneously broken down to 
the vector-like symmetry by the vacuum expecta- 
tion value of the scalar field. 

In the very weak and strong Yukawa coupling 
limits, we carry out small- and large-G expansions 
to next to leading order and find 

~o = ~0 - 2 ~ ( G ~ -  2 ~ G x  + G~) (2.1) 

for weak Yukawa couplings, and 

G~G×2 1 '% = ~0 -4K2( + ~x-x) (2.2) 

at strong couplings. Note that the above results 
are at Ny -- 2 (flavour doubled model which can be 
simulated by Hybrid Monte Carlo). The coefficients 
of the leading corrections are proportional to AT]. 

At intermediate values of Yukawa couplings, we 
need te rely on Monte Carlo simulations to explore 
the phase structure. 

Since there are two mass scales (the scalar and 
fermion masses) in our model, the continuum limit 
should be defined such that both masses go to zero 
while their ratio is kept constant. Therefore we 
need to study aiso the critical plane on which the 
fermion mass vanishes. 

At G v, = G x = 0, we have K~ = 1/8. At small 
IG¢I and IGxl, one can estimate K~ by using l-loop 
bare perturbation theory. (See Ref. 6. I We find, 

qualitatively, 

K¢ "~ as IG~Gxl / i f  G¢. C x > 0, 

K¢,,2 asIG~Gxl/z if G¢.G x<O. 

We have seen the above qualitative behaviours in 
our simu',ations. 

From the above analysis, we know the phase 
structure near the Gaussian fixed point of the pure 
scalar model. The phase structure at G¢ • O x < 0 
is schematically shown in fig. i .  

Recent!y a new phase with both ferromag- 
netic and antiferromagnetic long-range orders has 
been found with Monte Carlo simulations in the 
U(1)L @ U(1)R model. We call it the ferrimagnetic 

(FI) phase. A similar phase structure with FM, PM, 
AFM and FI phases was observed earlier in other 

scalar-fermion models on the lattice 8,9,10,11,12 

At G¢ = - G  x = 22, we tune ~ and K on the 
43 • 8 lattice to make rnR -~ 1.0 in the symmetric 
phase. As K gradually grows from 0.01 to 0.39, the 
fermion ,mass decreases to about 2.0 when we are 
very close ~o the boundary of the PM and FI phases 
(see fig.2). This shows that at G¢ = - G  x = 2.0, 
the Kc plane on which the fermion mass vanishes 
will pass through the FM and FI phases. Since we 
know that Kc increases as IG~Gxl increases when 
0-¢ • G× < 0, it is very plausible that the Kc plane 
~vill intersect the critical line along which PM, FM 
and Ft phases coexist at some smaller G~,G x val- 
ues (e.g.: 0¢ = - G  x _~ 1.7). If this does happen, 
then the intersecting point will be the candidate for 
a possible nontrivia! fixed point 9. We will pursue 
this interesting matter in the future. 

3. RENORMALIZED QUANTITIES AND VAC- 
UUM STABILITY 

We use the unbiased Hybrid Monte Carlo 
method to study the model at weak and interme- 
diate Yukawa couplings, and at very small and in- 
finite bare scalar self-coupling. The renormalized 
quantities in the PM and FM phases are defined in 
Refs. 6,7 In the PM phase, we tune ~ and K such 
that the mass ratio is close to one and the corre- 
lation length is not larger than 1/4 of the spatial 
lattice size to avoid large finite size effects. In the 

FM phase, we tune m and K to achieve no fermion 
mixing and some desired value of the magnetiza- 
tion. Other quantities like the fermion and mirror 

masses, scalar mass etc. will be determined. This 
means we cannot always avoid large mass ratios 
and therefore we sometimes have large finite size 
effects. Hence, data on small lattices in the FM 
phase can only tell us the qualitative behaviour of 
the model. 

