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In this talk I shall review recent lattice work on the ultra-violet behavior of  QED. Of  particular interest is 
the question whether QED has a non-trivial continuum limit or not. 

1. INTRODUCTION 

There has recently been considerable interest 

in the continuum limit o f  QED. This began after 

Miransky 1 investigated a truncated Schwinger - 

Dyson equation for the fermion propagator and 

found a second order chiral phase transition, with 

chiral symmetry being broken spontaneously at 

strong coupling. Though his equation did not in- 

clude any vacuum polarization effects, he argued 

that the critical coupling should be regarded as an 

uhra-violet stable fixed point, at which the theory 

admits a non-trivial continuum limit. The existence 

of  a second order chiral phase transit ion was con- 

firmed by numerical studies of non-compact lattice 

QED in the quenched approximation and with a 

small number of dynamical fermions. 2.3.4 These 

early lattice investigations did also find support for 

non-trivial critical behavior. The picture turned 

when G6ckeler et al. 5 carried out a more care- 

ful analysis and found critical exponents, which are 

consistent with mean field theory. A similar result 

was reported by Booth eta! .  6 and Horowitz. 7 Re- 

cent studies of  a coupled set of  Schwinger - Dyson 

equations which include certain effects of fermion 

loops 8.9 now also find mean field critical expo- 

nents. This suggests, contrary to  earlier claims, 

that  QED is trivial in the continuum limit. 

This is, o f  course, very indirect information. In 

fact, there are two issues, which are often confused 

in the literature. The question whether QED is 

trivial or not is a qL~stion o f  the evolution of  the 

renormalized charge as one approaches the critical 

point. This evolution is described by the Callan - 

Symanzik ~-function, and the real task is to  f ind 

out whether this function has an ultra-violet stable 

zero or not. The other issue concerns the scaling 

behavior and the effective action o f  the continuum 

theory. In the last year we have made substantial 

progress on both fronts. It is the purpose o f  this 

talk to  review the latest results. 

The talk is organized'as follows. Section 2 deals 

with some technical aspects of  the lattice calcula- 

tion. At the same time I will introduce the no- 

tation. In sec. 3 I will discuss the phase dia- 

gram and determine the critical point. Section 4 

is devoted to the renormalization group flow. I will 

present recent results for the renormalized charge 

and fermion mass. These results are used to de- 

rive the Callan - Symanzik ~3-function. It is found 
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that the ~-function does not have an ultra-violet 

stable zero, but that the renormalized charge van- 

ishes at the critical point. This raises the question 

to what extent QED can be regarded as a consis- 

tent low-energy theory, in sec, 5 1 will discuss the 

scaling behavior at the critical point in some more 

detail. Though the photon decouples at the criti- 

cal point, it is possible that the continuum theory is 

interacting. This would manifest itself in critical ex- 

ponents, which are different from the predictions of 

mean field theory. Section 6 contains a few remarks 

about the four-fermi interaction. This becomes a 

relevant operator at high momenta. That  this is 

the case has already been argued for some time. 10 

But the scaling dimension turns out to be different 

from what it was thought to be. In sec, 7 1 will 

summarize the status of  the quenched calculations. 

Finally, in sec. 8 1 will present my conclusions. 

2, PRELIMINARIES 

The non-compact formulation of  lattice QED 

shares all the essential features of the continuum 

theory. ].1 The compact formulation, on the other 

hand, belongs to a different universality class. It has 

a first order chiral phase transition, 12,13 and there- 

fore admits no continuum limit. The non-compact 

gauge field action reads 

Sc = ~ ~ (A.(x) + A.(x + p) 
x,~<w 

- A . ( ~  + v )  - A . ( ~ ) )  ~, (2.1) 

where ~ = l / e : ,  and e is the bare charge. In eq. 

(2.1) and in the fol lowing the lattice constant has 

been set equal to one for convenience. 

More problematic is the fermionic action. The 

numerical work I will review is based on staggered 

fermions. This action reads 

1 
S,. = ~ { 7 ~ j ~ ( - 1 )  ~'÷ . . . . . . . .  [?~"A"(~')I~+i, 

- ~+~ ' A ~ ~ i  ~ .,~x~}~ (2.2) 

whe,,e m is the bare mass. It describes four Dirac 

fermions (flavors). The essential feature of SF is 

that it has a chiral U(1 ) × [7( ] ) symmetry at m = 0. 

