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The statistics of scalar matter changes when it is coupled to a U(1) gauge field with Chern-Simons dy-
namics, because all particles carry a magnetic flux and therefore give rise to Aharonov-Bohm phases
when they move around each other. We argue that also the “dual” version of the Aharonov-Bohm
effect, the Aharonov-Casher effect, can give rise to Berry phases which transmute ordinary particles into
anyons. The Aharonov-Casher effect consists of an extra topological phase in the wave function of a
magnetic moment moving around an electric charge. Considering (2+ 1)-dimensional Dirac fermions at
low energies, both effects are present, and the fermions are turned into (interacting) anyons even though
there is no Chern-Simons term included in the action. We study in detail the gravitational analogue of
this mechanism. The post-Newtonian approximation is applied to the gravitational interaction of
(2+ 1)-dimensional particles with spin, and to stringlike matter distributions with internal angular
momentum in 3+ 1 dimensions. The action for gravity is taken to be the pure Einstein-Hilbert term. In
the adiabatic limit one finds A -v-type interactions where A is a long-range vortex field. These interac-
tions give rise to various kinds of Berry phases, in particular to the gravitational analogues of the
Aharonov-Bohm and the Aharonov-Casher phases. The former occurs when a mass moves around a
particle with spin, and the latter arises when a particle with spin moves in the Newtonian scalar poten-
tial of a second (spinless) particle. These Berry phases lead to a “self-anyonization” of particles with
nonzero spin. The topological term in their effective action has the same structure as the one which ob-
tains when spinless particles are considered, but with a gravitational Chern-Simons term included in the

15 AUGUST 1991

action for the gravitational field.

I. INTRODUCTION

One of the most intensively studied field-theory models
showing anyonic behavior consists of a commuting or an-
ticommuting matter field coupled to a U(1) Chern-Simons
gauge field [1,2]. These systems provide an interesting
laboratory for the investigation of fractional spin and
statistics which, in 2+ 1 dimensions, are possible due to
the fact that the rotation group SO(2) is Abelian and that
the first homotopy group of the many-particle
configuration space is a braid group. Moreover, anyons
of this type also made their appearance in the theory of
the fractional quantum Hall effect [3] and of high-T, su-
perconductivity [4]. To capture the essence of the
“anyonization” via Chern-Simons gauge fields it is not
really necessary to describe the matter sector by a (rela-
tivistic) field theory; for many considerations it is
sufficient to consider nonrelativistic point particles (of
mass m and charge e) whose dynamics is governed by the
action [1,2,5]

Szfdt %
p=1

Trxjtex, Alnx, (D)

—edy(t,x,(2)) [+Tcs (1.1)

with the Chern-Simons term
Des=4k [[dx €7 4,(x)3,4,(x) . (1.2)
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Since no Maxwell term is included in the gauge field ac-
tion its only effect is to change the statistics of the origi-
nally bosonic particles. Because of the Chern-Simons
term each particle of charge e also carries a magnetic flux
®=—e/k. We can visualize these (2+ 1)-dimensional
flux-carrying particles as (3+ 1)-dimensional flux tubes
(“solenoids”) cut by a plane perpendicular to the magnet-
ic field. When the world lines of two particles wind
around each other, due to the Aharonov-Bohm effect,
their wave function will pick up a phase factor
explie  A-dx)=explie®)=exp(—ie?/k). Since the ex-
change of the two particles corresponds to one-half of a
revolution of the particle around the other (followed by a
translation) the phase factor associated to it is exp(if)
with the “statistics angle” 6= —e?/2x. The origin of this
phase is most easily understood if one eliminates the
gauge field from (1.1) by means of its equation of motion.
One obtains the following effective Lagrangian:

2 (x, —x,)X(x,—X%,)
m e

L .= XZ_ )4 q9 )4 q

eff 2 2 7P 2K 2 |x —x |2

p p<gq P q

(1.3)

More generally, whenever in some two-particle system,
say, the interaction Lagrangian contains a piece which
has the form of the second term on the right-hand side
(RHS) of Eq. (1.3),

=£ xXx
T |x|* 7

0 (1.4)

where x =x,—Xx, is the relative separation of the two par-
ticles, an Aharonov-Bohm-type phase will appear if one
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particle is moved around the other. Equation (1.4) yields,
for a full circuit,

