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A representation theoretical construction of the conservation laws of affine Toda type 
systems is described. The construction employs the completely degenerate representations of the 
e.xtended conformal algebras Wtsltn)). The conserved charges are shown to generate an 
intinitedimensional abetian subalgebra of W(sl(n)). Different characterizations of this s&&e- 
bra are obtained: As space of physical Fock space operators with dihedral symmetry, as 
constants of commuting Bows of quantum KdV-type equations and as subalgebra of the sl(n) 
singlets in affine &I) level-1 modules. The existence of the subalgebras is established for 
low-rank cases by means of an alSorithmic Fock space procedure. 

1. Introduction 

The infinite set of conserved charges in involution is a key structure of an 
integrable field theory. Sufficient conceptual and algebraic control, however, of the 
abelian algebra they generate, still seems to be difficult to ,ti by standard 
techniques. As a by-product of the program of “perturbed conformal field theory”, 
the possibility of a representation theoretical construction of these charges was 
raised [l]. The representation theory to be used would be that of the infinite- 
dimensional Lie algebra underlying the conformal field theory. 

Suppose a relativistic 2dimensional integrable field theory to be given for which 
the classical hamiltonian system admits a lightcone formulation. Let c$(u, ~7) denote 
the dynamical variables written in lightcone coordinates. With respect to either 
one of the lightcone dynamics d,.r$(rl, L*) or d,+(tr, t?), the equations of motion then 
define a first-order initial value problem. The phase space i.e. the space of classical 
solutions can be identified with a suitable space of chiral initial data &I= 
C/AU, ~)l,=o or ~$(r) = &I, L.)I~-=~, respectively. It is endowed with Poisson bracket 
structures and an infinite set of hamiltonian vectorfields. The defining relations for 
the conserved charges 1, associated with the latter are ~,.I,[~(u,rIl= 0 and 
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{I,,,, I,,,,} = 0 (and likewise for the other lightcone sector). After use of the equa- 
tions of motion, the construction of the functionals IJ+(LO] = IJc#J(L~, u)]ll.=c 
therefore is a problem intrinsically defined on some space of functions of a single 
variable. Upon quantization the Poisson bracket structures will translate into 
l-dimensional (generalized) current algebras and the quantum equation of motion 
turns into a vanishing condition, 8,.Z,[&, u)l = 0, for a series of Wick contrac- 
tions, evaluated with a current algebra. The construction of the quantum function- 
als Z,,,[+] therefore amounts to a problem in the enveloping algebra of a current 
algebra and the representation theory of infinite-dimensional Lie algebras may be 
used as a tool for the solution. In the superrenormalizable regime one can 
(partially) renormalize by normal ordering and the functionals Z,J+(c~,u)] ob- 
tained from the substitution c$(L~) + c#J(L~, u) give UV finite expressions for the 
conserved charges of the original massive field theory. 

The purpose of the present paper is to construct the local conservation laws for 
$(r + 1) affine Toda-type systems along these lines. The properties of affine Toda 
theories depend drastically on whether the coupling constant is real or purely 
imaginary, see e.g. [9-13,331. In particular, in the latter case, the z(2) model 
corresponds to the sine-Gordon theory, while for the I’ > 1 models a clear la- 
grangian formulation is not available at present. For the conserved charges IN[4], 
however, analytic continuation in the coupling is unproblematic. The differences 
will show up when considering the common eigenstates and the spectrum. For the 
representation theoretical construction of the conserved charges we use a purely 
imaginary coupling is+ s.t. s+> 0, s, * irrational. Following the procedure outlined; 
the first step consists in formulating the classical hamiltonian system in lightcone 
coordinates. @%A, u> denotes now a vector of I’ interacting scalar fields. In the 8,. 
lightcone dynamics, the equations of motion take the form 

c3&P(u, u) -I- g k /” d wcuyexp[is+uj.4(w,u)] =O. 
+ j=O --m 

(1.1) 

Here (Y,,, . . . , CY, are the simple roots of z<r + l)* and m is a constant. In 
Minkowski space coordinates t = cl + u, x = ~1 - u it is natural to impose rapidly 
decreasing boundary conditions with a set of topological charges. The translation 
into lightcone coordinates parallels that of the sine-Gordon model [6]. In particu- 
lar, the boundary conditions for the momenta lim,,,,, CX~ *(a,+)(x) = 0 at t = 0 
translate into the infinite set of constraints lim,, - fm ai * a#&, ~)],,=a = 0, n > 0, 
where eq. (1.1) is used for evaluation (or one of the higher-order equations of 
motion). The admissible chiral initial data are thus constrained by an infinite set of 
relations. This is the price to pay for working with a first-order initial value 
problem. The canonical Poisson brackets ((I,&‘), C@‘(Y)} = 6”“S(x - y) become 
(&Yu>, &%A’)] = $“* sign(u - u’). Finally, in Minkowski space there are two 

*The imaginary root in CY~ = 6 - 0 (with 0 the highest root of sl(r + 1)) drops out in the inner 
product. 
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infinite set of local conserved currents [18,29], both of which are non-polynomial 
in the fields: d,PK= a.#,v-z, a,sN = a,&-,. They occur at grades N - 1 equal to 
the exponents of sl(r + 1). In the lightcone model one has correspondingly a,?P, = 
a,,e,-d,,P, = aoi2NN-2. The advantage of working the lightcone formulation is 
that relative to the lightcone dynamics of opposite chirality, the densities P,[a,,4] 
and p,v[a,,4] are local and are polynomials in the derivatives of the fields 4(u, u) 
(with the same functional dependence). For example relative to eq. (l.l), P,.,,[d,,~] 
is local and polynomial, while in FJ.a,$] eq. (1.1) has to be used for evaluation, 
which gives nonlocal and nonpolynomial expressions. The relation to the Minkowski 
space functionals formally is PN = PN - Q,,,-z, &‘, = PN + QN-z etc. and the con- 
served charges are SN-, = /“_,dxPJ$,a,+], IN-, = /“_,duP,,,[a,,+] etc. In ex- 
tension to the sine-Gordon case [6] one can show that the Minkowski space to 
model and the lightcone model define equivalent hamiltonian systems. This means 
that the symplectic manifolds are isomorphic (pointwise and w.r.t. the symplectic 
structure) and the hamiltonians XN-, and IN (in the a,, dynamics) relate corre- 
sponding points, respectively. 

To avoid the problem of proving the analogous result in the quantum case, we 
consider the quantum theory obtained by quantizing the lightcone model. From 
the hamiltonian equations of motion one finds for the quantum conserved charges 
Z,[d,,+(u,u)] the condition that the series of Wick contractions with the normal- 
ordered operator C~=,exp(is+cyj. &(u, u>>]~,=~ has to vanish. Here $“(u, u) is a 
vector of r interacting Bose fields with canonical commutation relations 
[&$A>, +b(~t’)] = t?(c~ - CL’). The problem of finding solutions of the vanishing 
condition is now a purely algebraic one and may be modelled also with r free 
chiral Bose fields with the same commutation relations. For this auxililary free 
field problem it is convenient to use the coordinates z = eT+iV, 2 = e’-‘” obtained 
from analytical continuation of the compactified Minkowski space variables ~1 =: tan 
f(~ + a), u =: tan;(r - v). Th e conserved charges of the auxililary problem Z,- , = 
$ dzP,,,(z) will be different from the physical ones. The conserved densities Plv, 
however, considered as functionals of a,b(z> and a&l, u), respectively will be 
form-identical. Without the (Ye term the auxililary free field problem then defines 
a Fock space model of a distinguished irreducible W(sl(r + 1)) module. The 
representation theory of W-algebras may therefore be used to pre-select candi- 
dates for the functionals Z,[a,+]. In detail let FOo denote the space of linear 
bounded operators on a Fock space FOO generated by I’ free chiral bose fields, and 
Vi = eis+ni’@ associated vertex operators. The subscripts are defined in sects. 2 and 
3. The object to be studied in the main part of the paper is 

where $Vi act by commutation on FOO and 7 projects onto the sector invariant 
under the Dynkin automorphism. The result aimed at is that .Y(r + 1) is an 
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infinite-dimensional abelian subalgebra of (the enveloping algebra of) W(sl(r + 1)). 
For r > 1, the W-algebras are nonlinear and the specification in brackets is 
redundant. From the preceding discussion, the generators of Y(r + 1) can then be 
used to produce UV-finite expressions for the quantum conserved charges of 
affine & + 1) Toda-type systems. 

