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A block spin definition for Higgs fields and non-abelian lattice gauge fields is examined
which is in the spirit of the projective multigrid procedure of Hulsebos et al., and Brower et
al. Their procedure is generalizable to a systematic multigrid method for non-abelian gauge
theories in any number of space-time dimensions. The block spin transformation involves
a gauge-covariant kernel C which makes the fine-to-coarse transition, and a kernel A which
makes the coarse-to-fine interpolation. These kernels could be used in a projective multigrid
computation of propagators, for instance. Vectorizable algorithms for the computation of C
and A are presented. For SU(2) lattice gauge theory in four dimensions, the required CPU
time for computing C or A on the whole lattice is comparable to that for one standard Monte
Carlo sweep through the lattice. Numerical results obtained after performing one blocking
transformation from a 9% to a 34 lattice are presented. The block spin computation yields
auxiliary quantities of interest, such as the lowest eigenvalues 4q, Aj of the negative gauge-
covariant laplacian with Neumann and Dirichlet boundary conditions on block boundaries.
4o and Aj are measures of disorder and their renormalization group flow is therefore
instructive.

1. Introduction

The question of the proper definition of block spins is posed as soon as one
wants to investigate a physical theory by means of renormalization group (RG)
methods [1]. The multigrid (MG) approach to quantum field theory [2,3]
amounts to simultaneous consideration of a whole sequence of renormalization
group transformations (RGTs). An important ingredient is the choice of maps
C and A which make the fine-to-coarse and coarse-to-fine transitions. Let us
briefly pause to introduce them.

Through a sequence of RGTs a theory with fields ¢(z) = ®V(z) on a
fundamental lattice Ax of lattice spacing a = ay gets mapped step by step
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into theories with fields @~/ (x), called block spins, which live on lattices
An_; of increasing lattice spacing ay_; = L/a. Typically, L = 2 or 3 is chosen
and ag is of the order of the physical length scale. A block spin transformation
amounts to a specification of maps

C: ok 5 @k = CPF, (1.1)

In the language of the MG approach [4] to partial differential equations, this
is called the fine-to-coarse transition. In an MG approach one needs also a
map effecting a coarse to fine interpolation

A @kl ok (1.2)

wk is called the background field. It lives on A, and is required to have block
spin Cy* = @1 je.

CA=1. (1.3)

For matter fields ¢ (Higgs fields or Fermi fields) which take their values in a
linear space, one may choose C and .4 as linear maps, so that they are given
by kernels C(x, z) and A(z, x). Points x € Ay_; may be identified with cubes
of side length L lattice spacings in the lattice Ay_;,; with points z, etc. In
practice C is always chosen local, so that C(x,z) = O unless z is in cube x
(z € x for short).

In a gauge theory the block spins are required to transform in a gauge-
covariant way when the matter field on the fundamental lattice is subject to a
gauge transformation. This implies that kernels C and A are gauge covariant,
100, and must therefore depend on the lattice gauge field. This means that they
have to be adjusted whenever the gauge field is updated. Therefore, efficient
algorithms to compute them are important. It will be seen in sect. 2 that a
blocked gauge field can be defined by using kernels C, A for the Higgs field.

The background field y* = A®*~! is supposed to be the sum of the low
frequency components of @%, the information about these must therefore be
contained in @*~!. Traditionally [5,6] the kernel C is somehow chosen a
priori, and A is then determined so that ¥ = .4® minimizes some approx-
imation to the (effective) action (on A, ), subject to the constraint that the
block spin @ = Cy is fixed. However, it seems reasonable that the notion of
low frequency, and therefore also the proper definition of block spin, i.e. of
C, should depend on the local action. This point of view is taken by Hulsebos
et al. [7] (stochastic MG) and by Brower et al. [8] (deterministic MG) and
we adopt it. They take A = C*, but this is not crucial. The proposal for
the construction of block spins presented in the present paper aims at use in
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multigrid Monte Carlo (MGMC) simulations without critical slowing down of
non-abelian gauge theories. A correct MGMC programme for euclidean field
theories — without truncation of effective hamiltonians — was initiated by
Mack [3] some time ago. This MG proposal has the additional advantage
that it yields the effective action and its derivatives for free [9]. Moreover,
one can extract infinite volume results from a simulation in a finite volume
as shown by Palma [10] for pure ¢* theory. Furthermore, it was pointed out
in ref. [3] that a reformulation of a theory as a polymer system on an MG
offers the possibility of performing simulations for continuum systems without
imposing a UV cutoff. The present author [11] made a proposal how to deal
with polymer systems with indefinite activities.

Previous works or proposals [12-17] attempt to construct parallel trans-
porters on a block lattice by restricting attention to preselected paths on the
finer lattice. The weights of the different paths are either predetermined or one
tries to optimize them by means of operator matching techniques [16]. Mack
[18], Hulsebos et al. [7] and recently Brower et al. [8], made a proposal for
an RGT in gauge theories which differs from previous approaches. This new
idea is meant to separate high- and low-momentum parts and to construct
block spins which contain only the lowest frequency part of the fields on the
finer lattice.

Apart from their intended use in MGMC simulations the kernels A and C
could be used also in MG computations of gauge-covariant propagators, as in
the works of Brower et al. [8], and Ben-Av et al. [12]. This is of interest
for fermions primarily, and will be studied elsewhere. In addition the kernels
A and C could be useful in ordinary Monte Carlo RG investigations and
in studying dielectric lattice gauge theories [19] numerically. It may supple-
ment the work of Pirner and collaborators [15,16,20] who have studied the
properties of dielectric gauge models extensively. The block spin computation
yields auxiliary quantities of interest, such as the lowest eigenvalues A, 4 of
the negative gauge-covariant laplacian with Neumann and Dirichlet boundary
conditions on block boundaries. g and Aj, are measures of disorder and their
renormalization group flow is therefore instructive.

