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A block spin definition for Higgs fields andnon-abelianlatticegaugefields is examined
which is in the spirit of the projectivemultigrid procedureof Hulsebosetal., andBroweret
al. Their procedureis generalizableto a systematicmultigrid methodfor non-abeliangauge

theoriesin any numberof space-timedimensions.The block spin transformationinvolves
a gauge-covariantkernelC which makesthefine-to-coarsetransition, anda kernelA which
makesthe coarse-to-fineinterpolation.Thesekernelscouldbeusedin a projectivemultigrid
computationof propagators,for instance.Vectorizablealgorithmsfor thecomputationofC
andA are presented.For SU(2) lattice gaugetheory in four dimensions,the requiredCPU
timefor computingCor A on thewhole lattice is comparableto that for onestandardMonte
Carlo sweepthroughthe lattice. Numericalresults obtainedafter performingone blocking
transformationfrom a 94 to a 34 lattice are presented.The block spin computationyields
auxiliary quantitiesof interest,suchasthe lowest eigenvalues,l~,,l~of the negativegauge-
covariantlaplacianwith NeumannandDirichlet boundaryconditionson block boundaries.
~o and are measuresof disorder and their renormalizationgroup flow is therefore
instructive.

1. Introduction

The questionof the properdefinition of block spinsis posedas soonas one
wantsto investigatea physicaltheoryby meansof renormalizationgroup (RG)
methods [1]. The multigrid (MG) approachto quantumfield theory [2,3]
amountsto simultaneousconsiderationof awhole sequenceof renormalization
group transformations(RGT5).An importantingredientis the choiceof maps
C andA which makethe fine-to-coarseandcoarse-to-finetransitions.Let us
briefly pauseto introducethem.

Through a sequenceof RGTs a theory with fields q~(z) = ~7N (z) on a
fundamentallattice AN of 1attice spacinga = aN getsmappedstep by step
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into theorieswith fields ~ Nj (x), called block spins, which live on lattices
AN_I of increasinglatticespacingaN_I = L~a.Typically, L = 2 or 3 is chosen
anda0 is of theorderof the physicallengthscale.A block spin transformation
amountsto a specificationof maps

C:-~~’=C~. (1.1)

In the languageof theMG approach[4] to partial differential equations,this
is called the fine-to-coarsetransition. In an MG approachone needsalso a
mapeffecting a coarseto fine interpolation

(1.2)

~,k is calledthe backgroundfield. It lives on Ak andis requiredto haveblock

spin CWk ~k—l, i.e.

CA=1. (1.3)

Formatterfields ~ (Higgs fields or Fermi fields) which take their valuesin a
linear space,one may chooseC andA as linear maps,so that they aregiven
by kernelsC(x,z) and...4(z,x). Pointsx E AN_f maybe identifiedwith cubes
of side length L lattice spacingsin the lattice AN_I+ 1 with points z, etc. In
practiceC is alwayschosenlocal, so that C(x,z) = 0 unlessz is in cubex
(z e x for short).

In a gauge theory the block spins are required to transformin a gauge-
covariantway when the matterfield on the fundamentallatticeis subjectto a
gaugetransformation.This implies that kernels C andA are gaugecovariant,
too, andmustthereforedependon the latticegaugefield. This meansthat they
haveto be adjustedwheneverthe gaugefield is updated.Therefore,efficient
algorithmsto computethem are important. It will be seen in sect. 2 that a
blockedgaugefield canbe definedby using kernelsC, A for the Higgs field.

The backgroundfield ~ = A~~
1is supposedto be the sum of the low

frequencycomponentsof ~ the informationaboutthesemust thereforebe
containedin ~ Traditionally [5,6] the kernel C is somehowchosena
priori, andA is then determinedso that yi = A~J~minimizessome approx-
imation to the (effective) action (on Ak), subject to the constraint that the
blockspin cP = C~iis fixed. However, it seemsreasonablethat the notion of
low frequency,and thereforealso the properdefinition of block spin, i.e. of
C, shoulddependon the local action. This point of view is takenby Hulsebos
et al. [7] (stochasticMG) andby Broweret al. [8] (deterministicMG) and
we adopt it. They take A = C*, but this is not crucial. The proposalfor
the constructionof block spinspresentedin the presentpaperaims at usein
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multigrid MonteCarlo (MGMC) simulationswithout critical slowingdown of
non-abeliangaugetheories.A correctMGMC programmefor euclideanfield
theories— without truncationof effective hamiltonians— was initiated by
Mack [3] some time ago. This MG proposalhas the additional advantage
that it yields the effective action andits derivativesfor free [9]. Moreover,
one can extractinfinite volume resultsfrom a simulation in a finite volume
as shownby Palma [10] for pureqfi4 theory. Furthermore,it was pointed out
in ref. [3] that a reformulationof a theory as a polymer systemon an MG
offers the possibilityof performingsimulationsfor continuumsystemswithout
imposingaUV cutoff. The presentauthor [11] madea proposalhow to deal
with polymersystemswith indefinite activities.

Previousworks or proposals [12—17]attempt to constructparallel trans-
porterson a block latticeby restrictingattention to preselectedpathson the
finer lattice.Theweightsof the differentpathsareeitherpredeterminedor one
triesto optimizethem by meansof operatormatchingtechniques[16]. Mack
[18], Hulseboset al. [7] and recentlyBroweret al. [8], madea proposalfor
an RGT in gaugetheorieswhich differs from previousapproaches.This new
idea is meantto separatehigh- and low-momentumpartsand to construct
block spinswhich containonly the lowest frequencypart of the fields on the
finer lattice.

Apart from their intendedusein MGMC simulationsthe kernelsA andC
could be usedalso in MG computationsof gauge-covariantpropagators,as in
the works of Brower et al. [8], and Ben-Av et al. [12]. This is of interest
for fermions primarily, andwill be studiedelsewhere.In addition the kernels
A and C could be useful in ordinary Monte Carlo RG investigationsand
in studying dielectriclattice gaugetheories [19] numerically. It may supple-
ment the work of Pirnerandcollaborators[15,16,20] who havestudiedthe
propertiesof dielectricgaugemodelsextensively.The blockspin computation
yields auxiliary quantitiesof interest, such as the lowest eigenvalues)~,)~of
the negativegauge-covariantlaplacianwith NeumannandDirichiet boundary
conditionson block boundaries.,~.oand2~are measuresof disorderand their
renormalizationgroup flow is thereforeinstructive.