This construction does not rely on a physical interpretation of the W-algebras 
involved. From the viewpoint of perturbed conformal field theory [ll and in 
particular the results for the sine-Gordon model [g-13] one would, however, 
expect them to play the role of the chiral field algebra in the conformal field 
theory corresponding to the UV scaling limit. We will return to this point in the 
conclusion. In sect. 2 the irreducible W(sl(r + 1)) representations of irrational type 
are prepared for the construction of Ar + 1). In sect. 3 different characterizations 
(a>-(c) of the algebra .Y(r + 1) are obtained. Finally, the characterization (a) is 
used in sect. 4 to prove the existence for low-rank cases by means of an algorithmic 
Fock space procedure. Part of the results of the paper was announced in ref. [Xl. 

2. Irrational W(sl(n)) representation theory 

W(g) algebras are, besides the affine Kac-Moody algebras, the second known 
class of infinite-dimensional Lie algebras descending from simple finite dimen- 
sional ones g [2-41. They are intrinsically nonlinear in that their commutation 
relations close only on the enveloping algebra of the modes of the generating 
fields. Highest-weight modules of W(g) are labelled by their highest weight vector 
]I> and a real parameter $. related to the central charge by c = r - 48&*. Here 
p is the Weyl vector of g, 2s, = s++ s- and s-s+= - 1. Let W’(z), 2 <i <r + 1 
be the generating fields of W(g) with mode expansion W’(z) = C,,W,lz-“-i. The 
highest-weight module based on ]Z) is called a Verma module for W(g), 

V(Z(A.7 A->> = c CW’,, . . . wr.rlz), (2.2) 
v,,...,v,EPal-w 

where Par(k) = (v = (n, . . . n,]nj > nj+i 3 k, 1 Q j 6 I, l> 0) and for any set of 
modes P,, P-, is shorthand for P-,,, . . . Pm,,,. Irreducible highest-weight represen- 
tations 5?(Z) are obtained as usual by dividing out the maximal singular submod- 
ule SV(Z) of V(Z), 

LqZ) =V(Z)/SV(Z). V-3) 

For .r: irrational, the highest-weight state IZ) = IZ(A+, A-)) is parametrized 
bijectively by a pair (A +, A -) of (integral) weights A * of g. Let (ar, . . . , cr,) C h* 
be a system of simple roots in the dual of the Cartan subalgebra and set 

xi=s+ai.(A++p) +sJK~*(A-+~), (2.4) 
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where “ * ” is the inner product in h*, sometimes also denoted by ( , ). The labels I’ 
are the eigenvalues of II> on the Cartan subalgebra of W(g), 

y:iv> = 6,,oZ’(A+, A-)lZ>, n > 0. (2.5) 

In terms of the variables xi they are polynomials of degree i that generate the ring 
of Weyl invariant polynomials in xi,. . . , x,. (but no necessarily the standard basis 
obtained from the Casimir operators). In particular 

=fs:(A+,A++2p)+p2-(A++p,A-+p)+$t(A-,A-+2& 

P-6) 

where a- ’ is the inverse of the Cartan matrix. There is a shifted action w * A = 
w(A + p) - p of the Weyl group of g on h*, so that (WCY~, A + p) = (ai, w-’ * A + p) 
for w E W. It follows that Z(A+, A -) and hence the Verma module is invariant 
under the diagonal action of the Weyl group Z(w * A +, w * A-) = Z(A +, A-), 
w E W. The singular submodules of V(Z(A +, A-)) are labelled by the elements of 
the Weyl orbit of either A + or A --) with the other weight kept fixed. In particular 
one can show that for the irreducible singlet representation A += A-= 0 one has 
an explicit generating system 

Y( V,O)) z c cwl,, . . . wr”,lz(o,o)), (2.7) 
vi= PadAil 

where Ai are the orders of the independent Casimirs of g. All that being for s: 
irrational. 

Simply laced W-algebras admit a free field realization in terms of r = rank g 
free Bose fields. In the following we will concentrate on the sl(r + 1) series. 
Introduce r scalar fields &‘(z) 

4”(z) =q”-ip’lnz+i C $0iz+, 
n # 0 

~“(z)c#J”(w) = -Pln(z-w) + . . . 

with modes having free oscillator commutation relations 

[a:, a:] = m~ob%+m.O > [p”,q’] = -iPb. 

(2.8) 

P-9) 
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For A +E h* let IA +, A _ > be a vector satisfying 

a;lA+,A-> = 0, n>O, 

@‘lA+,A-) = (s+A+” +s-A-“)lA+,A-1. (2.10) 

We choose normalizations s.t. A +“A -” = A +a A _ = (A +, A -> is the bilinear form 
on h*. The Fock-space module based on IA +, A -> is denoted by F/,+,,. In the 
enveloping algebra of the oscillator algebra (2.9) introduce I’ field operators W’(z) 
by means of a symmetrized Miura transformation [4,51, 

7 2s,a, - ihr+, [ ~az4][2.f,az-iiz,.~a,~] ...[2s,az-i~,~az~] 

r+l 

= ~~o(-)“+‘WK(Z)(2s,a)~+‘-~, (2.11) 

A  

where ‘Y~ = Iti+, - fij+z(hr+z =fi,),2s,=s++s- and normal ordering shall be 
implicit. Here T projects onto the sector invariant under the automorphism T: 
ffi + -(Y,+l-i, S++ -S.+ of the Dynkin diagram, which is implemented by the 
maximal element of the Weyl group. For simplicity we use the same symbol for the 
automorphism and the associated projection operator. In particular W” = - 1, 
W’=O and 

L(z)= W'(Z)= -$a,+az4 +2i~,,~4,2+ (2.12) 

generates a Virasoro algebra of central charge c = r - 48s02p2. Since TL(z) = L(z) 
the invariance under r is clearly a necessary condition for the fields W’(z), 
3 Q i Q r + 1 to be primary w.r.t. L(z). One can show that W” is in fact primary 
w.r.t. L, while W’, 4 G i G r + 1 can for generic central charge be promoted to 
primary ones by adding suitable normal ordered products of Wi-‘, . . . , W2 to W’. 
The fields W’ can be shown to generate a W(sl(r + 1)) algebra of central charge 
c = r - 48s02p2 [5]. This endows FA+,,- with the structure of a W-algebra module. 
In particular one has, 

F IV * A + , A - = F A + , IY - ’ * A _ 2 F/t+,,\F F- (n++2p),-(A-+2/1) (2.13) 

as W-modules. F,t*+,l- denotes the dual of F,,+,,- w.r.t. the standard inner product. 
Modulo these equivalences F,, +n _ is isomorphic to V(I(A +, A->> as W(sl(r + 1)) 
module. 

A Fock-space model of the irreducible representations L?(I) can be obtained by 
means of “screening operators”. The irreducible representation is obtained as the 
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zeroth cohomology class of a Fock space complex constructed with them. For s: 
irrational, this construction is particularly simple: For A+, A-E h* introduce the 
vertex operator 

V A+,A-’ * ct+A? F,++A+,L+L 

V h+.A-= exp(~+A+-b(z) + ~-L-N4)9 (2.14) 

where again normal ordering shall be implicit. The “screening operators” y+ = 
;iag; I v- = v,, -=,, 1 < i Q r correspond to minus the simple roots. For any state 

n+A- let M(P) denote the vector space spanned by all multi-contour 
integrals of the form 

[iq . ..qK. . . . KJP) = / dw,. . .dw, dz,. . .dz, 
r 

x ~~(w,)...~~(w,)lgzk)~...~~(zl)lP). (2.15) 

The contour r consists of contours taken counterclockwise from 1 to 1 around 0 
and nested according to lz, 1 > . . . > lzkl for Zi # 0 and the same for wr,. . . , wI 
with the opposite orientation [16]. Set 

z A+A-=T h Ker(kVi+f+‘ii: FA+A-+ ?i.A+,As) 
i=l 

(2.16) 

One can show that both characterizations of xA+n- are equivalent and that it 
provides the required Fock-space model of 5?(I) for S: irrational, i.e. 

as W(sl(r + 1)) modules. 

*A+;i-=p( I), (2.17) 

3. Characterizations of 9(r + 1) 

In this section different characterizations of the proposed set of conserved 
charges 3(r + 1) are given. In contrast to the screening operators, gSV-,*~~~~o:ticiit 
have a well-defined action on Fuck states. They may, however, act~by:coirnnutation 
on Fock-space operators. Let .!KA+*- denote the space of linear boundedoperators 
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from F, to FA ,*-. Then define, 

= T fj Ker(#, : .Fm + F,* -a,), 
i=o 

where $y * act by commutation on the space 3m of linear bounded operators on 
Fw- Comparing with the physical state condition (2.161, one sees that Ar + 1) can 
be regarded as subspacc of the operators on the singlet module Xoo. For 
convenience we will often drop the subscripts “00” for the singlet modules i.e. 
write Z = ..Ym, 9= F, etc.. To understand the consequences of the additional 
kernel condition it is useful to employ the operator/state correspondence one has 
in a meromorphic conformal field theory [17]. 