JarL,=2062> "Xd

=20, (1.5)

| 2

so that 6 is indeed the angle related to the exchange of
the two particles. It is the main purpose of the present
paper to describe various physical systems in which
“statistics-changing interactions” occur quite naturally,
i.e., without putting in a Chern-Simons term by hand.
The interaction Lagrangian of these systems will contain
not only terms linear in the velocity which are of the
form (1.4), but also additional terms of higher order in
the velocity. However, if we envisage an adiabatic ex-
change of the particles, the higher-order terms are sub-
dominant, and the only terms which are relevant should
be the linear ones: L, =A;x ‘+0(x 2). Irrespective of
the precise nature of the field A;(x), the linear terms
have the distinctive property that their contribution to
the action is independent of the rate at which the parti-
cles traverse their trajectories; it only depends on their
geometry: AS=¢dx~.>4(x). In this sense AS can be
considered a Berry phase [6]. It is nontrivial provided
A ; is a long-range vortex field. If A; coincides with the
conventional Chern-Simons gauge field A4; the anyoniza-
tion is due to the Aharonov-Bohm effect which occurs
whenever an electric charge moves around a magnetic
flux tube. However, as has been pointed out by Aharo-
nov and Casher [7], there also exists a dual version of this
effect, nowadays referred to as the Aharonov-Casher
effect [8,9], which is due to an extra phase in the wave
function of a magnetic moment encircling an electric line
charge.

We shall now argue that, in 2+ 1 dimensions, not only
the Aharonov-Bohm (AB) effect but also the Aharonov-
Casher (AC) effect can be used to transmute ordinary
particles into anyons. The AC effect occurs because, in
the rest frame of the magnetic moment pu, the electric
field of the line charge (along the z axis) gives rise to a
magnetic field B=EXv+O0(v?), so that the p-B interac-
tion leads to a term of the form L, =A -v+O0(v?) with
A=pXE. For p aligned parallel to the z axis, A is
indeed a ‘‘statistics-changing” vortex field. Therefore,
considering ordinary particles (fermions, say) with charge
e#0 and magnetic moment p70, conventional elec-
tromagnetism (without a Chern-Simons term) leads to a
low-energy interaction which contains a term of the
statistics form (1.4). This suggests that (2+1)-
dimensional Dirac fermions interacting by conventional
photon exchange should behave as anyons in the nonrela-
tivistic limit. Recently it has been shown more rigorously
[10] that this picture is essentially correct.

In this paper we will be mainly interested in the gravi-
tational analogue of the mechanism described above.
Gravitational anyons have been studied recently by Deser
[11] and by Deser and McCarthy [12]. These authors
study relativistic point particles interacting, in 2+1 di-
mensions, with a gravitational field whose action contains
both an Einstein-Hilbert and a Chern-Simons term
[13,14]:

1133

B y(1)]'72

N
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p=1
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-—Ffd3x\/—gR +Ts - (1.6)

Expressed in terms of the Christoffel symbol I'f, of the
metric g'uv, the Chern-Simons action reads

o= fd3x €T (3,00, + 20, T%) .

By (1.7

2%
The field equations are

G.uv+'u——lC#V:KZT#V(gpo’xE(T)) . (1.8)

Here T"" is the energy-momentum tensor of the particles,
G*" denotes the usual Einstein tensor, and

CH= D (RY,—1g"sR) (1.9)

\/ —
is the Cotton tensor. The anyonic properties of the mod-
el (1.6) become apparent when we look at the low-energy
effective interaction relevant to the adiabatic exchange
process which determines the statistics. Expanding in
powers of h,,=g,, —1,, around flat space the nonrela-
tivistic limit of the action for one of the particles reads

s,= [ar %x§,+mx;’,(t)h0i(xp(t))+ L;—hoo(xp(t))

(1.10)

As in the vectorial case the crucial term is the one linear
in the velocity. Here h; plays the role of the vector po-
tential 4;. Because the background field 4;(x,) generat-
ed by the other particles contains vortex-type singulari-
ties, the coupling X ihO[ gives rise to statistics-changing
topological phases. In fact, solving the field equation
(1.8) for T®=m8%(x),T%=T1=0, one finds the follow-
ing asymptotic (|x|— o) behavior of hg; [12,15]:

mx? €; x
© IXI2

It leads to the gravitational analogue of the Aharonov-
Bohm effect [16]: the Chern-Simons dynamics associates
a “gravimagnetic flux quantum” proportional to mi?/u
to each mass m, and when two particles move around
each other they pick up a topological phase proportional
to m2«?/u due to the x ', interaction.

