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In this talk | shall review recent lattice work on the ultra-violet behavior of QED. Of particular interest is
the question whether QED has a non-trivial continuum limit or not.

1. INTRODUCTION

There has recently been considerable interest
in the continuum limit of QED. This began after
Miransky 1 investigated a truncated Schwinger -
Dyson equation for the fermion propagator and
found a second order chiral phase transition, with
chiral symmetry being broken spontaneousiy at
strong coupling. Though his equation did not in-
clude any vacuum polarization effects, he argued
that the critical coupling should be regarded as an
ultra-violet stable fixed point, at which the theory
admits a non-trivial continuum limit. The existence
of a second order chiral phase transition was con-
firmed by numerical studies of non-compact lattice
QED in the quenched approximation and with a
small number of dynamical fermions. 234 These
early lattice investigations did also find support for
non-trivial critical behavior. The picture turned

5 carried out a more care-

when Gockeler et al.
ful analysis and found critical exponents, which are
consistent with mean field theory. A similar result
was reported by Booth et al. 6 and Horowitz. 7 Re-
cent studies of a coupled set of Schwinger - Dyson

equations which include certain effects of fermion

foops 89

now also find mean field criiical expo-
nents. This suggests, contrary to earlier claims,

that QED is trivial in the continuem limit.

This is, of course, very indirect information. In
fact, there are two issues, which are often confused
in the literature. The question whether QED is
trivial or not is a question of the evolution of the
renormalized charge as one approaches the critical
point. This evolution is described by the Callan -
Symanzik S-function, and the real task is to find
out whether this function has an ultra-violet stable
zero or not. The other issue concerns the scaling
behavior and the effective action of the continuum
theory. In the last year we have made substantial
progress on both fronts. It is the purpose of this

talk to review the latest results.

The talk is organized-as follows. Section 2 deals
with some technical aspects of the lattice calcula-
tion. At the same time | will introduce the no-
tation. In sec. 3 | will discuss the phase dia-
gram and determine the critical point. Section 4
is devoted to the renormalization group flow. | will
present recent results for the renormalized charge
and fermion mass. These results are used to de-

rive the Callan - Symanzik 3-function. It is found
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that the 3-function does not have an ultra-violet
stable zero, but that the renormalized charge van-
ishes at the critical point. This raises the question
to what extent QED can be regarded as a consis-
tent low-energy theory. in sec. 5| will discuss the
scaling behavior at the critical point in some more
detail. Though the photon decouples at the criti-
cal point, it is possible that the continuum theory is
interacting. This would manifest itself in critical ex-
ponents, which are different from the predictions of
mean field theory. Section 6 contains a few remarks
about the four-fermi interaction. This becomes a
relevant operator at high momenta. That this is
the case has already been argued for some time. 10
But the scaling dimension turns out to be different
from what it was thought to be. In sec. 7 | wili
summarize the status of the quenched calculations.

Finally, in sec. 8 | will present my conclusions.

2. PRELIMINARIES

The non-compact formulation of lattice QED
shares all the essential features of the continuum
theory. 11 The compact formulation, on the other
hand, belongs to a different universality class. it has

1213 and there-

a first order chiral phase transition,
fore admits no continuum limit. The non-compact
gauge field action reads
3
Jé:
Se = LY (A=) + Az +p)

= zp<y

= Aulz )= Afe)), (2.1)

where 3 = 1/e?, and e is the bare charge. In eq.
(2.1) and in the following the lattice constant has
been set equal to one for convenience.

More problematic is the fermionic action. The
numerical work | will review is based on staggered

fermions. This action reads

1 .
SF - Z{;z(_1)11+..-71“-][xT‘.TA“(l')’\I?ﬂ
roo"ou

72‘4‘"1]3(:} + erXr}~ (2'2)

Xetit
where m is the bare mass. It describes four Dirac
fermions (flavors). The essential feature of Sr is
that it has a chiral U(1)x U(1) symmetry at m = 0.
Because photons with high momenta can change a
staggered fermion from one flavor to another, the
chiral SU(4) » SU(4) symmetry is only approxi-
mate. Such interactions will get less as one ap-
proaches the continuum limit, leading eventually to
an exact flavor symmetry. This might, however, not
happen to the pion-type bound states associated
with the chiral phase transition if they are point-
like. Wilson fermions, on the other hand, have no
continuous chiral symmetry. It may therefore be
that the Wilson action falls into a different univer-
sality class than the continuum action.

