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The phase structure of the U( 1 )L®U( 1 )R symmetric lattice Yukawa model with a mirror pair of fermion fields is explored by 
numerical Monte Carlo simulation. Its implications on the continuum physics are discussed. 

I. Introduction 

Simple prototype scalar-fermion models on the 
lattice, which have some qualitative features in com- 
mon with the Higgs-Yukawa sector of the standard 
model, are the chiral SU(2)L~)SU(2)~ symmetric 
[ 1 ] and U( 1 )L®U( 1 )R symmetric [2-4] models 
with mirror pairs of  fermion fields. In previous pa- 
pers the U(  1 )L®U( 1 )g model was investigated in 
the vicinity of the gaussian fixed point at zero cou- 
plings both in the symmetric and broken phases by 
applying lattice perturbation theory, hopping param- 
eter expansion and numerical simulation techniques 
[2-5 ]. In order to explore the regions of very strong 
bare Yukawa couplings, far away from the gaussian 
fixed point, the knowledge of the detailed phase 
structure is necessary. In recent studies of  several dif- 
ferent lattice scalar-fermion models a rich phase 
structure was revealed [ 6-13 ], more or less indepen- 
dently of the number of scalar and fermion field com- 
ponents, the global symmetry group and the lattice 
formulation. (For recent reviews see also ref. [ 14] ). 

In this letter we investigate in detail the phase 
structure of  the U ( 1 ) L ~ U ( 1 ) R symmetric Yukawa 
model with a mirror pair of fermion fields. Our aim 
is to prepare future non-perturbative studies in the 
region of very strong bare Yukawa couplings, and to 
compare the qualitative features of  the phase struc- 
ture to other, recently investigated lattice Yukawa 
models. There are many interesting questions about 
the qualitative features of  strongly interacting scalar- 
fermion models, which can be studied in a non-per- 

turbative lattice formulation. I f  there is no non-triv- 
ial fixed point, the continuum limit is trivial, and 
there is an upper bound on the renormalized scalar 
self-coupling at any fixed values of the Yukawa cou- 
plings. The lower bound arises from the so-called 
"vacuum stability" requirement, which is usually 
formulated in the framework of perturbation theory. 
(See, for instance, ref. [15].)  On the lattice the 
boundary corresponding to vanishing bare scalar self- 
coupling yields this "vacuum stability bound". (See 
ref. [4 ] for a detailed discussion on this matter.) Data 
about the allowed region between the lower and up- 
per bounds on the renormalized quartic scalar cou- 
pling can be obtained by numerical Monte Carlo sim- 
ulations. The first results on a small lattice (43× 8), 
and the phase structure in the vicinity of the gaussian 
fixed point and in some other limiting cases were al- 
ready reported in ref. [ 5 ]. 

The notations used in this paper are the same as in 
refs. [2-4] .  For instance, the action of the 
U ( 1 )L ~ U ( 1 )R model is given by eq. ( 1 ) in ref. [ 3 ]. 
For the definition of the renormalized quantities in 
the symmetric and broken phases see, respectively, 
ref. [ 3 ] and ref. [4 ]. In the next section we present 
the phase structure of our model in different limiting 
cases and at intermediate values of the Yukawa cou- 
plings. Tuning in the broken phase is discussed in 
section 3. Then we will conclude this report in the 
last section by some discussions on the continuum 
limit. 
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2. Phase structure 

We explore the phase structure of  our model both 
analytically and numerically (on 4 3 X 8 and 4 3 X 16 
lattices). The bare scalar self-coupling 2 is fixed to be 
infinite (the so-called Ising limit). This is not a seri- 
ous restriction, because our previous experience tells 
that the qualitative features are independent of 2. 