In view of the “self-anyonization” of Dirac fermions
interacting electromagnetically one might ask whether
there exists a similar effect in gravity. In the following
sections of this paper we shall answer this question in the
affirmative.

ho~— T (1.11)

II. THE ELECTROMAGNETIC BERRY PHASES

In this section we study the electromagnetic interac-
tion of particles with a nonzero magnetic moment in
D =2+1 dimensions and of translational-invariant
configurations of (D =3+ 1)-dimensional charge strings
with a nonzero magnetic moment per unit length. We
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shall apply the same reasoning as later on in gravity. In
particular, following Deser [11] we frequently use a clas-
sical model for the magnetic moment. In its rest frame
the current density j§ =(py,j§) of a particle located at
x=x, is given by [17]

jo(x)=ed*(x—x,),
) . (2.1)
j()(x)=,ue'faj82(x—xp ), i=1,2.

We write D vectors as x“*=(x%x!) where i =1,2 for
D =2+1 (particles) and i=1,2,3 for D=3+1 (strings
oriented parallel to the x® axis). The point source (2.1)
gives rise to a magnetic moment
1fd* xXj=1[d*x x'e;j*=p. Now we assume that
the particle or the string moves with a velocity v, =%,
relative to the laboratory frame. (It is understood that
vp3=0 if D=3+1.) The resulting current distribution is
obtained by applying a Lorentz transformation to j{ of
(2.1). Since we are mainly interested in the adiabatic lim-
it, it is sufficient to keep only the terms linear in the ve-
locity. Hence one has, in the laboratory frame,
=potv,jo+O(KV2),
P~Po P Jo ( p) (22)
i=jotv,petO(v2),
field

so that the interaction with an external

A*=(¢, A), A;=0is given by
L, =—ed(x,)+ev,- A(x,)+uB(x,)+uE(x,)Xv,
(2.3)

with the electric field E=—V¢ and the magnetic field
B=VX A=¢"3; A4;. Assuming that the field 4* is gen-
erated by another particle, either of the four terms on the
RHS of Eq. (2.3) can give rise to a topological phase. The
corresponding terms in the two-particle interaction
are all of the general form (charge)X(magnetic
moment) X (velocity). To disentangle the various effects,
we distinguish particles (or strings) with e#0 but =0
and refer to them as “charges,” and particles with e =0
and u70 which we call “magnetic moments” for brevity.
Then we can perform the following four experiments.

(1) A magnetic moment moves adiabatically around a
charge which is at rest in the origin. The effect on the
wave function of the magnetic moment is considered.

(2) As in (1), but the effect on the wave function of the
charge at rest is considered.

(3) A charge moves adiabatically around a magnetic
moment which is at rest in the origin. The effect on the
wave function of the magnetic moment is considered.

(4) As in (3), but the effect on the wave function of the
charge is considered.

By “considering the effect on the wave function” we
have in mind the following gedanken experiment due to
Berry [6]. In the first experiment, (1), for instance, we as-
sume that (by means of some additional interaction) the
wave function of the magnetic moment is confined to a
small box centered around the position x=x,(¢) of the
particle. Then, invoking the general philosophy of Berry
phases, the contents of the box is considered the proper
“system” or the “rapid degrees of freedom,” whereas the

M. REUTER 4

field generated by the charge in the origin is considered a
set of external parameters or ‘“‘slow degrees of freedom.”
The Berry phase obtains as a response of the wave func-
tion inside the box to an adiabatic excursion in the space
of external parameters. In the case at hand this is tan-
tamount to a motion of the box around the second parti-
cle. Similarly, in all the gedanken experiments listed
above, one of the two particles, namely the one whose
wave function is considered, defines the “system” living
within the “box,” whereas the other serves as a source of
time-dependent external fields. The respective topologi-
cal phases are easily computed.

Experiment (1). This experiment coincides with the
standard AC setup where a neutron moves around a
charge. The relevant part of the Lagrangian (2.3) is
L} . =pEXv. The electric field due to the charge at the

origin is E(x)=(e /27)x/|x|? so that

ie. %
| _ ep X'€;%

I = 2.4
int 2 |X|2 ( )

Therefore, during one revolution, we accumulate the fol-
lowing Berry phase: 6,=@dt L}, =eu. This is the stan-
dard result for the AC phase shift [7,8].