In the PM phase we find that the fermion dou- 
blers can be made very heavy. However, here the 
mirror fermion is degenerate with the fermion. The 
low enery spectrum is still vector-like. Also, we see 
that the renormalized Yukawa coupling GR¢ is lin- 

early proportional to the bare coupling G¢ and can 
become at least 2 to 3 times as large as the tree 
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Figure 1: The phase structure near the Gaussian 
f ixed po in t  at  ~ = co and G,/, = - ( 7  x --- G. The 
fermion mass #R vanishes on the shaded surface 
whi le the scalar mass m R  becomes zero at another  
surface. 

Figure 3: Data o f  gR vs. G~Rx at  G~ = 0.1 and 
- G  x ~- 0.1 to  0.6 are p lot ted.  Open circles are a t  
)~ --- co on 4 3 - 8  latt ice. The open square is at  
the same 2~ on 6 3 - 16 latt ice. Full squares are a t  

= 10 -4 on 4 3 -8 latt ice. The  cross is a t  * ---- 10 -6  
on 4 3 - 8 latt ice. The ful l  t r iangle is a t  the same ). 
on 6 z • 16 latt ice. 

Kj 

A F M I  I I AFM 

Figure 2: The phase structure at )~ = co and 
GV, ---- - G  x --- 2.0 is shown. A new phase (FI )  
is found.  The detailed topo logy in the middle is 
still not clear. The dashed line is the crit ical l ine on 
which the fermion mass is zero. It seems tha t  this 
l ine does no go through the PM phase. 

6 

4 
gR 

2 

0 

0 

FZR = 0.5 / '¢2¢~ 
vR = 0.5 / /  __~ 

i  ,,I,,llll,,ll,,I,Ill,ITI 
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GR 

Figure 4: The vacuum stabi l i ty bound in latt ice 
per turbat ion theory on di f ferent latt ices (see text) .  
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unitarity upper limit. We observe very weak or even 
no A-dependence of GR¢. We find that the renor- 
realization of GR¢ is much smaller than the l- loop 
prediction. Whether this is related to the existence 
of a nontrivial fixed point is yet to be studied and 

found out. 

In the FM phase not only the fermion doublers 
can be made heavy, but also the mirror fermion 
can acquire a large mass by tuning the bare mirror 
Yukawa coupling O x. If the theory is nontrivial, 

they can all be decoupled by giving them infinite 
masses, tf the theory is trivial, then they can be 
pushed to the cutoff scale and become part of the 
"new physics". 

In the FM phase we also study the vacuum sta- 
bility issue by numerically simulating the model at 
very small A (e.g.: ,~ = 1g-4,10-6). This gives 
a lower limit for the Higgs-boson mass for fixed 
Yukawa couplings. At the same time, we run at 
A = oo in order to get the upper boundary of the 
"allowed region" in the space of renormalized cou- 
plings (see fig. 3). 

The meaning o~ the vacuum stability bound 
in the framework of the lattice regularized theory 
can be explained as follows. In order that the the- 
ory be well defined the bare coupling ,~ has to be 
positive. Using the Callan-Symanzik 13-function, 
the renormalization group flow may be followed 
downwards from the cutoff scale to the physical 
scale, where the renormalized couplings are defined. 
Those values of the rencrmalized couplings that can 
be reached starting from any positive value of the 
bare coupling form the physically admissible region. 
Those outside would not correspond to any positive 
bare ,~ and cannot be realized for the given cutoff. 
In particular the boundary corresponding to A = 0 
yields the vacuum stability bound. 

The exact effective potential and exact 13- 

functions are, of course, not known. Therefore 

one has to rely on some approximations like per- 

turbation theory or numerical simulations. With- 

out knowing the qualitative behaviour of the 13- 

functions it is impossible to derive the vacuum sta- 

bility bound. In particular, the qualitative discus- 

sion is different in case of a trivial continuum limit, 

w~fich is qualitatively represented by the 1-1oop 13- 
functions, or if a non-trivial fixed point at non-zero 
coupl~qgs exists, as suggested by the qualitative fea- 
tures of the 2-1oop approximation. 