In the following | shall refer to ordinary stag-
gered fermions as N; = 4. Several authors mimic
two flavors by taking the root of the fermion deter-
minant. This | will refer to as Ny = 2.

Both fermionic actions couple the Grassmann
fields to the gauge fields in compact form via the
finks e*4(%) rather than being linear in 4,(x). This
might also drive the theory into a different univer-
sality class, as perhaps the study of QED with a
large number of flavors shows. 14 For a small num-
ber of flavors there seems, however, no problem.

In order to be as close as possible to the con-
tinuum theory, Hands et al. 15 have constructed an
action within the framework of staggered fermions,
which is linear in the transverse components of the
gauge fields. The drawback of this construction is,
however, that the action does not satisfy reflection
positivity. 16 Whether this leads to an ill-defined
transfer matrix or not has still to be seen.

| have nothing to add to the calculation of
the renormalized charge ¢p and the renormalized
fermion mass m . 17 The reader, who is interested
in details, is refered to the tatks of Géckeler 18 and

Horsley 19 on these subjects.
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Figure 1: The phase diagram. The dashed line
indicates the second order critical line, while the
solid line indicates the first order fine. The solid
circle marks the tricritical point.

3. PHASE DIAGRAM

The phase diagram of non-compact QED has
been investigated many times. Based on the resuits
for the order parameter (xx) alone, the conclusion
was that the theory undergoes a second order chiral
phase transition at strong coupling. Recently, it

20

could be shown rigorously ¥ that chiral symmetry

is broken spontaneously in the strong coupling limit.

If one considers the correlation length { =
1/mp as well, one arrives at the phase diagram 21
shown in fig. 1. It consists of a second order critical
line at n = 0 extending from 8 = oc to 3 = 4, and
a first order line extending from 3 = 3. to 3 =0,
where 8. = 1/€?, and e, is the critical charge. The

second order line corresponds to the line ({x) = 0,

0.08 2 : .
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Figure 2: The chiral condensate against the renor-
malized fermion mass. The symbols refer to the
different values of 4: 3 = 0.16 (A}, 0.17 (0}
0.18 (W}, 0.15 (@). 0.20 (7). 6.21 (©), 0.22 (O
The open symbols are for 3 values above 3., while
the solid symbols are for g values below J..

whereas on the first order line fim,, o, (Xx} > 6.
The critical point s actually a tricritical point.

The renormalized
1 7

Let me explain this now.
fermion mass was computed by Gockeler et a
This is compared with the chiral condensate {1y} in
fig. 2. The open symbols refer to 3 > 5., whereas
the sofid symbols refer to 3 < 5.. We will deter-
mine J, in the next paragraph. The dashed curve

describes the one-loop relationship 2

(£x) = 0.62mp — O(mpinmy). (3.1)

Later we shall see that this result becomes exact at
the critical point. We find good agreement between
this curve and the data for mg ~ 0.5. Thus £
diverges on the line ({x)} = 0. Since

lim (Xx} = lm (v (3.2)

m—0



Figure 3: The chiral condensate against 8 accord-
ing to Gockeler et al. for Ny = 4. The data are
compared with a fit of the equation of state. The
symbols refer to the different masses: m = 0.02
(V) m = 0.04 (Q), m = 0.09 () and m = 0.16
(A). The fit did not include the data values at m
= 0.16. The error bars are smaller than the sym-
bols. The dashed curve is the extrapolation to m
=0.

the line lim,,_o, (Xx) > 0 is a first order critical
line.
A tricritical point is connected with power-like

scaling faws. Thus, the critical behavior can be

described by the equation of state 23
Veys(a)
—IEZ <, (3.3)
Vesslo) = —~mo + rc('r's‘ilj-H + Catt,

where 0 = (xx), and x, ( are analytic functions
of B k= k(B — B) +maB— B+ - (=
Go+ (B —Bc)+ (B B.)?+---. In order to avoid
confusion of 3 and the critical exponent named by
the same letter | have called the latter ,H For & =
3 and ﬁ = 0.5, V.4 is the effective potential of the
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Figure 4: The chiral condensate against 3 accord-
ing to Dagotto et al. for Ny = 2. The data are
compared with a fit of the equation of state. The
symbols refer to the different masses: m = 0.02
(v), m = 0.03 (O) and m = 0.04 (O0). The er-
ror bars are smaller than the symbols. The dashed
curve is the extrapolation to m = 0.