Experiment (2). The relevant part of the Lagrangian
(2.3) is L2, =—e¢(0) which will be of the “statistics
form” if we take for ¢ the scalar potential due to the
motion of the magnetic moment. Equation (2.2) shows
that, in the laboratory frame, the current j, which gives
rise to the magnetic moment p also has a time component
P=V,"jo- Using (2.1) the corresponding potential reads

¢(x)=L (x—xp)va

T s (2.5)

Thus we have again for the phase 6,= ﬁdt L% =eu. As
we might have expected because of the symmetry of the
Jj,O7'j* interaction, 6, coincides with 6,.

Experiment (3). The interaction term is L}, =uB(0),
which is seen to be topological once we insert the mag-
netic field generated by the orbital motion of the charge.
The magnetic field due to a moving charge is to lowest
order in the velocity X,
Bx=-& X7 ) 2.6)

27 |x —x, |2

Hence the Berry phase is 6;= ﬁdt L}, =epu.

Experiment (4). This is the classical AB experiment.
The interaction is L, =ev," A(x,) where A is the vec-
tor potential generated by the magnetic moment at the

origin:

oxd
__ u &X

A =—5 T 2.7

The phase for one circuit is 6,= $dr L#, =epu, where in

the (3+1)-dimensional interpretation u coincides with
the flux through the solenoid.

Obviously all four phases coincide numerically. In all
the above experiments an effective interaction L, =A -v
with a vortex potential A is operative, where A does not
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necessarily coincide with the magnetic vector potential.

Next let us consider a set of interacting nonrelativistic
particles with charges e, and magnetic moments u,,
p=1,...,N. In addition to the Coulomb and Lorentz
forces acting between them, there will be a “‘statistics in-
teraction” of the A -v type which receives contributions
from all four effects discussed above. The relevant part
of the Lagrangian is obtained by starting from Eq. (2.3)
for one particular particle and inserting the expressions
for the fields generated by the other particles. In this way
we obtain, for a two-particle system,

Lanyon:LV+LS ’ (2.8)
where
Ly=——(eypiyvi —erpyvy) X — 2 (2.9)
14 2 C1H2V1T C2liV2 %, — ) .
contains the j,(07!j -type interactions and
L= ——Ltpiervi—ppe,v) X — 2 (2.10)
s 2 H1€2V1T K1V I, —x, | .

contains the j,(17'j, contributions. For equal masses
and magnetic moments we get
_eu (X, — %) X(v;—V,)

anyon

L

(2.11)
T |X1—le2

Comparing Eq. (2.11) to Eq. (1.4) we can read off the
statistics angle: O=-epu. It receives equal contributions
from L, and Lg. Numerically it coincides with the AC
and the AB phases which, however, receive contributions
only from Lg and L, respectively.

In deriving Eq. (2.11) we have shown that a system of
charged particles with a magnetic moment and interact-
ing via conventional Maxwell electromagnetism shows
anyonic behavior in the adiabatic limit. If we consider
the nonrelativistic (Pauli) limit of (24 1)-dimensional
Dirac fermions, the magnetic moment is given by
n=e/2m, so that we would expect the statistics angle to
be 8=e2/2m. Whether this is indeed true has been in-
vestigated in detail by Hansson et al. [10]. These au-
thors compute the (2+ 1)-dimensional Breit potential [18]
by Fourier transforming the low-energy limit of the one-
photon-exchange amplitude. From its spin-orbit part
they infer that 6=3e?/8m, and show that the difference
to the classical value is due to the Thomas factor [19,20].
In fact, upon inserting the equation of motion for the ac-
celeration a, the angular velocity of the Thomas preces-
sion, LvXa, is of the statistics form. In this paper we
shall not consider the effect of the Thomas precession any
further. For one thing, Hansson et al. [10] have shown
that the Thomas contribution to 6 (contrary to the
e2/2m piece) cannot be measured by the usual Berry
phase experiments. On the other hand we are mainly in-
terested in the gravitational case where there is no Tho-
mas term for a system of particles “falling” freely around
each other.
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III. GRAVITATIONAL INTERACTION
OF SPINNING STRINGS AND PARTICLES

In this section we search for anyonizing A -v interac-
tions among ‘“‘spinning strings,” i.e., straight, infinitely
long, thin matter, distributions with a nonzero angular
momentum per unit length. We work in 3+ 1 dimensions
and assume the interactions are given by standard general
relativity based on the Einstein-Hilbert action. We shall
not try to find exact solutions of Einstein’s equations
[15,21] but rather consider the lowest nontrivial order of
the post-Newtonian approximation. This approximation
scheme is particularly suitable for our purposes, because
it displays the pertinent physics in a very transparent way
and allows for an easy comparison with the electromag-
netic case. We use the formalism of Ref. [22] to which
we refer for further details.

