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Experiments looking for light spin-zero particles using the "'shining light through walls'" 
technique can be improved by enclosing the light in an optical resonator. In this l~aper we 
analyze this technique. The effect of using cavities factorizes into a gain factor for both the 
emitting and the receiving cavity and a mode coupling constant. The gain factor only depends on 
the optical quality of the two cavities, whereas the mode coupling constant depends, but not 
sensitively, in a calculable way on the geometry, axion mass and magnetic fields used. An 
increase in sensitivitv by a factor 10 in the axion-photon coupling constant is within reach. 

1. Introduction 

Current accelerator experiments look at matter with a resolution of a few times 
10 -~8 m, which corresponds to an energy scale of order 100 GeV. Although the 

center of mass energies available have increased over the years, one may think of 
other ways to catch a glimpse of the physics that works at energy scales that will 

remain out of reach to accelerator physics for many decades to come. A popular 
idea is to look for a coupling which is small due to the presence of the large energy 

scale. The physics of very high scales is also the physics of very small coupling 
constants and masses. The non-observation of proton decay e.g., led to the 
exclusion of a large class of grand unified models which operated at typical scales 
of 10 +~5 GeV. Another example is the search for neutrino masses. A neutrino 
mass of O(1 eV) would, through the see-saw relation m~ = m2/M, point to energy 
scales M of O(10 ~1) GeV. As a final example, when Becquerel discovered the 

radioactivity of uranium salts in 1896, he was having a first look at weak interac- 
tions. Today we know that weak interactions operate at a typical scale t, = 

(GF1/~) - I / 2 =  246 GeV. 
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In this paper we are considering very light, very weakly interacting bosons which 
couple to two photons. For definiteness we will assume the particle to be a 
so-called invisible axion [ 1-3], whose interaction with photons is described by the 

action 

- . -~m;qv- + ~g , (l . l)  

where if#,. = ~eu,,p,~ F "'~. But nothing will depend crucially on this spin-parity 
assignment. In many invisible axion models there exists relations of the type 
nl~,--g, but we will not assume this here. The relation between the axion decay 
constant f~, and the coupling constant g is given by got a/f , , ,  where the propor- 
tionality constant is model dependent. 

The invisible axion is motivated by the so-called "strong CP problem". It has 
also been proposed as a candidate for the dark matter which is supposed to make 
up the missing mass in the universe [4]. Although invisible axions are indeed 
invisible in accelerator experiments, some limits on them do exist. Cosmological 
considerations put a lower bound g > 10-14 GeV-m [5-7]. Considering the energy 
loss from the sun [8] and red giants [9] due to axion emission, one can deduce an 
upper bound g < 3 x 10 - ~  GeV -~. Taking the supernova SNI987A into account 
one can improve the upper bound to g < 3 × 10- ~-' G e V -  i [ 11, 12]. 

Apart from these important astronomical and cosmological considerations it is 
obviously usefuli for both particle physics and astronomy to try to bound the axion 
as much as possible with more terrestrial techniques. Sikivie [13, 14] proposed to 
use the interaction term in eq. (1.1) to detect axions. In an external electromag- 
netic field axions and photons will mix and therefore an incoming axion leads to a 
small amount of outgoing electromagnetic radiation. One possibility is to look for 
cosmic [10] or solar [15, 16] axions with an earth bound detector. Recently first 
results of experiments of this type have been published. To interpret ti~e outcome 
of these experiments one has to make assumptions about the density of axions near 
the earth, respectively the axion production rate of the sun. 

Experiments which are entirely terrestrial are less sensitive but depend on less 
assumptions. The experiments proposed so far are of very diverse kind and employ 
e.g. the axionic M6Bbauer effect [17] or axionic Bragg scattering [ 18]. 

Two interesting kinds of experiment involve the propagation of the electromag- 
netic and axion fields in an external magnetic field. The first kind of experiment 
looks for a rotation of the polarization plane of a beam of light, having been 
polarized at an angle of 45 ° with respect to the external magnetic field [19,20]. 
Recently the first results from an experiment of this type were published [21]. The 
resulting bound on the coupling, g < 2.5 × 10 -6 GeV-~, is much weaker than the 
bounds from astronomical sources, but is nearly independent of additional assump- 
tions. 
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Fig. I. The simplest experiment to produce and detect axions. (The two boxes are magnetic fields and 
the dashed line stands for the excited a:,ion mode.) 

The other kind of experiment, with this paper will concern itself, operates like a 
pair of Sikivie detectors. In one magnetic field photons are converted to axions, 
which are then in a second magnetic field reconvct~ed to photons again [22], The 
photons which leave the first magnetic field are absorbed and not allowed to enter 
the second magnetic field (fig. 1). For this ,eas~_~,~ this technique is k n ~  as 
"'shining light through walls". This relatively straightforward technique can be 
improved in a number of ways. One obvious problem is the detection of the 
reconverted photons. Even the quietest photon detector is e:~'tremely noi~ when 
one wants to measure fluxes of one photon year-~. This problem was circumvented 
by van Bibber et al. [23] who proposed to interfere the re,:onverted photons ~ t h  
the photons leaving the laser (which acts as a light source) (fig. 2). This experiment 
is equally sensitive as straightforward photon counting when one uses ideal 
detectors. When the photodetectors are not ideal however, the sensitivity, of the 
experiment of fig. 1 is limited by detector noise, and therefore severely degraaed, 
whereas the sensitivity, of the experiment of fig. 2 is limited by the fluctuations of 
the Poisson statistics which governs the photon number. These Poisson fluctua- 
tions overwhelm the fluctuations due to a nc, isy detector. Therefore the sensiti-dty 
of the second kind of setup is virtually undegraded when using n,~-idoa! d, .-ctors. 

