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Positron recycling in high energy linear colliders
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A positron recycling scheme is presented which is capable of recovering at least 90% of the disrupted positron beam for a
2X250 GeV linear collider . The beam is separated from the oncoming electron beam and radiation damped in a several kilometers
long wiggler section. The beam is then ready to be reinjected into the positron damping ring . Energy spread due to beamstrahlung
and beam disruption are considered on the basis of existing numerical as well as analytical studies. Chromatic effects in the
separation and matching section are compensated by sextupole magnets. Secondary effects of the wigglers, as for instance
transverse emittance growth due to quantum fluctuations and nonlinear field components, are estimated analytically .

1. Introduction

It is a common feature of all high energy electron-
positron linear colliders currently under investigation
to require a high positron production rate . As seen
from table 1, all colliders need an average positron
current of the order of 10" s - ' . This is to be com-
pared with 7.2 X 10'2 s - ' representing the design limit

of the present SLC positron source [1]. It is not at all
obvious how those high positron currents can be gener-
ated . One of the main problems, namely the thermal
load within the conversion target, is considerably re-
duced in the scheme proposed by Balakin and
Mikhailichenko using circularly polarized coherent syn-
chrotron radiation from a 300 m long helical undulator

Table 1
Parameters of various linear collider studies

Quantity CLC NLC

0168-9002/91/$03.50 © 1991 - Elsevier Science Publishers B.V . All rights reserved

NUCLEAR
INSTRUMENTS
&METHODS
IN PHYSICS
RESEARCH

Section A

[2] . This scheme, with the additional advantage of
producing polarized positrons, is very attractive, but
has not been tested so far, because for the undulator
radiation photons to exceed the threshold of pair pro-
duction, the driving electron beam requires more than
100 GeV.

In view of these uncertainties it might be useful to
think of a recycling scheme for positrons. The idea

presented in this article may be outlined as follows.

The positrons are separated from the oncoming elec-
tron beam after collision, decelerated in a long wiggler
section and reinjected into the positron damping ring .
This is schematically shown in fig. 1 together with
additional components which are briefly explained in
table 2. The main component of the recovery system is

TLC JILC VLEPP DESY/THD

2x500 2 x200 2x 1000 2x250
8 10 100 7
2200 2000 100 8600
1.4 0.64 1 .6 2.4
2.5/0 .025 3/0.03 6/0.06 5/0.05
190/1 290/2.2 1000/10 173/6
0.033/6.3 0.1/13.4 0.2/20 0.55115 .4
3.43 0.49 0.60 0.154
19 7.1 20 6

±25 ±15 ±27 ±11
1.3 1 .1 3.2 1
0.18/0.12 0.37/0.13 0.22/0.053 0.36/0.11
26 60 700 200

Energy [GeV] 2X 1000 2 x 250
Particles/bunch [ x 1091 5 16
Average rep. rate [Hz1 1690 3600
Power/beam [MW] 1 .35 2.3
Inv. emittances x /y [ x10 -s m] 1 .510 .5 6/0.06
Rms beam size at IP x/y [nm] 60./12 . 560/3.1
Disruption parameter x/y 0.67/3.3 0.04/7.4
Critical radiation parameter To 1.48 0.43
Av . fract. energy loss [%] 20 6
Fractional energy width
of disrupted beam
(contains 90%) [%] ±30 ±13

Av . number of photons 3 1
Max. disruption angle x/y [mrad] 0.18/0.19 0.25/01 .4
Rms bunch length [Win] 200 70
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separation

the wiggler section of several kilometers length . In this
wiggler section, the positrons lose their energy by syn-
chrotron radiation without adiabatic antidamping, i .e .
the transverse emittances will remain nearly constant.
In addition, a very effective damping of the fractional
energy width o,/E takes place, which will be very big
after collision (of the order of 10%), but small at the
end of the wiggler section (less than 1%). Since a very
big optical mismatch is tolerable after collision, an
energy acceptance of more than ± 10% is feasible .