The post-Newtonian approximation consists of a sys-
tematic expansion in the typical velocities U of the parti-
cles generating the gravitational field. The metric g, is
expanded around flat space according to
g00=__1+(2)g00+(4)g00+ S, gij=8ij+(2)gij+'”’
and g;o="g,,+ - - -, where the superscript denotes the
order with respect to ¥. Similarly one expands the

energy-momentum tensor: TO0=0T04 204 ...,
Tz]:(Z)T1]+4_ . T:oj(l)T:o+ - Writing (Z)goo
=—2¢, “Wggo=—2¢"—2¢, Pg;=—2¢5;, and

g, =&;, Einstein’s equations imply the following field
equations for the Newtonian potential ¢, the additional
scalar potential ¥, and the “vector potential” §;, respec-
tively [22,23]:

V2¢p=(47G)OT® | (3.1a)
V2= + (47G (D TO+ DTy | (3.1b)
Vi, =(167G )T 3.1c¢)

Here we imposed the harmonic coordinate condition
g""I'},,=0 which becomes

43,6+V-£=0 (3.2)

in the present case. Next we have to determine the cou-
pling of (spinning) particles and, later on, strings to exter-
nal ¢, ¢, and § fields. Eventually we are interested in to-
pological phases which occur when particles or strings
are moved around each other adiabatically and with a
large separation. (At small distances the situation will be
complicated due to the nontopological short-range in-
teractions.) Therefore, being only interested in the A4 -v-
type interactions where A is a long-range vortex field, it
is possible to expand both in the matter velocity U (post-
Newtonian approximation) and in the metric deviation
h,, =8y M, (Weak-field approximation).

The energy-momentum tensor of a classical spinning
point particle with internal angular momentum S and ve-
locity v, =x, is given by
(O)Tm(x)=m83(X“xp) ,
DTO(x)=1mvI8(x—x,)+18,€%3,8(x—x,) ,
ATU(x)=mvjvi8}(x—x, ) +Svye’3, 8% (x—x,) ,

(')TO"(X)=mvp"83(x——x1J )+%S,e“j6j83(x—xp) .

(3.3)
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It is easily seen that indeed [22] "J;
= fd3x eijkx/(”TkO(x)=Si. The relevant part of the in-
teraction Lagrangian is obtained by inserting (3.3) into

Lin= [d’x b, T*
= [d*x[(—2¢—2¢)T®+2¢, T+ (—2¢5,,)T"] .
(3.4)

At first sight it might be surprising that we keep the ¢
term of g, but not the ¢? term. The reason is that 1
encodes the gravitational analogue of the effect that the
motion of a magnetic moment gives rise to an electric
charge density in the laboratory frame. In Sec. II this
was derived by an explicit Lorentz transformation; in the
present formalism 1 is the correction to the scalar poten-
tial which is responsible for the effect that “moving angu-
lar momentum generates a scalar potential.” Thus, to the
required order, the interaction Lagrangian of a spinning
point particle becomes

Liy=m[—¢—9p—3v¢+v-£]—S-Q (3.5)

with

Q=—1VX{—3vX V¢ . (3.6)

Despite our classical derivation, it can be checked that
L., also follows from the low-energy limit of the Dirac
equation coupled to a weak gravitational field. Applying
the Foldy-Wouthuysen technique one obtains a Pauli
Hamiltonian for the large components of the Dirac spi-
nor with the same interaction terms [24]. This is in con-
trast with the electromagnetic case where the classical
reasoning missed the Thomas factor. We shall come
back to this point in a moment.

The angular velocity Q introduced in (3.6) has a well-
known meaning [22,25]. The spin vector S, =(S,,S) is
parallel transported according to

d dx”
— =TPr .
dTS“ wSe dr ’

i.e., in the comoving inertial system the spin does not pre-
cess. In the post-Newtonian approximation Eq. (3.7) be-
comes

(3.7

4

ar S=0XS, (3.8)
where Q is given by (3.6) and
=(1+¢)S—Lv(v'S). (3.9)

Equation (3.8) says that & precesses with angular velocity
|| around the direction of Q. This can be interpreted as
a rotation of the inertial systems carried along by the
gyroscope with respect to the ““distant stars.” This rota-
tion of the inertial frames is at the heart of the Thirring-
Lense effect, for instance. To lowest order the difference
between & and S is immaterial, so that Eq. (3.8) is tan-
tamount to a term S- in the Lagrangian. This is what
we found in Eq. (3.5). If the gyroscope is not freely fal-
ling but rather experiences an acceleration a, ) has to
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augmented by the Thomas term laXv [25]. It gives rise
to the factor  in the electromagnetic spin-orbit coupling,
since there exist nongravitational forces ma=eE. On the
other hand, for a set of particles falling freely around
each other under the influence of their mutual gravita-
tional attraction there is no additional Thomas term.
(This applies for instance to a gyroscope orbiting around
the Earth, but not to one which is fixed on the Earth’s
surface; see Ref. [25].)