Because photons with high momenta can change a 

staggered fermion from one flavor to another, the 

chiral SU(4)  ~ SU(4)  symmetry is only approxi- 

mate. Such interactions will get less as one ap- 

proaches the continuum limit, leading eventually to 

an exact f lavor symmetry. This might, however, not 

happen to the pion-type bound states associated 

with the chiral phase transition if they are point- 

like. Wilson fermions, on the other hand, have no 

continuous chiral symmetry. It may therefore be 

that the VVilson action falls into a different univer- 

sality class than the continuum action. 

In the fol lowing I shall refer to ordinary stag- 

gered fermions as .Y] = 4. Several authors mimic 

two flavors by taking the root of  the fermion deter- 

minant. This I will refer to as N s -- 2. 

Both fermionic actions couple the Grassmann 

fields to the gauge fields in compact form via the 

links e ~A-(~), rather than being linear in _4,(x). This 

might also drive the theory into a different univer- 

sality class, as perhaps the study of QED with a 

large number of flavors shows. 14 For a small num- 

ber of  flavors there seems, however, no problem. 

In order to be as close as possible to the con- 

t inuum theory, Hands et al. 15 have constructed an 

action within the framework of  staggered fermions, 

which is linear in the transverse components of the 

gauge fields. The drawback of this construction is, 

however, that the action does not satisfy reflection 

positivity. 16 Whether this leads to an ill-defined 

transfer matrix or not has still to be seen. 

I have nothing to add to the calculation of 

the renormalized charge ~R and the renormalized 

fermion mass m~. 17 The reader, who is interested 

in details, is refered to the talks of G6ckeler 18 and 

Horsley ].9 on these subjects. 
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Figure 1: The phase diagram. The dashed line 
indicates the second order critical line, while the 
solid line indicates the first order line. The solid 
circle marks the tricritical point. 

3. PHASE DIAGRAM 

The phase diagram of non-compact QED has 

been investigated many times. Based on the results 

for the order parameter (~X) alone, the conclusion 

was that the theory undergoes a second order chiral 

phase transition at strong coupling. Recently, it 

could be shown rigorously 20 that chiral symmetry. 

is broken spontaneously in the strong coupling limit. 

If one considers the correlation length ~ = 

1~ran as well, one arrives at the phase diagram 21 

shown in fig. 1. It consists of a second order critical 

line at Tn. = 0 extending from ~ = oc~ to ~ -- ~ and 

a first order line extending from/3 = L~ to ;S = 0, 

where ~ = 1/e~, and e, is the critical charge. The 

second order line corresponds to the line (~.~-) = 0, 

Figure 2: The chirai condensate against the renor- 
malized fer~ion mass. The symbols refer to the 
different va|ues of ~: ~ = 0.16 (A) ,  0.17 (0 ) ,  
oae (m), 0.19 (e), 0.20 (v).  0.2i (0), 0.22 (O)- 
The open symbols are for f3 values above ~c, while 
the solid symbols are for ~ values below tic- 

whereas on the first order line tim,~_o÷ {XX} > 0. 

T ~  critic~l point ~s actually a tric6tical point. 

Let me explain this now. The renorrnalized 

fermion mass was computed by G.Sckeler eta! .  17 

This is compared with the chiral condensate ()~X) in 

fig. 2. The open symbols refer to ~ > L~c, whereas 

the solid symbols refer to ~ < ~c- We will deter- 

mine tic in the next paragraph. The dashed curve 

describes the one-loop relationship 22 

Later we shall see that this result becomes exact at 

the critical point. We find good agreement between 

this curve and the data for rnn ~ 0.5. Thus 

diverges on the line (~X) = 0. Since 

lira ( ~ , ) = -  lira ( ~ } .  (3.2) 
m ~ O  4 ~ 0 ~  
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Figure 3: The chiral condensate against # accord- 
ing to G6ckeler et al. for Ny = 4. The data are 
compared with a fit of the equation of state. The 
symbols refer to the different masses: rn ~ 0.02 

00,(o , 0 0 ,  =0 0 
The fit did not include the data values at T~ 

= 0.16. The error bars are smaller than the sym- 
bols. The dashed curve is the extrapolation to 
~ 0 .  

the line l im~o~<,~X! > 0 is a first order critical 

line. 