Furthermore van Bibber et al. noticed that by modulating the aiag.netu dc[d, i.e. 
by making the magnetic field dependent on the coordinate along the optical axis, 
one could exclude a few corners in the coupling consiant vs. axion mass plane 
which are not excluded when using constant magnetic c :los. Another possibility to 
improve the experiment was noticed in ref. [24]. As mentioned above the sensitivity 
of the experiment using interference is limited by Poisson statistics (shot noise). 
Using classical fields only, one cannot circumvent this source of noise. It is 
however possible to use so-called "squeezed states" to reduce the fluctuations and 
thereby boost the sensitivity. These squeezed states a~e a pure quantum effect and 
have no classical analogue. In recent years it has become possible to produce 

I jr 
LASER 

I - 

Fig. 2. Axion detection using a local oscillator. 
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Fig. 3. Axion production and detection with two optical resonators. 

and detect squeezed light [ ~ ,  26]. The use of squeezed light in axion production is 
~ery. similar to its use in the detection of gravitational waves [27]. 

A final, rather obvious, way to improve the sensitivity is to use the photons that 
,~ss the first magnetic field more than only once. This would enhance the photon 

to axion conversion probability by the number of reflections. One could e.g. make 
the laser cavity larger to include both the active iasing medium and the magnetic 
field inside an optical resonator. Another idea is to place the magnetic field inside 
a caviD~ that is excited by a laser from the outside. This is more accessible to a 
theoretical analysis since here the physics of the laser decouples from the physics 
of axion-photon conversion. 

Since the detection process is the inverse of the production process it will be of 
a&:antage to include the second magnetic field in an optical resonator as well 
(fig. 3). 

Although lhe idea to use optical resonators to enhance the reconverted photon 
yield is of an elegant simplicity, there is a caveat. The search for axions in this kind 
of experiment will, given the astrophysical bounds, be most likely a nu!! experiment 
for a long time to come. For a reliable experiment it is therefore of utmost 
importance to make sure that there are no effects which make a signal disappear 
when there actually should be one. This kind of error in axion production and 
detection could occur in at least two ways. 

First of all an optical cavity does not resonate always, but only when the optical 
path length of one roundtrip is an integer number of wavelengths. It might be that 

the resonances of the cavity for photon-axion conversion and back are not at the 
same position as these purely electromagnetic resonances. Conceivably the pres- 
ence of an axion mass might shift the resonances to a different position. 

The second way in which a signal might disappear is somewhat more subtle. It is 
analogous to an impedance mismatch in electronics. When one wants to connect 
two black boxes by a coax cable, one has to make sure that the output impendance 
of the first box, the impedance of the coax cable and the input impedance of the 
second box are the same. Otherwise power will be reflected and optimal power 
transfer does not take place. The same problem occurs in the axion experiment 
discussed here, but now the situation is slightly more complicated. Instead of two 
amplitudes, current and voltage, as in the electronics analogue, we now have to 
consider infinitely many. What happens is that the optical resonator has an infinite 
number of modes. When it is resonating in one (or more) modes, these modes 



F. Hoogeceen, T. Ziegenhagen / Light bosons 7 

contribute dominantly to axion production. The axion field then propagates to the 
second cavity. The magnetic field there, combined with the incoming axion field 
produces an electromagnetic current which excites the modes of the second cavity. 
When the experiment is ill-designed one could excite modes of the second caviL" 
which suffer high losses. It is therefore important to solve the problem of 
mode-matching when two optical resonators are coupled through the axion fietd. 

In sect. 2 we will discuss the use of optical resonators to produce and detect 
axions in case one can neglect the variations of the fields transversely to the optical 
axis, i.e. the l-dimensional case. In sect. 3 we consider what changes when one 
takes the finite cross-sections of the beam into account. Now diffraction losses and 
mode mismatch make their appearance. In sect. 4 we study the results of se~. 3 
numerically. Although it is impossible to cover the many dimensiona[ parameter 
space completely, the influence of parameters such as the axion mass~ the beam 
width and the mode numbers are discussed. In sect. 5 we draw concEusions. 

2. The one-dimensional case 

The action in eq. ( l . l )  leads to the following equations of motion for the axion 
field 

(a~ - A + , , , ~ } ~  = - g E "  B (2.1) 

and for the electromagnetic field we have the following Maxwell equations 

V .  E = - g B  . V ~  , V - B = O ,  

0 I B + V x E = O ,  0 t E - V x B = g B O s ~ - g E x V ~ .  (2.2) 

When we consider a st,,tic, external magnetic field Bex t and linearize around this 
configuration, we can deduce the wave equation for the electric field 

(2.3) 

First consider photon to axion conversion in a magnetic field, without the presence 
of mirrors. When we have an electromagnetic wave moving to the right E = 
e.,. e mu-:~ through a static magnetic field B = B(z)e , . ,  two outgoing axion fields are 
produced. Moving away from the magnetic field to the right we have the forward 

scattered axion field 

eifD - ikz  

~> - - 2 i k  g B ° L F (  ~ - k ) ,  (2.4) 

where k = V/O 2 -  m 2~, , B 0 is a nominal magnetic field strength and L a nominal 
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length. The last two parameters are introduced to make the form factor 

dz B(z) ( 
F ( q )  = 

I L B o 
e -'q: ( 2 . 5 )  

dimensionless. Moving to the left, away from the magnetic field, one finds the 

much smaller back-scattered axion field 

emt  +ik: 

< = -2ik  gB°LF(a + k) .  (2.6) 

Although this back-scattered axion field is always present, we shall in the sequel 
always neglect it since for all practical purposes the form factor F(g~ + k)  is 
smaller by many orders of magnitude than F ( D -  k). 