As a function of the fermion hopping parameter 
(K) and bare Yukawa coupling of fermion (G v) and 
mirror fermion (Gx) there are four limiting cases, in 
which the model reduces to the pure two-component 
~Z) 4 model. Namely at K=0 ,  ~ while IGvl and [Gzl 
are finite, and [G~, = [Gxl = 0, ~ at finite values of K. 
In these four limits, as a function of the scalar hop- 
ping parameter x, at X=Ko-0.15,  the model has a 
second order phase transition from the ferromag- 
netic phase (denoted by FM phase) to the symmetric 
or paramagnetic phase (denoted by PM phase). In 
the FM phase the scalar field ¢x has a non-zero vac- 
uum expectation value. At negative scalar hopping 
parameter x =  - t¢o-~ - 0.15 there is another second 
order phase transition from the PM phase to the anti- 
ferromagnetic phase (denoted by AFM phase), where 
the staggered scalar field 

~x=--(--1)x'+x2+x3+x4Ox (1) 

has a non-zero vacuum expectation value. In the FM 
and AFM phases, the U( 1 )L®U( 1 )R chiral symme- 
try is spontaneously broken to a vector-like U(1 ) 
symmetry by the vacuum expectation values of the 
scalar and staggered scalar fields, respectively. 

In the very weak and strong Yukawa-coupling lim- 
its, we carry out small- and large-G expansions of  the 
fermion determinant in the effective bosonic action 
to next to leading order and find 

2 2 2 •c = too - -  N f K  (Gv-2GvGz+Gx) (2) 

for weak Yukawa couplings, and 

tq =Xo__2NfK2 ( 1 ,  2 1 )  
G~' Gx + -~z 

at strong couplings, where Nf is the number of fer- 
mion-mirror pairs. (Nf= 2 in our case. ) 

Since in our model there are two mass scales (the 
scalar and fermion masses), the continuum limit 
should be defined such that both masses go to zero 

while their ratio is kept constant. Therefore we also 
have to study the critical surface on which the fer- 
mion mass vanishes. The value of K where this criti- 
cal surface passes through is denoted by Kc. At 
Gv= Gz=0, we have K¢= ~, since the fermions are 
free. At small [ Gvl and [ G~], one can estimate K~ by 
using one-loop bare perturbation theory (see ref. 
[ 3 ] ). We find, qualitatively, 

Kc"- aslG~,Gz[/" ifGvGx~>0, 

K¢/" aslG~,Gzl ,~ i fG~,Gx<0.  

This qualitative behaviour has been seen in our nu- 
merical simulations. From the above analysis, we 
know the phase structure near the gaussian fixed point 
(see fig. 1 in ref. [ 5 ] ). 

At intermediate values of the Yukawa couplings we 
need to rely on Monte Carlo simulations, to explore 
the phase structure. The phase boundaries were al- 
ways searched in the (K, x)-plane at some fixed val- 
ues of  the Yukawa couplings G~, and G z. The algo- 
rithm we use is the unbiased hybrid Monte Carlo 
method [ 16 ]. As discussed in ref. [ 3 ], this requires 
the flavour doubling of the fermion spectrum (i.e.: 
N f =  2). The number of leapfrog steps per trajectory 
was chosen randomly between 3 and 10. The step size 
is tuned such that the acceptance rate is around 75%. 
The necessary inversions of the fermion matrix were 
done by the conjugate gradient iteration until the re- 
siduum was smaller than 10 -a times the length 
squared of the input vector. We chose periodic 
boundary conditions along the spatial directions. In 
the time direction periodic boundary conditions were 
taken for the scalar field and antiperiodic ones for the 
fermions. 

We find that when [ G~, I and [ G~[ are weak, as we 
move down along the x-direction at any K value, the 
system will go from the FM phase to the PM and then 
to the AFM phase. We also find that the critical line 
separating the FM and PM phases bends down as we 
go to larger K values, and then it goes up gradually 
and levels off as K goes to infinity. The same is true 
for the critical line between PM and AFM phases. 
However, the curvature of bending of this lower crit- 
ical line is smaller than that of  the upper one. We ex- 
plore this matter in some detail at (Gv=0.1,  Gz= 
- 0.3). The results are plotted in fig. I. We tune Jc to 
find the points in the PM phase where either the sca- 
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Fig. 1. The phase structure of our model at 2=oo and (Gv=0.1, 
G~=-0.3) is shown, as measured by Monte Carlo simulations 
on the 43X 8 lattice. We use open circles to represent points in 
the PM phase. Along the full lines the scalar mass is mR= 1. On 
the almost vertical dashed lines the fermion mass is I/IR I -~ 1. The 
FM-PM and PM-AFM phase boundaries are near the full lines. 
No FI phase is found here. 