So far we considered spinning point sources in 3+1 di-
mensions. The changes for cylindrically symmetric
configurations (translational invariant along the 3-axis)
are obvious: all fields are assumed independent of x 3 the
vectors X, v, and § are confined to the 1-2 plane, whereas
B and Q have 3-components only, which are scalars from
the two-dimensional point of view. Quantities such as m,
S, or L are taken per unit length. However, as far as the
source-source interaction is concerned, gravity distin-
guishes between strings in D=3+ 1 and point particles in
D=2+1. (This was not the case for their electromagnet-
ic interaction.) For later convenience we recall the
relevant formulas here. In any dimensionality we start
from the pure Einstein-Hilbert action in its linearized
form:

— 1 D v v v
§=15 - J dPx[th, Oh* — LhtiOh;+h08,0,h"

—h"d,8,hf +(167G)T*h,,] . (3.10)

Here h,,=g,,—71,, and T"" will be taken as the
energy-momentum tensor,

T,wzé(%’(uav)‘ﬁ_am%’v)df) > (3.11)

of Dirac fermions in flat space. We are going to derive
the spin-orbit term in the Breit-type potential arising
from the lowest-order fermion-fermion interaction. Fix-
ing the harmonic gauge, d,h""=13"h, the equation of
motion reads

Dh#'=—(167G)[T*'—(D —2)"'p*T?] .  (3.12)

In order to find the source-source interaction one has to
insert the solution 4,,(T7%) of Eq. (3.12) back into Eq.
(3.10):

s=1[dPx T"h,,(TF)

=—(47G) [dPx T"O7[T,,—(D—2)"'y,,T4] .
(3.13)

We are interested in the interaction of the two fermions
at large distances and small velocities. Therefore we first
separate the contributions of the respective particles ac-
cording to TH'=T#"+ T4" and keep only the cross terms
in (3.13). Then we expand T*" up to terms which are for-
mally of second order. (Terms o Sv are also considered
second order.) In this way one finds the interaction La-
grangian L+ Lg with
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L{,=(1617-G)fd2x(”T?"V_2(”Tg" , (3.14)
Li=—(87G) [ d’ | B2 O1Qy 20T

1 . _ _ "
+ {{PT{+(D =3)PTP WV 2OTP +OTPV2DTI+(D —=3)PTPY} |,  (3.15)

where V2 denotes the Green’s function of the two-
dimensional Laplacian.

The low-energy approximation of the Dirac energy-
momentum tensor can be obtained from Ref. [24]. Ex-
tending the standard Foldy-Wouthuysen techniques to
gravitational couplings, a Pauli equation for the large
component(s) of the Dirac spinor can be derived. It has
two components in D=3+1, but only one in D=2+1.
To evaluate the resulting 7", we assume that the Pauli
wave function is strongly ?eaked at x so that we can
make the replacements ¢—>82(x—xp), (172t 9;¢
—»mvjﬁz(x—xp ), etc. In D=3+1 we assume that the
Pauli wave function is an eigenstate of the spin operator
1o, with eigenvalue S =+1. In D=2+1 the spin depen-
dence of TH” enters via an explicit .S dependence of the y
matrices which reflects the two inequivalent representa-
tions of the Clifford algebra in three dimensions. (See
also Ref. [26].) Finally one arrives at an energy-
momentum tensor which is of the classical form (3.3)
with S; =88,; where S =11.

IV. THE GRAVITATIONAL BERRY PHASES

In this section we show that all four experiments of
Sec. II have gravitational counterparts, and that the per-
tinent Berry phases arise in an analogous fashion. The
post-Newtonian  formalism clearly displays the
correspondence between the potentials (¢, A) and
(¢+9,8).