In the reverse process a plane axion wave q~= e m'-~k: is interacting with a 
static magnetic field B - - B ( z ) e , .  The two electromagnetic waves moving away 

from the magnetic field are 

.Q 
E = ~ e my =~ =~ gBoLF( k -Y- g~). (2.7) 

Again the back-scattered photons which move opposite to the incoming axions will 
be neglected. The result is the following weU-known expression for the ratio of the 
number of photons measured by the photodetector PD in fig. 1 to the number of 
photons emitted by the laser 

_ ~2 ( gZBIBzLIL, )2 I 
N~ ,,,, .Q2 , " r , (  q )] 2 IF2( q )! 2 (2.8) 
N~i . - m: 4 

where q = .Q - k. This expression is only correct when .Q > m.,, since otherwise the 
axion does not propagate. The apparent singularity when g2 $ m~ is an artefact. 
When the photon energy is only slightly less than the axion mass, axion-photon 
oscillation occurs and expression (2.8), which is only the lowest order in g, does 
not apply anymore. 

Now consider an optical cavity formed by two plane mirrors at positions z = z~ 
and z = z 2 (fig. 4). In the most general case the electric field is given by 

E I = A +  e +a2(t-=) + A  _ e + i ~ 2 ( t  + : )  , 

E!i = B+ e + i y l ( t - z )  -4- B e +in('+=) 

Ell i = C +  e+in~'-z) + C_ e +in''+=), (2.9) 
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B_= s(2’e-2ifl=z B,= G&J + , 
II 

e amplitudes of the fields which leave the cavity 

(1’ (2’ 

c+= %2S21 
A 

1 _S(I:)S::)e-2~~~(~‘-=,’ + ’ 

(2.12) 

SO what one can learn is that the field in the interior is maximal, and therefore the 
axion production is maximal when the denominator 1 - sl l sl l e 

(I) (2) -ZiR(z2-zl) is as 
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small as possible. When the cavity is excited by a beam of light from the left 
(A + .:¢: 0, C_ = 0) the fields in the interior B_, B + and the field leaving the cavity at 
the right-hand side, C+, are simultaneously maximal. One can therefore observe 
the transmissed light and when it is on a maxim,~.e~ the axion production will be 
maximal as well. The second term in eq. (2.12) is iaore complicated. This means 
that, when illuminating a cavity from the left and observing the light leaving the 
cavity to the left, it is harder to tune the cavity to have maximal field strength 
inside. 

At this point we notice that the photons leaving the cavity to the left could cause 
a problem. When no special precautions are taken, they will follow the track of 
incoming light in the reverse direction and end up in the laser cavity again. Then 
the equations describing the laser are not decoupled anymore. This problem can 
be aveided however by cladding all mirror surfaces with !A plates. Then the right - 4 

moving photons can be made horizontally polarized, while the left moving ones are 
vertically polarized. A Nicol prism can now be used to divert the left moving 
photons leaving the cavity away from the laser. 

Now consider the reverse process, photo-production by axions propagating 
through a cavi l .  Since axions interact extremely weakly with ordinary matter, they 
are not reflected by the mirrors. But a photon, produced by converting an axion, is 
reflected by the mirrors. Under the proper conditions the photons that are being 
produced at a certain instant and the photons that have been produced earlier and 
made one or more roundtrips through the cavity, may have the correct phase to 
add coherently. Consider the wave equation for one component of the electromag- 
netic field 

(~) - a.2)E = j ,  (2.13) 

where the current j is caused by the external magnetic field and the incoming 
axion field (cf. eq. (2.3)). The current j lives inside a cavity bounded by mirrors at 
z---z ~ and z = z4, which are again being described by s-matrices analogous to eq. 
(2.10). We first consider the Green function, i.e. the case j = e ÷ia, ~(z - zo), using 
the boundary condition that no waves are entering the cavity from the outside 
(A += D _ =  0). See fig. 5 for the definitions of the different amplitudes. After 

A ÷ -.-..,l~ B÷ 

B_ .~ , . -  C _ . ~ - -  D_ ,~--- 

Z:Z3 Z:Zo Z:Z~ 

Fig. 5. A cur ren t  exci t ing a cavity. 
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some algebra we find for the outgoing waves 

D + =  
e +il~z° 1 + s~ 3~ e 2ia~'-3-:,,~ 
~ $~I ) 

a l l a i l  

e -m-',, 1 + s~4}e -2m~:,--,,} 
A = 2 i 0  s~23~ 1 - e ( 3 ) e ( 4 ) e 2 i ~ z . ' ~ - z 4 )  " (2.14) 

o ! !O i l  

Now we notice that the current j behaves like 

j ~ e i~n'-*-~, k = ¢ ,q"  - m~ ,  (2.15) 

and we can therefore ignore the terms in eq. (2.14) which behave like e -m:,,. This 
approximation means again that we leave out back-scattering. Now the amplitudes 
of both outgoing waves factorize into the amplitude of the throughgoing wave that 
would have been produced if there where no mirrors times 

s~ ~ 
G2F= 1 _~3~4~ -2i~:4-:;~ (2.16) 

OilOii e 

for the right-mo,dng wave and 

ila21 ,,., 
G2B= 1 -  °(3)e14~ 2i1~(:~-:~ (2.17) 

31lail e -  

for the wave moving in the opposite direction. The last wave does not consist of 
back-scattered photons, but of photons which are produced through forward 
scattering and are then reflected by the mirrors. Note that the conditions for G2F 
and G2B to be maximal is exactly the same as the optical resonance eq. (2.11). One 
can therefore tune the receiving cavity just as one tunes the emitting cavity, and, in 
the 1-D approximation, one is also on resonance for axion detection. 