For the DESY/THD linear collider study [3], one
expects about 90% recovery efficiency, thus reducing
the required positron production rate by a factor of 10 .
As an additional feature, the helical undulator for pair
production might be integrated into the wiggler section
as indicated in the-1ketch of fig . 1 . In the second
section of this article, the positron beam properties
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out to be the most elegant way to replace the lost positrons.

wiggler L rnac

Fig . 1 . Sketch of the positron recycling scheme . The helical undulator insertion is not essential for positron recycling but might turn

after collision are discussed . The third section is de-
voted to the radiation damping in the wiggler section .

2. Positron separation

2.1 . Disruption

It is well known that the disrupted beam has to pass
the final focus quadrupole magnets of the oncoming
beam in order to avoid mechanical damage as well as
intolerable high background in the detector . It is very
likely that the solution of this problem will require a
finite crossing angle of say 1-2 mrad . However, the
technical solution sensitively depends on the beam
parameters at the interaction point. For the remainder
of this section, parameters of the DESY-THD collider

Table 2
Components of the positron recovery system, including a helical undulator for positron replenishment. Instead of the decelerating
linac, a synchrotron or a superconducting wiggler may be used alternatively

Distance [m] Energy [GeV] Device Purpose
0-3 250 low 0 insert interaction
3-150 250 bending + separation +

quadrupole magnets dispersion match
150-1400 250-100 wiggler energy damping

+ deceleration
1400-1700 100 helical undulator polarized synchrotron

radiation fore' production
1700-8600 100-7 wiggler energy damping

+ deceleration
8600-8800 7-3.15 linac deceleration
8800-entrance of
damping ring 3.15 FODO cells beam transport

3.15 storage ring emittance damping



study are assumed whenever explicit numbers are con-
sidered .

In spite of the intense beam-beam forces, the emit-
tance in transverse phase space of positrons is still
quite small after collision. The change in emittance is
dominated by the disruption angles while the beam
diameter remains constant or even decreases due to
the pinch effect . The maximum disruption angle Ô is
estimated by the fit of numerical simulation data [4,5] :

for flat beams, with kx = 0.75 and ky = 1.25.
In these equations, Qz and vy are the horizontal and
vertical rms beam sizes at the interaction point (IN
respectively, a, is the rms bunch length, re = 2.82 x
10-15 m is the classical electron radius, N is the
number of particles per bunch in the oncoming beam,
y is the relativistic factor, and DA and Dy are the
parameters of horizontal and vertical disruption, re-
spectively . They are defined by [6] :

2r e Nati

Ya, .v( 0-x + uJ
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The resulting maximum disruption angles are generally
well below 1 mrad (see table 1), representing an in-
crease of angles within the bunch by some factor of ten
due to the beam-beam interaction #~ .

With these numbers in mind one can try to find a
final focus quadrupole magnet design that allows the
disrupted beam to pass . Fig. 2 shows the cross section
of one quarter of the DESY/THD linear collider final
focus quadrupole . It is a "conventional" iron magnet
excited by a single copper conductor [7]. Using a pole
tip radius of 0.85 mm it has been shown that the
required field gradient of 1300 T/m is attained with
tolerable higher order multipole components inside a
0.5 mm aperture radius [8] . If a total crossing angle of
2 X 0.8 mrad = 1 .6 mrad is assumed, the disrupted
beam (as well as the beamstrahlung) clears both the
final focus lenses while travelling in the area between

#~ It should be noted that eqs. (1) and (2) have been derived
for head-on collision geometry while some proposals fore-
see a nonzero crossing angle. With crossing angle, the
beam-beam forces cancel out to a considerable extent
when integrated over the total interaction (for D< 1),
while for D >> 1 the effect of the crossing angle should be
small. I therefore adopt eqs. (1) and (2) as an upper limit
for crossing angle geometries .
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Fig . 2 . Cross section of onu quarter of the final focus
quadrupole of the DESY/THD linear collider study : (a) and
(b) are the envelopes of the disrupted beam at the entrance of
the first and at the exit of the second final focus lens,

respectively . Dimensions are given in mm .