In sect. 2 a definition of kernels 4 and C for Higgs fields which is in the
spirit of refs. [7,8], and definitions of blocked gauge fields which use these
kernels are given. This provides a systematic method for non-abelian gauge
theories in any number of space-time dimension. An analytical expression for
C as given in ref. [8] for two-dimensional U(1) theories cannot be found for
non-abelian gauge theories in higher dimensions. A numerical solution of this
problem is given by presenting an algorithm which permits to compute the
gauge field dependent kernels C and A very efficiently (sect. 3). The actual
computations are done for SU(2) gauge fields on a four-dimensional lattice.
A discussion of the performance of the algorithm (which is interesting for



640 T. Kalkreuter / Lattice block spin

further development of projective MG methods) and physics results which
are relevant for colour dielectric models and ordinary RG studies are given in
sect. 4. The algorithm vectorizes very well. To compute the kernel C or A on
the whole fundamental lattice costs CPU time of the order of one standard
Monte Carlo sweep for the gauge field. The kernels on the coarser lattices are
computed in the same way, using block gauge fields. The cost in CPU for
this is negligible in comparison, because there are much fewer points on block
lattices.

2. Renormalization group transformations for gauge theories

Let us consider real space RGTs with some integer scale factor L > 1 for
a euclidean gauge theory on a fundamental d-dimensional space-time lattice
A with lattice spacing a. As a concrete model we will take the SU(2) Higgs
model in d = 4 into consideration; for recent reviews see ref. [21]. In the first
RG step the fundamental lattice of sites z is covered by a block lattice A’
consisting of block sites x with side length @’ = La and containing L7 sites
z. We write z € x, if z 1s in block x. One site z in each block x is selected as
the block centre x. The procedure is iterated in order to go to coarser lattices.

2.1. GAUGE-COVARIANT BLOCK AVERAGES

The theory on the fundamental lattice exhibits local gauge invariance, i.e.
the action H (¢, u) of a Higgs field ¢ on the sites of 4 and a gauge field u on
the links of A is invariant under

$(z) = ¢'(z) = g:¢(2), (2.1)
ul(z+p,z) > uw(z+p,z) =g ulz+pu, z)g", (2.2)

where g, are elements of some unitary gauge group G; i denotes a vector of
length a in p-direction, and (z + i, z) is the directed link emerging from site
z in y-direction.

In order to define block spins @ = @ (¢,u) and U = Ulu) € G which
live on the sites resp. links of A’, we must specify a block transformation in a
gauge-covariant way. One demands that the block spins transform under the
gauge transformations (2.1), (2.2) on A according to

D(x) — D' (x) = g, D(x), (2.3)
U(x+ L, x) = U(x + Ljt,x) = g,,,Ulx+ Lit, x) g7'. (2.4)

A discussion about exact RGTs for gauge theories and some proposals of
different authors can be found in ref. [22].
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The block spin @ shall be a linear function of ¢. It is obtained by
@ (x) = (Co)(x) =/ C(x,z)¢(z), (2.5)
zeA

where C (x, z) is the integral kernel of the operator C which maps a field on A4
into a field on A’. The lattice notation [,_, means a?y" . ,. Gauge covariance
demands that C (x, z) transforms under a gauge transformation like a parallel
transporter from z to x; i.e.

C(x,z) — g C(x,z)gr". (2.6)

Similarly, the background field y shall be a linear function of the block spin
?,
w(z) = Alz,x)® (x) = (@) ) A(z,x)D(x). (2.7)

xeA’ xed’

The background field should transform in the same way as the field ¢ under
gauge transformations, therefore

A(z,x)—»ng(z,x)g;I. (2.8)

Given a path C on A from z| to z,, the parallel transporter u(C) is defined
as usual as path-ordered product of the lattice gauge fields u(d) on the links
b of which the path C is composed. We scek kernels C, A which take their
values in the linear span of the gauge group, i.e. which are real multiples of
SU(2) matrices when G = SU(2). The most general kernel C which enjoys
gauge covariance (2.6) is a weighted average of parallel transporters #(C) over
paths C from z to x, with arbitrary real weight factors p(C), and similarly
for A. Balaban’s block spin choice amounts to computing C by summing over
all taxi driver paths C which stay inside the block x and proceed in each
direction at most once. This is equivalent to averaging over the block in the
lattice version of the Schwinger-Fock (= radial) gauge.

2.2. DEFINITION OF BLOCK SPINS FOR HIGGS AND GAUGE FIELDS

It is appropriate to review briefly the block spin transformation which was
used by Kupiainen and Gawedzki [5] to give rigorous proofs of the existence
of the continuum limit of some lattice field theories without gauge fields.
The proposal made below is the natural gauge-covariant generalization of this
transformation. The kernel C is given by C(x,z) = (a’)~9yx(z), where xx
is the characteristic function of x, i.e. y,(z) = 1 if z € x and yx(z) = 0
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otherwise. This kernel implies a local definition of @ as block average of ¢
and fulfills the normalization condition

CC*(x1,x7) = /C(xl,zw*(z,xz) = (@) G, = 606 — x2) . (2.9)

The kernel of C resp. its adjoint C* — which is the same as C for pure
scalar theory, generally C*(z,x) = C(x,z)* where star denotes hermitian
conjugation — can be defined as solution of the eigenvalue equation

(=4nxC*) (2,Xx) = Ag(x)C™(z,X), (2.10)

where —4n « 1s the negative lattice laplacian with Neumann boundary condi-
tions on the boundary of block x, and Ay (x) is the lowest eigenvalue, equal to
zero for all blocks in pure scalar theory. 4n x acts on argument z. Solutions of
ed. (2.10) with A5(x) = 0 are constants on the blocks, these are determined
by the normalization condition (2.9).

Following Mack [18], this procedure can be re-interpreted as follows. Define
a notion of (block-local) frequency which depends only on the behaviour of
the function which is to be decomposed into frequency components on the
chosen block x. Thus, define frequency (squared if one wants to) as eigenvalue
of the laplacian with Neumann boundary conditions. Define the block spin in
two steps. First define the lowest frequency part w(z) of ¢(z) by projection

w(z) = lim exp [~1(~dnx — Ao(x)) ] (2) . (2.11)

w (z) will be a smooth function of z inside the block. In the second step the
block spin is defined equal to the value of this smooth function at the block
centre z = X.