Now we put everything together. In the 1-dimensional approximation the num- 
ber of photons reconverted by the second magnetic field is simply 

~,~2 ( L2) 2 
N/°ut = g 2 B I B 2 L !  If i(q)12f 2(q)12lGll2lG2l 2 (2.18) 

02 2 4 N/in - m a  

Which gain factors G i have to be taken in which situation can be read off from fig. 
6. In case one uses the interference technique to get around the detector noise, the 
signal is proportional to the amplitudes themselves and therefore enhanced by the 
factor I G~[IG21. The increment in sensitivity to g is the same for both methods. 
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Fig. 6. Four l~ssible orientations of the experiment. 

The number of photons produced is extremely small. One  might therefore 
wonder whether it is allowed to make this calculation using classical fields, 
surpassing a proper quantum-mechanical treatment. In such a t reatment  however, 
the proper states to use are not the eigenstates of particle number, but coherent  

states. The amplitude of coherent states is a solution to the classical equations of 
motion, whether or not the particle number is macroscopically large. In this sense 
it is allowed to consider here classical fields only. 

The influence of photon-axion oscillation is neglectable. This can be seen 
solving the coupled equations of motion (2.2) with a constant magnetic field, which 
yields the wave vectors 

k~ = ~2  _ mm~ + • + ( gBog 2)z 
2 -2-  ' 

k 2 = .(22 m~, m~ 
~' 2 -2-  + ( gB°g] ) 2 (2.19) 

When a plane wave is moving into a constant magnetic field with length L, three 
processes occur. Entering the field and leaving it are just local processes, which 
gives rise to a constant phase shift. Only the propagation of the wave through a 
magnetic field with refractive index different from one gives a cumulative effect 

of O(gL),  which might influence the resonances of a cavity. The phase shift is 
therefore in a very good approximation zlq~ = ( k ~ -  I2)L -~ ½(gB/m)2g2L,  assum- 
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ing that the axion mass is not extremely small. Using the prediction of axion 
models g / m  = O(10 - ~  eV-2) ,  and taking the rather extreme values B0= 10 T, 

= 2.5 eV, L = 1000 m there is a phase shift of about A~0 = 10 -2t. To see whether 

this phase shift has any influence on the resonances of a cavity one has to compare 
it with / .I~L, the FWHM of the gain factor IGI 2 in eq. (2.11) 

1 - -  l e< l )e~2~l  
u...' I i .,, ! ! I 

A a L  = Vl[s{,,,s{i, ~ 1 - r~-~r_,, {2.20) 

where r i is the reflectivity of the ith mirror, (~r~i = l's"~l).,,, Even for the ~ s t  
mirrors, this is many orders of magnitude bigger than A~.  

3. The three-dimensional  case 

The 1-dimensional approximation as presented in sect. 2 is a very useful 
approach, but not all essential features are taken into account. In any experiment 
the beam of light will not be of infinite diameter. This leads to diffraction losses 
and possibly to other effects. An experiment is only then well d e s i r e d  when it is 
certain that the effects of the finite beam diameter do not make the s i~a l  

disappear. 
This section is divided into two parts. First of all we consider a single cavity, and 

then we consider the coupling of two cavities through the axion field. 
In sect. 2 we found that, in the l-dimensional approximation, one can tune a 

cavity to optimal photon-axion conversion by using optical means only. Now we 
verify that the same is true when we consider beams with a finite diameter. 
Consider again the situation of fig. 4, but now with gaussian beams instead of 
plane waves propagating along the z-axis. For technical details of gaussian beams 
we refer the reader to appendix A. The field in region II is therefore 
B +X,,,,(x, y, z ) e - m :  + B_X,m(* x, y, z)e +m:, and similar for the other two regions. 

At this point we make two assumptions. First we assume that the mirrors do not 
mix different modes. Secondly we assume that the mirrors are infinitely thin and 
do not act as lenses. This means that the beam width and the radius of curvature 
of the wave fronts are continuous across the mirrors. Any real mirror which is not 
thin or does act as a lens can be seen as a combination of an ideal mirror and an 
optical system located outside the cavity. The second assumption is therefore no 

restriction. 
The boundary condition for mirror number 1 now becomes 

B+ e -ig*:l +i,/,~ 

A_ e +i/*:~-id'l 
4'_,' 
S ( I )  

22 

B_ e +il]:l-i&l ) 
A + e - i J ' * : l + i ' / ' l  ' 

(3.1) 
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where ~b~ = ( n  + m + 1)~b(z~). Analogously one can proceed with the other mir- 

rors. Eq. (3.1)can be rewritten as 

A _ e + m : ,  Sgll~. e + 2ie,, ~22~i~ 

B e +i°':~ ) 
- ( 3 . 2 )  

, 4 +  e - i g ~ z t  " 

This last equation is very similar to eq. (2.10). As a result one may simply copy the 
expressions for G~ and G :  from sect. 2 and account for the three-dimensional 
nature of the gaussian beams by making the replacements 

S ~ l l ' ~ e - 2 i * , S ~ !  ! ' ,-"' ~ e + 2 i * ,  ~ , , ,  , "22 °22 

s]]' ~ e ÷ -"~-" -~]]~ , -,22~'2' __, e - 2~,,_ s~,'-, ~__ . ( 3.3 ) 

The main conclusion of sect. 2, that the resonances for axion production and 
detection are the same as the optical resonances, therefore survives the passage 
from plane waves to gaussian beams. 