In sect.2 a definition of kernelsA andC for Higgs fields which is in the
spirit of refs. [7,8], and definitions of blocked gaugefields which usethese
kernelsare given. This providesasystematicmethod for non-abeliangauge
theoriesin any numberof space-timedimension.An analyticalexpressionfor
C as given in ref. [8] for two-dimensionalU (1) theoriescannotbe foundfor
non-abeliangaugetheoriesin higherdimensions.A numericalsolution of this
problem is given by presentingan algorithm which permits to computethe
gauge field dependentkernels C and A very efficiently (sect. 3). The actual
computationsare donefor SU(2) gauge fields on a four-dimensionallattice.
A discussionof the performanceof the algorithm (which is interestingfor
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further developmentof projective MG methods)and physics results which
arerelevantfor colourdielectricmodelsandordinaryRG studiesaregiven in
sect.4. The algorithmvectorizesvery well. To computethe kernel C or A on
the whole fundamentallattice costs CPU time of the order of onestandard
MonteCarlo sweepfor the gaugefield. The kernelson the coarserlattices are
computedin the sameway, using block gauge fields. The cost in CPU for
this is negligiblein comparison,becausetherearemuchfewer pointson block
lattices.

2. Renormalization group transformations for gaugetheories

Let us considerreal spaceRGTs with some integerscalefactor L > I for
a euclideangaugetheory on a fundamentald-dimensionalspace-timelattice
A with lattice spacinga. As a concretemodel we will take the SU(2) Higgs
modelin d = 4 into consideration;for recentreviewssee ref. [211. In the first
RG step the fundamentallattice of sites z is coveredby a block lattice A’
consistingof block sitesx with side length a’ = La andcontainingLa! sites
z. We write z ~ x, if z is in block x. Onesite z in eachblockx is selectedas
the block centrei. The procedureis iteratedin order to go to coarserlattices.

2.1. GAUGE-COVARIANT BLOCK AVERAGES

The theory on the fundamentallattice exhibits local gauge invariance,i.e.
the action7i(q~,u) of a Higgs field ç~ion the sites of A anda gaugefield u on
the links of A is invariant under

~(z) -s 9Y(z) = g~çb(z), (2.1)

~ (2.2)

whereg~are elementsof someunitary gaugegroup G; ft denotesavector of
lengtha in it-direction, and (z + ft, z) is the directedlink emergingfrom site
z in au-direction.

In order to define block spins cP = ‘I~(q~,u) and U = U(u) ~ G which
live on the sitesresp. links of A’, we mustspecify a block transformationin a
gauge-covariantway. One demandsthat the block spins transformunder the
gaugetransformations(2.1), (2.2) on A accordingto

—s 1’(x) = g~I’(x), (2.3)

U(x+Lft,x)U’(x+Lft,x)=g~÷~~U(x+Lft,x)g~
1. (2.4)

A discussionabout exact RGTs for gauge theoriesand some proposalsof
differentauthorscan be found in ref. [22].
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The block spin qi shallbe a linear function of q~.It is obtainedby

~(x) = (C~)(x)= f C(x,z)~(z), (2.5)
zEil

whereC(x, z) is the integralkernelof the operatorC which mapsa field on A
into afield on A’. The latticenotation meansa’~>ZEA• Gaugecovariance
demandsthat C(x, z) transformsunderagaugetransformationlike aparallel
transporterfrom z to ~ i.e.

C(x, z) —~ g~ C(x,z) g~’. (2.6)

Similarly, the backgroundfield w shallbe a linear function of the block spin

w(z) = f A(z,x)~(x) (a~)d~ A(z,x)~(x). (2.7)
xEA’

The backgroundfield should transformin the sameway as the field ~ under
gaugetransformations,therefore

A(z,x) —* g~A(z,x) g~. (2.8)

Givena pathC on A from z1 to z2, the parallel transporteru(C) is defined
as usualas path-orderedproductof the latticegaugefields u (b) on the links
b of which the path C is composed.We seek kernelsC, A which take their
values in the linear spanof the gaugegroup, i.e. which are real multiplesof
SU(2) matriceswhen G = SU(2). The most general kernel C which enjoys
gaugecovariance(2.6) is a weightedaverageof parallel transportersu(C) over
pathsC from z to *, with arbitrary real weight factors p(C), andsimilarly
for A. Balaban’sblock spin choiceamountsto computingC by summingover
all taxi driver pathsC which stay inside the block x andproceedin each
directionat most once. This is equivalentto averagingover the block in the
latticeversion of the Schwinger—Fock(= radial) gauge.

2.2. DEFINITION OF BLOCK SPINSFOR HIGGS AND GAUGE FIELDS

It is appropriateto review briefly the block spin transformationwhich was
usedby KupiainenandGawedzki [5] to give rigorousproofsof the existence
of the continuum limit of some lattice field theorieswithout gauge fields.
The proposalmadebelow is the naturalgauge-covariantgeneralizationof this
transformation.The kernel C is given by C(x,z) = (a’)”Xx(z), whereXx

is the characteristicfunction of x, i.e. Xx(Z) = 1 if z E x and Xx(Z) = 0
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otherwise.This kernel implies a local definition of 1’ as block averageof ~

and fulfills the normalizationcondition

CCt(xi,x
2) = f C(x~,z)C*(z,x2) = (aI)_dôxx2 = ö(x1 — x2). (2.9)

The kernel of C resp. its adjoint C
t — which is the sameas C for pure

scalar theory, generally Ct(z,x) = C(x,z)t where star denoteshermitian
conjugation— canbe definedas solution of the eigenvalueequation

(—zlN,XCt)(z,x) =Ao(x)Ct(z,x), (2.10)

where —AN,X is the negativelattice laplacianwith Neumannboundarycondi-
tions on the boundaryof block x, and)Lo (x) is the lowesteigenvalue,equalto
zero for all blocksin purescalartheory. AN,X actson argumentz. Solutionsof
eq. (2.10) with ~o(x) = 0 are constantson the blocks, theseare determined
by the normalizationcondition (2.9).

FollowingMack [18], thisprocedurecanbere-interpretedas follows. Define
a notion of (block-local) frequencywhich dependsonly on the behaviourof
the function which is to be decomposedinto frequencycomponentson the
chosenblockx. Thus,definefrequency(squaredif onewantsto) as eigenvalue
of the laplacianwith Neumannboundaryconditions.Define the block spin in
two steps.First definethe lowestfrequencypart yi (z) of ~ (z) by projection

= limexp[—t(—AN,~—)~o(x))]~(z). (2.11)

w (z) will be a smoothfunction of z insidethe block. In the secondstep the
block spin is definedequalto the value of this smoothfunction at the block
centrez

The euclideanaction of ~ theory is of the form 7-I = 7-b + V, and 7-Is =

(~,h~)with “first quantizedhamiltonian” h in the spaceof wave functionsq~
equalto h = —A. A local approximationof this which preservesthe invariance
under shifts by constantfields would beh~= ~~LIN,X. Oneseesthat the block
spin b (x) retainsthe componentof ~ associatedwith the lowest eigenvalue
of hx, in agreementwith the philosophyof refs. [7,8].