A tricritical point is connected with power-like 

scaling laws. Thus, the critical behavior can be 

described by the equation of state 23 

a1~ss(~) 
- -  0, (313) 

OCt 

where c = <XX>, and ~, ( are analytic functions 

of#: ~ = ~ , ( # - # ~ ) + ~ ( ~ - # o ) ~ + . . . , C  = 

~'0 + (~(/3 - #~ ) + C'2(/~ - #~ )2 + . . . .  In order to avoid 

confusion of ~ and the critical exponent named by 

the same letter I have called the latter ~. For (S = 

3 and/~ = 0.5.1~i i  is the effective potential of the 

Figure 4: The chiral condensate against /~ accord- 
ing to Dagotto et al. for N /  -- 2. The data are 
compared with a fit of the equation of state. The 
symbols refer to the different masses: Tn = 0.02 
(V) ,  m = 0.03 (O) and Fn = 0.04 (D). The er- 
ror bars are smaller than the symbols. The dashed 
curve is the extrapolation to 77) = 0. 

(7-model. Equation (3.3) gives 

1 
( ( I - ~ + I ) ~ . c ~ - ~ + ( 6 - I ) < ~  ~ - m  = 0 .  (3.4) 

At ~ = 0 

<~x) c( (#~ ~)~. #~ ~ ,~, (3.~) 

and at '~--#~ 

<~'X> o( ~n~. (3.6) 

In order to determine/3~ and the critical exponents 

I llave f i t ted eq. (3.4) to the data. The result of 

the fit is shown for the -N S = 4 data of G6ckeler et 

al. 17 and for the/~'.f = 2 data of Dagotto et al. 24 

in figs. 3 and 4, respectively. The dashed curves 

describe the extrapolation of i ~ l  to m = 0. The 

quality of the f i t  is certainly very good. The values 
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. . . . . . .  4 ?';1=2 i N / =  1 ! 

17 0.194(2) i I 

24 0.227(3)[  /! 

25 0.180(6) 0.143(7) i 0.121(5 ) 

Table 1: The  values of  ~ = 1/e~ as obtained from 
a fit of the  equat ion  of s ta te  to the  da ta  of G6ckeler 
et al. and Dagotto et al., respectively, and analyti- 
cally by Cornelius. 

o f / ~  are listed in tab.  1. Horowitz 7 finds/3~ = 

0.187 for the/~,-: = 4 data  of Booth et al. 6 and 'fl~ 

0.210 for the  N :  = 2 data  of Kogut  et  al., 4.24 

which is in rough agreement  with my result, I will 

pos tpone  the  discussion of the  critical exponents  to 

sec. 5. 

Very recently, Cornelius 25 studied the phase 

diagram analytically for Wilson fermions. She com- 

puted the renormalized charge and fermion mass 

and the renormalization constants by an expansion 

in the hopping parameter ~ = 1/(2rn -i- 8) up to 

tenth order. The renormalization scheme she uses 

is the BPHZ scheme. The line mR = 0 is given 

by the line ~ = ~ ,  where ~ is the radius of  con- 

vergence of the expansion. In order to determine 

~ ,  she proceeds in the same way as L/Jscher and 

Weisz. 26 The line is found to extend from e = 0 

to e = e~, where e~ is the value of the bare charge, 

beyond which the method is not applicable any- 

more. A further investigation suggests that  mR is 

no longer zero for e > e¢, so that e~ may be taken as 

the critical charge. The second order critical line is 

shown in fig. 5. The critical coup!ings are listed in 

tab. 1 for ?v~ = 1, 2 and 4. It is striking how close 

they are to the numbers for staggered fermions. 
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Figure 5: The second order critical line e~ = ~c~ 
found by Cornelius for !~,'f = 1 Wilson fermions. 

4. RENORMALIZATION GROUP FLOW AND 

THE QUESTION OF TRIVIALITY 

We can take the continuum limit all along the 

second order critical line from L-1 = o~ to ~ = ~ .  

But the theory can only have a non-trivial contin- 

uum limit at the tricritical point ~ = 3c, Tn = 0. 