Basically, to each state IP) in the Hilbert space X of a meromorphic conformal 
field theory, there is a unique field operator P(z) given by P(z) = ezL-lIP), which 
is subject to the following requirements: (P, IP(z)I shah be a holomorphic 
function in z, while <P, I P,(z)Pj(w)‘l P4 > is supposed to be holomorphic for 
lzl > Iw] with a unique meromorphic continuation satisfying (P,]P,(z)P,(w)lP,) = 
(P,IPJw)P2(z)1P,). If IP) is an eigenstate of Lo of weight A a mode decomposi- 
tion is useful 

P(z) = c p,z+-+ 
IYE. 

(3.2) 

Acting on the s&l, 1) invariant vacuum, one has 

P-,10)= IP), PnlO)=O, n> -A. (3-3) 

We will therefore also use the notation (P-,Xz):= (Pm,lO>Xz) for P(z). The 
operator product expansion of two fields P(z), P’(z) of weights A, A' can then be 
defined as the series expansion 

P(z)pl(w) = : (z-W)k(P--f-~P’-r)(w)r Ii] > IwY e (3.4) 
k= -d-x 

In particular, (PP'Xz):= (P-,P'-,Xz) is a natural definition of the normal- 
ordered product of both fields. The Hilbert space 2 can be decomposed wxt. the 
action of the su(1, 1) subalgebra of the Virasoro algebra generated by {L * ,, Lo}. 
The ~41, 1) highest-weight states satisfy L, 1P) = 0 and such states (or the corre- 
sponding fields) are called quasiprimary. The subspace of quasiprimary states in % 
will be denoted by G?- The su(1, 1) descendences L”_ 1 jP) of a basis in g make up 
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a basis of Z- Further one has the isomorphy .J? = X/L _ ,A?- In terms of the fields 
this amounts to considering equivalence classes module total derivatives, 

n!(P-(,,,,)(Z) = (L”_,P-J(z) =qp(z) 3 n20. (35) 

In this context “ = ” will be used to denote the equivalence relation. Although 
natural from the viewpoint of the operator product expansion, the normal-ordering 
operation (- , . ) is not covariant w.r.t. the su(1, 1) subalgebra. For two quasiprimary 
fields P(z), P’(z), the product (PP’Xz) will in general no longer be quasiprimary. 
Because of 2~ X/L- r.Z one can, however, always add total derivative terms 
such that the field 

N( PP’>( z) = (PP’)( z) + total derivative (3-6) 

is quasiprimary. The additional terms involve contributions also from other 
quasiprimary fields and the associated 3-point functions are the only parameters in 
.N(-, - ) not fixed by su(1, 1) covariance [22]. In the following we will work mainly 
with the equivalence classes in X/L-,X. From an associated (composite) field 
P(z) (mod-) the quasiprimary state can be recovered as the residue of the 
~141, O-covariantly normal-ordered field. A second way to fix a representative of 
P(z) (mod=) is by defining an operator on Z via #dzP(z)=P-C,-,,. If P(z) is 
a normal-ordered composite field, P-(, _ ,) will be some complicated expression in 
the modes of the constituent field(s). If the space of these operators is denoted by 
.Z, the situation can symbolicahy be summarized 

$0 P z ES&,--P(z)(mod=)- IP)=resP(z)iO)E2N- P-7) 

Here and below, the subscripts N, M,. _. refer to the L, grading. 
In the following we will restrict attention to the solutions of (3.1) that lie in the 

subspace Zv- i of FN- i. Later these will be argued to provide a generating system 
for all of 9(r + 1). For the solutions in Xv-r one can use the l-l correspondence 
(3.7) to physical quasiprimary states. This leads to a characterization of the 
conserved charges in terms of their symmetry properties. We first note that the 
r-invariance stipulated on the physical states in (2.17) is in fact the exact (maximal 
and minimal) symmetry to be imposed on ah physical states. This follows from the 
structure of the Fock-space resolution of Z [5]. Basically, r corresponds to a 
reflection symmetry in the embedding diagram of the resolution and is the only 
generic symmetry the diagram possesses. This shows that Gwariance is the 
maximal symmetry that all physical states have in common. But with IP) always 
TIP) is a solution of the kernel conditions in (2151, so that working with 
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non-invariant states amounts to a overcounting of solutions and in particular leads 
to the wrong character formula. Thus r-invariance should always be imposed. 

To obtain conserved charges, impose now in addition a cyclic symmetry. Let J2 
be the generator of the cyclic group Z,, , acting by 0: (a,, . . . , lyr, (Y,, = - 0) + 
((u Z,. . .,crr, Q,LY,) on the roots. In terms of the fundamental reflections rir 
1 d i Q r of the Weyl group, R is given by the Coxeter element 0 = r,r2.. . rr. The 
Dynkin automorphism T is implemented by the maximal element of the Weyl 
group. Together one finds that the symmetry of the conserved charges is that of 
the Coxeter subgroup of the Weyl group with relations 

R r+l_ - 1, G= 1, (Lb-)‘= 1. (3.8) 

These are the defining relations of the dihedral group D,, , i.e. the symmetry 
group of a regular polygon. The conserved densities P(z) can thus be character- 
ized as physical fields P(z) which are dihedral invariant modulo total derivatives. 
Equivalently: 

(a) .P(r + 1) is isomorphic* to the space of all physical dihedral invariant 
Fock-space operators 

D,+,I=I, dzI',(z),I =O. 1 
It defines an abelian subalgebra (of the enveloping algebra) of W(sl(r + 1)) for 
central charge c = r - 48s,,‘p’. 

The last point will be shown later. For r > 1, the W-algebra is nonlinear so that 
the specification in brackets is redundant. It should be emphasized that D,, , is 
the exact symmetry of the conserved charges. No solutions of (3.1) exist with less 
(e.g. only cyclic) or more symmetry. For explicit calculations it is convenient to use 
a basis of the Fock space which is adapted to the dihedral symmetry. Such a basis 
is obtained by diagonalizing the Coxeter element 0. Set 

Hi= & j,(l -&r+‘-j))ilQ*a& of+‘= 1, 1 gj<r, (3.9) 

with the inverse given by 

(3.10) 

*In the fornrulutions (a)-(c), “isomorphic” is, of course, not meant in nn ubstruct sense, but refers 
to the respective construction. 
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This are again free fields which are eigenstates of n and transform simply un- 
der r. 

OHi= wiHi, Hiy'=Hr+l-iv 

THi= -Hr+I-i, rs+= -s+ ) 

Hi(z) Hy( w) = Sij4sin2 (3.11) 

where “ * ” denotes complex conjugation. This basis will be used in sect. 4. 
The abelian nature of Ar + 1) is most conveniently seen from the following 

characterization: 

(b) .Y(r + 1) is isomorphic to the space of conserved charges of the quantum 
KdV-type equations 

d,W'=[W',H], l<i<r 

with variables z, 7 in “radial quantisation”. As hamiltonian one may take H = 
#dz(L<,)(z) for r = 1 and H = #dz W*(z), r > 1. 

To see the equivalence to (a), consider first the classical limit. In view of the vast 
literature on this subject, we shall be brief. The results needed here and further 
references can, for example, be found in refs. [lS, 191. To a given simple group, 
here sl(r + l), there are three closely related integrable hierarchies of partial 
differential equations: The KdV-type equations in variables Wi(7, a), 1 Q i G r; the 
modified KdV-type equations in variables HJT, a), 1 <i G r and the lightcone 
affine Toda hierarchy in variables +“(T, a), 1 < n Q r ( - 03 < T < m, -TT < u Q ~1. 
In this case the affine Toda hierarchy with purely imaginary coupling is needed, 
but on the classical level the analytic continuation s++ is, is unproblematic. The 
variables are related as indicated by their notation: The fields W’ are expressed in 
terms of Hi's by the Miura transformation (2.11) and the definition (3.9). The 
derivatives of the Bose fields (2.S) give the modified KdV variables, for example via 
(3.9). Each of the systems admits several hamiltonian formulations (depending on 
the counting two or infinitely many). A distinguished hamiltonian structure (re- 
ferred to as “the second”) is shared by all three hamiltonain systems and in terms 
of the variables C#J(T, u)~~=o takes the form: 

{t#(u),c#(a’)} = $sign(a-a’). (3.12) 

The Miura transformation maps solutions of the KdV-type and modified KdV-type 
equations onto each other. The corresponding statement for the Toda hierarchy 
does not hold. However, all three hamiltonian systems share the same set of 
conservation laws, when expressed in terms of the Bose fields C#I(T, a). In particu- 
lar, the conserved charges of the Toda hierarchy are given by the classical analogue 
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of (3.1) and that of the KdV hierarchy by (I, H} = 0. The results outlined above 
thus yield (b) for the classical case. But because of the common hamiltonian 
structure (3.12), this implies that also the quantum conserved charges, if any, are 
mapped onto each other. 