Mack [18] proposedto proceedfor block spinsof Higgsfields in non-abelian
gaugetheoriesin exactlythe sameway, defining Ct as solutionof eq. (2.10).
Ct (z,x) will be in the linear span* of the gaugegroup G, and AN,x will be

*That is, C* (z,x) will be a real multiple of an elementof SU (2) if G = SU(2), an arbitrary

complexN x N matrix for G = U(N), N ~ 3 etc, see ref. [19}.
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the covariantlaplacianwith Neumannboundaryconditions.It dependson the
lattice gaugefield u and is definedby

(AN,x
9~)(Z) = ~ [u(z,z’)çb(z’) —çb(z)] for z EX. (2.12)

z’Ex

Summationis over next neighboursz’ of z which lie in block x, andu(z, z’)
is the gaugefield attachedto the link from z’ to z. The idea is againthat
the definition of block spins involves dynamical information — think of
f q~

t(z) (—AN,~cb)(z) as the part of the kinetic energywhich is associated
with the inside of block x. Thus, what is called “low frequency” is actually
determinedby kinetic energy.One could also admit dielectric gauge fields
[191 u, especiallyon coarserlayers ~.

Somepropertiesof ANX are: ~4N,x is positivesemidefiniteso that its lowest
eigenvalue2o (x) is alwaysnon-negative;)~o(x) is only zeroiff u is a puregauge
within x; undergaugetransformations(2.1), (2.2) the kernel of the covariant
laplacian A transformsaccording to A (z,z’) —s g~A(z,z’)g~ eigenvectors
of —zlN,x transform as (2.1) (modulo arbitrarinessstatedbelow), and the
eigenvaluesof ~~~-4N,X aregaugeinvariant.

The normalizationcondition (2.9) doesnot specifyC uniquely.Oneretains
the freedom of a gauge transformationper block Ct (z,x) —s Ct (z,x)g~,
g~E G, under which eq. (2.9) is invariant. This freedom is eliminatedby
demandingthat for G = U(l),SU(2)

C(x,~)= Ct(~,x)= r(x)1, (2.13)

with r(x) a positive real number.This ensuresthe right gauge-covariance
property, viz. C* (z,x) —~ g~Ct(z, x) g;’. For other G, 1 on the r.h.s. of eq.
(2.13) is to be replacedby a positive hermitian matrix. If u is pure gauge
within a block x, (aI)dC(x,z) is an elementof G for all z E x, equalto the
path-orderedproductof link variablesalongan arbitrarypathC*~which stays
entirely within x.

Now weturn to the kernel A. In the work of KupiainenandGawçdzki, the
kernelA is definedso that w = ~4J minimizesthe kinetic energy7-b subject
to the constraintthat the block spin is prescribed.Onedefinesthe fluctuation
field ~, which is supposedto contain the high frequencycomponentsof q~,
by q~= w + 4’. The abovechoice of A amountsto requiring that the free
hamiltonian7-be doesnot couplehigh and low frequency,

(q~i,—A~)= (~,—A~)+ (4’,—A4’)

= (~,4ef~) + (4’,A4’), (2.14)
*Although we do not indicate notationally the explicit dependenceof 4N,x, 2

0(x), C and C
on the gaugefield u, it should berememberedin the following.
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whereAeff is an operatorwhich acts on functionson A’ andhaskernel

Aeff(Xl,X2) (A*AA)(xi,x2) = JA ,x1)
t(4 ,x

2). (2.15)

Whendefinedin thisway, the kernelA will haveexponentialtails. The decay
length of thesetails is aboutone block lattice spacinga’ [5]. For numerical
work this is inconvenient.Therefore,kernelsA were usedin the numerical
multigrid work of Mack andMeyer [9] where A( z,x) was approximately
equal to the kernel defined above, but supportedas a function of z in a
neighbourhoodof block x.

As arguedin ref. [91, it is essentialfor the fighting of critical slowingdown
in MGMC that kernel A should be as smoothas possible. This contention
is supportedby the recentwork of Hasenbuschet a!. [23]. In theorieswith
gaugefields one may haveto constrainthe supportof A( z,x) to one block,
viz. z E x, for reasonsof computationalcomplexity. A naturalchoice is then
to computeA as solution of the eigenvalueequation

(4D,xA)(Z,X) )~~(X)A(Z,X), (2.16)

where~
4D,x is the negativegauge-covariantlaplacianwith Dirichlet boundary

conditionson the boundaryof x, and 2~(x) is the lowest eigenvalue.In d
dimensions

(JD,xq~)(Z) = —2dq~(z)+ ~ u(z,z’)q~(z’) forzEX. (2.17)

Z’ E~

This leavesthe samefreedomas for Ct (z,x); this freedomis eliminatedby
the requirementCA = 1. If A is supportedon one block, this requirement
reducesto

f C(x,z)A(z,x)= (at)_d 1. (2.18)
z~x

The kernel A can be computedin the sameway as C and with the same
efficiency. The changeof boundaryconditionsamountsto changingone line
in the computerprogramme.

Reading4 as covariantlaplacian,eq. (2.15) definesa gauge-covariant“ef-
fective laplacian” on the block lattice. Giventhe supportpropertiesof A, it is
nonzeroonly if either x

1 = X2 or x2 is a nearestneighbourof x1. (Becauseof
disorder in the gauge field, the “effective laplacian” may behavemore like a
laplacianminusmasssquared,multiplied with aconstant.)A blockedgauge
field can now be definedby

U(x1,x2) Aeff(XI,X2), (2.19)
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x2 nearestneighbourof x1. Actually, this is still a “dielectric” gauge field. It
maybebroughtbackinto SU(2) by multiplying with a suitablepositivenum-
ber. (More generallyonewould haveto perform apolardecomposition[19].)

The choice (2.16) of A minimizesthe local approximation(w, —A~,xW)to
the kinetic energyof the Higgs field, subject to the constraintthat the block
spin is prescribed.

The reasonwhy one wants a smooth kernel A is simple. Considera cube
XE AN_k of sidelength la, I = Lk. Using a stepfunction A, updating t”(x)
costs kinetic energyproportional to the surfacel”~

1 of the cube, compared
to the optimum

1d~2for a smoothkernel A which interpolatesbetweenAN
and AN_k so that VA = 0(1/Ia). This increaseby a factor / will lead to
unacceptablelow acceptancerateson coarselatticeswhere/ is large.