The cut-off dependence of  the renormalized 

charge is described by the renormalization group 

equation 

"~R = 3 ( ~ . m R ) .  (4.1) 
OrnR ~ fixed 

where 1/rnB acts  as the  cut-off,  and  ~(e~.mR) is 

the  Callan - Symanzik :'3-function. In order t h a t  

the  critical point is a non-trivial fixed point,  the  :3- 

funct ion mus t  have a zero at  e~ = e~ 2, mR = 0, 

where e~ --: e~. The latter follows from the f ~  

that 27 Z3 ~ 1. One can also define a bare 3- 
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Figure 6: The relationship between eR, e and mR. 
The symbols are the same as in fig. 2. The 
dashed line is the prediction of  the one-loop lat- 
tice f l-function shifted to fit the data point at the 
smallest value o f  mR, which corresponds to /~ : 
0.22, m = 0.2. 

function by 

~ R - -  - t~o(J, mR), 
OmR L s fixed 

(4.2) 

which indicates how the bare charge must run in or- 

der to keep the low-energy physics constant. This 

f l- function would have a zero at e 2 : £~, ;m R = 0. 

In view of  the result that the critical charges lie in- 

side the "apparent" radius of convergence of  tenor- 

realized perturbation theory, it has been argued 27 

that it appears rather doubtful that the Callan - 

Symanzik/3-function has an ultra-violet stable zero. 

If, indeed, QED is trivial, we expect the Callan - 

Symanzik/3-function to be described by renormal- 

ized perturbation theory. For staggered fermions 

Figure 7: The Callan - Symanzik/3-function times 
37r2/2e~. The symbols are the same as in fig. 
2 .  This is compared with the one-loop lattice 
~P-function indicated by the dashed line. 

( N f  = 4) this leads to 

~o2 o~ 2c~ +o(e~). (4.3) 

Since the Callan - Symanzik /3-function and the 

bare/~-function are equal in perturbat ion theory up 

to two loops, we expect the corresponding result to  

hold for/~0(e2,mR). 

The data of  G/~ckeler et al. 17 for the renormal- 

ized charge and the renormalized fermion mass as 

well as their analysis is presented in figs. 6 - 8. In 

fig. 6 I have plotted 1 /e~  - 1 / e  2 against m.R. For 

each symbol the data point with the smallest value 

of mR corresponds to m = 0.02. The striking result 

is that  the data lie on an approximately universal 

curve. The slope of the curve is --~(~,mR)/~ ~ 
and - r io(  e 2, mR) /e  4, respectively. This means that 

~(e~;~R) /~  ~ ;~.(~.- ,R)/~:  (4.4) 
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ing the renormaiized charge en constant. They are 

obtained by a suitable interpolation of the data. 17 

In the symmetric phase, t -> tic, TaR vanishes as 

Tn ~-~ 0, and so one obtains for a positive/3-function 

cR = 0 in this limit. In particular, cn = 0 at the 

critical point. In the broken phase, t < t~, mR 

stays finite as ~ -~ 0, and so en is finite in this 

limit. Therefore all trajectories wilt end at m --- 0 

on the first order line. We may use perturbation 

theory to integrate the renormalization group equa- 

tions down to m = 0. The result is indicated by 

the dashed lines. The trajectory cR = 0 coincides 

with the second order line/3 > ~ ,  Tn = 0. 

Horowitz 29 has extracted the renormalized 

charge and the renormalized fermion mass from the 

data of Booth et al. 6 for {XXt and the average ac- 

tion density (F~ I .  He made the ansatz 

Figure 8: The renormalization group flow in the 
critical region. The solid lines are lines of constant 
renormalized charge, where e~ ranges from e~ = 
2.8 (lower right-hand corner) to c~ = 5.4 (upper 
left-hand corner) in steps of 0.2. The dashed lines 
arise from integrating the renormalization group 
equation down to Tn = 0. The solid circle indicates 
the position of the critical point. 

in agreement with lowest order perturbation theory. 