We add a number of comments. First, the equivalence holds only for the 
conserved charges. As mentioned, even in the classical case, the solution spaces of 
the KdV- and Toda-type equations are not mapped onto each other. Further, the 
lightcone affine Toda fields #Yr, cr) is of course not chiral and does not admit a 
factorization into left- and right-movers on a finite set of basis functions. (In 
contrast to the conformal Toda fields, where this is possible [21]). As outlined in 
the introduction the construction of the conserved densities can, however, be done 
within an auxiliary tree field problem. In view of the strong classical results one 
may try to find direct quantum analogues of the variety of construction principles 
one has for the classical conservation laws. Normal ordering and the central 
extension, however, seem to spoil such attempts [25] or renders them unappealing 
[17]; although (b) provides an efficient way to calculate low-order conservation laws 
[25]. A generalization of the lattice construction in ref. [30] to the sl(r + 1) case 
should in principle be possible. The construction of lattice W-algebras, however, 
and in particular a proof of their closure/associativity on the quantum level seems 
to be difficult. The construction of the quantum monodromy matrix within the 
context of the Quantum Inverse Scattering Method should, of course, also lead to 
the functionals P,. For example in ref. [29] the classical monodromy matrix has 
been constructed. But for quantization in this context, standard techniques again 
require a lattice regularization. A lattice formulation which preserves the integra- 
bility properties would presumably be equivalent to the construction of lattice 
W-algebras. 

The characterization (b) has several direct consequences. First, there exists at 
most one conserved charge IN-, at grades N f 1 mod(r + l), which comes from a 
conserved density. At grades N = 1 mod(r f 1) no such conserved charge exists. 
This follows directly from the corresponding classical results, see e.g. [l&19]. 
Further, the conserved charges IN-i, Nit 1 mod(r + l), if they exist, are mutually 
commuting. To see this, recall from (3.7) that IN-, is in l-l correspondence to a 
physical quasiprimary field P,(z). The decomposition into su(1, 1) blocks fiies the 
commutator of any two such fields up to trilinear structure constants [22,23]. In 
particular, for the modes (P,v>-c,v- i) = IN-, this fixes 

K.Jhfl= c c GAn-I(-)“‘+‘(2m - wRvLLiL+dA,-2)~ 
m>2 (P,,E.+IA,,, -2m) 

(3.13) 

for L, M # 0 mod(r + 1). The notations are: A,,,, = A, -t A,,, - A,, d,, = (A, - 
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A, + AN),,/(2ANln; (x),, = (x)(x + 1). . . (x + n - 1) and if D,, := 
<0l(~,~,,,(&r)-,,l0>, c LMN = &D,, is the 3-point function. From the physical 
state condition (2.16) one infers that states in X, 2 or operators in .%’ are power 
series in sa, h and the oscillator modes s.t. the sum of the powers in sO, h’l2 and 
the oscillator modes is constant and equals N. Symbolically, 

P,= [HN] + (s,)[fzN-‘1 + . . . +(soN-2-2k)[HZ], (3.14) 

where [H”] denotes a Bose field of power A4 in the variables (3.9) and &N-2-2k) 
shall be a polynomial in s0 with leading term sa N-2-2khk. The s,-independent 
term in (3.14) is always Weyl invariant and these terms close among themselves 
under operator product expansion. (The first statement follows, for example, 
from the fact that for s+--, 1 the operators #V;, degenerate (up to cocycles) to 
the horizontal subalgebra of the affine z(r + 1) algebra at level 1 in the vertex 
realization.) To conclude the argument, it suffices to observe that every operator 
<p,>- (L\,d+-I,,,-2j for which the 3-point coupling C&, were nonvanishing, had to be 
dihedral invariant with a leading Weyl invariant term. From the classical case, 
however, it is known that the Weyl-invariant terms are absent from the r.h.s. of 
(3.13), so that in fact the coupling CL”M has to vanish. Notice that a classical 
spectral flow in this way implies the vanishing of a (quantum) three-point function. 
In summary, the conserved charges IN-,, N # 1 mod(r + 1) which survive quanti- 
zation generate an abelian subalgebra of W(sl(r + l)), as claimed in (a>. 

Again, it might be tempting to solve the condition [IL, I,] = 0 quasiclassically as 
a powerseries in h, for example along the lines of ref. [28]. The basic assumption 
(lemma 3.5) in ref. [28] involves nested Poisson brackets and thus may be regarded 
as an attempt of a Weyl quantization. The existence of the quantum-conserved 
charges will however be seen to be a consequence of the solvability of over- 
determined linear systems for the coefficients in an ansatz (3.13). It seems to be 
difficult to investigate the solvability of these equations within such a framework. 

Integrable KdV-type hierarchies are closely related to affine level-l modules see 
e.g. refs. [19,20]. One might therefore suspect that the conserved charges are 
expressible also in terms of the currents J/(Z), a = 1,. . . , dim(sl(r + 1)) of an 
affine Kac-Moody algebra. In fact, there exists an explicit isomorphism which 
maps the Fock-space generators ZN[4] of 4(r + 1) in (a) onto mutually commuting 
operators Z,[x] in the affine algebra. To prepare this let L,(h) be an integrable 
level-l module of the affine algebra & + l), with h^ = (h, 1) the integrable weight. 
Its decomposition with respect to the horizontal subalgebra reads 

L,(A) = CD L&w) @L(A), 
AcP+n(Q+A) 

(3.15) 

with Q the root lattice of sl(r + 1) and L(A) the irreducible sl(r + l)-module of 
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dominant integral weight A. L,(AlA) are the subspaces of sl(r + 1) singlets. They 
are known to exist as irreducible W(sl(r + 1)) modules of central charge c = r. The 
generating fields are the generalized Sugawara operators 

Ci( 2) = &cd” ,‘.’ ai(xa’ . ..X”‘)(Z)) (3.16) 

with the d-symbols chosen symmetric and traceless and N is a normalization 
factor. Further one can show that the modules L,(h IA) and 9YZ(A,O)) for s: 
irrational are isomorphic as irreducible W(sl(r + 1)) modules of central charge 
c = r and c = r - 48 so2p2, respectively, whenever I’ + 2 # (m + 2)(m + 3), m 3 0. 
The isomorphism rr: Li(_h IA) +P(I(A, 0)) can be made explicit. It is given by the 
free field realization of sl(r + 1) in terms of r free Bose fields 4” and r0. + 1)/2 
bosonic Py pairs [31], upon projection onto the py-independent part [5]. In 
particular, for the Sugawara fields one has 

TCk = W"[ 4]+ ctli, + ck[ PY] 3 (3.17) 
where W”[+] is the T-symmetric Miura generator defined in eq. (2.11), Ck[py] is a 
pure py-piece and CA, depends on both, d, and Py. Let now 

I&] =#drZ’,,,+,[x] =$dziYIPN+i[+] =rr-‘I&$] 

denote the pre-images of the conserved charges ZN[4], calculated from the 
operator/state correspondence (3.7). The functionals ZN[ x] are linear bounded 
operators on &(A IA) which are again mutually commuting. This follows from eq. 
(3.13) and the fact that a pure @term on the r.h.s. of [Z,,,,[x], Z,[x]] is absent. As ti 
is an isomorphism, all other (pure Py and mixing) terms also have to drop out. In 
summary: 

(c) Y(r + 1) is isomorphic to the maximal abelian subalgebra of the Sugawara- 
type realization (3.16) of W(sl(r + 1)) for c = r, whenever r + 2 # (m + 2)(m + 3), 
m > 0. The images rrZ,,,[x] of the generators coincide with their Fock space 
counterparts ZJ’&] in (a), upon projection onto the py-independent part. 