Anotherpossibledefinition of (dielectric) blockspinsfor gaugefields, which
is similar (andapproximatelyequal)to Balaban’schoice,involvesC andreads

U(x+Lft,X)=L_d~C(x+Lft,z+Lft)u(z+Lft,z)Ct(z,X),
zEx (2.20)

whereC(x,z) is C(X,z) without the factor (a’)~’~Xx(z),andu(z + Lft, z)
is the path-orderedproductof link variableson A along the straightline from
z to z + L~u.

For G = SU(2) the polardecompositionof U reads

(2.21)

where
1/2

= [~TrU(x+Lit,x)tU(x+Lit,x)]

U(x+Lft,x) ESU(2). (2.22)

c~(X) is a gauge-invariantquantity.

3. Numerical algorithms for the computation of block spins

In this section the algorithms used for computing the kernels C and A
numericallyaredescribed.The algorithmswill be explainedfor the C-kernel,
but it is obviouswhich replacementsandmodificationshaveto be donefor
the A-kernel.
The eigenvalueproblem(2.10) will be solvedby meansof Wielandtor inverse
iteration. In each stageof this algorithm one has to solve a linear system
of equations.Its solution will be determinedby using a conjugategradient
method.This methodhasprovento be well suitedfor large but sparselinear
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systemswith a positive matrix of coefficients. For instanceit is generally
acceptedto be the most effective way for inversionof the fermionic matrix
in hitherto simulations [241. The efficiency of the inverse iteration method
dependson the quality of the estimatefor the eigenvaluecorrespondingto
the soughteigenvector.Whendeterminingthe C-kernel,this estimateshallbe
close to the lowest eigenvalue ~o(x) of ~~LlN,x, but we must demandthat it
is not greaterthan~ (x). An efficient methodfor boundingeigenvaluesfrom
belowis explainedin the last part of this section.

3.1. DETERMINATION OF EIGENVECTORSBY INVERSE ITERATION

Inverseiterationis a methodby which one candetermineall eigenvalues
and eigenvectorsof a quadraticmatrix * A, provided that sufficiently good
approximatevalues for the eigenvaluesare known. Let )~,... , t,,~be the
eigenvaluesof A. Supposethat we know a good approximation,~ to )~j,say,
i.e. I~f—~.I<< I~k—~ for all tk � ~ but .2. ~ )~. For finding an eigenvectorx~,
fulfilling Ax1 = )~1x1,onestartswith an arbitraryvector X~°

1andcomputesa
sequenceof vectorsx (1), x~ accordingto

(A — ~)x~’1 = ~ I = 1,2,3 (3.1)

The iterationprescription (3.1) yields an eigenvectorx
1 in the limit of large

i. This canbe easily seenby expandingthex~as linear combinationsof the
eigenvectors** of A. See refs. [25—27]for a more comprehensivediscussion
on the methodof inverseiteration.

We shall modify the rudimentarymethod (3.1) a little bit. In orderto keep
the componentsof the iteratedvectorsfinite, it is advisableto normalizethem.
Also, the rateof convergenceof the inverseiterationis fasterthe closer )L is to
)~. Onecanthereforetry to acceleratethe methodby updatingthe estimate)~
in courseof the procedure.To solveeq. (2.10)we arethus led to the following
form of inverseiteration: Choosea normalizedC~°~= Ct(o) ( , x) for every
block x anditerate

(—AN,x _~(x)) Vx = C’~, (3.2)

CX*(I) = II~Ix (3.3)

*The matrix neednot be normalor noi-malizable.
**If A is defective oneexpandsin termsof eigenvectorsandprincipal vectors [25,26].



T. Kalkreuter/ Lattice blockspin 647

for i = 1,2,3 )*~(x) is an estimateof)~0(x)in the ith iteration. The

norm lix is inducedby the scalarproduct

(v1, V2)x = Ld ~ ~TrV1 (x, z)* V2(x,z), (3.4)
zEx

if Vk(X,z), k = 1,2, are N x N matrices.Proper choicesfor )jt)(x) and
for C~°~are discussedin subsects.3.2 and 4.2. The updating procedure

,~,(l+

t)(y~) is explainedin subsect.3.3. The solution of the linear
system of equations (3.2) is determinedby meansof a conjugategradient
methodwhich is outlinednext.

3.2. CONJUGATE GRADIENT METHOD

The conjugategradient (CG) method,due to HestenesandStiefel, is an
efficient way of solving a systemof linear equations

Ty=b, (3.5)

where T is a positive definite hermitian n x n matrix in a Hilbert space
with scalar product (., .). The CG method is iterative in the sensethat
starting with an arbitrary initial vector ~ it yields a sequenceof vectors

~(l) —s ~~2~••• which convergeto the solution of (3.5). But unlike
other iterative methods— e.g. Jacobi,Gauss—Seidelor over-relaxation— it
arrivesat the solution after at mostn steps(providedthe arithmeticis exact).

General CG methodsare designedfor finding stationarypoints of con-
tinuously differentiable functions [28,27]. Hestenes’sand Stiefel’s method
minimizesthe quadraticform

F[y] = ~(Ty—b, T~’(Ty—b))= ~(y, Ty)— Re(b,y) + ~(b, T~’b).
(3.6)

The solution of eq. (3.5) is the minimumof F, becauseT’ existsandis also
positive definite.

The CG algorithmis a steepestdescentmethodwhich performsa (k + 1)-
dimensionalminimization in the step~ —~ ~ ~ is determined
such that

F[x~’~] = mm F[x~ + v
0r~°~+ ..• + vkr~], (3.7)

V0 Vk

where~ = b—Tx~’~for i ~ k. The r~areorthogonalandthusindependent,
as long as r~ ~ 0. Since at most n vectors are independent,theremust be
an I ~ n with r~’~= 0 and x~

11solveseq. (3.5).
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The cookbookrecipeof the CG methodis the following [25].
(1) Chooseanyvectorx~°~andsetp(~= r~°~= b — Tx~°1,k = 0.
(2) If r(k) = 0 ~ ~(k) = 0 : STOP,~ is the solutionof Tx = b.
(3) Else compute

/ (k) (k)\ / (k) (k)\

a — , / = \r ‘p / x~÷U— x(k) + a (k)k (p(k),Tp(”)) (p(k), Tp(”)) ‘ — k

(k+1) (k+1)

~ = r~—akTp~, bk =

~(k+1) = + bkp~, (3.8)

(4) Increasek by 1 and go to (2).
Seerefs. [25,26] for propertiesof thex(t~~),p~),r(k),for aproofof conver-

genceof the CG methodandfor a discussionaboutits numericalproperties.
When applyingthe CG algorithm for solving eq. (3.2), we have T = T~=

— ,~~‘~(x)’y = Yx V~,andb = bx = C~’’~are N~Ld x N matrices
(for a gauge group representedby N x N matrices),and the scalar product
K, ) = K., )x is givenby (3.4). On avector computereq. (3.2) is solvedfor
all blocks in parallelby vectorizingover theblock index x.
In order that T~is positive definite, all )P~(x)mustbe lessthanthe smallest
eigenvalueA,.~(x) of —AN,X. Since ~AN,x is positive semidefinite,we can for
examplechoose)L~(x)= —c with a small positive ~. But belowwe will see
that we cando better.