The euclidean action of ¢* theory is of the form H = Hy + V, and Hy =
(¢, o) with “first quantized hamiltonian” £ in the space of wave functions ¢
equal to 4~ = —4. A local approximation of this which preserves the invariance
under shifts by constant fields would be /%, = —An . One sees that the block
spin @ (x) retains the component of ¢ associated with the lowest eigenvalue
of h,, in agreement with the philosophy of refs. [7,8].

Mack [18] proposed to proceed for block spins of Higgs fields in non-abelian
gauge theories in exactly the same way, defining C* as solution of eq. (2.10).
C*(z,x) will be in the linear span* of the gauge group G, and 4N will be

*That is, C*(z, x) will be a real multiple of an element of SU(2) if G = SU(2), an arbitrary
complex N x N matrix for G = U(N), N > 3 etc, see ref. [19].
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the covariant laplacian with Neumann boundary conditions. It depends on the
lattice gauge field u and is defined by

(UnxP)(2) = Z [u(z,z')p(z") —d(z)] for zex. (2.12)

z'nn.z

z'ex

Summation is over next neighbours z’ of z which lie in block x, and u(z, z’)
is the gauge field attached to the link from z’ to z. The idea is again that
the definition of block spins involves dynamical information — think of
fze L 9" (2)(=4nx¢)(2) as the part of the kinetic energy which is associated
with the inside of block x. Thus, what is called “low frequency” is actually
determined by kinetic energy. One could also admit dielectric gauge fields
[19] u, especially on coarser layers *.

Some properties of An  are: —4n « 1s positive semidefinite so that its lowest
eigenvalue Ag(x) is always non-negative; Ag(x) is only zero iff u is a pure gauge
within x; under gauge transformations (2.1), (2.2) the kernel of the covariant
laplacian A transforms according to 4(z,z') — g,4(z,z') gz_,l; eigenvectors
of —Anx transform as (2.1) (modulo arbitrariness stated below), and the
eigenvalues of —4y . are gauge invariant.

The normalization condition (2.9) does not specify C uniquely. One retains
the freedom of a gauge transformation per block C*(z,x) — C*(z,x)gx,
gx € G, under which eq. (2.9) is invariant. This freedom is eliminated by
demanding that for G = U(1),SU(2)

C(x,x) =C*"(x,x) =r(x)1, (2.13)

with r(x) a positive real number. This ensures the right gauge-covariance
property, viz.C*(z,x) — g. C*(z,x) g;l. For other G, 1 on the r.h.s. of eq.
(2.13) is to be replaced by a positive hermitian matrix. If # is pure gauge
within a block x, (a’)9C(x,z) is an element of G for all z € x, equal to the
path-ordered product of link variables along an arbitrary path C;, which stays
entirely within x.

Now we turn to the kernel A. In the work of Kupiainen and Gawedzki, the
kernel A is defined so that ¥ = A® minimizes the kinetic energy H, subject
to the constraint that the block spin is prescribed. One defines the fluctuation
field {, which is supposed to contain the high frequency components of ¢,
by ¢ = w + {. The above choice of .4 amounts to requiring that the free
hamiltonian Hy does not couple high and low frequency,

(¢,—4¢) = (y,—dy) + ({,-40)
= (P, —deg®) + ({,-40), (2.14)

*Although we do not indicate notationally the explicit dependence of 4y x, Ag(x), C and C*
on the gauge field u, it should be remembered in the following.
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where 4.4 is an operator which acts on functions on 4’ and has kernel
degr(x1, X2) = (A"4A) (X1, X2) = /A(Z,xl)*(AA)(Z,Xz)- (2.15)
z

When defined in this way, the kernel A will have exponential tails. The decay
length of these tails is about one block lattice spacing @' [5]. For numerical
work this is inconvenient. Therefore, kernels A were used in the numerical
multigrid work of Mack and Meyer [9] where A(z,x) was approximately
equal to the kernel defined above, but supported as a function of z in a
neighbourhood of block x.

As argued in ref. [9], it is essential for the fighting of critical slowing down
in MGMC that kernel A should be as smooth as possible. This contention
is supported by the recent work of Hasenbusch et al. [23]. In theories with
gauge fields one may have to constrain the support of A(z,x) to one block,
viz. z € x, for reasons of computational complexity. A natural choice is then
to compute A as solution of the eigenvalue equation

(=dpxA)(z,x) = Ag(x) A(z,x), (2.16)

where —4p x 1s the negative gauge-covariant laplacian with Dirichlet boundary
conditions on the boundary of x, and Aj(x) is the lowest eigenvalue. In d
dimensions

(dpxd)(z) = =2d¢(z) + Z u(z,z)¢(z')y forzex. (2.17)
e
This leaves the same freedom as for C*(z, x); this freedom is eliminated by
the requirement CA = 1. If A is supported on one block, this requirement
reduces to

/ C(x,z)A(z,x) = (@)™ 1. (2.18)
ZEX

The kernel .4 can be computed in the same way as C and with the same
efficiency. The change of boundary conditions amounts to changing one line
in the computer programme.

Reading 4 as covariant laplacian, eq. (2.15) defines a gauge-covariant “ef-
fective laplacian” on the block lattice. Given the support properties of A, it is
nonzero only if either x; = x; or x, is a nearest neighbour of x;. (Because of
disorder in the gauge field, the “effective laplacian” may behave more like a
laplacian minus mass squared, multiplied with a constant.) A blocked gauge
field can now be defined by

Ux1,x2) = deg(x1,%2), (2.19)
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X, nearest neighbour of x;. Actually, this is still a “dielectric” gauge field. It
may be brought back into SU(2) by multiplying with a suitable positive num-
ber. (More generally one would have to perform a polar decomposition [19].)

The choice (2.16) of .A minimizes the local approximation (y, —4dp¥) to
the kinetic energy of the Higgs field, subject to the constraint that the block
spin is prescribed.

The reason why one wants a smooth kernel A is simple. Consider a cube
x € Ay_, of side length /a, [ = L*. Using a step function .4, updating @* (x)
costs kinetic energy proportional to the surface /?~! of the cube, compared
to the optimum /42 for a smooth kernel 4 which interpolates between Ay
and Ay_; so that V.4 = O(l//a). This increase by a factor / will lead to
unacceptable low acceptance rates on coarse lattices where / is large.