the pure quadrupole field and the copper conductor.
In this "window" area the magnetic field of the first
(vertically focusing) quadrupole is horizontally focusing
as well as horizontally deflecting (with respect to the
oncoming beam on the quadrupole axis). This is exactly
what one needs for recovery and separation of the
disrupted beam . The field strength, however, is com-
paratively small so that the main part of the job must
be done by additional magnets further downstream
which act on the disrupted beam alone. Also, the
higher order multipole components have not been
taken into account yet. They could easily be made
tolerable, however, since
1) the total field integral is small in this area anyway ;
2) there is much freedom in designing the shape of the
iron pole face in that area .
Fig. 2 contains the envelopes of the disrupted beam at
the entrance and at the exit of the final focus doublet.
For tracking the beam envelopes, a simple By - 1/x
model has been used for the window area magnetic
field, with By,x = 1 T on the pole tips of the first lens
and B,,ax = 0.7 T on the pole tips of the second one.

Fig. 3 shows the trajectories and the envelopes of

Ô=0.9-
Do- ( 1 rD

+ 006+
~

(1),
o- 1 .2 + SOD; 3 .38

for round beams, i .e . o� = Qti = o-, Dx = D, = D;

2r,N
51_1/6

=
(2)
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Fig. 3 . Envelopes of the disrupted positron beam and the
oncoming beam within the final focus doublet and the first
part of the septum magnet containing all positrons with en-
ergy > 0.9E� . The dotted area marks the envelope of all
positrons which have lost 50% of their energy during collision .

the disrupted beam and of the oncoming beam in the
horizontal plane.

2.2 . Beamstralilung

The main complication with recovery of positrons,
however, is not disruption but the large energy spread
due to the beamstrahlung. It is characterized by the
critical radiation parameter r:

r -

	

uc/E _

	

~Y ZIp,

	

(4)
where E is the particle energy and u c is the critical
beamstrahlung energy due to the characteristic bend-
ing radius p of the beam-beam force:

3 hcy 3
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2r,N
uc
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y-,(ox+o-v)
,

h is Planck's constant, A,= h/moc is the Compton
wavelength of the electron, and c is the velocity of
light.

For the "intermediate" regime r 5 10 the energy
spectrum after collision has been calculated by Yokoya
and Chen [9]. It can be expressed approximately by

(

E

)
= e-NY[S(

E _ 1)
Eo Eo
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h(y' 13N(Y)) ,1 -E/E,
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V /
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1 + 0.53x-5

To
j~(y) =

T
N� +

	

1 - 'r ~ N, .ro
Eo is the initial beam energy, and for the average
photon number per particle in classical approximation
I have adopted [10]

2erreN
N� = 0.9623

	

,
ffX + o-,

2.3 . Optics match/ mismatch

with a = re/Ac = 1/137. The spectra obtained by these
semi-empirical formulae fit the numerical simulation
results well .

Fig. 4a shows the positron energy spectrum at the
end of the entire collision if DESY/THD parameters
are used . The spectrum (full line) is normalized as

f41 (E/Eo) d(E/Eo ) = 1. The broken line is the inte-
grated probability of fractional energy loss ;

ij(ElEo)
_
-
f .
F
I
EoO d(ElEn),

	

(8)

i.e . it represents all particles with energy

	

<E. It is
seen that 9% of the particles lose more than 20% of
the initial energy . Fig. 4b shows il in linear scale . It is
interesting to note that this energy width is determined
by 1/pZ (like ordinary synchrotron radiation power),
i .e . by N Z , see eq . (5). This is illustrated by the broken
line in fig . 4b where the number of particles N per
bunch was reduced by a factor of 3. For comparison,
fig . 5 shows -q for CLIC, NLC, TLC and JILC parame-
ters, respectively .

As seen from fig . 4a, the probability of losing more
than 50% of the initial energy to beamstrahlung is of
the order of 10- ;. Since this part of the disrupted
beam still contains some 1 kW of beam power, it has to
clear the final focus lenses as well . The respective
envelope is included in fig . 3 to show that this is indeed
the case .

One might argue at first sight that these particles
might also suffer twice the maximum disruption angles .
For the latter to happen, however, they would have to
lose more than 50% of their energy within the first half
of the interaction length to suffer increased disruption
in the second half. It can already be estimated form fig .
4a that this is extremely improbable . A more precise
treatment [9] shows that the probability is in fact of the
order of 10 -v for DESY/THD parameters, corre-
sponding to 80% energy loss .