Later on one can, of course, obtain information 
about the fi-functions from numerical simulations 
by studying the cutoff dependence of the allowed 
values of renormalized Yukawa- and quartic cou- 
plings. The allowed region A in the space of renor- 
realized couplings can be mapped out by studying 
the ~-dependence of G~,GI~x ,  gR for every bare 
Yukawa couplings within the broken phase near the 
Gaussian fixed point. The region A will, in general, 
depend on the cutoff, which can be defined, for in- 
stance, by the value of the Higgs-mass in lattice 
units. The first possibility corresponding to a triv- 
ial continuum limit is that for increasing cutoff .4 is 
shrinking to the origin GR¢ ~ GRx = gR = O. An- 
other possibility is that, maybe after some shrinking 
for low cutoffs, the region A starts to expand and 
fills a 3-dimensional part of the (GR~,GRX,gR)- 
space (or even the whole space) for infinite cutoff. 
In this case the continuum limit is non-trivial. A 
third possibility is that at infinite cutoff the region 
A becomes a lower dimensional subset, say, a sur- 
face. In this case the continuum theory is again 
non-trivial but the quartic coupling is a function of 
the Yukawa couplings. In other words, for given 
Yukawa couplings the lower and upper limit on the 
renormalized quartic coupling coincide. 

In the numerical simulation we find that when 
the mirror fermion is very heavy, the renormalized 
scalar coupling gR is within errors independent of 

(see fig. 3). This means that gR is basically a 
function of (or strongly correlated with) GRx when 
ORx is strong. Therefore, at the given finite cutoff, 
when the mirror fermion is heavy, we can predict the 
scalar mass once we know the mirror fermion mass. 
This reminds us of the famous plot of the joint 
bounds on the Higgs and heavy fermion masses de- 
rived from l- loop perturbation theory (see, for in- 
stance, 13). The difference is that here we obtain 
the bounds nonperturbatively. We also notice that 

in our model, the value of gR can be pushed to 
some very high value, about twice that of the trivi- 
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ality upper limit on gR in the pure ¢4-models. (The 
triviality upper limits on gR in 2- and 4-component 
¢4 models are around 40 and 20, respectively.) 

4. FINITE SIZE EFFECTS 
The question to what extent the results of the 

numerical simulations are affected by changes of 
the lattice size L 3 • T is particularly interesting in 
the broken phase of our model. There, finite size 
effects are expected to be rather large clue to the 
existence of a massless Goldstone-boson which ac- 
counts for the singular infrared behaviour of some 
Green's functions at zero external momentum. The 
finite lattice acts as a regulator of these infrared 
singularities, and one expects big finite size effects 
even on large lattices. ~n addition, the mass ratio 
of bosons to fermions cannot separately be tuned. 
This leads sometimes inevitably to large mass ratios 
and hence to large finite size effects. Our numeri- 
cal simulations were performed on 4 s- 8 and 6 s- 16 
lattices, and the question naturally arises if finite 
size effects are under control. 

Finite volume effets can be studied by means of 
lattice perturbation theory. In a previous publica- 
tion 7, the l - loop expressions for the renormalized 
parameters are listed. Those relations can be in- 
verted in order to express the bare parameters in 

terms of renormalized ones. Hence one can use 
nonperturbative input for the renormalized param- 
eters used in the perturbative expressions for finite 
size effects. Imposing the renormalization condi- 
tions at infinite volume (i.e. 15 = T = oo, mR = 
m (°°), gR = g(~) . . . .  ), we define the finite size 
difference 6XR for any renormalized quantity XR 
a s  

6 X R  - XR(L,T) - X R ( o o ,  oo) .  (4.1) 

Calculating 6X~  essentially amounts to calculating 
the difference of the l - loop integrals evaluated for 
different lattice sizes, viz. 