o-medel. Equation (3.3) gives

(6 — % F 1R B 4 (6~ 1)Cof —m = 0. (3.4)
Atm =20
(Xx) o< (B — BY. B > 3, (3.5)
and at 3 = 3,
(xX) o m*. (3.6)

In order to determine 3. and the critical exponents
| have fitted eq. (3.4) to the data. The result of
the fit is shown for the N; = 4 data of Gockeler et
al. 17 and for the N; = 2 data of Dagotto et al. 24
in figs. 3 and 4, respectively. The dashed curves
describe the extrapolation of (%\) to m = 0. The

quality of the fit is certainly very good. The values
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MRef. | Nyj=4 | A;=2 | Ny=1
17 | 0.194(2)
24 0.227(3)

| 25 ] 0.180(6) | 0.143(7) | 0.121(5) |

Table 1: The values of 3, = 1/¢? as obtained from
a fit of the equation of state to the data of Gockeler
et al. and Dagotto et al., respectively, and analyti-
cally by Cornelius.

of 3, are listed in tab. 1. Horowitz 7 finds B =
0.187 for the N, = 4 data of Booth et al. © and 3,
= 0.210 for the N; = 2 data of Kogut et al., 424
which is in rough agreement with my result. | will
postpone the discussion of the critical exponents to

sec. 5.

Very recently, Cornelius 25 studied the phase
diagram analyticaliy for Wilson fermions. She com-
puted the renormalized charge and fermion mass
and the renormalization constants by an expansion
in the hopping parameter x = 1/(2m + 8) up to
tenth order. The renormalization scheme she uses
is the BPHZ scheme. The line mg = 0 is given
by the line x = r., where k. is the radius of con-
vergence of the expansion. In order to determine
£, she proceeds in the same way as Luscher and
Weisz. 26 The line is found to extend from ¢ = 0
to e = €., where ¢, is the value of the bare charge,
beyond which the method is not applicable any-
more. A further investigation suggests that mp is
no longer zero for € > ¢, so that €. may be taken as
the critical charge. The second order critical line is
shown in fig. 5. The critical couplings are listed in
tab. 1 for Ny =1, 2 and 4. It is striking how close

they are to the numbers for staggered fermions.
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Figure 5: The second order critical bine s = %,
found by Cornelius for Ny = 1 Wilson fermions.

4. REROZMALIZATION GROUP FLOW AND
THE QUESTION OF TRIVIALITY

We can take the continuum limit all along the
second order critical line from 8 = oc to 3 = ..
But the theory can only have a non-trivial contin-
uum limit at the tricritical point 3 = 9, m = 0.

The cut-off dependence of the renormalized
charge is described by the renormalization group

equation

= dech.mp).  (41)
where 1/mpg acts as the cut-off, and 3(ch.mpg) is
the Callan - Symanzik 3-function. In order that
the critical point is a non-trivial fixed point. the 3-
function must have a zero at ¢} = €}, mg = 0,
where €5 -7 e.. The latter follows from the fact

that 27 Zs < 1. One can also define a bare 3-
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Figure 6: The relationship between eg, ¢ and mp.
The symbols are the same as in fig. 2. The
dashed line is the prediction of the one-loop lat-
tice A-function shifted to fit the data point at the
smallest value of mpz, which corresponds to 5 =
0.22, m = 0.2

function by

2
dek

Ra = /30(5277713): (4.2)
MR

e g fixed

which indicates how the bare charge must run in or-
der to keep the low-energy physics constant. This
B-function would have a zero at €2 = €2, mp = 0.
In view of the result that the critical charges lie in-
side the “apparent” radius of convergence of renor-
malized perturbation theory, it has been argued 27
that it appears rather doubtful that the Callan -
Symanzik 3-function has an ultra-violet stable zero.
if, indeed, QED is trivial, we expect the Callan -
Symanzik S-function to be described by renormal-

ized perturbation theory. For staggered fermions

Bleh,mn) (37°/2€})

1.5 T T

Figure 7: The Callan - Symanzik B-function times
372/2¢%. The symbols are the same as in fig.
2. This is compared with the one-loop lattice
B-function indicated by the dashed line.

(IN; = 4) this leads to

Rl -2 26;1 6
Bleq,9) = Pari Ofep). 4.3)

Since the Callan - Symanzik S-function and the
bare 3-function are equal in perturbation theory up
to two loops, we expect the corresponding result to
hold for 3y(e?, mg).