After passing the final focus lens doublet, the dis-
rupted beam will further be separated from the oncom-
ing beam by a septum magnet, as indicated in fig . 3.



With the magnetic field of B = 1 .5 T it generates a
deflection of 11 mrad within 6 m length plus a gradient
of 49 T/m for horizontal focusing . It is pulsed with 50
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Hz to shield the oncoming electron beam from stray
field by eddy currents in a 5 mm thick septum bar. The
stability requirement is of the order of 10 - ; only. The
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Fig. 4. (a) Energy spectrum 0 after collision (full line) as a function of fractional energy E/Eo . The dashed line represents the
probability rt of the fractional energy to be smaller than E/EO. DESY/THD linear collider parameters have been adopted (see
table 1) . An effective beam size of Q,'«=236 nm has been used to allow for a crossing angle of ±0.8 mrad . It is seen that 0.1% of
the particles lose more than 50% of their initial energy during collision . (b) Probability ,t in linear scale for the same parameters

like in (a) (dashed line) and for 3 times less particles per bunch (dotted line).
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Fig . 5 . Probability -q of energy loss by beamstrahlung (see eq . (8)) for CLIC, NLC, TLC and JILC parameters, respectively (see
table 1).

main purpose of the subsequent optical matching sec-

	

2) to suppress the dispersion generated by the bending
tion is :

	

magnets;
1) to match the recovered positron beam to the peri-

	

3) to compensate the chromatic errors of the recovery
odic solution of the long wiggler magnet section ;

	

beamline by sextupole magnets ;
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Fig . 6 . Linear optics parameters in the first section of the positron recycling beamline for 250 GeV positrons . Labels "S" indicate
sextupole positions. The long wiggler section is continued as a periodic FODO lattice .



4) to realign the recovery beamline in parallel with the
linac structure of the oncoming beam . This is done
by the bending magnet BSE2 at the end of the
matching section, see fig . 6. The distance to the
linac is from then on about 1 .4 m.

As mentioned above, 9% of the positrons lose more
than 20% of the initial energy into beamstrahlung (see
fig. 4b). The recovery beamline therefore needs some
± 10% energy acceptance to achieve a recovery effi-
ciency of 90%. This would be impossible with the
recovery optics perfectly matched to the disrupted
beam . For the latter, one would have to start the
beamline at the collision point with beta function val-
ues g,*., given by

Nx,Y - 'x,vlôx,Y » (9)

They are of the order of 10 -4 m and would necessarily
lead to beta values of the order of 105 m in the first
beamline lenses . This gives huge local chromaticities
which, in turn, can be compensated only within a
narrow energy bandwidth.
A perfect optical match, however, is not at all

necessary. The limiting factor of tolerable mismatch is
rather the maximum tolerable emittance ¬ for injection
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.POSITRON RECYCLING BEAMLINE . STARTING AT IP . . . . . .

ENERGY DEPENDENCE OF OPTICS AT POINT S = END

TUNES : OX= 1 .283 OZ= 1 .165

into the positron damping ring . The damping ring is
assumed here to operate at Ep = 3.15 GeV with [11]

êX = 4X 10-'Tr m (aperture limit),

Ê> = 2.4 X 10 -'lr m (rms beam dimension) .

	

(10)

(The only reason for ¬, being so small is that the beam
has to attain e,, = 6.5 X 10-12 rr m within 5 .2 damping
times in the DESY/THD design study.) It is essential
now, that the long decelerating wiggler section does
not increase transverse emittances (as an active linac
section would to due to adiabatic antidamping). This is
treated in more detail in the next section. We could
therefore use the values of eq . (10) for mismatch evalu-
ation if it were not for two minor complications:
1) as the efficiency of positron deceleration decreases

with y2 in the wiggler section, the very last portion
of positron deceleration could possibly be done by
an active linac (alternatives will be discussed in
section 3) . The exact energy EL of takeover is the
result of cost minimization . We assume EL = 7GeV.
This reduces the tolerance emittances at the en-
trance of the wiggler section by a factor of EL/ED
= 2.2 ;

2) despite a broad band chromatic correction, some
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Fig. 7 . Energy dependence of linear optics at the end of the matching section .