Another possible definition of (dielectric) block spins for gauge fields, which
is similar (and approximately equal) to Balaban’s choice, involves C and reads

Ux+Li,x)=L""Y Cx+Li,z+Lip)u(z + Li, z) C*(z,x),
Tex (2.20)

where C (x, z) is C(x, z) without the factor (a’)~9y.(z), and u(z + Lji, z)
is the path-ordered product of link variables on A along the straight line from
ztoz+ Lp.

For G = SU(2) the polar decomposition of U reads

U(x+La,x)=0,(x)U(x + Liz, x), (2.21)

where 2
ou(x) = [%TrU(X+Lﬂ,X)*U(x+Lﬂ,x)] ,
U(x + Li, x) €SU(Q2). (2.22)

o,(x) is a gauge-invariant quantity.

3. Numerical algorithms for the computation of block spins

In this section the algorithms used for computing the kernels C and A
numerically are described. The algorithms will be explained for the C-kernel,
but it is obvious which replacements and modifications have to be done for
the 4-kernel.

The eigenvalue problem (2.10) will be solved by means of Wielandt or inverse
iteration. In each stage of this algorithm one has to solve a linear system
of equations. Its solution will be determined by using a conjugate gradient
method. This method has proven to be well suited for large but sparse linear
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systems with a positive matrix of coefficients. For instance it is generally
accepted to be the most effective way for inversion of the fermionic matrix
in hitherto simulations [24]. The efficiency of the inverse iteration method
depends on the quality of the estimate for the eigenvalue corresponding to
the sought eigenvector. When determining the C-kernel, this estimate shall be
close to the lowest eigenvalue Ag(x) of —4ny, but we must demand that it
is not greater than Ag(x). An efficient method for bounding eigenvalues from
below is explained in the last part of this section.

3.1. DETERMINATION OF EIGENVECTORS BY INVERSE ITERATION

Inverse iteration is a method by which one can determine all eigenvalues
and eigenvectors of a quadratic matrix * A4, provided that sufficiently good
approximate values for the eigenvalues are known. Let Ag,...,A, be the
eigenvalues of 4. Suppose that we know a good approximation A to 4;, say,
ie. |A;—A| < |Ax—A| for all Ax # A;, but A # 4,. For finding an eigenvector x,
fulfilling Ax; = 4;x;, one starts with an arbitrary vector x‘? and computes a
sequence of vectors x (1), x2) .. according to

A-xD =xU=D [ =1273 ... (3.1)

The iteration prescription (3.1) yields an eigenvector x; in the limit of large
i. This can be easily seen by expanding the x© as linear combinations of the
eigenvectors ** of 4. See refs. [25-27] for a more comprehensive discussion
on the method of inverse iteration.

We shall modify the rudimentary method (3.1) a little bit. In order to keep
the components of the iterated vectors finite, it is advisable to normalize them.
Also, the rate of convergence of the inverse iteration is faster the closer 4 is to
Z;. One can therefore try to accelerate the method by updating the estimate A
in course of the procedure. To solve eq. (2.10) we are thus led to the following
form of inverse iteration: Choose a normalized C;® = C*® (., x) for every
block x and iterate

(mdnx =20 0) ¥ = €070, (3.2)
c: = Vax (3.3)
l)C X

*The matrix need not be normal or normalizable.
**If A is defective one expands in terms of eigenvectors and principal vectors [25,26].
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for i = 1,2,3,.... A%D(x) is an estimate of Ay(x) in the ith iteration. The
norm || - ||» is induced by the scalar product
1
_7-d *
(M, W)x = L ;NTrmx,z) Va(x,z), (3.4)

if Vi(x,z), k = 1,2, are N x N matrices. Proper choices for 1 (x) and
for C;(O) are discussed in subsects. 3.2 and 4.2. The updating procedure
A0 (x) — AU+ (x) is explained in subsect. 3.3. The solution of the linear
system of equations (3.2) is determined by means of a conjugate gradient
method which is outlined next.

3.2. CONJUGATE GRADIENT METHOD

The conjugate gradient (CG) method, due to Hestenes and Stiefel, is an
efficient way of solving a system of linear equations

Ty = b, (3.5)

where 7 is a positive definite hermitian » x # matrix in a Hilbert space
with scalar product (-, -). The CG method is iterative in the sense that
starting with an arbitrary initial vector x(?, it yields a sequence of vectors
x© 5 xM 5 x@) ... which converge to the solution of (3.5). But unlike
other iterative methods — e.g. Jacobi, Gauss-Seidel or over-relaxation — it
arrives at the solution after at most # steps (provided the arithmetic is exact).

General CG methods are designed for finding stationary points of con-
tinuously differentiable functions [28,27]. Hestenes’s and Stiefel’s method
minimizes the quadratic form

Flyl=XTy—-b, T""(Ty-5b)) =4y, Ty) - Re(b, )+ 5(b, T7'b) .
(3.6)

The solution of eq. (3.5) is the minimum of F, because 7! exists and is also
positive definite.

The CG algorithm 1is a steepest descent method which performs a (kK + 1)-
dimensional minimization in the step x*) — x®*+D_  x®&+D jg5 determined
such that

Fx**D] = min F[x® 4 09r®@ 4+ .. 4 4 r®], (3.7)
Vgse-. Uk
where r) = b—Tx ) for i < k. The r'9) are orthogonal and thus independent,
as long as r'®) £ 0. Since at most » vectors are independent, there must be
an [/ < n with r'¥ = 0 and x) solves eq. (3.5).
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The cookbook recipe of the CG method is the following [25].

(1) Choose any vector x@ and set p©@ =r©® = p - TxO k =0.
) r® =0 o p® = 0:STOP, x%) is the solution of Tx = b.
(3) Else compute

. (rio, pky - (plo p)y EED o) g )
£ p® Ty ), Tpiy - e
(k+1) ,(k+1)
k+1) _ k) _ (k) = (r—’r—z
r =r aTp™, by = (@ k)
pRAD gkt D) g k) (3.8)

{4) Increase k by 1 and go to (2).