4. Existence of Y(2) and Y(3) 

The previous characterizations (a>-(c) may of course still define the empty set. 
The existence of the conservation laws amounts to the solvability of overdeter- 
mined linear systems for the coefficients in a dihedral invariant ansatz of type 
(3.13). In this section, the characterization (a) will be used to establish the 
existence of the infinite-dimensional abelian subalgebras Y(2) and Y(3) by means 
of an algorithmic Fock-space procedure. For sl(2) this verifies a conjecture of A.B. 
Zamolodchikov [l]. We will work with the conserved densities P,(z) mod = , or 
equivalently with physical quasiprimary states Ply E 9?‘. Given a list of such states 
at grade N, one has to search for linear combinations with dihedral symmetry. This 
will be done by elimination of the non-invariant monomials in order of decreasing 
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power. Due to a certain extremal property of the basis in & obtained from the 
Fock-space projections of Verma-module monomials, this elimination process will 
be shown to be self-supporting: Once started, each elimination step guarantees 
that the subsequent one can be performed, until nothing is left to eliminate and a 
conservation law is obtained. The selection of the grades for IN- ,, N # 1 mod(r + 1) 
occurs, because for N = 1 mod(r + 1) the first elimination step fails. 

We will treat the sl(2) and sl(3) case separately. In each case we start with an 
illustrative example, showing the generic features of the process. Then the selec- 
tion of the grades N # 1 mod(r + 1) will be shown to be a consequence of the 
failure of the first elimination step. Finally, the process is shown to be self-support- 
ing. The principle of the latter is generic, but the proof we found involves a certain 
amount of inspection, which limits the result to low-rank cases, so far. 

4.1. ELIMINATION ALGORITHM 

Introduce a double grading on F 

F= G3 & F,(P), 
N>O p=l 

(4.1) 

where F,(p) is the subspace of the grade-A/ sector that contains Fock monomials 
of power less or equal to p. Let ZN-, be the space of operators on F obtained by 
integrating physical quasiprimary fields 

(4.2) 

In sect. 2, ZN- i has been seen to be naturally isomorphic to & as a linear space. 
By construction these operators vanish on IO) and satisfy [#y, K] = 0, 1~ i Q r. 
Now consider the action of r#Y, on ZN... , by commutation. Let 

l<k<iV-1, (4.3) 

be subspaces of “partially conserved” charges. Although [#V;., K] is non-zero for 
K E&- ,(n), it is only of leading power n - 1 in the oscillator modes. Altema- 
tively, YN-i(n> can be characterized as being isomorphic to the coset space of A?,v 
that contains non-invariant Fock monomials of power less or equal to n, modulo 
the invariant terms. One has the finite flag of vector spaces 

.a*,-, qN-,(N- 1) 2 . . . 39,~,(2) qN-,(l)- (4.4) 
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Clearly, S,- i(1) =S,-, is the space of conserved charges at grade N - 1. Set 
now i( > n) = maxtdim S,- ,(n> -Y,-,(n - 1)) and consider the following linear 
optimization problem in dim 2,,, parameters: 

(1) Find a basis of XN-, that fills the flag (4.4) from below, i.e. for which the 
corrected dimensions of s,-,(n) are maximal, dim S,- i(n) = i(> n) + 
dim.Y,,-,(n-l), l~n<N-1. 

We first show that the problem is well posed. To see this, let P,(z) be a generic 
Fock-space ansatz for a physical quasiprimary field at grade N. For example, it can 
be obtained from a generic linear combination of the Fock-space projections of a 
basis of Verma module states upon collection of the coefficients of the respective 
Fock monomials. By construction, P,(z) satisfies [$V;-, PJz)] = 0, 1 d i d r. Then 
try to solve the equations for the operator product expansion, 

1 
V,( Z)PN( w) I - z-w8JQ,,,-z+ . . . +Qkel) +Rk-, + . . . +R,+higherpoles, 

(4.5) 

where Qj, Rj are of power i in the fields H,(z), 1 G i G r. For n = N - 1 this puts 
no further restriction on P,(z) (as the leading term is Weyl invariant). For 
n <N - 1, each recursion step n - 1 + n leads to an overdetermined linear system 
for the coefficients of the monomials of power N,. . . , n + 1 in P,(z). By defini- 
tion, S,- i is isomorphic to the space of physical quasiprimary fields for which this 
process stops at the (N - n)th step. It is essential, that the procedure is recursive, 
which means that every element of YN- ,(n - 1) can be obtained as a linear 
combination of elements in &-i(n), so that (4.5) indeed defines a flag. In 
particular, this guarantees that the problem (1) is well-posed. 

It turns out that the low-lying spaces &-i(2), . . . , .YN-Jpo - 1) are always 
empty, with p. depending on r and N. The solution of (1) is closely related to the 
solution of the following restricted extremal problem: 

(2) Find a basis in XN-i that fills the flag (4.4) from below, subject to the 
constraint Y,-,(l) = 0. 

We expect that a solution of (2) is generically induced by the basis of A?N 
obtained from the Fock space expressions of a monomial basis W!,, . . . WT,,lO> 
(for a suitable subset of partitions vi E Par(i + l), 1 Q i Q r) of 2’. For sl(2) and 
sl(3) we have verified this by explicit inspection and will indicate it to some extent 
in the next sections. In detail one has: 

(3) For s1(2), sl(3) and N s.t. dim A?,v > 1, the solution of (2) is induced by the 
Fock space projections of a monomial Verma module basis of 2,v. The constant 
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p,, is given by 
p. = 3 for s1(2), 
p. = i for s1(3), N even/odd. 

The significance of (2) and (3) to the original problem (1) lies in the fact that for 
N = 1 mod(r + 1) a solution of (2) gives also a solution of (l), while for N # 
1 mod(r + 1) a solution of (2) induces a solution of (1) with dim S,- i(1) = 1. In 
other words, the extremality property of a solution of (2) implies, in particular, the 
existence of a unique conserved charge for N # 1 mod(r + 1). This is because every 
basis satisfying (2) is unstable against the start of a self-supporting elimination 
process, which eventually violates the constraint. To see this, note that the 
recursion procedure which makes problem (1) well-posed, can be reformulated in 
the following way: Start with a list of basis vectors satisfying (2), for example the 
Fock-space projections of a monomial Verma module basis of G&,,. By the 
extremality property (21, the constrained maximal dimensions can be read off from 
this list. Now suppose that among the states containing non-invariant monomials of 
leading power N - 1 a linear combination can be found that contains non-invariant 
monomials of power N - 2 or less, only. We will call this the first elimination step 
(It corresponds to the second step in the recursion of (1)). The resulting state 
defines an element in 4N- ,(N - 2). However, a maximal set of the (physical 
quasiprimary states associated to the) operators in Y,-,(N - 2) is already known 
from the constrained extremal basis. This means that the leading non-invariant 
piece of the new state is forced to lie within the subspace of the space of all 
non-invariant monomials of that power, spanned by the states associated to 
S,- ,(N - 3). Hence a linear combination of these i( > (N - 2)) + 1 states can be 
found that contains non-invariant monomials of one (or more) power(s) less only. 
Clearly, the process iterates. Once started, each recursion step drives the next, 
until an element of S,-,(l) is obtained. The uniqueness of the conserved charge 
is known from characterization (b). In the classical limit, the conserved charge 
IN-, is also known to be of leading power N in the oscillator modes. This implies 
that in the first elimination step only a single linear combination is obtained and 
that the elimination process can, if at all, only be started on the states containing 
non-invariant monomials of power N - 1. Let us refer to this situation by saying 
that the first elimination step is correctly implemented. 

Lemma. A basis of 5$,-i for which the first elimination step is correctly 
implemented and which satisfies the constraints S,-,(2) = . . . =S,-,(p, - 1) = 0 
has the extremal property (2). 

Call the basis referred to in the statement the basis A. Then suppose the 
opposite and take for comparison a basis solving (2), which may be called basis B. 
(As problem (2) is well posed such a basis exists.) Write A(n) - B(n) if on the 
sector of Z,,-,(n) both are related by a linear invertible transformation. By 
assumption we have A(N - 1) - B(N - 1). If A(N - 2) * B(N - 2), the sector 
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/ 
Calc&3te new 

state in &-l(n) 

Fig. 1. Flow diagram for the sl(2) elimination algorithm. 

A(N - 2) contains less elements with the property S,- ,(N - 2) than B(N - 2). 
But since A and B contain the same overall number of elements, basis A has to 
contain more elements than B in some lower sector S,- ,(k), k < N - 2 - which is 
a contradiction to the definition of B. Hence A(N - 2) N B(N - 2). By induction 
one obtains A m B. 