lar mass or the staggered scalar mass is around 1.0 on 
our 43X 8 lattice. (The staggered scalar mass is de- 

fined in the same way as the scalar mass, only the sca- 
lar field Cx is replaced everywhere by the staggered 
scalar field Cx in ( 1 ). ) The true critical line is in the 
vicinity of these points. We also look for points where 
the fermion mass is around 1.0. In the figure the cor- 
responding points are connected by full lines (for the 
scalar) and dashed lines (for the fermion) ,  in order 
to give some idea about the position of the critical 
lines in the (K, x)-plane. As shown in the figure, when 
K~> 0.3, the two critical lines with zero scalar mass do 
go up and then level off. For the critical line with zero 
fermion mass we find K c -  0.125 here. It is interesting 
to note that this critical line is not a phase boundary:  
there is the same phase on both sides, only the sign of 
the renormalized fermion mass is opposite. (Note 
that this sign has no physical significance, since it can 
be transformed away by a ys-transformation [ 3 ]. ) 

As we go to larger values of I Gv I and I Gxl, a new 
phase with both ferromagnetic and antiferromag- 
netic long-range order (i.e. non-zero vacuum expec- 
tat ion values of both Cx and Cx) shows up in the 
Monte Carlo simulations. This is because the F M -  

PM boundary  catches the P M - A F M  boundary  at 
negative x and crosses it. We call this ferrimagnetic 
(FI )  phase. However, for instance at (G~,=0.1, 
Gx= - 1.0), the width of this FI phase in the x-direc- 
t ion is still quite narrow. The results are shown in fig. 
2. As expected, when we go to larger K values the FI 
phase disappears, because the F M - P M  boundary  
moves again above the P M - A F M  boundary,  and the 

phase structure is again like that of the pure scalar 
model: the system goes from the FM to PM and then 
to the AFM phase, if one goes from positive to nega- 
tive x values at fixed K. A similar phase structure with 
FM, PM, AFM and FI phases was observed earlier in 
other scalar-fermion models on the lattice [ 6-13 ]. 

Our data also show that there is a point  in the (K, 
x)-plane around which the FM, PM, FI and AFM 

phases coexist. A consequence of such a point  (often 
called in the literature "point  A")  is that in this re- 
gion both the scalar mass and the staggered scalar 
mass are small. This is the explanation of the "unex- 
pected" behaviour  of the scalar propagator as a func- 
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Fig. 2. The same as fig. 1 at 2 = oo and (G~, = 0.1, Gz = - 1.0 ). The 
FI phase is found to exist in a small region in the middle of the 
(K, x)-plane, where the FM-PM boundary goes slightly below 
the PM-AFM boundary. As in fig. 1, we use open circles to rep- 
resent points in the PM phase. Points in the FM, FI and AFM 
phases are denoted by crosses, open triangles and full circles, re- 
spectively. The dash-dotted line T indicates the range in x where 
a systematic scan of the renormalized parameters was per- 
formed. The other dash-dotted line L shows the position of the 
points for fig. 3. 
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t ion of  lattice momenta  [10].  Our numerical data 
confirm this behaviour, as shown in fig. 3, where the 
two scalar masses on the 43 × 8 lattice at (G v = 0.1, 
Gz= - 1.0) are displayed along the line L in fig. 2. 

Another interesting question is the position o f  the 
critical line on which the fermion mass vanishes. 
Compared to the phase structure at (Gv=0.1 ,  
Gx= - 0 . 3  ), we find that this line does move out to a 
slightly larger K value: Kc = 0.15. This is in accord- 
ance with the one-loop prediction. Of  course, the one- 
loop prediction breaks down when Yukawa cou- 
plings are strong; therefore, as the couplings are even 
larger, we have to resort to Monte Carlo simulations. 
We also notice that at (Gv=0.1 ,  G x = -  1.0) the FI 
phase starts to show up at some K value still larger 
than 0.15 (around K=0.21  ). 