31



32

off-energy

beta beat will remain at the end of the

matching

section

.

In the present design (which is

not

very refined yet) it amounts to factors of 6 and

2.5

in the horizontal and vertical plane, respectively

(see

fig

.

7)

.
With

these numbers we can estimate the maximum

tolerable

emittance values for mismatch at the collision

point :
1

1

ix

=-

.6-4X10-6,rrm=3X10-'-rrm,
2 .2

iY

=----2

.4X

107ar ni =4

.4X

10-Har m

.

	

(11)2 .2

2

.5
The

maximum mismatched beta value is given by

ß

= i/O2

. (12)
Since

ëx is derived from the storage ring acceptance

(i .e.

maximum amplitude), it must be related to the

maximum

disruption angle Ox (see eq

.

(2) and table 1)

ßx

= exlOx = 2

.3

m

.
ÊY�

on the other hand, corresponds to rms beam di-

mensions .

Therefore it must be related to the rms

disruption

angle 0", which is smaller than ÔY by

more

than a factor of 3 [5,12]

:

Ó

2

RY

= eY/(OYm5~2 > EY/ ( 3Y )	

=

32 m

.

6

= 6 TESLR
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(13)

(14)

The

optics shown in fig

.

6 uses ßx = 0

.3

and ßY = 2 m,

i .e .

there is still a large safety factor

.

For example, even

rms

vertical disruption angles 4 times larger than as-

sumed

for eq

.

(14) would be tolerable

.

In other words,

90%

of the disrupted positron beam will end up at the

entrance

of the damping ring with emittances consider-

ably

smaller than required by eq

.

(10)

.

The

sextupole magnets are arranged in a way which

allows

both optimum chromatic correction within an

energy

range of at least ± 10% and minimum nonlin-

ear

phase space distortion [13]

.

Fig

.

7 shows that the

result

is quite satisfactory

.

Chromatic errors of the long

wiggler

section are negligible since the energy width of

the

beam is damped very rapidly

.

The nonlinear phase

space

distortion on the beam surface is below 20%, i

.e .
immaterial .

3 .

Radiation damping

3.1 .

Radiative deceleration

After

the optical matching section the beam enters

the

main component of the recovery system, a wiggler

magnet

section several kilometers in length

.

In this

wiggler

section the positrons lose their energy by syn-

chrotron

radiation

.

The radiation power is given by [14]

qaP

=	

B2Y2,r

6areomoc

q

is the elementary charge, mo is the electron rest

mass,

and e, is the dielectric constant of free space

.
Mks

units are used throughout this article

.
If

s is taken as the longitudinal coordinate, the

change

of particle energy due to synchrotron radiation

is

described by

dy(s)

P

r

= _OB2Y2(s),

ds

m()c3

with
a

=

	

q

	

=

6

.466

X 10-'° m-' T-2

.6rreomóca

(15)

(16)

Fig.

8

.

Evolution of (a) mean particle energy and (b) rms fractional energy width due to radiative deceleration, radiation damping,

and

quantum fluctuations in a 6 T wiggler field

.

The final energy is 3

.15

GeV

.

The final energy width w / y = 0

.4%

is nearly

independent

of the initial value of o,ro /yo, i

.e .

it is dominated by quantum fluctuations

.



The solution is (with yo =y(s =0)):

E(s) Yo

	

Yo
Y(S) -

1 + OYOƒ
SB2 dg

	

1 +BYOBmss
0

B,�,s(s) is the rms value of the magnetic field

1 S _

Brms

	

S f B2 ds .

	

(18)

250

û

As will be shown later on, the period length A may
be quite large (even larger than 1 m). To a good
approximation the wiggler magnetic field is therefore
assumed to be a piecewise constant dipole field. For
the sake of simplicity I use

B2(s)
1 fs+aB2 dg

	

(19)
A s

in the remainder of this paper. If B(s) is constant, this
means BZ = Bms .