We have to look for A -v interactions where A is a
long-range vortex field. All these interactions are of the
general form (mass)X(angular momentum) X (velocity).
In a given experiment, a given string interacts either by
its mass or by its angular momentum but not by both.
Therefore, to disentangle the effects, we also consider
spinless strings. We have the following possibilities.

(1) A spinning string moves adiabatically around a
spinless string at rest. The effect on the wave function of
the spinning string is considered.

(2) As in (1), but the effect on the wave function of the
spinless string at rest is considered.

(3) A spinless string moves adiabatically around a spin-
ning string at rest; the effect on the wave function of the
spinning string at rest is considered.

(4) As in (3), but the effect on the spinless string is con-
sidered.

Again, one string (the one “in the box”) defines the
“system,” the other generates the slowly varying external
parameters. The Berry phases are easily computed from

(3.5) with (3.6) and the post-Newtonian field equations
(3.1).

Experiment (1). By Eq. (3.1a) the spinless string gives
rise to the Newtonian acceleration

—Vé=—2Gm—>= .
|x|?
(The strings at rest are always assumed to be located at
the origin x=0 of an inertial frame.) The relevant part of
the interaction is L, =3SvX V¢, so that a full revolu-
tion of the spinning string around the origin yields the
Berry phase

4.1)

xXv
|x|?

oy =¢dr L}, =—3GmSPar

=—6mGmS . (4.2)

The occurrence of this topological phase is the gravita-
tional analogue of the AC effect: a gravitational charge
(mass) distribution generates a gravielectric field
g= — V¢ which couples to the angular momentum of the
second string as 3SvXg. This is analogous to the puEXv
coupling of a magnetic moment in a radial electric field.
In both cases an effective A -v interaction occurs, where
the vortex field A; < ¢;x;/|x|* is proportional to the
product of the charge (mass) of one string and the mag-
netic moment (spin) of the other. Clearly, one also could
envisage a situation where one has a string at rest, but a
point particle [in the (3+ 1)-dimensional serise] encircling
it. Then Eq. (4.2) says that if we split a beam of neutrons
or electrons and put an (electrically neutral) thin massive
cylinder between the two parts of the beam, there is a rel-
ative phase shift 05" between them. In principle it could
be detected as a shift of the interference pattern, but in
order to achieve 8, = the densities should have Plancki-
an values.

Experiment (2). The motion of a magnetic moment
generates an electromagnetic scalar potential. Similarly
the motion of matter with angular momentum gives rise
to a gravitational scalar potential 1. This is seen from
the spin part of the energy-momentum tensor:

00 4 (2)pify  — i J -
(BTO+ATh  =3Svie/3;8M(x—x,) . (4.3)
The field equation (3.1b) is easily solved:
v, X(x—x,)
Y(x)=3GS———75— (4.4)
[x—x,|
The spinless string couples to 3 by its mass:
LZ,=—my(x=0,t). In the by now familiar fashion we
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obtain for the Berry phase picked up during one revolu-
tion of the second string:

05 =Pdt L%, =—67GmS . 4.5)

Experiment (3). The motion of an electric charge gen-
erates a vector potential A and a magnetic field B. In the
same way Eq. (3.1c¢) with (3.3) says that a moving mass
produces a vector potential

£(x,0)=8Gmv, (1) In|x—x, ()| +0(v}) (4.6)

and a gravimagnetic field

(x—x,)X
Z2TERIEY% L ow?) . 4.7)

VX £(x)=8Gm
Ix—x,

The second string couples via the p-B-type interaction
L}, = 18V X §(x=0,t). The resulting Berry phase is

0§V = ﬁdtL i3m =—8wGmS . (4.8)

Experiment (4). A solenoid produces an electromag-
netic vortex potential. In the same way a spinning string
generates a vortex-type §-field configuration. Equation
(3.1c) with the spin part of the energy-momentum tensor
(3.3) yields [for S;=S8;; in Eq. (3.3)]

xJ
Yx)?

The second string couples via the v- A-type interaction
L}, =mv-E, and the topological phase becomes

5 (x)=4GSe (4.9)

65 =Pdt Lt =—87GmS . (4.10)

This experiment is the gravitational analogue of the AB
effect. In principle 6§ could also be observed by inter-
ferometer experiments where beams of spinless particles
are split and a rotating cylinder is placed between them.