The qualitative features o f  the phase structure do 
not seem to depend much on the relative magnitude 
o f  the two Yukawa couplings. Up  to now asymmetric 
situations with I Gvl << IGxl were discussed, but at 
Gv = - G x the situation is quite similar. For instance, 
at G v = -  Gx= 2.0, we find a similar phase structure 
as at (Gv=0.1 ,  Gx= -1 .0) ,  but the width o f  the FI 
phase gets much wider in the x-direction, as shown 
by fig. 4. The width of  the FI phase grows as we go to 
larger values o f  IGv[ and IG~I. Nevertheless, at 
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Fig. 3. Mass values for the scalar field ~x (open squares) and for 
the staggered scalar field @x (crosses) versus x at (K=0.18, 
Gv=0.1, Gx= - 1.0) in the PM phase, along the line L in fig. 2. 
It is seen that there is a value for x where rnR~ -~ mR~ ----- 1. 
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Fig. 4. The phase structure at (2=~, G,= -Gx=2.0 ). For the 
notation convention of points in different phases see caption of 
fig. 2. The FI phase is found to exist in a large region at negative 
x values. 

G ~ , = - G x = 2 . 0  we observe that for x = - l . 0  and 
K=0.41  the system is in the AFM phase. This is in 
agreement with our conjecture: at any fixed values of  
K, G~, and G x, as we move to larger and larger nega- 
tive x, the system should at some point go to the AFM 
phase. That is, the width o f  the FI phase remains fi- 
nite. Concerning the behaviour o f  the fermion mass 
at G v = - G x = 2.0 we find that it decreases monoton-  
ically as we go to larger values of  K, starting at 
K=0.01 .  At K=0.39 ,  it is still large, namely around 
/~R -~ 2.0. This indicates that the critical line on which 
the fermion mass vanishes passes through the FM, FI 
and AFM phases. Since for GvGx< 0 we know that Kc 
monotonically increases as I GvGxI increases, it is very 
plausible that at some smaller I a~,Gxl value (a guess 
is G v = - G  x--- 1.7 ) the K =  Kc plane will intersect the 
critical line along which the PM, FM, AFM and FI 
phases coexist. This intersecting point, which we call 
Mb is an interesting multicritical point o f  the model. 
It may be a candidate for a possible non-trivial fixed 
point. 

As we go to even larger I G~,I and I Gxl at any finite 
K, based on the knowledge of  the phase structure in 
the limiting cases, we know that the FI phase will 
eventually disappear. This FI phase will also vanish 
if we go to larger and larger Kvalues at any finite G~,, 
G r What is unknown is the limit where, say, both K 
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and I G~I go to infinity with their ratio fixed at some 
finite value, and G v is kept finite. In order to treat 
this limit numerically, one has to remember that up 
to now the normalization of the fermion field is fixed, 
according to refs. [ 3,4 ], by the ~-~ mixing mass term: 
//-= 1. Therefore, if I axl ~ov, then the ratio fi/G z is 
going to zero. In this limit a convenient normaliza- 
tion for the numerical simulations is, say, I Gzl -= 1. 
The other bare fermionic couplings are then: //= 
G v =0  and K finite. We explored this particular 

I axl ~oo limit numerically on a 43X 8 lattice. Here 
the phase structure is investigated in the (K/IGxl, x) 
plane. From the limiting cases mentioned before, we 
know that at K/IGxI=O, oo, the phase structure is 
the same as that of the pure scalar model, i.e. the sys- 
tem undergoes a second order phase transition from 
the FM to PM (PM to AFM) phases at x~---0.15 
( -  0.15). What is interesting is the phase structure 
at intermediate values of K/I Gx 1. We want to know 
whether the FI phase continues to exist there. From 
our simulations on the 43× 8 lattice, the answer is 
"yes": the FI phase does exist. This means that in the 
fl= 1 normalization, as we increase I Gxl indefinitely, 
the FI phase shifts to larger and larger K values, and 
eventually goes to K=  oo when I Gx I = oo. 

Another interesting question is the position of the 
critical line where the fermion mass is zero. From our 
simulations at finite Yukawa couplings, we found that 
this critical line moves out to larger and larger K val- 
ues as we increase I GxI. Does it go to infinite Kin the 
I axl --,~ limit? Starting from g/laxl  =0.02 we find 
from our data that the fermion mass monotonically 
increases as K~ I Gzl increases. Therefore K¢/I Gx I <<. 
0.02, and it is very likely that gdlaxl  =0.0. This in- 
dicates that in the/i= 1 normalization the critical line 
for zero fermion mass will stay at some finite value 
of K and 1621 ~oo. Since the critical point around 
which the PM, FM, AFM and FI phases in the (K, x) 
plane coexist appears to be at finite K/I Gxl, some- 
where for large [ G x I it has to cross again the critical 
surface with zero fermion mass. This second multi- 
critical point, which we call M2, is presumably equiv- 
alent to M l. 