3.3. BOUNDING AND UPDATING EIGENVALUES

One starts inverse iteration with somelower bound2~U(x)for 2
0(x) and

gets a first approximation C~(1) of C~= C
t ( , x). We wish to replace

A~’~(x)by an improvedestimate)12~(x)which is closer to A
0(x), so that the

componentsorthogonalto C~
tbecomemorestrongly suppressedin goingfrom

C~1~to C~2~than theywerein the step —s CX*(l).

Having solved eq. (3.2) for i = 1, we obtain an estimatefor )~
0(x)by

computingthe Rayleighquotientof Vx which is definedthrough

R v — KVx,4N,x X)X (39)x - KVx,Vx)x

In numericalanalysis the Rayleighquotient is the standardestimatefor an
eigenvaluefrom an eigenvectorapproximation[29]. R hasthe property that
the eigenvaluesof

4N,x areits stationarypointswhich areobtainedwhenthe
correspondingeigenvectorsarepluggedin. OnehasR[V~]= .2.~(x) + 0(ö2),
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whereö = (2o(x) —2”~(x))/(21(x) —2~’~(x)); 21(x) is the second lowest
eigenvalue of ~ Unfortunately, in order to have ~

4N,X — 2~’~(x) positive
to guarantee convergence of the CGalgorithm, we must demand2°.~(x) <

2o (x), but 2o (x) is the absolute minimum of R, which meansthat always
R[Vx] ~

In principle thereis a simpleway to circumventthis problem. One could
takeavariantof the CG method [25] which is also applicablein caseswhere
the matrix T is not hermitian and which solves TtTy = T*b rather than
eq. (3.5). The matrix TtT is positive if T is nonsingular,which meansfor
T~= 4N,x — 2~(x) that onemust only demandA~(x) ~ 2~(x) (more
generally2~’~(x) ~‘ spectrumof — AN,x). But the variant of the CG method
is substantiallyslower, becausein each iteration two matrix multiplications
instead of one have to be performed. Also, it is not a priori clearthat a trial

= R[Vx] < ~.(2
0(x) + 21(x)), which is a necessary condition for

convergenceof the inverseiteration towardsC~.
A way out ofthe dilemmais furnishedby a boundingtheoremfor eigenvalues

which is knownas
Temple’s Theorem /30]. Let T be a self-adjoint operator in a Hilbert

space H with scalarproduct(~.). Let fW) and f(l) be two elements of H\{0}
with Tf(’) = f~. Compute the Schwarz constants

ao = (f(O),f(O)), a1 = (f(O),f(h)), a2 = (f(l),f(l.)) (3.10)

and for a real numbert the Temple quotient

t9(t) = a0 ta1 (3.11)
a1 — ta2

If the interior of the interval (p, q) contains it2 a1/a2 and exactly one
isolatedeigenvalue2 and no other elementof the spectrumof T, then

t9(q) ( 2 ~ d(p) . (3.12)

See ref. [30] for a proof.
A corollary is the following. Suppose T has a lowest eigenvalueAo, which

may also be degenerate,andoneknowsa lower boundi~ for the second lowest
eigenvalue A~with it2 < l~ ~ 2~.Then Temple’s theorem is used with the
interval (—cx~,/i) and one obtains

iti’i _______= it2 — ,, / ~ ~ 2~ ~ P2, (3.13)
P2 11 ~,11/it2) —

where m Eao/a1.
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Whenwe apply Temple’s theoremto the inverseiteration (3.2), we get the
bounds

r(I~’~ (x)) 2~’~(x) + ~~1) (x) ~ (x) - l~(x)
i~2 (x) ~l (x)

~ 20(x) ~ 2
1’~(x)+ j4’~(x)= R[V~], (3.14)

where

1 ,,-,*(i_1) Ti \
(1) ~ _________________ (i) ~ \‘-~x ,

~ ~ — (C~’~’~,Vx)x ‘ P
2 X~ — (Vx, Vx)x

l~’~(x) = ~1(x) —2~’~(x) , ~i(x) ~ 21(x). (3.15)

Of course,the questionariseshow one obtainsa lower bound~ (x) for the
second lowest eigenvalue )~(x) of ~

4N,x. In ref. [29] it is discussed how to
overcomethis difficulty in generaleigenvalueproblemseither by comparison
with a soluble problem exploiting Courant’s maximum—minimumprinciple
[31] or by means of a Ritz method. For ~4N,X and ~~4D,X (and gauge group
G = SU(2)) there is a simpler solution as will be shown in sect. 4. Suppose
for the moment that we know an appropriate2~(x). Then we perform the
updating of 2(1)(x) accordingto the following.

(i) Ifp~’~(x) ~ /~(x) then2~~~(x) 21’1(x)

(ii) Else computer(/~(x))and set2~’~(x) = max (2w(x),r(I~(x)))

(3.16)

4. Results for pure SU(2) gauge theory

The performanceof the numericalalgorithmsfor computingthe kernelsC
and A, andsomepropertiesof, and relevant for, block gauge fields (2.19),
(2.20) were investigatedfor pure SU(2) gauge theory in d = 4 dimensions
with Wilson action

7-1(u) = fJ~[1 — ~Tru(p)], /3 = 4/g2. (4.1)

The Monte Carlo method implementedfor updating the gauge field was
Creutz’s heatbathalgorithm. A scalefactorof L 3 was chosen.
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4.1. LOW-LYING SPECTRAOF ~
4N,x AND ~ ON A FUNDAMENTAL 34 LATTICE

The low-lying spectraof ~4N,X and ~ are of importancefor the per-
formanceof inverseiteration. As a rule of thumbone can say that the fewer
inverse iterations will be neededthe better the secondlowest eigenvalues
2

1(x), 2~(x)are separatedfrom the lowest ones20(x), 2’0(x).
In caseof puregaugesthe spectraof ~~AN,X and ~

4D,X arethe samefor any
gaugegroupG, exceptan (additional)N-fold degeneracyof eacheigenvalueif
G is representedby N x N matrices.The spectraof ~~~4NX and~4D,X without
gauge field are summarizedin tables 1 and 2 for block size L = 3 in d = 4
dimensions.For arbitrary gaugefield configurationsthe shapeof the spectra
will change, but the sums of all eigenvalues are invariant and equal always
N.2dL’~~1(L—1) and N.2dLd, respectively.