The equalities 6§™'=05"" and 6§?'=6%§?" are due to
the symmetry of the current-current interaction; see Sec.
III. Consider now a set of strings with both m;0 and
S;70. The interactions which led to the above Berry
phases are contained in their many-body interaction La-
grangian for small velocities and large separations. In
fact, they are the only terms of the statistics-changing
type. For two strings, say, this interaction term is ob-
tained by inserting the fields (4.1), (4.4), (4.7), and (4.9)
into the Lagrangian (3.5). The result is

L, =LF™+L§™ @1
with
(xl__xz)
LEF*=4G(m S,vi—m,S V) X ~——— @.12)
Ix;—x,|
and
(X]"XZ)
L§“‘V=3G(m2$1V1—'m152V2)X 2 (4.13)
}Xl_le

For equal masses and angular momenta both terms have
the same structure and one obtains

LEY = G X)X VT VY)

anyon

(4.14)

This is one of our main results: L0, is precisely of the
anyonizing form (1.4) with statistics angle 6= —77GmS.
If we had not been interested in the physical mecha-
nisms behind the various Berry phases, we could have ob-
tained the above results also by inserting (3.3) into (3.14)
and (3.15). Then Ly equals L both for D=2+1 and
D=3+1. Similarly, the first term on the RHS of Eq.
(3.15) yields the Newtonian interaction if D=3+1. For
D=2+1 it is absent; this confirms the well-known fact
that three-dimensional Einstein gravity has no Newtoni-
an limit. The remaining terms of (3.15) reproduce pre-
cisely L§® if D=3+1, and it yields a term of the same
structure but with a different prefactor (4G instead of 3G)
if D=2+1. Thus, apart from this numerical factor, all
the Berry phases also occur in a (2+ 1)-dimensional
world, and they are all equal. For equal masses and spin
orientations the anyonizing part of the action reads
D—1 | (%= %) X(v;—V,)
D -2

Lg& =—GmS

anyon

4+2

|x; —x,|?

(4.15)

so that in three dimensions the statistics angle is
0= —8wGmS.

V. CONCLUSION

In the previous sections we have shown that for a sys-
tem of nonrelativistic charged (massive) particles with
nonzero magnetic moment (internal angular momentum),
the effective interaction Lagrangian resulting from the
pure Maxwell (Einstein-Hilbert) action for the elec-
tromagnetic (gravitational) field contains a spin-orbit
term of the form xXv/|x|%. By “effective Lagrangian”
we mean a Lagrangian which does not explicitly refer to
the spin degrees of freedom anymore, but rather encodes
the spin effects in an interaction term depending only on
the particle’s position and velocity. Since the term we
have identified is linear in the velocity and falls off as
1/]x|, it gives rise to a topological phase whenever two
particles move around each other. This Berry phase re-
ceives equal contributions from the electromagnetic
(gravitational) AB and AC effects, respectively. The
former effect is due to the interaction between the
vortex-type electromagnetic (gravimagnetic) vector po-
tential of one particle and the charge (mass) of the other,
whereas the latter arises from the interaction of the mag-
netic moment (spin) of one particle with the magnetic
(gravimagnetic) field generated by the moving charge
(mass) of the other. Because of these topological phases
the particles behave as anyons in the adiabatic limit, with
additional interactions beyond the statistics interaction,
however. The term responsible for the statistics transmu-
tation has the same form as the one which obtains from
coupling particles with vanishing magnetic moment (spin)
to a gauge field whose dynamics is governed by a Yang-
Mills (gravitational) Chern-Simons term, possibly supple-
mented by a Maxwell (Einstein-Hilbert) term. Therefore
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we can say that “integrating out” the spin degrees of free-
dom leads to an effective theory with an additional
Chern-Simons action.

Our discussion was within the framework of nonrela-
tivistic N-particle quantum mechanics. Gravity was in-
vestigated only in the regime where both the post-
Newtonian and the weak-field approximation may be ap-
plied. At this level neither the nonlinearities of Einstein
gravity nor its nonrenormalizability are an issue, so that
the analogy between electromagnetic and gravitational
anyonization is almost complete.

It is interesting to note that in relativistic field theory
the generation of Chern-Simons terms by integrating out
fermion fields is well known already. Both for Yang-
Mills [27] and gravitational [28] background fields the
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effective action —iIndet(y#D,) of fermions in odd di-
mensions contains the respective Chern-Simons term.
Here we found a similar effect at the N-particle level.
This mechanism is certainly interesting in its own right
but, in particular in the electromagnetic case, it is tempt-
ing to speculate that it might have some phenomenologi-
cal applications. It is conceivable that for certain con-
densed matter systems the dominant effect of spin can be
encoded in an effective Chern-Simons dynamics.
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