In our study of the phase structure, no evidence of 
a first order phase transition has even been found. All 
transitions between various phases at the reported 
Yukawa couplings are consistent with a second order 

phase transition. Of course, this statement has to be 
confirmed on larger lattices. 

3. Tuning in the broken phase 

According to the numerical data the physically in- 
teresting broken phase is the FM phase, because in 
the AFM phase the renormalized Yukawa couplings 
are always very small, close to zero. Since our impor- 
tant goal is to explore the allowed region of renor- 
malized couplings, we should be able to use our 
knowledge of the phase diagram in order to suitably 
tune the bare parameters in the FM phase of the 
model. For instance, the tuning should be performed 
in such a way, that the Higgs-scalar mass mR -- 1, and 
the renormalized fermion mass /tR--~ 0. The latter 
value corresponds to a small renormalized mixing 
angle o/R ~ - - - 0  between fermion and mirror fermion 
(see ref. [4 ] for the precise definitions). The numer- 
ical data show that at G~ = 0.1 for mR ----- 1, ]'/R ~--- 0 the 
renormalized Yukawa coupling of the fermion (i.e. 
the ratio of its mass to the renormalized vacuum ex- 
pectation value) is about GRv "0.75. AS was stated 
above, the critical value of K where the fermion mass 
vanishes does not shift very much in the region of 
moderately strong I G~I, and is estimated to be 
Kc-~ 0.15 for (G v = 0.1, G x = - 1.0). In addition to the 
exploration of the phase diagram, at these values of 
the Yukawa couplings we performed a systematic scan 
in the FM phase on a 43 × 8 lattice along the critical 
line at K= 0.15 (see fig. 2), where x was varied be- 
tween x=  - 0.05 and - 0.12. To study the K-depen- 
dence of the renormalized parameters we ran a few 
more points at neighbouring values of Kc, namely 
K=0.14 and K=0.16. 

The first observation is that GRv changes from 
GRv ---- 0.5 at K= 0.14 to GRv = 1.0 at K= 0.16 at fixed 
values ofx. The scan along the critical line at K= 0.15 
revealed that GRv is always around 0.75, except for 
x~< -0 .10  where GR,, increases. The scalar mass mR 
turns Out tO be quite independent of x along K=  0.15 
on the 43× 8 lattice, since mR stays around 1.6 as one 
approaches the critical line of the phase transition to 
the PM phase. However, the "magnetization" (the 
vacuum expectation value of the scalar field) is de- 
creasing almost linearly from 0.36 to 0.17 as one goes 
closer to the critical line, which gives us confidence 
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that the transition is indeed of second order. The large 
scalar mass is most likely due to the very small lattice 
used in the simulation, and hence we repeated the run 
at K=0.15, x = - 0 . 1 0  on a 43X 16 lattice. There it 
turns out that the scalar mass is mR----- 1.2. This shows 
that the time extension of the 43 X 8 lattice is not suf- 
ficient to extract the real mass value, even on such a 
small spatial lattice. Of course, on larger spatial vol- 
umes still much smaller Higgs-boson masses can be 
expected. As was stated in ref. [ 5 ], finite size effects 
on the scalar mass are expected to be rather large in 
the FM phase. The value for the magnetization in this 
point on the 43 X 16 lattice is ( I @1 ) "~ 0.185. 

The scan at K= 0.15 shows that for moderate I Gxl 
the renormalized fermion-mirror-fermion mixing 
angle CtR can be tuned to zero, as expected. Once aR 
is fixed, one should vary x and study the magnetiza- 
tion, in order to tune to an appropriate Higgs-scalar 
mass in lattice units. It turns out that at the same time 
the value of the renormalized Yukawa coupling GR~, 
can be kept at a reasonable value around 0.75. Note 
that taking the physical value of the renormalized 
vacuum expectation value to be VR = 250 GeV, this 
corresponds to a fermion mass of about 190 GeV. 