See refs. [25,26] for properties of the x*), p®) r&)_ for a proof of conver-
gence of the CG method and for a discussion about its numerical properties.

When applying the CG algorithm for solving eq. (3.2), we have T =Ty =
ANy —AD(X);y =y =Vy, and b=b, = C;""" are N - L? x N matrices
(for a gauge group represented by N x N matrices), and the scalar product
(-, ) = (-, -)x 1s given by (3.4). On a vector computer eq. (3.2) is solved for
all blocks in parallel by vectorizing over the block index x.
In order that T, is positive definite, all ¢ (x) must be less than the smallest
eigenvalue Ag(x) of ~Axn . Since —dn . is positive semidefinite, we can for
example choose 1¢)(x) = —¢ with a small positive &. But below we will see
that we can do better.

3.3. BOUNDING AND UPDATING EIGENVALUES

One starts inverse iteration with some lower bound A1) (x) for Ap(x) and
gets a first approximation ;“) of C; = C*(-,x). We wish to replace
2 (x) by an improved estimate 1‘?) (x) which is closer to Aq(x), so that the
components orthogonal to C} become more strongly suppressed in going from
C:™ 10 2 than they were in the step C2® — ¢ztV.

Having solved eq. (3.2) for i = 1, we obtain an estimate for Ap(x) by
computing the Rayleigh quotient of V, which is defined through

(Vx » _AN,x Vx)x

R = =varn—

(3.9)

In numerical analysis the Rayleigh quotient is the standard estimate for an
eigenvalue from an eigenvector approximation [29]. R has the property that
the eigenvalues of —4y , are its stationary points which are obtained when the
corresponding eigenvectors are plugged in. One has R[V;] = Ao(x) + O(6?),
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where 6 = (g(x) — AP (x))/ (A1 (x) — 2D (x)); 2,(x) is the second lowest
eigenvalue of —4n . Unfortunately, in order to have —4n — 4() (x) positive
to guarantee convergence of the CG algorithm, we must demand 1¢)(x) <
Ag(x), but Ap(x) is the absolute minimum of R, which means that always
R[Vy] = Ap(x).

In principle there is a simple way to circumvent this problem. One could
take a variant of the CG method [25] which is also applicable in cases where
the matrix 7 is not hermitian and which solves 7*Ty = T*b rather than
eq. (3.5). The matrix T*T is positive if 7 is nonsingular, which means for
T, = —Anx — A% (x) that one must only demand A)(x) # Ag(x) (more
generally A% (x) ¢ spectrum of — 4y ). But the variant of the CG method
is substantially slower, because in each iteration two matrix multiplications
instead of one have to be performed. Also, it is not a priori clear that a trial
AU+ (x) = R[Vy] < $(Ao(x) + A;(x)), which is a necessary condition for
convergence of the inverse iteration towards C7.

A way out of the dilemma is furnished by a bounding theorem for eigenvalues
which is known as

Temple’s Theorem [30)]. Let 7 be a self-adjoint operator in a Hilbert
space H with scalar product (-, -). Let f(® and f () be two elements of H\ {0}
with T/ = £ Compute the Schwarz constants

ao = (O 0, a=(O V), a= (0,5 (3.10)
and for a real number ¢ the Temple quotient

B(t) = 4 -la

ar =1 '

(3.11)

If the interior of the interval (p,q) contains u, = a,/a, and exactly one
isolated eigenvalue 1 and no other element of the spectrum of T, then

B(g) <A< 8(p). (3.12)

See ref. [30] for a proof.

A corollary is the following. Suppose T has a lowest eigenvalue Ag, which
may also be degenerate, and one knows a lower bound /, for the second lowest
eigenvalue A; with u; < /; < A;. Then Temple’s theorem is used with the
interval (—oo,/;) and one obtains

uy—1 Hi — 2
u =l - — = Sl < Uy, 3.13
2/12—11 2 (1/uz) =1 0 2 ( )

where u| = aqp/a;.
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When we apply Temple’s theorem to the inverse iteration (3.2), we get the
bounds

w" (x) = {7 (x)

t(1"(x)) =29(x) + u (x)

m =TI (x)
< Ao(x) < A9 (x) + 13’ (x) = RVl (3.14)
where
) 1 () (€Y, Vs
# (x)=< N7 #y (x) = Ve Vade
ID(x) = 1Li(x) =49 (x) , A1(x) < A(x). (3.15)

Of course, the question arises how one obtains a lower bound 4, (x) for the
second lowest eigenvalue 4;(x) of —4n . In ref. [29] it is discussed how to
overcome this difficulty in general eigenvalue problems either by comparison
with a soluble problem exploiting Courant’s maximum-minimum principle
[31] or by means of a Ritz method. For —4n and —4p . (and gauge group
G = SU(2)) there is a simpler solution as will be shown in sect. 4. Suppose
for the moment that we know an appropriate 1, (x). Then we perform the
updating of 1¢9 (x) according to the following.

(i) Hud(x) = 17 (x), theniC+D (x) = 410 (x) .

(ii) Else computet(/\"” (x))and setA/*+1 (x) = max (l”’(x),r(lf”(x))) .
(3.16)

4. Resuits for pure SU(2) gauge theory

The performance of the numerical algorithms for computing the kernels C
and A, and some properties of, and relevant for, block gauge fields (2.19),
(2.20) were investigated for pure SU(2) gauge theory in d = 4 dimensions
with Wilson action

H(u) = B> [1-4Tru(p)], B =4/g>. (4.1)
p

The Monte Carlo method implemented for updating the gauge field was
Creutz’s heat bath algorithm. A scale factor of L = 3 was chosen.
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4.1. LOW-LYING SPECTRA OF —4n  AND —4p . ON A FUNDAMENTAL 34 LATTICE

The low-lying spectra of —4y and —4p are of importance for the per-
formance of inverse iteration. As a rule of thumb one can say that the fewer
inverse iterations will be needed the better the second lowest eigenvalues
A1(x), A} (x) are separated from the lowest ones Aq(x), A5(x).

