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Abstract. We present results of a computer analysis of 
euclidean solutions of the SU(2) lattice gauge theory 
Hamiltonian for constant fields. The accumulation of 
tunneling solutions in a certain region of phase space is 
investigated because it is expected to give a strong contri- 
bution to the path integral. Our analysis shows, that an 
infinite set of classical trajectories with finite action exists, 
and describes how they cluster. 

1 Introduction 

In the context of attempts to gain an analytic understand- 
ing of the quantum theory of nonabelian gauge fields, the 
SU (2) Yang-Mills Hamiltonian for spatially constant fields 
has attracted much interest. In particular the simplified 
form [1] 

/ - /= �89 + + (1) 
has been investigated by many authors [2 5]. It has been 
shown that the classical Hamiltonian is nonintegrable [2], 
whereas the quantum Hamiltonian has a discrete energy 
spectrum [3,7], which is reproduced by semiclassical 
methods surprisingly well [4]. 

One line of arguments which has motivated interest in 
this model is the small-volume approximation of Liischer 
and Miinster [6, 7] and Koller and van Baal [8, 9]. Starting 
point is the observation that for small volumes the effective 
coupling constant is small and hence allows the use of 
perturbation theory. In a systematic expansion in powers 
of g2/3 all fields with nonzero momenta are integrated out, 
and one arrives at an effective Hamiltonian whose leading 
term is again the Hamiltonian of constant fields from 
which (1) is obtained by using gauge and rotational 
symmetry and setting one field component to zero. At very 
small volumes, the energy spectrum is governed solely by 
the (narrow) potential valley around the zero field point. At 
somewhat larger volumes, tunneling effects set in: the 
nontrivial structure of the classical vacuum (torons), in 

particular the discrete Z23 symmetry, leads to a tunneling 
from one part of the vacuum to others, and the adiabatic 
approximation allows a quantitative description of the 
splitting of the energy levels which is in good agreement 
with numerical calculations [9, 10]. Very unfortunately, 
however, comparison with Monte Carlo studies of lattice 
gauge theories [11] show that at a rather well-defined size 
of the system this description starts to fail, thus indicating 
that the tunneling contributions considered so far are no 
longer relevant. Apart from the conclusion that, most 
likely, the whole approach of using a low-dimensional 
effective Hamiltonian no longer works, one might also 
suspect that very different tunneling phenomena will be- 
come important which, in the small-volume limit, may 
already exist but are still subdominant. 

Another motivation for studying the Hamiltonian (1) 
comes from an attempt [12] to investigate the small- 
coupling limit of lattice gauge theories using the semi- 
classical approximation. The way in which the bare lattice 
coupling constant go, which becomes small in the con- 
tinuum limit, enters the lattice Hamiltonian is analogous to 
that of Planck's constant in the Schr6dinger equation; this 
suggests to use the semiclassical approximation with 90 as 
the small parameter. Moreover, the renormalization group 
equation predicts a 92-dependence for physical quantities, 
which hints at tunneling phenomena. 

Both these lines of arguments suggest that, if we want to 
study Yang-Mills quantum mechanics more thoroughly, 
we also need to analyse the solutions to the equations of 
motion in the classically forbidden region. The natural 
starting point for investigating tunneling phenomena is the 
(somewhat simplified) version of the lattice Hamiltonian 
for constant fields [12] 

2 2 2 H=-s (p2 +p2)+g ~c~ 01 COS2 02, (2) 

where the variables 0i range from -1r/2 to ~/2. The 
continuum Hamiltonian (1) is recovered from (2) in the 
approximation of small fields where 10il -~ re/2 after setting 
go 2 equal to 2 and rescaling by a factor 1/2. The classically 
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forbidden region of this Hamiltonian has first been ana- 
lyzed in [12] in the region of small fields, and one of the 
striking features observed was the clustering of instanton- 
like solutions along the diagonal line 01 = 02, which con- 
nects the point of zero field strength 0 1 - - 0 2 = - / r / 2  with 
the (gauge equivalent) south pole at 01=02 = +=/2 (see 
Fig. 1). The contribution of such a set of classical solutions 
to quantum mechanical quantities (e.g. the partition func- 
tion Z) is completely unknown. On the other hand, one can 
show [13] that such a clustering is not an artifact of the 
constant field lattice Hamiltonian but extends into the 
space of non-constant fields. Therefore a careful analysis of 
such a situation, e.g. in the spirit of the work of Polyakov 
[14] and Coleman [15], seems highly desirable. 

Naively one expects that the existence of several nearby 
extrema of the action integral makes the usual evaluation 
of gaussian fluctuations around stationary points impos- 
sible. Even if each solution represents a genuine extremum 
of the action, eigenvalues of the second variation are 
expected to be small, hence the fluctuations are large. 
Consequently, the condensation of such an infinite number 
of solutions is expected to give a large contribution to the 
partition function: one may even speculate that if the 
solutions are sufficiently dense, their sum may compete 
with the factor exp(-S/g2). Whether two single extrema 
can be 'resolved' or not depends both on the 'distance' 
between the two extrema and the smallness of the 'resolu- 
tion' parameter 9o. This leads to a new 9Z-dependence of 
the sum of the classical solutions. Before this difficult task 
of summing over all solutions and calculating their contri- 
bution to the semiclassical approximation of any quantum 
mechanical quantity can be attacked, a careful study of the 
classical solutions and their condensation is inevitable. 