One subtle point deserves some discussion however. In an expression like 

1 - + m + 1 ) (6 (  z,)_ - 6 ( z , ) )  - 2 i a (  
(3.4) 

one may look for resonances by changing z~ or z 2, keeping everything else fixed. 
In particular the location and the diameter of the beam waist and the s-matrix 
elements of the mirrors do not change. Experimentally one may do this by realizing 
the mirrors as flat mirrors with thin lenses on both sides. When one changes the 
location of one of the mirrors, the flat mirrors are simply shifted and the power of 
the lenses is modified to keep the gaussian beam unchanged. When moving 

through parameter space in this way one finds that the purely optical resonances 
and the resonances in axion-photon conversion are at the same location. In 

practice it will be much easier to change the length of the cavity, while keeping the 
radii of curvature of the mirrors fixed. Therefore the gaussian mode will change at 
the same time. The statement that the two kinds of resonances occur at the same 
position in parameter space does however not depend on how these resonances 
are approached. It therefore remains true, even when the cavities are tuned by 
sliding rigid mirrors back and forth. 

Now we consider the coupling of two cavities through an axion field. The effect 
of the mirrors is entirely given by the gain factors G~,G 2, and factorizes com- 

pletely. In the following discussion these factors are not written explicitly. Let the 
electromagnetic field in the first cavity be static magnetic field and a gaussian 
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mode propagating in the positive z-direction 

15 

Bex ' = e , . B i (  z ) , 

Ew,~e = e.,.Eox,,,, ( x ,  y, z)e  +m,- :}  (3.5) 

Now write the axion field as q~ = 4J(x, y ,z)e  i~t~'-~:~, and neglect 0 ~ .  Using eq. 
(2.1) we find 

( A ± - 2 i k&)g /=  gE~}Bl( z ) X,,,,, e i~k-m: (3.6) 

By Fourier transforming with respect to the coordinates in the two directions 
tranverse to the optical axis, the axion field beyond the magnetic field is found to 
be 

igEo 
~(q | ,  q2, Z)  = 2k exp 

i( + q;_ ) 1 
2k z ] x f_+~.~ d z ' B l (  z')£n,,,( qr ,qz ,  z ' )  

x exp 2/k ' + i (k - O ) z '  ! . (3.7) 

When a current is exciting the second cavity ( J  + I~2)E = J e  
field beyond the current is given by 

-in- the electric 

2----~exp - ig~z  + i 2 0  z _ d z '  f ( q l ,  q2, z')exp 
at I 

2if l  z ' i  ' (3"8) 

making use of the same approximations as before. The current caused by the axion 
field (3.7) propagating through the second magnetic field is 

J =  + g B 2 ( z ) e  +in: g22qb(x, y , z ) .  (3.9) 

Substituting eq. (3.9) in (3.8) and decomposing the electric field in the second 
cavity as a sum of cavity modes 

g2Bl'°B2"°LIL2 y" A,,,n.,,,m,X,,m,e - ia- ,  (3.10) 
E2 = E° 4 ,,,,,,, 

where we factor out the coupling constant g, the nominal field strengths Bc0 and 
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the nominal cavity lengths L;, we find for the coupling coefficients 

- 1 .Q f d z '  d z "  B i ( z ' )  B2(z") 
A.,...,m, - 

27r 3 k J L ! L 2 Bl ,  o B2, o 
ei(k-~2Xz'-z") 

f .,,,,,,,(z,q,.q2)z,,,,(z ,q,,q~) X dq ! dq 2 o* 

X exp[ i(q~ 2 - - ~ ( z - z  + - ~ ( z " - z  . (3.11) 

For infinitely extended plane waves and massless axions, the constants (3.11) are 
all one or zero, The apparent  z-dependence of eq. (3.11) is spurious. When all 
substitutions are made the integral only depends on z e - z  r. 

Remembering that the integrand is odd if n + n' or m + m'  are odd, it is now a 
pure algebraic task to integrate the q~ and q2 dependence leading to 

_ . .  2...+...+.. +........ (,. +,. (°. +,... + . )  
A,,,,, ,,.,,,. 2,'r k x/n !m ,w ,. F F • !n . m  v 2 2 

×fdz Li 
' dz" Bi(z ')  Ba(z") e "k -n~ : ' - : ' ~  

L2 Bl.o B2,o 

,) 
×~-2 2 /32 

X 2 F I  

X 2F1 

n + m  - ( n  + m  - n '  - m ' ) / 2  w~l ) 
2 /32 1 

,, ( ) 2 , ½ ( 1 - n ) ; ½ ( 1 - n - n ' ) ; / 3 2  2 2 w/ + w~ 

m 
! 

2 ' ½(1 - m ) ;  ~(1 - m  - m'); /32 
2 2 

----5- + - -  w; W2e 

2 

WrW e 

2 

WrW e 

2] 
/34 

2 

/34 

Z Zr ( '  1) ' ~2_ w~+wg + i ~ + i  - -  ( z " -  
4 2g-2 2 0  2k z (3.12) 

with n + n '  and m + m '  even and zero otherwise. The symbol 2Fi denotes a 
hypergeometric function. In eq. (3.12) w~ and z c are the width of the beam waist 
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and the location of the beam waist of the emitting cavity, whereas w~ and z: refer 

to the receiving cavity. The simplest case is when n = n ' =  m = m ' =  0. Then 

new , 0 d z '  d z "  BI(  z ' )  B2(Z") 1 
-- [ e i(k-aXz'-z"~ (3.13) A oo, oo 

2 k J  L ! L 2 Bl, o B2, o /3 2 .  