In case of pure gauges the spectra of —4n , and —4p , are the same for any
gauge group G, except an (additional) N-fold degeneracy of each eigenvalue if
G is represented by N x N matrices. The spectra of —4n « and —4p , without
gauge field are summarized in tables 1 and 2 for block size L = 3 ind =4
dimensions. For arbitrary gauge field configurations the shape of the spectra
will change, but the sums of all eigenvalues are invariant and equal always
N-2d LY (L—-1) and N-2d L4, respectively.

The distribution of the five lowest eigenvalues of —4y  and —4p x, modulo
two-fold degeneracy for G = SU(2), was determined on a fundamental 3*
lattice with periodic boundary conditions for 8 between 0 and 3.9. This
investigation had to be done only once, so that no special routines were
written for this purpose but existing libraries [32] were used. One thousand
sweeps with measurements were performed after discarding 1000 sweeps to
ensure thermalization. The results are shown in figs. 1 and 2. It is interesting
to note that Ag(x) and Aj(x) behave similar to the plaquette energy (1 —

TABLE 1
The spectrum of —dnx in d = 4 dimensions without gauge field for block size LY = 3. The
sum of all eigenvalues equals Tr(—4n ) which is 2d LA-1(L — 1) = 432 [twice the number of
links within the block]

Eigenvalue 0 1 2 3 4 5 6 7 8 9 10 12
Degeneracy 1 4 6 8 13 12 10 12 6 4 4 1

TABLE 2

The spectrum of —dp , in d = 4 dimensions without gauge field for block size L4 = 3% The
sum of all eigenvalues equals Tr(—4p ) which is 2d L9 = 648

Eigenvalue Degeneracy

8 — 8cos(n/4) = 2.3431 1
8 —6cos(n/4) = 3.7574 4
8 ~4cos(n/4) = 5.1716 10
8 —2cos(n/4) = 6.5858 16

8.0000 19
8 —2cos(3n/4) = 9.4142 16
8 —4cos(3n/4) = 10.8284 10
8 — 6¢cos(3n/4) = 12.2426 4
8 — 8cos(3n/4) = 13.6569 1
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Fig. 1. Expectation values of the five lowest eigenvalues (modulo two-fold degeneracy) of —dy x

for gauge group SU(2) in pure gauge theory on a fundamental 3* lattice as a function of 8. In

pure gauge, 4g(x) = 0. The indicated strong and weak coupling expansion of {ig(x)) derived
from the numerical data is 1.2284(7) — #-0.2163(15) and g~1-0.830(7), respectively.
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Fig. 2. Expectation values of the five lowest eigenvalues (modulo two-fold degeneracy) of —dp
for gauge group SU(2) in pure gauge theory on a fundamental 3¢ lattice as a function of 8.
In pure gauge, Aj(x) = 2d(1 —cos(mn/(L + 1)}) = 2.3431. The indicated strong and weak
coupling expansion of (A{)(x)) derived from the numerical data is 3.7199(6) — § - 0.3013(15)
and 2.3431 4+ B~'.0.853(7), respectively. (Note that the ordinate does not start with zero.)
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TABLE 3

Finite-size effect: Expectation value of the lowest eigenvalue 1y(x) of —dn  on a fundamental
34 lattice and on the 81 blocks of size 3 embedded in a 9¢ lattice

B {(Ag{x)) on fund. 34 lattice (Ao(x)) on 3* blocks in a 94 lattice
1.8 0.7469 + 0.0034 0.7542 + 0.0008
1.9 0.6924 + 0.0044 0.7068 + 0.0008
2.0 0.6284 + 0.0062 0.6538 + 0.0014
2.1 0.5537 £ 0.0055 0.5923 + 0.0008
2.2 0.4868 +0.0037 0.5331 £ 0.0012
2.3 0.4435 + 0.0025 0.4747 £ 0.0010
2.4 0.4082 + 0.0025 0.4280 + 0.0006
2.5 0.3780 £ 0.0016 0.3943 + 0.0005
2.6 0.3592 £ 0.0016 0.3683 + 0.0004

2.7

0.3372 £ 0.0016

0.3466 % 0.0004

TABLE 4

Finite-size effect: Expectation value of the lowest eigenvalue Aé(x) of —4p x on a fundamental
34 lattice and on the 81 blocks of size 3% embedded in a 9* lattice

B (44(x)) on fund. 34 lattice (4(x)) on 34 blocks in a 94 lattice

1.8

3.1064 + 0.0040

3.1066 £+ 0.0014

1.9 3.0505 £+ 0.0048 3.0591 £0.0011
2.0 2.9850 + 0.0068 3.0024 + 0.0012
2.1 2.9083 £ 0.0058 2.9463 + 0.0016
2.2 2.8414 + 0.0048 2.8843 £ 0.0010
2.3 2.7996 + 0.0025 2.8254 £0.0010
24 2.7624 + 0.0031 2.7797 £ 0.0009
2.5 2.7337 £ 0.0018 2.7452 £+ 0.0007
2.6 2.7105 £ 0.0016 2.7186 + 0.0006
2.7 2.6906 + 0.0016 2.6977 £+ 0.0007

%Tru(p)) which has strong coupling expansion 1 — /4 + O(f#3) and weak
coupling expansion 3/(48) [33], and which exhibits a crossover from strong
to weak coupling at § around 2.0. This crossover manifests itself also in
the behaviour of (4p(x)), (A4;(x)) and through a kind of blowing up of the
band width of 4;(x),... ,A4(x) and A (x),...,A,(x), respectively. For larger
values of B the situation of pure gauges is approached and A¢(x), [A5(x)]
tends to zero [2d(1 —cos(n/(L + 1))) = 2.3431], while A,(x),...,A4(x)
[A1(x),...,4;(x)] become degenerate with value 2(1 —cos(n/L)) = 1 [2d —
2(d —1)cos(n/(L+1))—2cos(2n/(L + 1)) = 3.7574].

When one determines (4o(x)) and (15(x)) on the 81 blocks of a 9* lattice
one observes some finite-size effects as shown in tables 3 and 4.
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4.2. PERFORMANCE OF THE NUMERICAL ALGORITHMS

Figs. 1 and 2 are very promising, because we are mainly interested in the
region of larger S-values where a distinct gap exists between A¢(x) and A;(x),
and Aj(x) and A (x), respectively. This permits to compute the kernels with
only two inverse iterations as will be shown, at least for § > 1.8 where
numerical investigations were performed.