In this paper we report on the results of a computer 
analysis of the trajectories in the classically forbidden 
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Fig. 1. Equipotential lines in the 01 - 02-plane (dotted lines). The full 
curves represent a diagonal and the circular solution for E = 0 

region and discuss the main implications of our study. This 
analysis should be seen as the necessary prerequisit for the 
summation over the infinite number of classical paths. Let 
us briefly outline the strategy for the numerical study. 
Following Polyakov [14] and Coleman [15], we are 
interested in classical solutions which need an infinite 
amount of time to travel from one maximum of the 
inverted potential to another, thereby giving a finite action 
integral. In the Hamiltonian (2) these are solutions with 
energy zero. They represent, however, just the separatrix 
between rotation and liberation and, hence, are the most 
difficult to study. We therefore start our analysis at the 
bottom of the potential at energy E = -  1/2, where the 
system is nearly integrable. We then vary the energy and 
follow the flow of solutions up to E = 0. In the beginning we 
can use canonical perturbation theory to analyse the 
solutions, but as the energy increases more and more KAM 
tori are destroyed and an analytic treatment becomes 
impossible. At E = 0, the system is stochastic in the vicinity 
of the diagonal line, which we are interested in. However, 
inside this chaotic region, an infinite number of solutions 
exist which condensate on the diagonal, and there is a 
remarkably regular, self-similar pattern in the way in which 
they accumulate. 

2 Analysis of the trajectories in the classically 
forbidden region 

For our study of the Hamiltonian (2) in the classically 
forbidden region we choose 92 = 2, reverse the sign of the 
potential to avoid the use of imaginary time and rescale H 
by a factor of 1/2 so that it reads 

1 2 2 2 H=5(Pl +p2-c~ 01 cos 2 0 2 ) .  (3) 

We first of all note, that for small energies (E _ Emi n--  
- 1/2) 0a and 02 only move in the center of the potential, 
where it may be approximated by its Taylor expansion. 
Consequently 01 and 02 behave like two weakly coupled 
harmonic oscillators with a coupling strength of order 
(dE) z, where AE=E-Emi n. For AE<<I the system is 
therefore close to an integrable one and may be treated via 
perturbation theory [16, 17] with AE as a small parameter. 
In combination with numerical calculations this allows us 
to understand the behaviour of the solutions of the equa- 
tions of motion for E-+0. 

By a sequence of canonical transformations it is pos- 
sible to reduce the Hamiltonian to the form 

H=Jz_�88 1(j2 jijz)COs(Z~ll)+(9((AE)3 ) 

and thereby remove all dependence on the angle variable 
~'2 to (_9((AE)2). Here Jl=II+(9((AE)2), J2=I1+I2 
+(9((AE)2), ~,1 = q01- <02 + (9 ((AE) 2 ) and ~,2 = ~02 
+(9((AE)2), where I~ and q~ are the action and angle 
variables of the unperturbed harmonic oscillators, respec- 
tively. 

Because H is intrinsically degenerate, i.e. the unpertur- 
bed Hamiltonian r4 _ ~  !~2  ! does not depend on * * 0 - - ~  2 

the action variable J1 (cp. [16, Sects. 2.4 and 3.2.a]) one 
cannot get rid of the O l-dependent term. The resulting 
equations of motion for J~ and ~b~ may then be discussed 



and translated back into approximate analytic expressions 
for Pi and 0~. These can be used to compute the points 
where the phase space trajectories pierce a surface of 
intersection (SI) [16, 18] for which we choose 02=0 and 
make no restriction on the sign of P2. Comparison of this 
perturbatively constructed SI with the numerically com- 
puted one shows that for small AE virtually all invariant 
tori are preserved and Fig. 2 illustrates that even for AE as 
large as 1/4 they agree rather well. 

To relate points and curves in the SI to certain solu- 
tions of the equations of motion, we now describe three 
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different types of trajectories distinguished by the sym- 
metry of the potential (see Fig. 1). Those with 1011 = 1021, the 
'diagonal' solutions, correspond to the two elliptic fix- 
points on the line 01 =0  in the SI. As can be read off from 
the analytic solution in terms of a Jacobian elliptic function 
(see [19, chs. 16 and 17]) 

_+Oi(t)=arctan{(~)sd(ab \~xf2t a ~ / j '  b2 )t 
(4) 

where 

1 
1 5 / 2 _  - -  

1 
t- 1 and b 2 -  1, 

x / - 2 E  

their frequency is 1 in the limit E---~Emi n and vanishes as 
E--,0, where (4) assumes the form 

arc,a.( ) 
Neighbouring solutions oscillate orthogonal to them and 
either begin and end on the potential boundary (in- 
stantons) or get close to it for E~0.  