Fig. 8a shows E(s) for superconducting wigglers
with B = 6 T. While the positrons reach E = 50 GeV
within a few hundred meters, the remaining 6.5 km are
required to arrive at the operation energy of the damp-
ing ring (3 .15 GeV) .
A somewhat more refined version is presented in

fig . 9a. As the very high radiation power at high parti-
cle energies might be in conflict with superconductor
technology, B = 1.8 T is assumed within the first 6000
m (e .g . permanent magnet wigglers). Positrons have
reached 35 GeV at the end of this section, and the
radiation power is only some 500 W/m in the begin-
ning of the subsequent superconducting stage. Also, in
order to shorten the expensive superconducting sec-
tion, it is terminated after 2500 m at E = 7 GeV. The
final deceleration will be performed by an active linac.

200

150

100

50

0

moc2

r - I
0 2000 4000

61=1 .8T (6000M) . 82=6T (2500M)
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6000 8000
5/M

(17)

10000

As an alternative to the linac, the positron damping
ring might be operated as a decelerating synchrotron
[151. This option offers the additional advantage that
adiabatic antidamping of emittances and of energy
width are avoided.

The selection of any of these different schemes is
mainly a matter of cost minimization .

3.2 . Energy damping and quantum fluctuations

Positron recycling is only possible if one finds some
mechanism which not only reduces the large spread 8E
after collision but also the fractional energy width
8E/E while the beam is decelerated . That is, the
energy spread must be damped more rapidly than the
mean energy.

Radiative energy damping sets in since higher en-
ergy particles radiate at more power than lower energy
ones, see eq . (15). Let y(s) be the mean particle energy
and consider a particle with slightly different energy
y + by . Eq . (16) yields (using 8y << y)

d

ds (y + 8y) = -oPBZ (y + by)2

d (by) =20B2Y by .

	

(20)
ds
The solution is (with dyo being the energy error as
s = 0 and using eq . (17)) :

8y(s) = 6y,(1 + Oy,,B2S) -2= 8yo(y(s)/Yo)2 . (21)

It follows that

8Y(S) = 6Yo Y(s)

	

(22)
Y(s) Yo Yo

-- - PB2Y2 - 20B2Y 8Y,

33

0 2000 4000 6000 8000 10000
5/M

81=1 .8 T 16000M), 82=6

	

T (2500M .E=250-7 GEV. OE/EIEMD) = 0.006

Fig. 9 . Two-stage scheme with 1.8 T for 6000 m and 6 T for 2500 m. Final energy is 7 GeV. (a) Mean particle energy ; (b) rms
fractional energy width.
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i .e . the fractional energy width decreases in proportion
to y(s) (as long as energy fluctuations are neglected)!
For statistical reasoning, however, the rate of change
of (ây)2 is more relevant . It follows from eq . (20) :

ás (8y)z =
28y
d(sy) = -41PB2Y(6y)z .

	

(23)

Next we have to treat quantum excitation . This will
occur as synchrotron radiation is a stochastic process of
photon emission . Consequently there is also a competi-
tive excitation of energy fluctuations . The growth rate
of the energy variance is given by refs . [16,17] (using
the abbreviation vY = ((Sy)2)).

Putting all together we get (from now on B means
JBI)

dQyIds = OFB3y 4 ,

	

(29)

with

3

	

55

	

qAc
T= -

	

= 4.5 x 10- '° T - ' .
2 24V-3 m()c

If we also take averages in eq. (23), we can calculate
the gross effect of energy damping and quantum fluc-
tuations :

d
ds o, =OFB3y 4 - 40BZyo-Y .

	

(30)

The solution of this linear differential equation is

QY
( s) = e - 40ƒB' y ds[01-ƒB3y4 e -4mlez r ds ds

+Qy (s = 0) I .