Taking constant magnetic fields and putting the axion mass to zero, the coupling 

coefficient collapses to 

Aoo.0o= m 2 i zr ) " (3.14) 
v_(wd + w~)  + i O -  ( z e -  

A very interesting special case occurs when we consider w e = w r = w o, z e - z: = 0. 

Now the integral in eq. (3.11) contains 

14, [ [ q lwo . . f. . ,  e~i/21<~'.~- ~ - " ' 
- k  ~ : ' - :  ~q~- (3.15) 

and a similar integral for the y-direction. When the last phase factor can be 
neglected, the orthogonality of the Hermite polynomials makes this integral 
proportional to 6,,.. The main contribution to (3 .15)comes  from the region 
q~ < (n  + n ) / w ~ .  Furthermore ( z '  - z" )  will be roughly equal to L, where L is the 
length of the magnetic fields. The phase is therefore small when the mode 

numbers are not too large 

~,-~2 Z R  
t, + n '  << ncr , t  = ~ - ~ - " ,  (3.16) 

m a  

where z R is the Rayleigh range of the cavities. This implies that the coupling 

coefficients are diagonal and independent  of the modenumber 

A ,,,,,.,,.. m' = A oo. oo6,,,,'6mm ' , n, m,  n' m' <<//crit (3.17) 

For all practical purposes r/crit is a large number, O(10 6) or more. 

4. Numerical results 

In this section we study the results of the previous section numerically. The 

complete expression for the coupling coefficients in eq. (3.12) contains a large 
number of parameters. We will therefore not be able here to cover the parameter 

space exhaustively, but we will consider a few examples. 
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In all of the following we will assume two 10 T magnetic fields of 10 m length. 

Further  we assume a 1 W laser emmitting 2.5 eV photons during 100 days, i.e. 

2 × 10 ~ photons altogether. 
This conservative setup would allow, without using a resonating cavity but using 

the interference technique, to put an upper  limit 

g < 2 × 10 -'~ G e V -  ~ (no cavity) (4.1)  

on the axion-photon coupling constant for massless axions. 

The next thing we consider is the effect of putting in a resonating cavity. The  
gain factor G ~  is on a resonance given by 

= = , ( 4 . 2 )   /i-r loll HOll I 

where r is the reflectivity of both mirrors: v~: = ]s~l = [s~[ .  To derive the second 
equality in eq. (4.2) we have made use of the unitarity relation is]il~l z + ad~[ 2 P" I2  = | "  

In general, when losses are taken into account, s ~  and ( G ~ ) , e  , will be slightly 

smaller. Similar considerations apply for the second cavity. A reflectivity r = 0.99 

leads to a gain factor 10, and r =  0.999 leads to a gain factor 30. The reflectivity 

one can use is however limited by the linewidth of the laser, which has to be 

smaller than J.Q eq. (2.20). A length of 10 m and a reflectivity r = 0 . 9 9  corre-  

sponds to a linewidth of 300 kHz. This means that the experiment,  using r =  0.99, 
can put an upper bound 

g i -, , ,  , , - ,  G c V - !  ( ith mi ) - .  ~ ,  - u  W r r o r s  , (4.3)  

But before we can be as optimistic as eq. (4.3), we have to check whether  one 

can design the experiment such that the coupling coefficients do not become very 

small. When considering the simplified expression in eq. (3.14), one easily finds 

two conditions for the coupling to be of absolute value one. First of all one has to 

have z e = z r .  The second requirement is w e = w r. This means that a single gaussian 
mode is filling both cavities. 

In fig. 7 we plot the absolute value of the coupling A00.00 as a function of 

z e - zr, keeping w e = w~ = 0.5 mm fixed and assuming that there is no gap between 
the two magnetic fields for three different values of the axion mass. The diameter  

of the beam waist corresponds to a Rayleigh length of about 1.6 m. From eq. (3.14) 

' w ( ) .  one finds that the effect of z e - z~ can be neglected when Iz e - z~l < 5g2(wd + 

In words, one has to make the distance between the two beam waists less than the 
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IAoo.ool 

10 -1 _ 

10 4 
10 -1 

i ~ i ~ I~ 

10 0 

Z~ - Z~ Ira| 

~ i ̧ f ~ i ~ 

Fig. 7. T h e  c o u p l i n g  BA~m.~M~g as a func t ion  o f  t he  d i s t ance  betv,~een the  tw'o bearrr,~ais~. T h e  axion 

mass  is z e r o  for  t he  u p p e r  curve.  0.5 x IO-  3 e V  for  t he  m i d d l e  curve ,  a n d  10-  ~ e V  for  t he  |~,~'er one .  

10 -1 

A I oo.ool 

10 -2 

I I t I [ I I I I I I , I I 

10 -1 1 
rec  beam waist [ram] 

f ! t i 

Fig. 8. [Aoo.~m[ as a funct ion  of  t he  d i a m e t e r  o f  the  b e a m w a i s t  o f  the  receiver .  T h e  va lues  o f  the  axion 

mass  are  the  same  as in fig. 7. 
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10-- ~ - 

A×~ON MASS ImeV] 

A 

1 

F~g. 9. iA.~,u~,,! as a furwfi~w~ of  lhe  ~lxion mass. 

sum of the Rayleigh lengths of the t~,o cax~ties. From fig. 7 it can be seen that this 
condition remains unchanged when the axion mass is different from zero. 

hs, S we plot the same quantity as in fig. 7, using the same parameters, but 
now keephlg - ¢ -  _-~ = 0 and w~ = 0,5 mm fixed, vaD, ing w~. For massless a.xions 
one can learn from eq, (3,14) that the optimal choice is ~% = ~;, but that the 
coupihlg is not reD, sensitive to slight deviations. It can be seen in fig. 8 that the 
same l ~ h a v b r  persists when the axion is non-zero. 