From the measured distribution of eigenvalues one can extract lower bounds
for Ag(x), Ap(x) and 4;(x), 4] (x) which have practically a confidence level
of 100%. These bounds are used for A,(x) and A‘V(x). In course of the
inverse iteration (3.2), 1;(x) will not be changed and will retain its x-
independent value *, whereas AV (x) is updated according to (3.16) and is
only x-independent for i = 1.

In order to be specific in the sequel, we will again discuss items for ker-
nel C. To start inverse iteration we must choose some normalized C;©.
Two different choices were tested. The first one is a trivial initialization
(a)4C*®(z,x) = 1 for all z € x. The second choice is Balaban’s ra-
dial gauge, where one sums up with equal weights all parallel transporters
along the taxi-driver paths (paths of shortest length) from x to z for all
z € x; the result is projected into SU(2) (cf. egs. (2.21) and (2.22)).
" (In case of A one could think of multiplying with the pure gauge value
2L/ (L + 1))4/? H/‘f:l sin (mz,/(L + 1)), but it turns out that the efficiency
of the algorithm is not enhanced significantly by this.)

By computing the Rayleigh quotient of C; © one sees that the component
proportional to the sought eigenvector Cj is clearly dominating in Balaban’s
gauge, because in this case R[Cy (0)] lies between Ap(x) and A,(x). For a
trivially initialized C:¥ the components orthogonal to C; dominate. A priori
this does not imply anything for the rate of convergence of inverse iteration, but
the finding is indeed that it is more efficient to use Balaban’s gauge for C O,

The CG method for solving (3.2) was used with initializing Vy with zero. In
this case one needs less than 27 (29) CG iterations in the first (second) inverse
iteration to solve eq. (3.2) sufficiently. The CG algorithm was stopped when
the residual of all blocks fulfilled || (—dn.x—A® (x))Vi—Cr V)2 < L=4-108.
In general, a small residual does not mean that one is close to the solution, but
the above criterion is good enough for the present case. This is demonstrated
by explicitly computing R[C;V] = (€3, —dnC:") and comparing with
A0 (x) + ué')(x). Both results agree.

*Note that t(/ l(i) (x)) is a monotonically increasing function of 11 (x), but the dependence on
il(x) is weak. It has been checked that one can have r(ll(i)(x)) < Ag{(x), even if il(x) is

greater than a practically 100% c. 1. upper bound for 1 (x). This means that r(lf')(x)) is a
very stable lower bound for A¢(x).
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The updating procedure (3.16) always yields an improved estimate of 1q(x)
for the second inverse iteration if # 2 2.15. (This is not the case if Cy © s
trivially initialized; either the condition ! (x) < /" (x) is not fulfilled or if it
is fulfilled 7(/; () (x)) might not be larger than A (x).) Due to fluctuations, for
B < 2.15 the lower bound Ii(x) of A,(x) is not always greater than A¢(x),
so that the necessary condition ,ué')(x) = l i (x) for getting an improved
AU+ (x) may be violated if Ag(x) > 4, (x). Nevertheless, a second inverse
iteration with a non-improved A (x) is also sufficient (at least down to
B = 1.8).

After two inverse iterations the components orthogonal to C} are practically
eliminated. This is proved by inspecting the bounds A (x) and R[C;]
for Jo(x), and by comparing R[C;?] with [| - AN,XC;Q)H. The difference
RIC:® ] - 23)(x) is typically less than 10~ for larger values of g, while it
becomes slightly greater for smaller S-values where ) (x) or 12)(x) is not
always improved. However, R[C;(2 )] and || — AnxC ;(Z)H practically coincide
in the examined B-range from 1.8 to 2.7, which shows that Cy 2 = Crtoa
very high precision *.

To conclude this paragraph the performance of the numerical algorithms
on a CRAY Y-MP is reported. The routines are completely vectorizable
(vectorization over the block index). In case of a 9% lattice and block size
L? = 3% (vector length of 81) the CPU time needed to compute C;:? is
5.7 ms per block. An average rate of 230 MFLOPS is achieved. The CPU time
required to compute Cy ) for all blocks is comparable with that needed for
one standard Monte Carlo sweep through the lattice. Since for larger 8 the
autocorrelation times are much greater than 1, kernels C and A will not be
computed very frequently, which means that the new block spin construction
is not more expensive from the point of view of CPU time than previous
constructions.

4.3. DIELECTRIC BLOCK SPINS

In the last two paragraphs of this section a short account is given of some
physical properties. First we consider the dielectric field g, (x), and afterwards
we turn to renormalization effects.

Dielectric gauge theory models as introduced in ref. [19] are candidates for
effective actions for Yang-Mills theories, see also ref. [20]. For gauge group
SU(2) the scalar field o,(x) (2.22) is identified with the colour dielectric
field. The effective action confines on the classical level if ¢ = (aﬂ(x)“) (no

*Even if the eigenvalue equation were only solved approximately, an MGMC algorithm is set
up in such a way that the equilibrium distribution is not affected by the choice of the C-kernel,
assuming that certain normalization and orthogonality relations are valid [18].
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Fig. 3. Dielectric constant ¢ = {6, (x)* for various definitions of block gauge fields U relative
to values in a pure gauge as a function of §, obtained when blocking a 94 lattice with scale factor
L =3

summation over g) approaches zero for large distances [15].

One blocking transformation from a 9* to a 3* lattice was performed, using
eqgs. (2.19) and (2.20) for the construction of block gauge fields, where the
variational choices A = C* and C = A* were also considered. Periodic
boundary conditions were used. Results for ¢ relative to values in pure gauges
are plotted in fig. 3. The sample size comprised data of 100 configurations,
measurements were only performed every fifth sweep, 1000-2000 sweeps had
been discarded for thermalization.