The Callan - Symanzik/3-function is found by dif- 

ferentiating the data. It is shown in fig. 7. The 

dashed curve in this figure represents the pertur- 

bative one-loop lattice result. There is good agree- 

ment between the data and this curve. 28 Let us go 

hack to fig. 6 now. The dashed curve in that figure 

represents the integrated one-loop L3-function, 

-- / Inmn d Jn~,R t((12, T/1R)/E~. (4.5) 

normalized such as to match the data point at the 

lowest value of TaR. The agreement between this 

data and renormalized perturbation theory is even 

more impressive. Finally, in fig. 8 are shown the 

renormalization group trajectories defined by keep- 

~ R  = 8 C < ~ x )  + ~ ,  (4 .6)  

based on the  gap  equat ion ,  7 and f i t ted (F2~} by 

the  one-loop renormalized photon propagator ,  t t  

tu rns  out  t h a t  (8G)  -1 = 0.62 + O ( t ~  - t ) -  Th is  is 

in broad agreement  with the  one-loop result  (3.1) .  

regarding the  fact  t h a t  the  bare mass  m is relatively 

small. Qualitatively, the renormalization group tra- 

jectories one obtains from his ~ts look the same as 

those in fig_ 8_ 

Another group 30 has computed the renormai- 

ization group flow analytically for large rn and in 

weak coupling perturbation theory. Unfortunately, 

the results do not (yet) extend down to the interest- 

ing region. But they are consistent with the picture 

that has emerged. 

Finally, I like to mention that Rakow 31 has 

investigated a set of truncated Schwinger - Dyson 

equations, which include effects of vacuum polar- 

ization. The range of correlation lengths accessible 

in this approach is far larger than what is possi- 

ble on the lattice. He finds also that the photon 

decouples at the critical point. 
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Figure 9: The renormalization group flow in the 
critical region. The solid lines are lines of constant 
mR/rnes ranging from 0.4 (lower right-hand cor- 
ner) to 2.1 (lower left-hand corner) in steps of 0.1. 
The dashed lines are the lines of  constant charge 
from fig, 8. The solid circle indicates the position 
of  the critical point. 

Though the photon decouples in the continuum 

limit, QED can be a valid description of charged 

particles and their interactions up to some finite 

momentum scale. It is interesting to know what 

that scale is, because it indicates the onset of  new 

physics. An upper bound on that scale is given by 

the maximal value of the cut-off. This turns out to 
be 17 

1~ran < (0.038 ± O.O04)e 3"~/2~, (4.7) 

for 2V i = 4. Note that this value is more than 

a magnitude smaller than the position of the Lan- 

dau pole. The true scale is, however, where the 

low-energy physics starts to depend on the cut-off. 

G6ckeler et al. 17 have compared the renormaliza- 

t ion group flow of different dimensionless quanti- 

ties. Besides eR they have considered the mass ra- 

t io rnR/rnps, where raps is the pseudoscalar Gold- 

stone boson mass. The trajectories are compared 

in fig. 9. The two flows are obviously completely 

different in the parameter range studied. The mass 

ratio trajectories flow into the critical point in con- 

trast to the en trajectories. The inconsistency is 

most striking for /3 < /~o where the mass ratio tra- 

jectories move in the direction of  larger /?,, while 

the eR trajectories move in the direction of  lower 

ft. The correlation length does not have to be 

very large before the difference between the flows 

becomes apparent. For example, for e~ = 3.0 

(aR = 0.29) the difference becomes marked when 

ton <~ 0.5. This corresponds to a cut-off, which 

is only two times as large as the fermion mass. 

Thus, there are no lines of  constant physics, ex- 

cept possibly for very small values of  e~, which we 

did not explore. This contradicts renormalizability: 

a change in the cut-off cannot be compensated for 

by a change in the bare parameters. 

5. CRITICAL SCALING BEHAVIOR 

I mentioned that the continuum theory may be 

interacting though the photon decouples. The di- 

rect way to find out whether this is the case would 

be to compute, e.g., the renormalized four-fermi 

coupling. This has not been done, and so we de- 

pend on other information. The critical exponents 

are one source. Preliminary studies have revealed 

5,6,7 mean field critical behavior. In this section I 

shall discuss some new developments. 