[ i ,. ~I/d'p/(p), 
(4.2) 

where f ( p )  is some function of the lattice mo- 
menta. The l - loop expressions in the broken phase 

are rather complicated and can be enormously sim- 
plified by considering the special case where G× = 
-Go .  As an example we display the e×pression for 
the finite size effect on the renormalized fermion 
mass/zR: 

- . ~ - 5  (~ + ~ + a ~ )  6/~s 

¢Ltq [ 

" [( q2 + ~ ) -- l + (O~)--l] , (4.3) 

GR = GR¢ • --Ga×, l~q = ~a + 

mR : 2sinh(mn/2) ,  and the lattice mo- 
are defined as ~ : sin(q~), ~ = 

where 

~/2, 
menta 
2sin(qp/2). The perturbative expressions for 6XR 
are evaluated numerically with suitable computer 
programs. The results of a sample computation 
are shown in table 1. The values of  the parameters 
at infinite volume are chosen such as to give an es- 
t imate for finite size effects for the point at which 
G¢ = - G  x = 0.1 in the plot of the vacuum stabil- 
ity bound (A -- 0). It turns out that the effects for 
#R are rather small, such that/zR = 0.22 through- 
out. The 1-loop predictions for lattice size 43 - 8 

are not reliable since G(R ~) is already quite large 
(note that Z~ °~) : 0.9727) which precludes the ex- 
trapolation to very small lattices. Nevertheless one 
gets a hint on the possible size of the effects which 
amount to approx. 16% for rnR and about 30% for 
gR with respect to the 64-lattice. 

T a b l e  1 

L 3 - T  i mR gR GR vR Z~ 

oo 0.532 

10 3- 32 i 0.534 

8 3 " 16 i 0.555 
i 

63 - 16 i! 0.580 

64 i 0.620 

6.20 0.45 ; 0.370 

6.20 i 0.45 i 0.372 

6.07 10.43 10.379 

5.66 i0.41 ,i 0.386 

4.17 10.3410.424 

0.973 

0.969 

0.898 

0.783 

0.502 

Another interesting question one can study in 
perturbation theory is whether the vacuum stability 
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bound is affected largely by finite volume effects. 
The l-loop formula for the relation between the 
renormalized scalar and Yukawa couplings for A --- 0 
is 7 

90o~ 

where again Ga = Ga,/, = --GRx. Evaluating the 
integral for different lattice sizes shows the finite 
volume effects on the vacuum stability bound. Fig- 
ure 4 shows curves of ga versus GR for infinite vol- 
ume (solid line) and lat:tlce sizes 63 • 18 (dashed 
line) and 43. 8 (dashed-dotted line), respectively. 
It is seen that the finite size effect on the vacuum 
stability bound is rather small in the regime where 
l-loop perturbation theory is applicable. 

5. SUMMARY 
To summarize: 
(1) Fermion and mirror doublers can be made 

very heavy in both phases. In the FM phase the 
mirror fermion can aquire a very large mass by tun- 
ing G x. 

(2) Renormalized Yukawa couplings have very 
weak A-dependence. The renormalization of Ga~ 
investigated at G~ ---- 0 in the PM phase is much 
smaller than predicted by the continuous l- loop/9- 
function. 

(3) In the PM phase, at O x = 0 and G@ = 
-G×, Ga,~ is seen to rise linearly as a function of 
O~ and can become very strong at O~ -- 0.6,1.0. 
(Here by strong, we mean that G ~  is about 2 to 
3 times the value of its tree unitarity upper limit.) 

(4) We study the vacuum stability issue non- 
perturbatively by running at A = 10 -s, 10 -4 in the 
FM phase. We find that when the mirror fermion 
is heavy, gR is basically a function of GR×. This 
means when the mirror fermion is heavy, we can 
predict g~ once we know GtZx and vice versa. 

(5) One-loop perturbation theory predicts large 
finite size effects (of order 9.0- 30%) for the renor- 
realized parameters on the lattices under study, ex- 
cept for the fermion mass where the effect is sub- 
stantially lower. On the other hand, the vacuum 
stability bound is far less sensitive to finite volume 

effects, a fact that is also seen in the Monte Carlo 
simu!ations. 

In the near future, we plan to run on larger 
lattices ~e.g.: 63 - 16, 83 - 16) in the FM phase to 
have a better knowledge of the finite size effect 
and to get a quantitative statement of the allowed 
region for the renormalized couplings. We would 
also like to study the detailed topology of the phase 
structure at intermediate G~ and G x and find out 
whether there is a nontrivial fixed point there. 
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