The data of Gockeler et al. 17 for the renormal-
ized charge and the renormalized fermion mass as
well as their analysis is presented in figs. 6 - 8. In
fig. 6 | have plotted 1/¢% — 1/¢? against mg. For
each symbol the data point with the smallest value
of mp corresponds to m = 0.02. The striking result
is that the data lie on an approximately universal
curve. The slope of the curve is —3(e%,mg)/eh

and —3g(€2,mp)/e*, respectively. This means that

Bleq.mr)/ch = fo(e’.mp)/ €, (4.4)
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Figure 8: The renormalization group flow in the
critical region. The solid lines are lines of constant
renormalized charge, where €% ranges from ¢% =
2.8 (lower right-hand corner) to € = 5.4 {upper
left-hand corner) in steps of 0.2. The dashed lines
arise from integrating the renormalization group
equation down to m = 0. The solid circle indicates
the position of the critical point.

in agreement with lowest order perturbation theory.
The Callan - Symanzik 3-function is found by dif-
ferentiating the data. It is shown in fig. 7. The
dashed curve in this figure represents the pertur-
bative one-loop lattice result. There is good agree-
ment between the data and this curve. 28 Let us go
back to fig. 6 now. The dashed curve in that figure

represents the integrated one-loop G-function,

fnmg 2 4
—/ dining Bch, TR/ eh. (4.5)

normalized such as to match the data point at the
lowest value of mp. The agreement between this
data and renormalized perturbation theory is even
more impressive. Finally, in fig. 8 are shown the

renormalization group trajectories defined by keep-

ing the renormalized charge ep constant. They are
obtained by a suitable interpolation of the data. 17
in the symmetric phase, 8 > 8., mp vanishes as
m — 0, and so one obtains for a positive 3-function
ep = 0 in this limit. In particular, e = 0 at the
critical point. In the broken phase, 3 < 8., mp
stays finite as m — 0, and so e is finite in this
limit. Therefore all trajectories will end at m = 0
on the first order line. We may use perturbation
theory to integrate the renormalization group equa-
tions down to m = 0. The result is indicated by
the dashed lines. The trajectory eg = 0 coincides
with the second order line 8 > B3, m = 6.
Horowitz 22 has extracted the renormalized
charge and the renormalized fermion mass from the
data of Booth et al. © for {Xx} and the average ac-

tion density (F2 ). He made the ansatz
mp = 8G(%x) +m, (4.6)

based on the gap equation, T and fitted {F2} by
the one-loop renormalized photon propagator. it
turns out that (8G)™ = 0.62 +0{3. — 8). Thisis
in broad agreement with the one-loop result (3.1},
regarding the fact that the bare mass m is relatively
small. Qualitatively, the renormalization group tra-
jectories one obtains from his fits look the same as
those in fig. 8.

Another group 30 has computed the renormal-
ization group flow analytically for large m and in
weak coupling perturbation theoty. Unfortunately,
the results do not (yet) extend down to the interest-
ing region. But they are consistent with the picture
that has emerged.

Finally, | like to mention that Rakow 31 has
investigated a set of truncated Schwinger - Dyson
equations, which include effects of vacuum polar-
ization. The range of correlation lengths accessible
in this approach is far larger than what is possi-
ble on the lattice. He finds also that the photon

decouples at the critical point.
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Figure 9: The renormalization group flow in the
critical region. The solid lines are lines of constant
mp/mps ranging from 0.4 (lower right-hand cor-
ner) to 2.1 (lower left-hand corner) in steps of 0.1.
The dashed lines are the lines of constant charge
from fig. 8. The solid circle indicates the position
of the critical point.

Though the photon decouples in the continuum
limit, QED can be a valid description of charged
particles and their interactions up to some finite
momentum scale. It is interesting to know what
that scale is, because it indicates the onset of new
physics. An upper bound on that scale is given by

the maximal value of the cut-off. This turns out to
be 17

1/mp < (0.038 + 0.004)c3" /2%, (4.7)

for N; = 4. Note that this value is more than
a magnitude smaller than the position of the Lan-
dau pole. The true scale is, however, where the
low-energy physics starts to depend on the cut-off.

Géckeler et al. 17 have compared the renormaliza-

tion group flow of different dimensionless quanti-
ties. Besides ep they have considered the mass ra-
tio mp/mps, where mps is the pseudoscalar Gold-
stone boson mass. The trajectories are compared
in fig 9. The two flows are obviously completely
different in the parameter range studied. The mass
ratio trajectories flow into the critical point in con-
trast to the ep trajectories. The inconsistency is
most striking for 8 < 3., where the mass ratio tra-
jectories move in the direction of larger 3, while
the ep trajectories move in the direction of lower
B. The correlation length does not have to be
very large before the difference between the flows
becomes apparent. For example, for ¢ = 3.6
(@r = 0.29) the difference becomes marked when
mp ~ 0.5. This corresponds to a cut-off, which
is only two times as largz as the fermion mass.
Thus, there are no lines of constant physics, ex-
cept possibly for very small values of €%, which we
did not explore. This contradicts renormalizability:
a change in the cut-off cannot be compensated for

by a change in the bare parameters.