	

(31)

Ideally, one has to choose B(s) so that o-Y(s =L) is
minimized at the end of the wiggler section with the
additional constraint that Brms yields the required en-

J. Rossbach / Positron recycling in high energy linear colliders

ergy loss, see eq . (17) . From this point of view, the
magnetic field strength has to decrease with decreasing
energy (note that QY (X Y 2 , so the damping rate a B ZY5,
while excitation a B 3y4). In practice, however, other
considerations are more relevant . The attainable field
strength is limited to some 6 T, and even this will be
hard to use at high energies because it might be
difficult to extract many kilowatts of synchrotron radia-
tion per meter from a superconducting wiggler. For
B(s) = constant we get (using eq . (17))

JB 2 y ds = 0- ' In
Yo

	

(32)
Y

3.3. Transuerse emittances

Fig. 8b illustrates the behaviour of QY/y for differ-
ent initial energy spread values. They all converge to a
comfortably small value of 0.4% at the damping ring
energy (3 .15 GeV), i.e . the energy spread at the end of
the wiggler is dominated by quantum fluctuations . Fig.
9b shows the respective curves for the two stage scheme .
Since in this scheme the radiative deceleration is termi-
nated at 7 GeV, the final fractional energy spread will
be multiplied by 7/3 .15 during llinac deceleration . This
results in QY/y = 1 .2% which is still acceptable for the
damping ring .

Synchrotron radiation is emitted in the instanta-
neous forward direction of the individual particle only,
within a narrow cone of opening angle 1/y. Therefore
particles lose longitudinal and transverse momentum
equally. Consequently transverse emittances will re-
main constant in the wiggler section . However, this
simple picture does not take into account three issues
which might nevertheless cause emittance growth,
namely :

1) If dispersion is generated between the point of
quantum emission and the exit of the wiggler section,
the energy fluctuations would result in quantum excita-
tion of transverse emittance. According to Sands
[16,18], the emittance growth depends on the magni-
tude of the off-energy dispersion function, rl, and its

d
-o" `

( u2 )
= ./Y

ds Y ' (24)
0

m2c5

�Y is the mean rate of synchrotron radiation quanta,
and (u 2 ) is the mean square energy of quanta . It can
be expressed by [161

(U')
I<

= 27ue> (25)

and

°Y (s) =

Considering
nally get

-,(s) _

again
for its

Y(s)

(y(s)lYo)4(0TB3y ;s +Qy

the fractional
rms value

~FB 3yr' +
( n',

j .
energy width

(33)

we fi-

Y(s) Yo Yo
u c is the critical photon energy

uc = zA oqCy2 I B I . (26) Y(s) 1 1
FYo

2B (Y(s) +

'Q ~

-IV may be expressed by the mean power PY (eq. (15)) Yo Yo 'o
and the mean quantum energy (u): (34)

(27)

where [161

8
(u)

15r
uc . (28)



derivative, 71', at the position of photon emission . This
function is identically zero at the beginning of the
recovery beamline (i .e . at the IP), and it is matched to
zero at the entrance and at the exit of the wiggler
section (see fig . 6). In this case, the rate of emittance
growth may be estimated at

with

1
{772(S) + (6(S)°7,(S) +a(S)n(S)2)

.
P(s)

Using eqs. (15), (25)-(28) this becomes

dE
TOY

ZB 3,~V .	( 26)
ds

Insertion of eq . (17) yields

js B~(s _
E(S) ^'" ropy,2

	

3(s)

	

)
~ 1

	

2 ds +Eo .

	

(37)
.I0 (1 + Oyt,B2s)

There are two important contributions to lo(s) which I
will treat separately.

The first is due to the periodic dispersion which is
inevitably generated by the periodic wiggler field. Its
contribution to , ` is dominated by the term ßr1' 2 [19]
as long as the wiggler period length A is smaller than
some average ß in the wiggler (to be explicit I will use
ß = 100 m) . In a piecewise constant wiggler field the
maximum 77' will be T7' =A /(4p) and thus the mean
contribution to e is

('e)A =ß07' 2 )A

	

g(p) 2	~(»toc/2 (

AB ) z

Eq . (37) now reads
2

s
E(S) =rop

8
(
m,c)

	

fo AZBS ds + E � .
)

Since A and B are at least piecewise constant, the
emittance growth in each piece of length L is approxi-
mately given by

z
AE =E(L)-Ep=

48

	

rrl( C

ro q
YÁ2BSL

a

2.1 X 10- 's
- pA2BSL .

m3T 5

Since we assume plane horizontal wigglers, this growth
takes place in the horizontal plane only. If we compare
with ÊX form eq. (10), we find that the emittance
growth due to the intrinsically generated dispersion is
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(35)

(38)

(39)

(40)

negligible as long as Ac, « 4 X 10 -', ir m. For the
(worst) case of B = 6 T, L = 7000 m this requires

A2 « 0 .35 m2 ,
which is easy to fulfil .