The distribution of the five lowesteigenvaluesof ~4N,X and ~ modulo
two-fold degeneracyfor G = SU(2), was determinedon a fundamental34

lattice with periodic boundary conditions for /3 between0 and 3.9. This
investigationhad to be done only once, so that no special routines were
written for this purposebut existing libraries [32] were used.One thousand
sweepswith measurementswere performedafter discarding 1000 sweepsto
ensurethermalization.The resultsare shownin figs. 1 and 2. It is interesting
to note that 2

0(x) and 2~(x) behavesimilar to the plaquetteenergy (1 —

TABLE 1

The spectrumof ~

4N,x in d = 4 dimensions without gauge field for block size Ld = 34~The
sumof all eigenvaluesequalsTr(—4N~)which is 2 dLd_l (L 1) = 432 [twice the numberof

links within the block]

Eigenvalue 0 1 2 3 4 5 6 7 8 9 10 12
Degeneracy 1 4 6 8 13 12 10 12 6 4 4 1

TABLE 2

The spectrumof ~ in d = 4 dimensions without gauge field for block size L” = 34• The
sum of all eigenvaluesequalsTr(—4DX) which is 2dLd = 648

Eigenvalue Degeneracy

8_8cos(ir/4) = 2.3431
8_6cos(x/4) = 3.7574 4
8—4cos(~/4) = 5.1716 10
8—2cos(~r/4)= 6.5858 16

8.0000 19
8_2cos(3m/4) = 9.4142 16
8_4cos(3~’r/4) = 10.8284 10
8—6cos(3~r/4) = 12.2426 4
8—8cos(3~r/4) = 13.6569
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Fig. 1. Expectationvaluesof the five lowesteigenvalues(modulo two-fold degeneracy)of —AN,~
for gaugegroup SU(2) in pure gaugetheory on a fundamental34 lattice asa function of fi. In
pure gauge,,~(x) = 0. The indicatedstrong and weak coupling expansionof (2~(x)) derived

from the numericaldatais 1.2284(7) /3.0.2163(15)and /3 0.830(7), respectively.

4 3 a ~ ~‘ ~

4.1
a a

~ L a a a a a aa ~ a a a a a

3.5

2 3
0.0 1.0 2.0 3.0 4.0 ~3

Fig. 2. Expectationvaluesof the five lowesteigenvalues(modulo two-fold degeneracy)of —Ao,~
for gauge group SU(2) in pure gaugetheory on a fundamental34 lattice as a function of /3.

In pure gauge, A~(x) = 2d(1 cos(ir/(L + 1))) = 2.3431. The indicated strong and weak
coupling expansionof (~l~(x))derivedfrom the numerical data is 3.7199(6) — /3 . 0.3013(15)

and 2.3431 + /3’ .0.853(7), respectively. (Note that the ordinatedoesnot start with zero.)
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TABLE 3
Finite-sizeeffect: Expectationvalue of the lowest eigenvalueA

0 (x) of ~

4N,x on a fundamental
34 lattice and on the 81 blocks of size 34 embeddedin a 94 lattice

/3 (A
0(x)) on fund. 34 lattice p.0(x)) on 34 blocksin a 94 lattice

1.8 0.7469 ±0.0034 0.7542 + 0.0008
1.9 0.6924±0.0044 0. 7068 ±0.0008
2.0 0.6284±0.0062 0.6538±0.0014
2.1 0.5537 ±0.0055 0.5923 + 0.0008
2.2 0.4868 + 0.0037 0.5331 ±0.0012
2.3 0.4435±0.0025 0.4747±0.00 10
2.4 0.4082+ 0.0025 0.4280+ 0.0006
2.5 0.3780±0.0016 0.3943±0.0005
2.6 0.3592±0.0016 0.3683+ 0.0004
2.7 0.3372±0.0016 0.3466±0.0004

TABLE 4

Finite-sizeeffect: Expectationvalue of the lowest eigenvalueA~(x) of ~

4D,x on a fundamental

34 lattice and on the 81 blocksof size 34 embeddedin a 94 lattice

/3 (A~(x))on fund. 34 lattice (A~,(x))on 34 blocks in a 94 lattice

1.8 3.1064±0.0040 3.1066±0.0014
1.9 3.0505±0.0048 3.0591±0.0011
2.0 2.9850±0.0068 3.0024±0.0012
2.1 2.9083±0.0058 2.9463±0.0016
2.2 2.8414 ±0.0048 2.8843±0.00 10
2.3 2.7996±0.0025 2.8254±0.0010
2.4 2.7624±0.0031 2.7797±0.0009
2.5 2.7337±0.0018 2.7452±0.0007
2.6 2.7105±0.0016 2.7186±0.0006
2.7 2.6906±0.0016 2.6977+ 0.0007

~Tru(p)) which hasstrong coupling expansion1 — /3/4 + O(/3~)and weak
couplingexpansion37(4/3) [33], andwhich exhibitsa crossoverfrom strong
to weak coupling at /3 around 2.0. This crossovermanifestsitself also in
the behaviourof (2o (x)), (2~(x)) and through a kind of blowing up of the
band width of 2i(x),... ,2

4(x) and2’~(x),... ,2’~(x),respectively.For larger
values of /3 the situation of puregaugesis approachedand2~(x), [2~(x) I
tends to zero [2d(1 —cos(ir/(L + 1))) = 2.3431], while 21(x),... ,24(x)
[.24(x),... ,2~(x)] become degenerate with value 2(1 —cos(ir/L)) = 1 {2d —

2(d—l)cos(ir/(L-~-1))—2cos(2m/(L-~- I)) = 3.7574].
When one determines (2~(x)) and (2~(x)) on the 81 blocks of a 94 lattice

one observes some finite-size effectsas shownin tables3 and 4.



654 T. Kalkreuter / Lattice blockspin

4.2. PERFORMANCEOF THE NUMERICAL ALGORITHMS

Figs. 1 and 2 are very promising,becausewe are mainly interestedin the
region of largerfl-valueswherea distinct gapexistsbetween2~(x) and21 (x),
and2~(x) and2’~(x), respectively.This permits to computethe kernelswith
only two inverse iterationsas will be shown, at least for /3 ~ 1.8 where
numericalinvestigationswere performed.