As a consequence, the proof of the extremality property (2) is reduced to a 
check that the first elimination step is correctly implemented, and the verification 
of the constraints on the low-lying spaces .&-,(n). As already indicated, we have 
checked these points for sl(2) and sl(3) by explicit inspection. After an illustrative 
example, we will in the following briefly outline how this can be done. The 
extremality property (3) then derives the unique self-supporting elimination pro- 
cess that can be started at N# 1 mod(r + 1) and leads to a unique conserved 
charge at that grades. In figs. 1 and 2 summarizing flow diagrams of the resulting 
elimination algorithms are given. All vector spaces Y,-,(n) there refer to a 
solution of the constrained extremal problem (2). 

4.2. THE d(2) CASE 

Example. The dihedral group is in this case simply D, z S, = Z2 and acts 
trivially on F by a, + -a,,. The non-invariant monomials to be eliminated are just 
those of odd power. For N = 2,4,6,8 the elimination is trivial. For example at 
N = 6 one has with H(z) = $,(z) and H’ =azH 

(,5%2)(z) =H6+ (12+9)W2H2+ (8s;~sO)W3+ (: -2@“‘, 

( P3)( 2) = 4W2H2 - 4soW3 + (4s; - #v2, (4.6) 
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in G-1 (nj I -. -. , 

iN-l(> 1) = 1 

Fig. 2. Flow diagram for the sK3) elimination algorithm. 

with the z-dependence suppressed on the r.h.s. The linear combination 

is D, invariant. 
P6( 2) = Lt2 + (2s; - f)LC3 (4.7) 

Consider now N = 10 as the first grade where the elimination is not possible on 
mere dimensional grounds. It is convenient to adopt the following symbolic 
notation. Write [HP] for a class of Fock monomials of power p mod = and let (s,‘) 
denote a polynomial in ,sO of maximal power k. In this notation, the noninvariant 
pieces of the states in Xm are of the form 

L-d-2 = (%)[H31 3 (4.8a) 

L-,L?l,= (s,)[H5] + (S,3)[H3], (4.8b) 

L-,L3_,= (S,)[H’] + (S,5)[H5] + (S,3)[H3], (4.8c) 

LTz= (S;)[H’] + (S,SpP] + (S,3)[H3]. (4.8d) 

The number of noninvariant Fock monomials of power p = 3,5,7,9 is respectively 
given by 1,2,1,0. Clearly, [H’] can be eliminated trivially, resulting in 

L5_2 + (s;)L-&, = (S,5)[H5] + ($)[H31. 



184 M. Niedennaier / W(sl(n)) 

Since the space of Fock monomials of power 5 is two-dimensional, the combination 
occurring in (4.9) could in principle be different from that in (4.8b), apparently 
providing an obstruction to further elimination. However, from the preceding 
section we know that by the extremality property (3), the combinations in fact have 
to coincide, which is also confirmed by calculation. Thus [PI can also be 
eliminated resulting in 

LT, + (s,2)L-,L<, + (s,4)L-,L2_, = (q[H31. 
The last step is again trivial giving the conserved density 

P,, = Ls_, + (si)L-,L-, + (s,4)L-,L2_, + (QL-,L-, . 

Explicitly one finds 

(4.10) 

(4.11) 

Pi, = L5m2 - $(Ss; - 5)L%,L-, + &(96s,4 - 64s; - ll)L-,L-, 

+(480$, - 326s; + 116s; + g)L-,L-, , 

in agreement with ref. [26]. 

(4.12) 

Selection of grades. From the classical limit it is known that an elimination 
process can, if at all, only be started on the noninvariant Fock monomials of power 
N - 1. The condition that the noninvariant Fock monomial(s) of power N - 1 can 
be eliminated from the basis vectors of A?,,, in which they occur thus selects the 
grades at which conservation laws can appear. In the case at hand one easily 
checks that for N even L!/2’ and L(!r2)j2 2: L-4L-3L(f;7)/2 = L:3L(!;2)/2 are 
the only physical quasiprimary states containing [HNm3], so that its elimination is 
always possible. In contrast, for N odd, one has L(!?;3)/2L-3 = 0 and L(!T5)12L -5 
= L -4L -3L(!2-‘)/2 E p3p2-/2 is the only physical quasiprimary state contain- 
ing [ HNm4], so that the first elimination step fails. Notice that from the Jacobi 
identity, the absence of conservation laws at odd grades implies here directly that 
the conserved charges # dz P,(z) for N even are in involution. 

Extremality property. We only have to check that the constraints in eq. (3) are 
satisfied. One has dim 2N > 1 iff N > 4 and checks directly that all states in the 
monomial Verma module basis of $‘,v contain odd powers in that case. Thus 
S,-,(l) =.&-i(2) = 0 is satisfied. Further, the state L%N,2 contains a cubic term 
as the only noninvariant monomial and is the only monomial Verma module state 
in A?N with that property. 

4.3. THE d(3) CASE 

Example. For sl(3) the dihedral group still coincides with the Weyl group 
D, = S, G Z, @,Z,. As indicated in sect. 3, it is convenient to use free Bose fields 
diagonalizing the Coxeter element of the Weyl group. Set H = (l/GM,, H* = 
(l/fi)H,, H(z) = C,a,,z-“-‘, so that [a,, a*,] = n8,+,. The non-invariant 
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monomials to be eliminated are those that change under f2H = oH, rH = -H*, 
rs + = -s +. For N = 2,3,5 the (unique) physical quasiprimary states are automati- 
cally D, invariant yielding the required conservation laws at that grades. In 
contrast to the Virasoro case, this cannot be inferred from a counting argument, as 
may be seen from the character formulae in ref. [5]. Explicitly one has 

L(z) = HH* + 24 H’ + H*‘), 

3W(z) = (A- ct~)[f(H~-H*~) +s,(H’H*-H*‘H)] 

+(w*-+$[s,(H*-H**) +2&H’-H*‘)], (4.13) 

from which the D,-symmetry mod 2: is manifest. Calculation of the Fock-space 
form of composite fields is most conveniently done using the field-state correspon- 
dence. The rearrangement formulae of ref. [24] then correspond to normal 
ordering of the oscillator modes. On F the normal-ordered modes of L(z) and 
W(z) are 

n-1 
L-,, =2~,(n - l)(a-,, +a*_,,) + C amkaZmn + C (a-c,r+k& +aZ+kak)p 

k=l k>O 

(4.14) 

3W-,, = (w” - co) 
[ 
2s,2(n - l)(n - 2)(u-, -a?,,) 

n-l 
+s, c (1 -k)(2U_,U,_,,-2U*_kU~-,+U-,a~-, -a*_kak-n) 

k=2 

k>O 

+S, c (2% +n)(a-(,+,,a; -a*_(n+k)ak) 

k>O 

+; c + ( c 
k,l>O,k+lcn k,l>O,k+l>n 

)(a+a-,a,+,-, - a*_/ca%aZ+,-J 

+ c (a- (k+/+,t)aka/-ar~k+,+n)a:aT> * 
I 

(4.15) 
k.l>O 
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From this one finds 
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P,(z) =(3L-2W-d(z) 

= (02-W)[f(H3-H*3)HH* +so(H’HH*2-H*‘H*H2) 

+(4s;- l)(H'2H-H*'2H*) +s,(4s,z - $)(H"H*'-H*"H')] , (4.16) 

which is again manifestly D, invariant. The conservation equations 

can be checked explicitly, with the result given in appendix A. 
For N 2 6 linear combinations of the physical quasiprimary states have to be 

taken to obtain dihedral invariants. Again we shall use a symbolic notation for the 
Fock monomials of grade N. Let [ HJ’ZYZ*~], p > q be shorthand for an equivalence 
class mod = of real Fock monomials of power p + q and R eigenvalue o *(P-q) 
for the HPH*(I, H*PHq pieces, respectively. Set deg[ HPH*"] =p - q and order 
the monomials within a state according to decreasing degree. The case N = 6 
captures the essential features, so consider this for illustration. There are 4 
physical quasiprimary states W!,, L?,, L-,W-,, L?,. It turns out (cf. later) that 
the state L-,W-, cannot be used in the elimination process (and does not give an 
invariant per se.) The non-invariant pieces of the other states are of the form 

(L2_3)(~)=(~,,)[H2H*]+(~;)[H2]. (4.17c) 

