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We compute the Berry geometric phase contribution to the vacuum decay amplitude for the parametric harmonic oscillator.
Path integral methods are employed to set up an effective action whose (almost) adiabatic approximation will enable us to derive
an expression for the probability that the ground state remains in the ground state.

1. Introduction

Since Berry’s first paper on geometric phase fac-
tors in quantum physics [1], there has been an enor-
mous interest in quantal as well as classical phases
in many areas of physics. A fairly good selection of
some of the relevant contributions to the field is con-
tained in ref. [2], which the reader should consult
for further references. Our own intention in this pa-
per is to introduce a little twist to the treatment of
the Berry phase within the context of the generalized
harmonic oscillator problem [3], using the language
of field theory. Consequently, in the sequel we will
be using terms like “path integral”, “effective ac-
tion”, and ‘“‘vacuum persistence amplitude”.

Except for ref. [4], the effective action approach
has not been discussed in the current literature on
the subject. The novelty of our own contributions lies
in providing an expression for the “leakage” of the
ground state amplitude, whereby transitions are
caused by an “almost adiabatic” evolution. It is here
that we make contact with Berry’s recent contribu-
tions [5]. Our starting point is the Lewis—Riesenfeld
[6] treatment of the time-dependent harmonic os-

cillator. Then we derive the effective action and dis-
cuss its adiabatic limit. Finally we turn to the vac-
uum persistence amplitude with its dynamical and
geometrical (Berry) dependence.

2. Lewis—Riesenfeld theory

Let us briefly review some of the elements nec-
essary to set up the problem stated in the Hamilton-
ian of the generalized harmonic oscillator (m=1),

H(t)=4[X()x*+Y (1) (xp+px)+ Z(2)p*], (2.1)

with slowly varying parameters (X, Y, Z)(¢). The
system characterized by the time-dependent Ham-
iltonian (2.1) allows for an Hermitean invariant /(¢),
which is given by

1 {x? Y x. T
1(t)=5{;)—2 +[/>(p+ zx)— 2/)] } (2.2)

with
dr(s) . aI(t) _
5 SiH 1+ == =0
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and p(¢) a c-number solution of the auxiliary

equation
1dp aY XZ-Y? E)O

;a‘z‘-(az— Z

(2.3)

The instantaneous eigenstates of I(¢) are defined by
I(t)lln:t>=2'n|'ln’ t> ’ (24)

where the eigenvalues A, are time independent,
d4,/0t=0. The system (2.1) develops according to
the Schrodinger equation (A=1)

. d

iz w@O>=HDw ()5,

whose solution can be expressed in terms of the ei-
genstates |A,, ):

lw(2)>= 3 Coexplia,(£)]|4n, ¢ . (2.5)
The constant coefficients C, have to be defined from
the initial conditions. According to the general the-

ory of Lewis and Riesenfeld [6], the phase angles
a,(t) can be obtained from the equation

t

a,(t)= fdt'(l,,, t'|id/ot —H(t' ) |An, t')>. (2.6)
0

In our particular case this can be evaluated to yield

Z(t')
P’

o, (1) =—(n+1) Jdt’ (2.7)
0

The eigenvalue spectrum of [ is given by 4, =n+1,
n=0, 1, 2, e s

3. The effective action

We are now going to introduce the effective action
I'[X(t), Y(¢), Z(t)] in the spirit of field theory. As
there is a vast amount of literature on this subject,
we only mention ref. [7] and our own modest con-
tribution [8]. One must recognize that it is the ef-
fective action that properly addresses questions like
the vacuum persistence amplitude of a quantum sys-
tem, a topic we are now going to concentrate on.
Again, while we acknowledge Berry’s investigation
of a two-level system [5], we are here interested in
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a natural generalization to a field-theory-like (infi-
nite level) treatment of the parametric oscillator. In
a certain sense we are dealing with a toy model sim-
ulating particle creation in relativistic field theory by
a prescribed external field (QED), or cosmological
particle creation by a time-dependent metric [9].

The effective action is defined by the path integral
representation

exp(il'[X, Y, Z]) = I 2p(t) 2x(t) exp(i f dt [px

—-H(p,x X, Y, Z)]), (3.1)

where the integration is to be performed over all paths
satisfying x(7) =x(0) and T-oo at the end, mean-
ing an adiabatically closed cycle. The effective action
I itself (or, for finite 7, I';) can be computed with
the aid of the Feynman propagator K(x,, f; X, ¢;)
in the presence of the ““external field” (X, Y, Z)(¢)
by a similar path integral with terminal conditions
x(t,)=x,, x(t,) =x,. We are specifically interested
in the “loop contribution”, i.e., the trace of the di-
agonal part of K in x-space:

G(Ty=exp(il'7[X, Y, Z])

= J dxK(x, T|x,0). (3.2)
At this point we recall that the imaginary part of I,
is related to the vacuum persistence amplitude. In-
stead of explicitly computing the path integral, we
now make substantial use of the Lewis-Riesenfeld

theory [6] to determine K. We claim that the equa-
tion for the kernel,

[id/0t—H,,(£)1K(x2, ]x,,0)=0, 0,

with the boundary condition K(x,,0{x,,0)=
d(x, —x;) is solved by

K(XZ’ tlxl, 0)
= Y expliet, (£) 1<x2 [0, £ {4n, Olx1 ).  (3.3)
That this statement is true can be recognized from

the fact that K, 0y(x,, t) is a wave function of the
type (2.5) for a special choice of the C,,.
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Let us quickly check our claim. Eq. (3.3) ob-
viously reduces to

K(XZ’ Ol-xl, 0)= z <x2 |ln9 0><An’ lel >

= (X2|X% ) =0(x —x1)

since (2.7) implies «,,(0) =0 and the eigenstates of
I(t) form a complete set for all ¢. Furthermore,

[0/81— Hey (1) 1K (X, £] X1, 0)
=Y (x| [id/8t—H(t)]

X explia, (£)1|An, t) {An, Olx; > =0

following from the result by Lewis and Riesenfeld

[6]:
[id/9t—H(t)] explic, (¢)114,, 1> =0.