T,~: effect of the axion mass can be seen in fig. ; ,  where ]A~.~,~I is plotted 
versus the axion mass, keeping z ¢ - : ~ = 0 ,  ~% = w ~ = 0 . 5  ram. The difference 
between the quantity plotted here and the product of the one-dimensional form 
factors of both cavities, eq. (2.5), is very small. Over the entire range of fig. 9 the 
absolute value of the difference is smaller than 10 -5. For high axion masses the 

amplitude decreases and the experiment is less sensitive. One has to note however 
that the location of the first zero in the amplitude, which occurs around m~ 

47rg2/L is independent of the mirrors. Therefore a resonating cavity of length L 
in which the photons make N b bounces before leaving the cavity is not exactly the 
same as a magnetic field of length N bL without mirrors. The first experiment has 
a better sensitivity to massive axions. 

All of the above examples have been calculated assuming that the end of the 
emitting cavity coincided with the beginning of the receiving cavity. In practice 
there has to be a small gap between the two cavities to accommodate the absorber. 
We have studied the effect of introducing a gap numerically. When one introduces 

such a gap by rigidly shifting cavities without changing mirrors, one increases 
z ~ -  z~ as well. This turns out to be by far the main effect. It can of course be 
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compensated for by changing the mirrors such that z ~ -  zr becomes zero again, 
but when the gap becomes larger the beam diameter at the mirrors increases as 
well. 

5. Conclusions 

In the preceding sections we have shown that one can use an optical resonator 
to improve the coupling between the electromagnetic field an the ~ o n  field when 
"shining light through walls". The sensitivity in the axion photon coupling constant 
g increases roughly by a factor 1 / ~ / ] - r  = ,/ff-/rr where r is the refiectivity of 
the mirrors used and F the finesse of the resonator. The optical resonances and 
the resonances for axion-photon (rekzonversion coincide. One can therefore 

tune the cavities using optical means. 
Diffraction losses are neglectable when one chooses the modes of the two 

cavities such that their beamwaists coincide and have the same diameter. Put 
differently, a single gaussian mode has to fill both cavities. Both requirements are 
not very. critical. When ~t~/~t~ = 1.5 the loss in accuracy in g is roughly t0%. The 
requirements on z ¢ - z  r are also quite loose. This quantity has to be small 
compared to the sum of the Rayleigh ranges of the two cavities. ~ i s  is however a 
number comparable to the total length of the experiment. The coupling amplitude 
does not depend on ½(z¢ + zr). This freedom can be exploited to minimize the s~e 

of the mirrors. 
It is also very. important to realize that, when z ¢ - z ~  = 0 and ~,~ = %. the 

coui:|ing between the different modes of the two cavities is diagonal and indepen- 
dent of the mode number for not too large mode numbers. This means that the 
conversion-reconversion process is equally efficient in all modes and that the 
different modes do not influence each other. It is therefore not necessary that 

the light source excites the 0, 0 mode only. 
The use of resonating cavities is compatible with the interference technique to 

reduce the influence of noise in the detector. Its entire effect is the enhancement 
of the axion-photon coupling. We also checked that the use of squeezed light to 

reduce shot noise is still possible. 
There are however several practical limitations. The signal depends on the 

power of the light source, the quality of the mirrors, the length of the magnetic 
field and the field strength. The strength of the magnetic field can be chosen 
independently, but the other three factors are intercorrelated. For a very long 
cavity at least two things happen. First of all the alignment becomes critical, and 
this will influence the quality of the cavity. Secondly the width of the resonances of 
the cavity in frequency space decreases. There is a trade-off between power and 
frequency stability in any light source. This puts a limit on the length of the 
resonating cavities. The laser output used also limits the quality of the mirrors in 
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the emitting cavity. Very good mirrors are sensitive devices and cannot stand large 

power fluxes. 
To conclude, the use of resonating cavities in the "shining light through walls" 

experiment can enhance the sensitivity. In a conservative experiment where the 
length of the magnetic field is O(10 m), and the laser power O(1 W), one might 
gain one order of magnitude in the sensitivity to the axion-photon coupling 
constant and reach the limit g _< 2 × 10 -'~ G e V - ' .  This has to be compared with 
the ~ s t  terrestrial upper limit g _< 2.5 x 10 -~' GeV - '  and the upper limit from 
SN1987A g ~. 3 × 10 -~ '  GeV -~. Experiments using stronger lasers or longer 
magnetic fields may gain a smaller factor, but there the idea can still be used to 
optimize the sensitMty. 

We are grateful to W. Buchmiiller for making us reach to the stars, and to 
S. Becket, R3.M. ~ n n i e ,  F. Mitschke, for keeping our feet on the ground. 

Appendix A 

G A U l | A N  MODES OF AN OPTICAL RESONATOR 

in this appendix we gather all technical details concerning the gaussian modes of 
an optical resonator in order to fix normalizations and other conventions. Most of 
the material here is quite standard [28], but the derivation of higher-order modes 
using creating and annihilation operators seems to be new. 