The number of non-invariant Fock monomials of type (3,2),(3,1),(2,1>,(2,0) is 
respectively given by 1, 1,2,1. To allow for an elimination, the (3,2)- and (3,1>- 
monomials in W?, and L%, have to occur in the same,linear combination. As a 
consequence of the general recursion argument in subsect. 4.1, this is known to be 
the case, so that with 

w:,+cL~_,= (s;)[H~H*]+(s;)[H~] (4.18) 

one obtains another state of the ((2,1> + (2, ON-type. Again the linear combination 
of the three terms in eq. (4.18) should - and indeed does - coincide with that in 
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eq. (4.17c), so that an invariant linear combination exists. Explicitly one has 

187 

(9W,)( 2) = - $( H6 + H*6 - 2( HH*)3) - lOS,( H’H2 + H*‘H**)HH* 

- 6s,( H + H*)( HH*)* - 3s,z( H’*H*’ +H*‘*H*) 

+ (30s; - 12)H’H*‘HH * - 12s,2( w* + H*‘*) HH* 

+ (12s; - 5s,)( H’3 + H*‘3) - 6$( H’*H*’ + H*‘*H’) 

+ (12s; - 4So’)( wN*‘H* + H*“H’H) - (12s; - 3S,2)( HU2 + H*n*) 

+ (24s; - 9s; + +)H”H*“, (4.19a) 

(L3-,)( 2) = ( HH*)3 + 6s,( H’ + H*‘)( HH*)’ + 12s;( H” + H*‘2) HH* 

- ;( H”H** + H*‘*H*) + (24s; - 6)H’H*‘HH* 

+ (24s; + $s,)( H”H*’ + H*‘*H’) 

+ 8s,“( H” + H*‘3) + 5s,( H”H*‘H* + H*“H’H) 

- 4s;( Hfr2 + H*“) + (8s; - 3) H”H*“, (4.19b) 

(Lc,)( 2) = Hr2H** + H*‘“H* + 2H’H*‘HH* - 6s,( H’*H*’ + H*‘*H’) 

- 4s,( H”H*‘H* +H*“H’H) +4s,z( Hrr2+H*“‘) + (8s;~+)H”H*“. 

(4.19c) 

Proceeding along the lines indicated, one finds the invariant 

P6 = 9w:, + L3_, + (3s; + f)L’-3 

= - f(H6 + H*6 - 5( HZ-I*)‘) - lOs,( H’H* + H*‘H**) HH* 

- $( H’*H** + H*‘*H*) + (604 _ $)HIH*‘HH* 

+ (20s; - 5s,)( Hr3 + H*‘3) + (48s; - 17.x; + $)H”H*” (4.20) 
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Conservation has again been checked explicitly, with the result given in the 
appendix. 

Selection of grades. From eq. (4.13) one sees that the physical quasiprimary 
states of W(sl(n>) fall into two classes according to their parity under H + -H, 
s++ -s+. The (Fock-space projection of) Verma module states with an even/odd 
number of W’s have even/odd parity. Both classes cannot mix in the elimination 
process. This is because the relative coefficients in a proposed linear combination 
that mixes both classes, have to involve odd powers of sO. However, after multipli- 
cation with an odd power of s0 physical states lie in the kernel of the projection T 
and thus cannot be used to form new T-invariant linear combinations. From the 
classical limit it is known that the recursion process has to start on the basis vectors 
with noninvariant monomials of maximal power p + 4 = N - 1. To list these states, 
parametrize 

N=6k+2s, N even, s=o,1,2, 
N=6k+3+2s, Nodd, k>O. (4.21) 

There are k + 1 states in both cases: 

L”_,wz;, LS_+23wy,.. .) Ly+“wz,, L3_CS) N even, 

Lt2w?“,+‘, Ls-+;wl;- )...) L3_“:Sw-3) N odd. (4.22) 

Together with the above remarks this implies in particular that the conserved 
densities P,,, of even/odd grade have even/odd parity. 

To proceed we note the symbolic form of the states containing noninvariant 
Fock monomials of leading power N - 1. 

N even : 

Ls-,W!: = (so) [H 6k+sHW-1 +Hbk+s-LHW 

+(H 
6k+s-3HW+2 + H6k+s-4HW+3) + . . . +jy3k+sH*3k+S-l] + o(so’), 

LS_+,~W~/;-~ = (so) [ (H6k+dH*s+2 + H6k+s-4H*s+3) 

+ . . . +H3k+SH*3k+S-‘] + o(s;), 

Nodd: 
LS_~,,:+’ = (So)[H6k+s+3H*S-l +H6k+s+2H+S 

(4.23) 

+(H 
6k+sHW+2 + H6k+S-lHW+3) + . . . +H3k+s+2H*3k+r] + o(s;), 

~s_+23w~~--l = (SO)[(H6k+sH*S+2+H6k+s-IH*~+3) 

+ . . . 
+H3k+s+ZH*3k+S 

I + O(So’>~ (4.24) 

where the invariant pieces have been suppressed. One can read off two necessary 
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conditions to get the recursion started: The underlined terms have to be absent 
and the bracketed linear combinations in LS-,W.?& LS-+:W!k,-2 and 
L”-,w:“,+ ‘, LS_+,3wy, respectively have to coincide. The latter can be checked 
by inspection to be always the case. (The linear combination arises from (H3 - 
H*3)p in L”-,Wf, and from (HH*)3(H3-H*3)p-2 in LS_‘23WfT2.) The first 
condition leads to the selection of grades. For s = 0 the first underlined term is 
absent and the second is a total derivative. For s = 1 both underlined terms 
combine to a total derivative. (The terms in question are Lm2W); = D, inv. + 
2s,(w2 - w)“‘(~/~“‘-‘)[~H~“‘H*’ + mH”“‘-‘H/H* + . . . ] + o(si).) For s = 2 a 
piece survives nonvanishing mod = , providing an obstruction to the first elimina- 
tion step. Thus, for s # 2 i.e. N # 1 mod 3 the noninvariant monomials of power 
N - 1 and subleading degree p - q = 6k - 2, 6k - 4 can be eliminated. One can 
check that the remaining noninvariant monomials of power N - 1 and subleading 
degree p -q can now trivially be eliminated from the states in eq. (4.22). Some 
details are given in appendix B. The result is a linear combination of the states 
(4.22) containing noninvariant monomials of power N - 2 and less only. In fact, 
also the non-invariant monomials of power N - 2 get eliminated in the same step. 
This is because there is no Verma module monomials in X?,,, with the proper 
parity that contain noninvariant Fock monomials of leading power N - 2. The 
general recursion argument of subsect. 4.1 thus tells that in the same linear 
combination that eliminates the power N - 1 noninvariant monomials also the 
power N - 2 terms drop out. The above N = 6 example illustrates this feature. In 
fig. 2, the situation has been summarized in a flow diagram. 

Extremality property. Again, we have to verify the constraints in eq. (3). One 
has dim $N > 1 iff N > 5 and verifies directly that all states in the monomial 
Verma module basis contain noninvariant terms in that case. For N even, the state 
(L-N,2)2 is the only state containing noninvariant monomials of leading power 3. 
Likewise, for N odd, the state L-(,- ,j,2W-cN+,b,2 is the only one containing 
noninvariant monomials of power 4 and 3 only. From subsect. 4.1 it is known that 
an elimination process can only be started on the Verma module monomials 
containing noninvariant Fock monomials of power N - 1. As seen before, a 
recursion process thus started eliminates always noninvariant Fock monomials of 
subsequent pairs of powers (N - 1, N - 2), (N - 3, N - 4), . . . . In particular, this 
shows that S,-,(2) for N even and Y,-,(3) for N odd are empty. (Y,-,(2) is 
trivially empty for N odd.) The constraints in eq. (3) are thus satisfied and the 
uniqueness of the proposed recursion process guarantees the extremality property. 

4.4. THE ~$4) CASE 

As outlined in subsect. 4.1, we expect that similar recursion processes exist for 
all members of the sl(r + 1) series. Since sl(4) is the first case where the dihedral 
group D, differs from the Weyl group, we have checked explicitly, that the first few 
invariants exist in the expected form. Set L := W2, W:= W3, V:= W4 for the 
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r-invariant Miura generators. Using the basis (3.81, (3.10) with H := H,, h := +H,, 
one finds 

L = +( HH* + h’) + 2s,( H’ + H*’ + h’) , (4.25) 

W = $i( H2 - H*2) h + +,( HH’ - H*H*’ + H*H’ - HH*‘) 

+&((H’-H*‘)h+(H-H*)h’) -8$(H”-H*“), (4.26) 

8V= - ;(H4 + 2( HH*)2 + H*” - 8HH*h2 + 4h4) 

+so((2h’+H’+H*‘)(H2+H*2-2h2) -2(H’-H*‘)(H-H*)h) 

+((2h2-HZ-H*‘)(H+H*)) 

-4s,2((HZ+H*2- 2h2T- ((H’+H*‘+2h’)(H+H*))’ 

+H” + H*” + 2( H’ + H*‘)h’ + 2h”) + 16&H + H* + 2,)“‘. (4.27) 

One checks that L, W and 

8V+ (L’) = - i( H4 - 30( HH*)2 + H*4 - 66HH*h2 + 60h4) 

+ 3s,( HZ + H*2)h’ - 4s,2hr2 (4.28) 

are D, invariant modulo total derivatives. 