4. Summaff 

The qualitative phase structure we found in the 
U ( 1 )L@U ( 1 )R symmetric scalar-fermion model for 
fixed quartic coupling (here 2 = ~ ) at small bare Yu- 
kawa couplings in the (K, x)-plane is shown by the 
dotted lines in fig. 5. If  the Yukawa couplings get 
stronger this is deformed to the structure shown by 
the dashed lines: the line of zero scalar mass inter- 
sects the curve where the mass of the staggered field 
is zero in two places. Therefore, in addition to the 
ferromagnetic (FM), paramagnetic (PM) and anti- 
ferromagnetic (AFM) phases already present at small 
bare Yukawa couplings, a fourth phase, namely the 
ferrimagnetic (FI) phase, appears. The physically in- 
teresting broken phase is the FM phase, because in 
the AFM phase the renormalized Yukawa couplings 
are zero. The lines Z, Z' in fig. 5 represent the critical 
lines corresponding to zero fermion mass #R = 0. Note 
that those curves are no phase boundaries. 

The qualitative picture of the phases does not seem 
to depend strongly on the ratio G~,/G x of the bare 
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Fig. 5. The schematic behaviour of the phase boundaries at small 
(dotted lines with label B) and large (dashed lines with label B' ) 
bare Yukawa couplings in the (K, x)-plane for fixed A. The lines 
Z, Z' represent the curves of zero fermion mixing mass for small 
and large Yukawa couplings, respectively. 

Yukawa couplings of fermion and mirror fermion. 
This means that, for instance, the case G v = - Gx with 
a degenerate fermion-mirror-fermion pair is not 
much different from an asymmetric situation I Gv/ 
Gxl << 1, which in the FM phase, due to the large mir- 
ror fermion mass, comes closest to the situation in 
the minimal standard model. 

Since in the FM phase one often wants to tune to 
#R = 0, which corresponds to no mixing among fer- 
mion and mirror fermion, it is interesting to ask for 
the phase structure in the subspace defined by/tR = 0. 
This is qualitatively shown in fig. 6. In fact, in most 
other numerical simulations up to now [6-13 ] the 
bare fermion mass was fixed at zero, therefore the 
comparison is best done by fig. 6. In this figure there 
are four phases (FM, PM, AFM and FI), but the PM 
phase is split into two parts (PM~ and PM2). In our 
case, however, the two parts are connected to each 
other in the full parameter space. The spectrum is in 
both parts qualitatively the same, and the fermion 
masses are by definition zero both in PM~ and PM2. 
This is different from the PMW and PMS phases 
found in the Smit-Swift model [ 9 ], because there the 
fermion spectrum is not the same [ 17 ]. The problem 
is that in the Smit-Swift model not all renormaliza- 
ble (mass dimension ~< 4) terms are included in the 
action, which would be possible in terms of elemen- 
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Fig. 6. The result of cutting the phase structure in fig. 5 by the 
zero fermion mass critical lines, shown as a function of the scalar 
hopping parameter x and some bare Yukawa coupling, here 
G -  = - G  x. In this subspace the PM phase has two parts: PM~ and 
PM2. At 2=oo, G,~= 0.1 we find the point Ml around - Gx= 1.0- 
1.5, -x=0.2-0.3. 

corresponding fields are explicit ly included in the lat- 
tice action. The s tudy o f  renormal iza t ion  o f  the cou- 
plings near  Ml and M2 may  require the in t roduct ion 
of  such new bare parameters .  

I f  one considers cont inuum l imits  at the boundary  
o f  the F M - P M t  or  F M - P M 2  phases, but  not  at the 
mult icr i t ical  points  M I or  M2, then the low mass 
spectrum corresponds to the fields in the act ion (a 
single scalar plus fermions and mir ror  fe rmions) .  In 
order  to be safe about  reflection posit ivity,  one can 
stay at x>~ 0, where l ink-reflection posi t iv i ty  can be 
proven for any couplings [4] .  In section 3 it was 
shown how the parameters  can be tuned in the F M  
phase for such con t inuum limits.  By using this infor- 
mat ion  the numerical  de te rmina t ion  o f  the al lowed 
region for the renormal ized  couplings, between the 
upper  and lower l imits for the renormal ized  quar t ic  
scalar coupling, should be possible. 
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