From the measureddistributionof eigenvaluesonecan extractlower bounds
for 20(x), 2~(x)and21(x), 2’1(x) which havepractically aconfidencelevel
of 100%. Theseboundsare used for 21(x) and 2~’~(x).In courseof the
inverse iteration (3.2), 2~(x) will not be changed and will retain its x-
independent value whereas 2~(x) is updated according to (3.16) and is
only x-independentfor i = 1.

In order to be specific in the sequel,we will again discussitems for ker-
nel C. To start inverse iteration we must choose some normalized~
Two different choices were tested. The first one is a trivial initialization
(a/)O’C*(O)(z,X) = 1 for all z E x. The secondchoice is Balaban’s ra-
dial gauge, where one sums up with equal weights all parallel transporters
along the taxi-driver paths (paths of shortestlength) from ~ to z for all
z E x; the result is projected into SU(2) (cf. eqs. (2.21) and (2.22)).
(In case of A one could think of multiplying with the pure gauge value
(2L/(L + 1))d/2fld sin (mz~,/(L+ 1)), but it turns out that the efficiency
of the algorithmis not enhancedsignificantly by this.)

By computingthe Rayleighquotientof C~°~one seesthat the component
proportionalto the soughteigenvectorC~is clearlydominatingin Balaban’s
gauge, becausein this caseR[C~°~]lies between20(x) and21(x). For a
trivially initialized C~°~the componentsorthogonalto C~dominate.A priori
thisdoesnot imply anythingfor the rateof convergenceof inverseiteration,but
the finding is indeedthat it is moreefficient to useBalaban’sgaugefor ~

The CG methodfor solving (3.2) was usedwith initializing Vx with zero.In
thiscaseoneneedslessthan27 (29) CG iterationsin the first (second)inverse
iterationto solveeq. (3.2) sufficiently. The CG algorithm was stoppedwhen
the residualof all blocks fulfilled ii (—4N,~—2~’

1(x) ) Vx_C I_1)112 < L~” lO_6.
In general,a small residualdoesnot meanthatoneis closeto the solution,but
the abovecriterion is good enoughfor the presentcase.This is demonstrated
by explicitly computingR[C~~}= KCX~, —4~,xC~’~)andcomparingwith
2(i)(x) + ~4~(x). Both resultsagree.

*Note that t(l~’~(x))is a monotonically increasingfunction of~
1(x),but the dependenceon

21(x) is weak. It hasbeen checkedthat one can have r(l1~’~(x))< )~o(x),even ifA1(x) is

greater than a practically lOO% c. 1. upper bound for A1(x). This meansthat z(l~(x)) is a
very stablelower bound for ,10(x).
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The updatingprocedure(3.16)alwaysyields an improvedestimateof 2~(x)
t(0)for the secondinverse iteration if /3 ii~2.15. (This is not the case if Cx iS

trivially initialized; either the conditionp~(x) < I~(x) is not fulfilled or if it
is fulfilled r(l~’1(x))might not be largerthan2’~(x).) Dueto fluctuations,for
/3 ~ 2.15 the lower bound2

1(x) of 21(x) is not alwaysgreaterthan 20(x),
so that the necessarycondition ~4t)(x) ~ l~’~(x)for getting an improved

may be violated if 20(x) ?~21(x). Nevertheless,a secondinverse
iteration with a non-improved2~’~(x)is also sufficient (at least down to
/3 = 1.8).

After two inverseiterationsthe componentsorthogonalto C~arepractically
eliminated. This is provedby inspectingthe bounds2~

3~(x)and R[C~2~]
for 2

0(x), and by comparing R[CX*(
2)1 with Ii — AN,xC~2~ii.The difference

R[C~2~] — ~ (x) is typically less thanl0~~for largervalues of /3, while it
becomesslightly greaterfor smallerfl-values where2~’~(x) or 2(2)(x) is not

always improved.However,R[C~(2)~ and — 4N,x C (2)11 practicallycoincide
*(2)

in the examinedfl-range from 1.8 to 2.7, which showsthat Cx = Cx to a
very high precision~‘.

To concludethis paragraphthe performanceof the numericalalgorithms
on a CRAY Y-MP is reported. The routines are completely vectorizable
(vectorizationover the block index). In caseof a 94 lattice andblock size
L” = 34 (vector length of 81) the CPU time neededto computeC~2~is
5.7msper block. An averagerateof 230 MFLOPSis achieved.The CPU time
required to computeC~*(2)for all blocks is comparablewith that neededfor
one standardMonte Carlo sweepthrough the lattice. Since for larger /3 the
autocorrelationtimes are much greaterthan 1, kernelsC andA will not be
computedvery frequently,which meansthat the new block spin construction
is not more expensivefrom the point of view of CPU time than previous
constructions.

4.3. DIELECTRIC BLOCK SPINS

In the last two paragraphsof this sectionashort accountis given of some
physicalproperties.First we considerthe dielectricfield a~,(x), andafterwards
we turn to renormalizationeffects.

Dielectric gaugetheorymodelsas introducedin ref. [191are candidatesfor
effective actionsfor Yang—Mills theories,seealso ref. [20]. For gaugegroup
SU(2) the scalar field a~(x)(2.22) is identified with the colour dielectric
field. The effective action confineson the classicallevel if ~ = (a~(x)4) (no

*Even if the eigenvalueequation were only solvedapproximately, an MGMC algoriihm is set

up in sucha way that the equilibrium distribution is not affectedby the choiceof the C-kernel,
assumingthat certainnormalizationand orthogonality relationsarevalid [18].
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Fig. 3. Dielectric constant~ = (a,~(x )~i) for variousdefinitions of block gaugefields U relative
to valuesin a puregaugeasa function of /3, obtainedwhenblocking a 94 lattice with scalefactor

L = 3.

summation over ~u)approaches zero for largedistances[15].
One blocking transformation from a 94 to a 34 latticewas performed, using

eqs. (2.19) and (2.20) for the construction of block gauge fields, where the
variational choicesA = Ct and C = At were also considered.Periodic
boundaryconditionswere used.Resultsfor e relativeto valuesin puregauges
are plotted in fig. 3. The sample size compriseddata of 100 configurations,
measurements were only performed every fifth sweep, 1000—2000sweepshad
been discarded for thermalization.

The qualitative behaviourof ~ is similar to the results of ref. [15] where
another RGTwas used. One observes also acrossoverfrom strong to weak
coupling at /3 around 2.0. This raises the hope that block spin definitions (2.19)
and (2.20) might be fruitful for further investigationsin the frameworkof the
colour dielectricmodel.

4.4. EFFECTIVE COUPLING AFTER ONE BLOCKING TRANSFORMATION

Theaim of the presentpaper is not to present a comprehensiveMonte Carlo
renormalizationgroupinvestigationwith the newblock spin definitions.Only
somepreliminarieswill be given.