Consider the wave equation for one component of the electromagnetic field 
(with c = 1) 

0-'u = 0 .  (A.1)  

Writing u = e aa '- :~ X(x, y, z) and neglecting O~X we obtain 

where A ± 

(A± - 2 i O 0 : ) X  = 0, (A.2)  

= d~ + 0.~.. Making the ansatz 

X = exp a(z) 
x 2 + y  2 

b(z) (A.3)  

and going through some straightforward algebra, one obtains the following solution 

J(00 = w(z) exp idp(z)-(x 2 +y2)  
1 i.Q 

t- 
wZ(z) 2 R ( z )  
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where 

w - ' ( z )  = ,,,~, + 
4(  z - zo)" 

.O-w/; 
d~(z )  = a r c t a n  

2(z-z,~) ) 
,qw,~ 

| Z - -  Z o 

= )-" I " . .4"  ( a . 5 )  
R ( z )  ( z - z .  + ~ - , v ~ }  

This solution describes a beam of light propagating in the z-direction which has 
diameter w( z ) at position z. The minimal diameter is reached when z = z~:} and is 
equal to w.. The length over which the beam is of nearly constant diameter is 

given by the so-called Ray|eigh range z R = ~f~w//. The function R ( z  ) gives the 
radius of curvature of the wave fronts at the z-a_~s as a function of z. ~ i s  can be 
s e e n  easi ly  by no t ing  

e-ia~fR' ~.~: +,-" = e-mR-..Q/zR~o~'-+,:}. (A.6) 

In most practical applications the boundary conditions to eq. (A.2) are d e t e ~ i n e d  
by the two mirrors of an optical resonator at locations z~, z,_ with radii of 
curvature R~ and Rz. One the~l has to solve 

R(z~) = R ,  (A.7) 

for w 0 and zo. A solution does not always exist, in this case the pair of mirrors 

forms an unstable resonator. 
The single solution in eq. (A.4) is obviously not a complete set. We now tO' to 

find other solutions of eq. (A.2) which also have the property that the radii of 
curvature of their surfaces of constant phase at the positions z i are given by R i- 

Consider the linear operator 

Since 

L = A ± - 2 i O & .  (A.8) 

[a ,Ll = [O,,L] = 0 ,  (A.9) 

we can find an infinite number of solutions of the equation L X = 0: 

~"~"- integer) .  (A.10) X = '-'x'-'y X00  ( n ,  m 
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These solutions however do not satisfy the boundary conditions at z = z i, because 

O~2.Xoo = H n x w ( z )  z + 2 R ( z )  
Xoo- (A.  11 ) 

The complex number in the argument of the Hermite polynomials means that 
R(z)  cannot be interpreted as the radius of curvature of the wave fronts anymore. 

The two functions a and b for the solution X~ are given by 

a ( z )  = - In w( z ) + i&( z ) ,  
t_  

b(z)  =w~ + - ~ ( z - z o ) .  (A.12)  

Then we define two operators 

A,.= 5e -0,. b( z) 
1 

! e - a ( z }  = _~ x~ .} ( -o , )  
X~H~ 

A]. ' : e 
2x] 1 

' - ' " " } ~ ( + a , ) x ~ . ~ ,  b*(z)  = ~e x ~  
(A.13)  

and analogously two operators A :., A:.. It is now a simple exercise to check 

[ A , , A ] . ]  = 1, A~xoo=O, [A].,L] =[Ax,  L]=O. (A.14)  

Furthermore the operators in the x-direction commute with those in the y-direc- 
tion. The last two equations of eq. (A.14) tell us that we can construct an infinite 

number of solutions to LX = 0 by applying the creation operators 

X,,m = ~ (AI-)"(A~. Xoo (A.15) 

To see that these modes satisfy the boundary conditions one has to evaluate them 
explicitly 

2-("  +"'} 
X"m= ~ !  e-a'(zX"+m} 

, )" 
)(oo 

) It! 
x- O, Xo*,, X,,o 

2-(" +m) 

¢~!m! 
e-a*(zXn + m )  

1 
x~'0 a~"a;r' (x~',,x00) 

n + m 

( )"+m2 
- -  2 

fn !m!  
l-lt! 

w(z) w(z) 

x ~ exp 
w(z) 

i ( n + m +  1 ) ¢ ( z ) - ( x Z + y  2) 
1 

w ( z )  ~ 

go )] 
+ 2 R ( z )  " 

(A.16) 
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From this explicit form of X . m  it can be seen that the dependence of the 
complex phase on x and y in the neighbourhood of the z-axis does not depend on 
the mode number. This means the same boundary conditions are fullfilled by all 
X,,m" Furthermore, due to the completeness properties of the Hermite polynomials, 
this set of modes is a complete one. The normalization is given by 

"gI" 

f * ~-Sn,,.8,,,,,,. (A.I7)  d x d y l',,',,~'l'n,,~ = • 

We also need the Fourier transform of these gaussian modes. They are defined by 

)(n, , , (q | ,  q2,  Z ) --- f d x  d y e  'q,x ÷~q-'-~ X,,,,~( x, y , z )  (A. t8)  

The lowest mode has Fourier transform 

X ~  ---- TW o exp _Zl w 2+ 2(zi.O-z.) (q~+q ," (A.19) 

whereas the higher modes lead to 

i t1 "~ D~ 1 

ar rt i  
½ q l b * ( z )  ~ - ~qzb*(z) ,f~j. (A.20) 

Oq| Oq2 " 

Noting that 

0 I 0 
½ q , b * ( z )  = - - , f ~ o ,  (A.21) 

3ql , ~  3ql 

one can proceed in analogy to eq. (A.16) and find 

XP/tn 

n + m  

( - i ) " + m 2  2 

qrn ! m  ! 

[ ( ,A22, ×exp  - x  w E+ ig] 2 - 

Note that the z-dependence of the Fourier transformed modes is much simpler 
than that of the real space modes. The Fourier transformed modes also form a 

complete set with normalization 

f - ,  - 3 d q  l d q z  X,,',,,'X,,m = 2 ~r 6,,,,.6m,,,.. (A.23) 
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