5. CRITICAL SCALING BEHAVIOR

I mentioned that the continuum theory may be
interacting though the photon decouples. The di-
rect way to find out whether this is the case would
be to compute, e.g., the renormalized four-fermi
coupling. This has not been done, and so we de-
pend on other information. The critical exponents
are one source. Preliminary studies have revealed
56.7 mean field critical behavior. In this section |
shall discuss some new developments.

Consider the anomalous dimension of the

fermion mass, which is given by

mp Om I

-1, (5.1)

e fixed

Ri Omp|

and the anomalous dimension of Yy, which is given
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by
me (kx|

Yo = @”5(5;} T 3. (5.2)

At the critical point v, and vy, are related by .,

+ 75, = 0. Figure 2 shows rather convincingly that

{Xx) o< mp as mp — 0, which leads to v, = —75,

= 2. This result is supported by a direct evaluation

of 5., in ref. 23. Combining egs.(5.1) and (5.2),
we obtain

m_d{xx)

{xx} Om

| 1

= = -, 53
e O
The left-hand-side of eq.(5.3) is equal to 1/6 (cf.
€q.(3.6)). It then follows that

&=3. (5.4)

which is the mean field resuit. This result is not sur-
prising. The validity of renormalized perturbation
theory indicates already that there are no further
relevant interactions. Vice versa, § = 3 leads to
Ym = 2. The scaling relations among the critical

32 connect § to 3 and the critical expo-

exponents
nent vy by

v =B(8-1). (5.5)
This relation follows also directly from the equation
of state (3.3), (3.4). Kocic et al. 33 have argued
that v = 1 in the ladder approximation. This would
give the mean field value 3 =05

. l\”f i B. § B ; 7 ‘
© 4 10.194(2) | 3.14(18) | 6.49(2) | 1.05(9) [
2 0.227(3) | 2.23(18) | 0.74(6) | 0.91(13) |

Table 2: The critical exponents as obtained from a
fit of the equation of state to the data of Gockeler
et al. (N; = 4) and Dagotto et al. (N; = 2),
respectively.

Let me now turn to the data. In tab. 2 1 have

compiled the critical exponents that | obtain from

the fits described in sec. 3. {The data and the fit-
ted curves are shown in figs. 3 and 4.) In case of
the Ny = 4 data of Gockeler et al. 17 we find crit-
ical exponents, which are in good agreement with
mean field theory. The Ny = 2 data of Dagotto et
al., 24 on the other hand, give critical exponents
which deviate significantly from the snean field val-
ues. One should remember though that the N; =
2 theory with staggered fermions is non-local: it
contains spinless fermions, which may have influ-
enced the result. Quite possibly, locality will not
even be restored at the critical point. The situa-
tion here is different from QCD. where the running
coupling constant goes to zero. The message from
investigations of Schwinger - Dyson equations 93
that one has to go to increasingly large correlation
lengths as I is decreased, before one sees mean
field critical exponents. This might also be the case

here.

Based on the report 34 that the critical ponts
of QED and the Nambu - Jona-Lasinic model are
connected by a second order critical line, Horowitz 7
has argued that one should be able to describe the
critical behavior of QED in terms of 2 gap equation
of a four-fermi interaction. Indeed, the gap equa-
tion is identical with the one-loop equation (3.1)
for {xx), where mp is expressed by eq.(4.6). Like
the o-model it yields mean field critical exponents.
Horowitz has fitted the N; = 4 data of Booth et
al. © to the solutions of the gap equation. He ob-
tained a chi-squared per degree of freedom of 1.3,
which speaks for mean field critical exponents. It
indicates furthermore that the chiral transition of
non-compact QED is indeed in the same universal-
ity class as the Nambu - Jona-Lasinio model. The
N, = 2 data of Kogut et al. 4.4 gave a chi-squared

per degree of freedom of 7.8.
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6. FOUR-FERMI INTERACTION