The second contribution to V(s) which has to be
considered is due to orbit errors and quadrupole mis-
alignments . This can only be taken into account on a
statistical basis. As a rough estimate it suffices to
replace X(s) by some average value (X)d,çt (note that
strictly speaking X must be weighted more at high
energies). If we further assume I B(s) = const., we
may integrate eq . (37) obtaining

S
E(S) ='Upy2B3( V

',5t1+~YoB2s
+Ett .

For s >> (,Py,)B')-' this converges to

E_ c ryoB( I~K )dist +Eo .

As this effect may occur horizontally as well as verti-
cally, we now have to compare Em -Eo with ê, and ê�
from eq. (10), respectively . For this contribution to
remain negligible it is necessary that

(1~" )d,st .x « 0.002 m,

	

«0.0001 m.

	

(43)

These values correspond to spurious dispersion func-
tion amplitudes of

~d,st, .r « 0.4 m,

	

kist, v « 0,1 m,

which do not represent impracticable tolerance re-
quirements .

2) It has been stated before that the synchrotron
radiation quanta are emitted within a narrow cone of
opening angle 1/y. This means that there are also
some quanta which deflect the particle at the instant of
emission . The following crude estimation shows that
this effect is negligible :

Let all quanta have energy u c (in fact those with
lower energy are emitted into a somewhat larger cone,
but their contribution to angular diffusion would be
smaller nevertheless). The rms deflection angle o-,, of
the electron after the emission of one quantum is then

1
X photon momentum/electron momentum

Y

1 u,

y E

35

(41)

(42)

(44)

Note that this quantity is independent of y if B is
fixed.

Since quanta are emitted at a rate IV (eq. (27)), the
rms angle after a distance L will be

(45)
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This generates an emittance of

z

Ac(L) =ßow =13PY

	

2L~c 4 z = <PFPB-L .

	

(46)
u, cy moc y

This is for any reasonable B several orders of magni-
tude smaller than the tolerable emittances .

3) Even a perfect wiggler contains nonlinear field
contributions due to the alternation of the field direc-
tion [201 . This induces phase space filamentation and
eventually some growth of the effective emittance. The
nonlinear kick on the particle trajectory per wiggler

period A may be estimated at [211

1

	

21T
DYA(S) - 3A (P(S))

Ys

3A (_

	

moq
)Z( EYßY

)

3/2 1 Y(S)

B

	

~ 2 .

It depends on the vertical beam size and vanishes for a
perfectly aligned absolutely flat beam . The contribu-
tions of successive periods accumulate coherently be-
tween successive quadrupole lenses, i.e . within dis-
tances 1q of say 50 m, otherwise they accumulate more
or less incoherently (except for resonances which are
assumed to be avoidable) . The cumulated squared non-
linear kick per distance L is therefore

z(áy,)2

	

ds l
=

	

Zq (AYA(S) .lq A2

Using eqs. (47) and (17) the effective emittance growth
due to this nonlinear kick is finally estimated at (in the
limit L >> ((PyoBZ)-t)

:

áEY(L) =PY(Dy')2
= 1 ( 2Trq~ )4 lgBrL5

Eyßy,
45 moc A4

DE Y = 4 X 10- 'ÜTr m.
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(47)

(48)

(49)

E Y is the vertical emittance of the disrupted beam in
the wiggler section, i.e . including not only disruption
but also on-energy as well as off-energy mismatch .

From sections 2.1 and 2.2 I expect EY = 3 X 10- ' , rr m.

Using lq = 50 m, B=6 T, L = 7000 m, A=0.3
in and

,8Y = 100 m we get

These considerations show that the nonlinear field
components in the wigglers are tolerable but by no
means negligible . Although "worst case" parameters
have been used in the estimations, the situation might
nevertheless be even worse in reality because of the
fabrication tolerances of wigglers etc. More detailed
studies are required to deal with these questions.
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