Thus we obtain

G(T)= J' dx K(x, T|x, 0)

—ao

@

j dx 3, exp[ia, () 1<x|4,, T> <4, 0lx)

n

S explian ()] | dx <2, 00x) Cxls, T

—ao

= Y explia,(t)1{An, 0]4,, T

=exp(il'y) . (3.4)

4, Adiabatic limit

Next we turn to the adiabatic limit of our so far
exact treatment. Let us assume that the external pa-
rameters (X, Y, Z) perform an adiabatic excursion
during the time 7T in the parameter space so that
(X, Y, Z)(0)=(4X, Y, Z)(T). In the adiabatic limit,
the p term in the auxiliary equation (2.3) may be
ignored; then we obtain

z_, (1 ggz)‘”
p: P wdydtZ)
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The frequency wp can be obtained by rewriting
Hamiltonian (2.1) in terms of action-angle vari-
ables. The result is a linear relation H=wpJ, with

Wp = %?:,/XZ—-YZ , XZ>Y?,
Furthermore, expanding with respect to

_Z_SZ <<1
whdtZ ’

we obtain

Z_ (1 __Z__SZ)
2=\ T arz
Z dy

e GZ (4.1)

= wD
When this adiabatic expression is substituted into
(2.7), the Lewis-Riesenfeld phase goes over to the
Berry phase;

T
& ()=~ (n+h) [ aufioy, (42)
0
where
Z dvY
S =wp(t) - lon & Z

Because the external parameters return to their start-
ing point at ¢=T, so does the adiabatic solution (4.1)
as well as the operator 7(¢) and its eigenstates. Hence
it holds that

<'1ns Oll,,, T>= <'1m Ollm 0>=1 .

In this way we obtain for the adiabatic approxima-
tion of the effective action

exp(il7LX, ¥, Z])= 3 exp[—i(n+})o(D)]
=2"12[cos p(T)—1]""%, (4.3)

where the total phase collected during one cycle of
adiabatic excursion is given by
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T T
<z>('r)=£dzw,,(z)_!dtm;c_ﬂE

T
=J‘dth(t)—§dR-ﬁVn(Y/Z),
0 C

R=(X,Y, 2), (4.4)

where the first term is the dynamical phase and the
second is the geometrical Berry phase, i.e. only de-
pendent on the path in parameter space. By the way,
we can easily rediscover the standard result for the
time-independent harmonic oscillator by recogniz-
ing that the phase function is then given by

As can be seen from (4.3), the effective action is
augmented by an ‘“‘anomalous” geometric phase
contribution,

FICl==(n+})  aR [ (2/205)Va(Y/2)]
C

(4.5)

not unlike the appearance of anomalies in gauge field
theories.

5. Vacuum persistence amplitude

Now let us assume that the oscillator is in its
ground state (“‘vacuum”) in the remote past, 1— —co.
What, then, is the probability | <0, |0_ ) ¥} for the
oscillator to be still in the ground state in the distant
future, £—o00? Quite generally [7], given the traced
Feynman kernel

G(t", t' )= J. dxK(x,t"|x,t'),

— 00

the vacuum persistence amplitude can be calculated
as

P005|<0+|0—>|2

G(T”, T,)
exp[—Eo(t" —-7)]| ’

2

(5.1)

T oo
T+ —00

where E, is the ground state energy of the unper-
turbed system. Thus, initially and finally, the oscil-
lator is a simple harmonic oscillator in its ground
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state Eq=14w. In (5.1) we have performed a Wick
rotation to Euclidean time ¢— —1it, 7 real. (The above
formula still holds if we put " =0, as was done in the
previous section. ) Py, is related to the imaginary part
of the effective action,

Pyp= lim exp(—-2{ImI,. .[X,Y,Z]

T" =00
T—o—oo

— Eo(1"-7")}) .

Let us consider {0, |0_>* of the parametrically ex-
cited oscillator for a periodic path (period T—o0) in
the space of the external parameters R=
(X, Y, Z)(t).If the time evolution is truly adiabatic,
no excitation (“particle creation”) will occur, and
Pyy=1. Knowing I'r[R], we can compute the devia-
tion from Pyy=1 for very slow, but nonadiabatic
changes of the parameters [5,10]. The result is

Pyy= lim exp(2E,T)
T—oo

2

X (5.2)

T
f exp(— (n+}) jdrf(—i‘c))
n=0 °

One can justify that the integral in the exponential
of (5.2) has a positive real part, so that only the n=0
term contributes for T—oo. Here, then, is our final
result for the probability of the ground state to re-
main in the ground state:

Py, =exp[—Re j dt [wp(—iT)—2E(]
(4]

o0

Z dY .
+ Re }[ d’(%aﬁ) (t=—1z)], (5.3)

which exhibits explicitly the contributions arising
from the dynamical and geometrical (Berry) am-
plitude. While Berry’s treatment [5] is based on a
two-level system, here we have generalized the pro-
cedure to an infinite-level system in which “Berry’s
amplitude™ appears in | {0, |0_ ) |2. Needless to say,
our approach differs from Berry’s. But again, the
transitions occur by almost adiabatic motion and are
contained in a dynamical and geometrical (Berry)
part, where the latter is the analytic continuation (in
time) of the Berry phase.
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