In the previous section two independent meth-
ods of determining v,, have been discussed, which
both gave v,, = 2. Hence, the scaling dimension
of ¥x is one. This and the fact that the theory
is non-interacting suggests that the scaling dimen-
sion of the four-fermi interaction is two. It means
it is renormalizable and becomes a relevant oper-
ator. Since the four-fermi interaction is generated
anyway, it should be included in the action from
the beginning. Indeed, it has been argued on the
grounds of Schwinger - Dyson equations 9 that the
apparent non-renormalizability of QED discussed in
sec. 4 is mitigated if a four-fermi interaction is in-
cluded. 35

Booth et al. © have simulated non-compact
QED with the chiral U(1) x U(1) invariant four-
fermi interaction

GZ XeXzXz+iaXati- (6.1)

T,0
They confirm the existence of a second order line 34
connecting the critical point of QED with that of
the Nambu - Jona-Lasinio model. It has been
pointed out 30-37 that the expression (6.1) does not
produce a U(4) x U(4) invariant four-fermi inter-
action in the classical continuum limit. One could
argue that the remnant U(1) x U(1) symmetry is
sufficient to study the breakdown of continuous chi-
ral symmetry. But this has to be investigated fur-
ther.

It is known that v,, = 2 at the critical point
of the Nambu - Jona-Lasinio model. Our results
suggest that ~,, = 2, and hence é = 3, on the
whole second order line. This fits in with the claim
of Horowitz ? that the chiral transitions of QED
and of the Nambu - Jona-Lasinio model are in the
same universality class. It would mean that the

theory is trivial everywhere on that line.

7. QUENCHED APPROXIMATION

Tre quenched approximation is sometimes a
useful tcol for exploratory studies. In QCD it may
even capture the =ssential features of the full the-
ory. In non-compact QED this is, however not the
case, so that one should not take the results liter-
ally. For example, an investigation of the gauged
Nambu - Jona-Lasinio model 3438 i the ladder
approximation suggests that on the second order
line, connecting the critical point of the Nambu -
Jona-Lasinio model with that of QED, the anoma-
lous dimension v, varies continuously from v, =
2 at the critical point of the Nambu - Jona-Lasinio
model to 7,, = 1 at € = ¢.. This is in conflict with
the predictions of the full theory, discussed in the
last section, and also with the solutions of truncated
Schwinger - Dyson equations including certain ef-
fects of fermion loops, 8.9 which both indicate that

~+m = 2 on the whole critical line.

Nevertheless, let me mention briefly what the
status of the quenched calculations is. We have

5 that the critical exponents

stated some time ago
are consistent with the predictions of mean field
theory, when everybody else argued that B = oo
In my opinion this statement has not been dis-
proved vyet, in spite of different claims. 39 1 would
not be surprised though if the critical exponents
came out differently. Motivated by the recent work
of Dagotto et al., 39 | have re-fitted all published
quenched data 3524 by the equation of state (3.3),
(3.4). The result of the fit is shown in fig. 10 in
form of the scaling plot introduced in ref. 5. |
find 3. = 0.253(3) and the critical exponents § =
2.55(24) and 3 = 0.64(9). Regarding the errors,
one cannot claim that the result is inconsistent with
mean field theory. Dagotto et al. 39 reported 3, =
0.257(1) and & = 2.2(1), 4 = 0.78(8). But | can-
not see that these authors have done a proper fit

of the equation of state to their data. | intended
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Figure 10: Scaling plot of (8. — 8)/ (xx}? against

(Xx)/m¢ for B, and the critical exponents given
in the text.

to do that. But | was not able to get the new data
from Dagotto.

8. CONCLUSIONS

There is no doubt, that the photon decouples
at the critical point which means, in the customary
sense, that QED is trivial. It may take a long time
though to prove this rigorously. An essential ele-
ment in the analysis was renormalized perturbation
theory, which allowed us to extrapolate the lattice
results down to e = 0.

There is strong evidence also for mean field crit-
ical exponents. The only fact that speaks against it
is the Ny = 2 result of Dagotto et al. 24 yt given
the inherent problems of this theory, further stud-

ies will be needed in order to dispel all doubts. It

shouid also be mentioned that these authors use the
hybrid algorithm, 40 \which is not exact in contrast
to the hybrid Monte Carlo algorithm 41 everybody
else uses.

The most far-reaching result is presumably that
the four-fermi interaction is renormalizable. We
expect a whole series of other interactions to be
renormalizable as well. In this light we have only ex-
plored a single point of a multi-dimensional critical
surface. So there is still hope to find 2 non-trivial

continuum fimit.
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