5. Conclusions 

Infinite-dimensional abelian subalgebras of the extended conformal algebras 
W(sl(r + 1)) have been constructed. As outlined in sect. 1 these functionals can be 
used to produce UV-finite expressions for the conserved charges in involution of 
affine Toda-type systems. The construction does not rely on a physical interpreta- 
tion of the W(sl(r + l&algebra employed. Within the context of “perturbed 
conformal field theory” it is, however, natural to expect it to play the role of the 
chiral field algebra in conformal field theory corresponding to some UV-scaling 
limit. In that case, the above construction principle would imply that the function- 
als Z,,,[8,4] can already be identified in the conformal field theory. Of course, they 
would not be conserved charges of the conformal field theory or of the free fields 
invoked, in any non-trivial sense. Let cP~,,: P’(Z(O, 0)) +S?(I(B, ON denote the 
chiral primary field of conformal weight A = (r + l)s:- r in a unitary sl(r + l)- 
minimal model with s:=p/(p + l), p 2 r + 2. The field @Jz> 8 s,Jf) can then 
be used as a perturbation operator in the sense of ref. [l]. One can argue that the 
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conserved charges constructed here survive the specialization to these particular 
rational values of s:. This means that they also provide an infinite set of conserved 
charges, in the sense of ref. [l], for the above perturbations. This holds indepen- 
dently of whether or not the perturbed massive theories can be constructed from 
truncations of (suitably defined) imaginary coupling affine Toda systems. 

For real coupling affine Toda theories, there is a conjectured duality between 
the strong and the weak coupling regime is++ l/is+. This symmetry is expected to 
hold for the S-matrix [32] and in ref. [33] a candidate for the exact wave-function 
renormalization was obtained with the same symmetry. In particular, the conserved 
charges ZJ$] should be invariant under is ++ l/is+. Conversely, the exact s+-+ 
- l/s+ symmetry forced upon the functionals Z,,,[+] by the irrational W(sl(n)> 
representation theory, might be taken as the basic ingredient for a proof of these 
expectations on a nonperturbative level. The representation theoretical construc- 
tion of the conserved charges automatically takes care of the UV-divergences. 
Keeping the coupling constant unrenormalized, the (finite) mass and wave-func- 
tion renormalization of a lagrangian formulation are, of course, missed. The above 
discussion, however, suggests that the functionals Z,,,[&J] of a lagrangian formula- 
tion can be obtained from the representation theoretical ones just be substituting 
the resealed fields. 

Endowed with the infinite set of conserved charges in involution, the next task is 
to find the common eigenstates and the spectrum. The only solution technique for 
this problem, known so far, is the (original coordinate-) Bethe ansatz and its 
variants. (A recent review is ref. [34].) In essence, this amounts to the study of 
infinite-dimensional representations of the Yang-Baxter-Faddeev (“quantum 
group”) algebra. Very little seems to be known in general and the approximation 
by finite-dimensional representations seems to be problematic. For nonzero cen- 
tral extension, on the other hand, affine algebras and W-algebras possess only 
infinite-dimensional representations, so that a formulation of the eigenvalue prob- 
lem in this context might yield insight, supplementary and alterative to the Bethe 
ansatz. 

Appendix A 

DETAILS OF THE d(3) RECURSION PROCESS 

Here we collect some details to display the origin of the two elimination cycles 
that appear in the sl(3) recursion process. 

To comment on the first elimination step, notice that generally the terms of 
power p + q = N - 1 come in triples. The last term (w.r.t. the p -q grading) in 
each triple is D, invariant, while the preceding pair differs from the corresponding 
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one in subsequent LW states only by an overall factor. For example for N even 

L~,w~~ = D, inv.+ ( so> [H~~+sH*‘-’ + ~bk+s-l~*’ + ~6k+s-2~*‘+‘1 

+ H6k+s-3HW+2 + H6k+s-4HW+3) + H6k+s-SH*S+41 + . . . 

+H3k+sH*3k+S- 1 
] + o(d) 1 

,7~_+;jwz3-2 = D, inv. + ( so) [ (H6k+s-JH*‘+2 + H6k+sd4H*‘+3) 

+H6k+s--5HW+41 + . . . +H3k+SH*3k+‘-‘] + o(s;), (A.11 

where “I” separates the triples. For s # 2, the underline terms are absent and the 
bracketed terms coincide up to an overall factor, so that one has a linear 
combination of the form 

L”_,W!$ + cl LsJ~W?~-2 = D, inv. + (so) [ ( H6k+s-6H*s+5 + H6k+s-7H*s+6) 

+H6k+s-8HW+7 I + . . . +H 6k+sH*3k+S- I] + o(s;). 

(A-2) 
Again, the bracketed linear combination should - and indeed does - coincide 
with the corresponding one in Ls_+26W!!-4, so that further elimination is possible, 
etc. One ends up with a linear combination 

L”- Wlk 4-c LS-+3WZk-2 -I- 2 3 I 2 3 a** +ckL3!+s 2 

~ D, inv. + (sg)[ H6k+s-2H*s + H6k+s-3H*s+I + H6k+s-4Hls+21 + . . .] 

+(d)[H 
6k+s-3HW + H6k+s-4HW+l +H6k+s-sH*S+2 + . . .] + o(s‘t), 

(A.31 

from which the o&)-terms are absent by construction. As has been argued before, 
also the noninvariant monomials of the o(s,$ piece (a few of which have been 
displayed) will drop out, so that in effect a state in S,- ,( N - 3) is obtained. This 
state can then be used to continue the elimination process on the &- ,(N - 3) 
monomial basis vectors. These come in triples with the same [HPH*“] structure 

Ls-2L23wy, L”_“;sL2_3w:k,-4,. . .) L!yL53 9 

Ls-2L-3w-4w~k,-3, L”-+~L_,w_,wlk,-5,..., L3y5L-3w-4w-3’ 

LsJ22w~4w~k,-4, L~--pi~,wy,. . . ) L3!k:s-4w:4 5 
(A.41 
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and combine with the new state to a S,- ,(N - 4) combination, etc. One may also 
verify that a (new) recursion process cannot be started from the states (B.4) alone. 

The situation for N odd is analogous. 
Below we have listed the sl(3) conservation laws at low grades. They satisfy 

Px -3w-,= (&w)[f(H3-HH*3) +so(H’H* -H*‘H)], 

Q, 2: - f(to* - o)( s: - l)(H-H*)V,, (A-6) 

Ps=3L-2w-3=(W2- [ w) f(H”-H*3)HH* +q(H’HH**-H*‘H*H*) 

+(4s,z- 1)(W2H-H*‘*H*) +s,(4$- i)(H”H*‘-PH’)], 

Q3=@*- (fs: -2)(H3+*3) - i(3s2, - 13)(H*H* -H”2H) 

l 3 +z s+ ( - 7s++ -5 
s+ 1 

(H’H-H*‘H*) - s: +s+- $ (H’H* -H*‘H) 
( 1 

39s: + 34s: + 4 + ; 
s+ 

(H”-H*“) vo, 
I 

VW 

Ps = 9w2, + L3_, + (3s; + f) Lz_, 

= -$(fp+H*L 5( Hz-z*)3) - lOs,( H’H2 + H*‘H*pHH* 

-$,2(H’*H**+H*‘*H*) + (60&j- %)H’H*‘HH* 

+ (20s; - 5s,)( H’3 + H*‘3) + (48s; - 17s; + $) H”H*“, 

H3H*-H*H+yH*H**) + (15s++ ;)(H’H*+H*%I**) 

+ ;(H’H*’ +H*‘H*) + (30s+- C)(H/ + ,*7*,* 

(H”H +H*“H* + 2H’* + 2H*‘*) + 

(H”H* + H*“H) + 15s: -~+~-$(H~~+H*+o. 

(A-8) 
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