While in subsect.4.3 the field cy,~(x) was examined,we pay attention to

the unitary gaugefield U on the block latticein this section.The block lattice
A’ consistsof 34 sites. This suggeststo compareobservableson A’ andon
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Fig. 4. Expectationvalues of the five lowest eigenvalues~ i = 0 4 (modulo two-fold
degeneracy) of —ANy with the block gauge field U, using block spin definition (2.19) with
4eff = A*zlA, on a 34 block lattice versus/3 on the fundamental94 lattice (opensymbols). For
comparisontheresultsfor (A

0 (x)) and (A1 (x)) on a fundamental34 latticeare also shown (filled
symbols).

a fundamental 34 lattice. Firstly, the plaquetteenergy(1 — ~Tr U(P)) on A’
was measured. The resultsare collectedin table 5. Secondly, the five lowest
eigenvalues 2b~, 2’ •b, ~ = 0,... , 4, (modulo two-fold degeneracy) of —AN,X and4D,x with the blockgaugefield U were determined (library routines[32] were
usedagain).The values (2/?) obtainedwith block spin definition (2.19) are
shownin fig. 4, wherethe resultsfor (2o (x)) and (2~(x)) on the fundamental
34 lattice are also displayedfor comparison.Clear renormalizationeffects are
visible. The crossoverbehaviourof the lowest eigenvaluehasbecomesharper.
It is also shifted to /3 between2.4 and 2.5. This shift is close to the two-loop
perturbative result of .4/3 = 0.44 for scale factor 3. The crossover on the block
lattice is also signaledby (1 — Tr U (P)) (table 5) ande (fig. 3); the errors
of both quantitiespeakat /3 around 2.4, 2.5. It is interestingto note that the
results for (2k.) (1’ .b) I = 0,... , 4, are independent within errors of whether
U is defined via (2.19) or (2.20), with either C or A (resp.their adjoints).

One can define an “effective coupling” fleff on the block latticewhich equals
that value of fl on the fundamental lattice wherecorrespondingexpectation
valuesmatch.It is satisfactorythat the valuesof fleff derivedfrom the plaquette
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Fig. 5. The difference A// = /
1eff— /3 versus /3, derivedfrom observablesdefinedwith kernelsC

(open circles) and A (open squares). /3eff on the 34 block lattice is definedto equal that valueof
/1 on the fundamental34 lattice where correspondingexpectationvaluesmatch.

TABLE 5

Expectationvalue of the plaquetteenergyon a 34 block latticeas a function of /3, obtained when

blocking a 94 lattice with scale factor L = 3. (Recall that U is a unitary gauge field, while U is
dielectric.)

- (l—~TrU(P)) -

U via (2.19) U via (2.20)
/1 with ~~eff = CL~C* with Aeff = A*AA with C of (2.10) with C =

1.8 0.9330±0.0027 0.9623±0.0022 0.9535±0.0025 0.9676±0.0030
1.9 0.908 1 ±0.0035 0.9468 ±0.0028 0.92 18 ±0.0032 0.9525 ±0.0022
2.0 0.8676±0.0032 0.9135 ±0.0022 0.8778±0.0023 0.9222±0.0022
2.1 0.8018±0.0026 0.8621±0.0028 0.8098±0.0040 0.8705±0.0025
2.2 0.6925±0.0031 0.7690±0.0033 0.7046±0.0033 0.7827±0.0034
2.3 0.5509±0.0055 0.6391±0.0051 0.5616±0.0033 0.6523±0.0046
2.4 0.4215±0.0098 0.5120±0.0083 0.4177±0.0033 0.5251±0.0084
2.5 0.3169 ±0.0034 0.4054±0.0045 0.3229±0.0080 0.4174±0.0043
2.6 0.2687±0.0017 0.3536±0.0018 0.2734±0.0028 0.3641+ 0.0019
2.7 0.2381±0.0016 0.3154±0.0021 0.2363±0.0020 0.3236±0.0022

energies are consistent with those obtainedfrom the lowest eigenvaluesof
JN,x, 4D,x for various definitions of U, exceptfor U’s definedvia kernel C

when fi ~ 2.6, but herefinite-size effectsbecomesevere.The differenceA/i =

fleff — fl is shown in fig. 5. Of course,the fl-function cannotbe immediately
relatedwith this Afl, becauseno other couplings than the marginal gauge
coupling are taken into account.An extensiveinvestigation along the line
carried out by Patel and Gupta [14] would be mandatoryfor that purpose.
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5. Summary and outlook

An RGT for non-abeliangaugetheoriesdue to Mack, and in the spirit of
the ground state projection method of Hulseboset al. [7], and of Brower
et al. [8], was explained.This projective definition of block spins involves
dynamicalinformation.Only the lowestfrequencypartsof the fields areused
for constructingblock spins. The systematicmethod presentedin this paper
providesan approachto deterministicand stochasticMG computationsof
non-abeliangaugetheoriesin any numberof space-timedimension.

Numericalalgorithmsfor computingblock spins resp.gauge-covariantMG
restrictionand interpolationoperatorswere proposed.In caseof pureSU(2)
lattice gaugetheory on a four-dimensionallattice the algorithms work very
well. TherequiredCPU timefor computingthe kernelsC andA is comparable
with thatneededfor oneheat-bathsweepthrough the fundamentallattice.

First numericalphysics resultsare very promising. They indicatethat the
projective RGT might be fruitful when studiedin the framework of colour
dielectric models, and also when it is used for RG investigationswith block
gaugefield in the gaugegroup.

The new RGT is intendedto be used in MGMC simulationsas initiated
by Mack [3]. With respect to this application it is important to record that
the projectivedefinition of block spinsis numerically implementablefor non-
abeliangaugetheories.

Further researchwill considerMG computationof gauge-covariantbosonic
propagatorsin four dimensions,MG simulationsof the SU(2) Higgs model,
and analogoustreatmentof gauge fields coupled to fermions (replace —A
by the Dirac operator~ resp. 2 ~ to computegauge-covariantfermion
propagatorsby meansof projectiveMG methods.

I would like to thank ProfessorG.Mack for many stimulatingandhelpful
discussionsandfor a readingof the manuscript.I am alsoindebtedto K. Pinn
andH.G. Evertz for useful discussionsandhints. ProfessorL. Collatz taught
me Temple’stheoremin a very stimulating lectureon eigenvalueproblemsin
the winter term of 1986/87.With sorrow I learnt of his deathin September
1990. Financial support by DeutscheForschungsgemeinschaftis gratefully
acknowledged.The computationsreportedin this article were performedon
the Siemens7882 of the university of Hamburg,on the IBM 3090 of DESY
and on the CRAY Y-MP of HLRZ Jülich.
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