Consider the anomalous dimension of  the 

fermion mass, which is given by 

mR 0 ~  I 1, (5.1) 
")% -- =~ OmB]efixed 

and the anomalous dimension of  XX, which is given 
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by 

_ rnn O(XX> ~fixed - 3. (5.2) 

At the  critical point 7~  and 3,~x are related by ~ 

+ 3,~x = 0. Figure 2 shows rather  convincingly tha t  

(XX) c< rna  as rnn --~ 0, which leads to 3,~ = - ' )~x  

= 2. This  result is supported by a direct  evaluation 

of ~,~ in ref. 23. Combining eqs.(5.1) and (5.2), 

we obta in  

O(~X} i _ 3 - 3,~ _ I (S.3) 

The lef t-hand-side of eq.(S.3) is equal  to  1/t~ (of. 

eq.(3.6)). It then follows that 

= 3,  ( s . 4 )  

which is the mean  field result. This  result  is not sur- 

prising. The  validity of  renormalized per turbat ion 

theory indicates  already t h a t  there  are no fur ther  

relevant  interact ions.  Vice versa, 6 = 3 leads to  

7-~ = 2. The  scal ing relat ions a m o n g  the  critical 

exponents  32 connect  6 to  ~ and the  critical expo- 

nent  7 by 

3, =/~(~ - 1). (S.5) 

This relation follows also directly f rom the equation 

o f  state (3.3), (3.4). Kocic et al. 33 have argued 

that  3' = 1 in the ladder approximation. This would 

give the mean field value/~ = 0.5. 

x ,  I i 3, 
: 4 10.194(2) 3.14(18) 13.49(2) i 1.05(9) 
7 -  i r 

!o.227(3) ',.23(18) o.74(6) Io.91(13) 

Table 2: The critical exponents as obtained from a 
f i t  o f  the equation of  state to the data of Gbckeler 
et al. ( N ]  = 4) and Dagotto et al. ( ~  = 2), 
respectively. 

Let me now turn to the data. In tab. 2 I have 

the fits described in sec. 3. (The data and the f i t-  

ted curves are shown in figs. 3 and 4.) In case o f  

the N 7 = 4 data of G~ckeler et al. 17 we find crit- 

ical exponents, which are in good agreement with 

mean field theory. The ]VI = 2 data of Dagotto et 

ai., 24 on the other hand, give critical exponents 

which deviate significantly from the mean field val- 

ues. One should remember though that the N I = 

2 theory with staggered fermions is non-local: i t  

contains spinless fermions, which may have influ- 

enced the result. Quite possibly, locality wilt not 

even be restored at the critical point. The situa- 

tion here is different f rom QCD. where the running 

coupling constant goes to zero. The message from 

investigations of Schwinger - Dyson equations 9 ~s 

that  one has to go to increasingly large correlation 

lengths as _~ is decreased, before one sees mean 

field critical exponents. This might also be the case 

here. 

Based on the report 34 that the critical points 

of  QED and the Nambu - Jona-Lasinio model are 

connected by a second order critical line, Horowitz 7 

has argued that  one should be able to  describe the 

critical behavior o f  QED in terms o f  a gap equation 

of  a four-fermi interaction_ Indeed, the gap equa- 

t ion is identical with the one-loop equation (3.1) 

for (XX), where tnR is expressed by eqo(4.6). Like 

the ~-model it yields mean field critical exponents. 

Horowitz has f i t ted the i ~  = 4 data o f  Booth et 

al. 6 to  the solutions o f  the gap equation. He ob- 

tained a chi-squared per degree o f  freedom of  1.3, 

which speaks for mean field critical exponents. It 

indicates furthermore that  the chiral transition o f  

non-compact QED is indeed in the same universal- 

ity class as the Nambu - Jona-Lasinio model. The 

~ f  = 2 data of  Kogut et al. 4.24 gave a chi-squared 

per degree of  freedom of  7.8. 

compiled the critical exponents that I obtain from 



632 G. Schierholz / Advances in lattice QED 

6. FOUR-FERMI INTERACTION 7. QUENCHED APPROXIMATION 

In the previous section two independent meth- 

ods of  determining ~ have been discussed, which 

both gave " ~  = 2. Hence, the scaling dimension 

of  ~,~ is one. This and the fact that the theory 

is non-interacting suggests that the scaling dimen- 

sion of  the four-fermi interaction is two. It means 

it is renormalizable and becomes a relevant o0er- 

ator. Since the four-fermi interaction is generated 

anyway, it should be included in the action from 

the beginning. Indeed, it has been argued on the 

grounds of Schwinger - Dyson equations g that the 

apparent non-renormalizability of  QED discussed in 

sec. 4 is mitigated if  a four-fermi interaction is in- 

cluded. 35 

Booth et al. 6 have simulated non-compact 

QED with the chiral [ / (1) × U(1) invariant four- 

fermi interaction 

c ~ ~x~+~z~+~- (6.1) 