The qualitative behaviour of ¢ is similar to the results of ref. [15] where
another RGT was used. One observes also a crossover from strong to weak
coupling at B around 2.0. This raises the hope that block spin definitions (2.19)
and (2.20) might be fruitful for further investigations in the framework of the
colour dielectric model.

4.4. EFFECTIVE COUPLING AFTER ONE BLOCKING TRANSFORMATION

The aim of the present paper is not to present a comprehensive Monte Carlo
renormalization group investigation with the new block spin definitions. Only
some preliminaries will be given.

While in subsect. 4.3 the field 0,(x) was examined, we pay attention to
the unitary gauge field U on the block lattice in this section. The block lattice
A" consists of 3* sites. This suggests to compare observables on 4’ and on
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a fundamental 3* lattice. Firstly, the plaquette energy (1 — $TrU(P)) on A’
was measured. The results are collected in table 5. Secondly, the five lowest
eigenvalues lbi S A ,-b ,I1=0,...,4, (modulo two-fold degeneracy) of —4x . and
—4p,x with the block gauge field U were determined (library routines [32] were
used again). The values (4%,) obtained with block spin definition (2.19) are
shown in fig. 4, where the results for (15(x)) and (4, (x)) on the fundamental
34 lattice are also displayed for comparison. Clear renormalization effects are
visible. The crossover behaviour of the lowest eigenvalue has become sharper.
It is also shifted to B between 2.4 and 2.5. This shift is close to the two-loop
perturbative result of 48 = 0.44 for scale factor 3. The crossover on the block
lattice is also signaled by (1 — %Tr U(P)) (table 5) and ¢ (fig. 3); the errors
of both quantities peak at § around 2.4, 2.5. It is interesting to note that the
results for (%), (1’ f), i = 0,...,4, are independent within errors of whether
U is defined via (2.19) or (2.20), with either C or A (resp. their adjoints).
One can define an “effective coupling” B.sr on the block lattice which equals
that value of # on the fundamental lattice where corresponding expectation
values match. It is satisfactory that the values of S derived from the plaquette
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TABLE 5
Expectation value of the plaquette energy on a 3* block lattice as a function of g, obtained wpen
blocking a 9% lattice with scale factor L = 3. (Recall that U is a unitary gauge field, while U is
dielectric.)

(1-3TrU(P))

U via (2.19) U via (2.20)

B with Ay = CAC*  with Agy = A*AA  with C of (2.10) with C = A*
1.8 0.9330 + 0.0027 0.9623 + 0.0022 0.9535 + 0.0025 0.9676 + 0.0030
1.9 0.9081 + 0.0035 0.9468 + 0.0028 0.9218 + 0.0032 0.9525 + 0.0022
2.0 0.8676 + 0.0032 0.9135 + 0.0022 0.8778 + 0.0023 0.9222 + 0.0022
2.1 0.8018 + 0.0026 0.8621 + 0.0028 0.8098 + 0.0040 0.8705 £ 0.0025
2.2 0.6925 + 0.0031 0.7690 + 0.0033 0.7046 + 0.0033 0.7827 % 0.0034
2.3 0.5509 + 0.0055 0.6391 + 0.0051 0.5616 + 0.0033 0.6523 £ 0.0046
2.4 0.4215 + 0.0098 0.5120 + 0.0083 0.4177 £ 0.0033 0.5251 £ 0.0084
2.5 0.3169 + 0.0034 0.4054 + 0.0045 0.3229 + 0.0080 0.4174 + 0.0043
2.6 0.2687 + 0.0017 0.3536 + 0.0018 0.2734 + 0.0028 0.3641 + 0.0019
2.7 0.2381 + 0.0016 0.3154 + 0.0021 0.2363 + 0.0020 0.3236 + 0.0022

energies are consistent with those obtained from the lowest eigenvalues of
—4nx, —4p,x for various definitions of U, except for U’s defined via kernel C
when f > 2.6, but here finite-size effects become severe. The difference 48 =
B.sr — B is shown in fig. 5. Of course, the B-function cannot be immediately
related with this 48, because no other couplings than the marginal gauge
coupling are taken into account. An extensive investigation along the line
carried out by Patel and Gupta [14] would be mandatory for that purpose.
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5. Summary and outlook

An RGT for non-abelian gauge theories due to Mack, and in the spirit of
the ground state projection method of Huisebos et al. [7], and of Brower
et al. [8], was explained. This projective definition of block spins involves
dynamical information. Only the lowest frequency parts of the fields are used
for constructing block spins. The systematic method presented in this paper
provides an approach to deterministic and stochastic MG computations of
non-abelian gauge theories in any number of space-time dimension.

Numerical algorithms for computing block spins resp. gauge-covariant MG
restriction and interpolation operators were proposed. In case of pure SU(2)
lattice gauge theory on a four-dimensional lattice the algorithms work very
well. The required CPU time for computing the kernels C and A is comparable
with that needed for one heat-bath sweep through the fundamental lattice.

First numerical physics results are very promising. They indicate that the
projective RGT might be fruitful when studied in the framework of colour
dielectric models, and also when it is used for RG investigations with block
gauge field in the gauge group.

The new RGT is intended to be used in MGMC simulations as initiated
by Mack [3]. With respect to this application it is important to record that
the projective definition of block spins is numerically implementable for non-
abelian gauge theories.

Further research will consider MG computation of gauge-covariant bosonic
propagators in four dimensions, MG simulations of the SU(2) Higgs model,
and analogous treatment of gauge fields coupled to fermions (replace —4
by the Dirac operator P resp. —P? ...) to compute gauge-covariant fermion
propagators by means of projective MG methods.

I would like to thank Professor G.Mack for many stimulating and helpful
discussions and for a reading of the manuscript. I am also indebted to K. Pinn
and H.G. Evertz for useful discussions and hints. Professor L. Collatz taught
me Temple’s theorem in a very stimulating lecture on eigenvalue problems in
the winter term of 1986/87. With sorrow I learnt of his death in September
1990. Financial support by Deutsche Forschungsgemeinschaft is gratefully
acknowledged. The computations reported in this article were performed on
the Siemens 7882 of the university of Hamburg, on the IBM 3090 of DESY
and on the CRAY Y-MP of HLRZ Jilich.
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