They confirm the existence of  a second order line 34 

connecting the critical point of  QED with that of  

the Nambu - Jona-Lasinio model. It has been 

pointed out 36,37 that the expression (6.1) does not 

produce a U(4) X U(4) invarlant four-fermi inter- 

action in the classical continuum limit. One could 

argue that the remnant U ( ! )  × U(1) symmetry is 

sufficient to study the breakdown of  continuous chi- 

ral symmetry. But this has to be investigated fur- 

ther. 

It is known that -y~ = 2 at the critical point 

of  the Nambu - Jona-Lasinio model. Our results 

suggest that "),~ - 2, and hence 6 - 3, on the 

whole second order line. This fits in with the claim 

of Horowi~z 7 that the chiral transitions of QED 

and of the Nambu - Jona-Lasinio model are in the 

same universality class, it would mean that the 

theory is trivial everywhere on that line. 

Tr.e quenched approximation is sometimes a 

useful tc.ol for exploratory studies. In QCD it may 

even capture the ~ssential features of the full the- 

ory. In non-compact QED this is, however not the 

case, so that one should not take the results liter- 

ally. For example, an investigation of  the gauged 

Nambu - Jona-Lasinio model 34,38 in the ladder 

approximation suggests that on the second order 

line, connecting the critical point o f  the Nambu - 

Jona-Lasinio model with that  of  QED, the anoma- 

lous dimension 3'~ varies continuously from 3'm = 

2 at the critical point of  the Nambu - Jona-Lasinio 

model to " ~  = I at e = c~. This is in conflict with 

the predictions of  the full theory, discussed in the 

last section, and also with the solutions of  truncated 

Schwinger - Dyson equations including certain ef- 

fects of  fermion loops, 8.9 which both indicate that  

"~,~ = 2 on the whole critical line. 

Nevertheless, let me mention briefly what the 

status of  the quenched calculations is. We have 

stated some time ago 5 that  the critical exponents 

are consistent with the predictions of  mean field 

theory, when everybody else argued that /3 = oo. 

In my opinion this statement has not been dis- 

proved yet, in spite of different claims. 39 I would 

not be surprised though if the critical exponents 

came out differently. Mot ivated by the recent work 

of  Dagotto et al., 3g I have re-fitted all published 

quenched data 3.5.24 By the equation of  state (3.3), 

(3.4). The result of  the f i t  is shown in fig. 10 in 

form of  the scaling plot introduced in ref. 5. I 

find/3c = 0.253(3) and the critical exponents ~ = 

2.55(24) and /~ ~ 0.64(g). Regarding the errors, 

one cannot claim that the result is inconsistent with 

mean field theory. Dagotto et al. 39 reported ~c = 

0.257(1) and ~ = 2.2(1), ~ = 0.78(8). But I can- 

not see that these authors have done a proper f i t  

of  the equation of state to their data. I intended 
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should also be mentioned that these authors use the 

hybrid algorithm, 40 which is not exact in contrast 

to the hybrid Monte Carlo algorithm 41 everybody 

else uses. 

The most far-reaching result is presumably that 

the four-fermi interaction is renormalizable. We 

expect a whole series of other interactions to be 

renormalizable as well. In this light we have only ex- 

plored a single point of a multi-dimensional critical 

surface. So there is still hope to find a non-trivial 

continuum limit. 
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to do that.  But I was not able to get the new data 

from Dagotto. 

8. CONCLUSIONS 

There is no doubt, that  the photon decouples 

at the critical point which means, in the customary 

sense, that  QED is trivial. It may take a long time 

though to prove this rigorously. An essential ele- 

ment in the analysis was renormalized perturbation 

theory, which allowed us to extrapolate the lattice 

results down to eR = 0. 

There is strong evidence also for mean field crit- 

ical exponents. The only fact that speaks against it 

is the ]V s = 2 result of Dagotto et al. 24 But given 

the inherent problems of this theory, further stud- 

ies will be needed in order to dispel all doubts. It 
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