A second stable solution which is approximately a 
circle in the 01 - 02-plane may be constructed with the help 
of a Fourier expansion. Neither it nor its neighbours ever 
reach the potential boundary and they therefore do not 
qualify as tunneling paths. The two elliptic fixpoints on the 
line Pl = 0 correspond to this circular solution. 

The unstable solutions with 01 =0  and 02 =0  get map- 
ped onto the centre and the outer circle in the SI, respec- 
tively, which represent hyperbolic fixpoints. 

Lowest order perturbation theory for this system al- 
ways yields circular Poincar6 sections. The numerical 
analysis, however, shows that with increasing (A)E they not 
only grow in size, but also their shape becomes more 
lenticular (see Fig. 3), which is to be expected because the 
boundary of the SI is given by the (02 = 0)-solution. For 
small energies it looks like the phase portrait of a harmonic 
oscillator with unit frequency, but for larger energies the 
nonlinearity of the pendulum becomes visible. 

At the same time as one varies the energy from Emi n to 
0, more and more tori get destroyed. Tori with rational 
ratios of frequencies r/s given by small integers r and s 
break up first. For the integrable system any point on them 
is a fixed point. The Poincar6-Birkhoff theorem (see e.g. 
[ 16, Sect. 3.2]) states that upon destruction of a given torus 
an even number of fixed points remains unchanged, one 
half of them being elliptic, the other half hyperbolic. The 
tori around the circular solution prove to be more robust 
than those around the diagonals (Fig. 3). This is because 
the corresponding trajectories do not probe the potential 
boundary and thus less strongly feel the deviation of the 
potential from the integrable case. 

In Fig. 3 one can see how with increasing energy the 
tori in the vicinity of the elliptic fixpoint distort and finally* 

* Due to the limited numerical precision whenever we speak of the 
limit E ~ 0  in the following, this will mean that the calculations have 
been performed at E = -  10-lo 
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for E = - 1 0  -1~ break up leaving a chain of two islands 
shown in (Fig. 4a). As the stable trajectory corresponding 
to them (see Fig. 4c) closes after one oscillation along 
the (01=O2)-axis and two oscillations along the (01= 
-02)-axis, we will call it a (1 : 2)-resonance. It intersects the 
SI (02 = 0) with two different values of Pl, once with Pl > 0 
and once with Pl <0. Both intersection points lie on the 
(01 = 0)-axis, and coincide with the two elliptic fixpoints in 
Fig. 4a. Similarly the unstable trajectory in Fig. 4d inter- 
sects the SI once with p l < 0  and once with p l > 0 ;  its 
intersection points coincide with one pair of the hyperbolic 
fixpoints in Fig. 4a. By reflecting the two trajectories on the 
(01=O2)-axis, one creates a second pair of trajectories 
corresponding to the other four fixpoints in Fig. 4a. The 
same correspondence due to reflexion and time reversal 
symmetry applies to all other resonances to be mentioned 
later on. 

So far, we have discussed the standard KAM scenario 
with its break-up of invariant tori due to increasing 
perturbation strength and applied it to the model at hand 
without specialising on certain trajectories. Our main 

interest, however, is in the hyperbolic fixpoints arising from 
resonances around the diagonal solutions. In the limit 
E--* 0 they correspond to trajectories beginning and ending 
on the potential boundary near the corner points and 
hence lead to tunneling paths expected to be relevant for 
the computation of observables in the underlying lattice 
gauge theory. 

From the work of Polyakov [14] we know that for each 
tunneling path we have to take multiple transversals into 
account (cp. also Coleman's Erice lectures [-15]). For a 
given time interval [ -  T, T],  we can find an infinite set of 
energies, for which such a solution begins on the potential 
boundary at t = - T ,  oscillates a given number of times 
back and forth through the potential valley, and ends on 
the potential boundary at t = + T. In the limit T--* oo all 
these solutions have the same energy E=0 .  Integrating 
over all instants at which n tunneling processes may occur 
yields a factor T"/n! which upon summation over n, to take 
all (anti-)instanton contributions into account, leads to an 
exponential energy split. As shown in [15] in the semi- 
classical limit the dominant contributions to the path 
integral come from configurations which are far apart. 
Thus, the extrema of the action are well separated and the 
fluctuations around the instantons are approximately 
gaussian. In our problem we not only have to take multiple 
transversals of a single trajectory into account, but more- 
over observe a spatial clustering of tunneling paths of 
almost the same action. The assumption on the well- 
separatedness of the extrema therefore becomes doubtful 
and we have to look for new ways to evaluate the path 
integral. 

Because of the mechanical similarity [20] of the qua- 
dratic approximation of the potential near the corner- 
points (1011=rc/2=]021), this clustering does not come 
unexpected [12]. We find an infinite set of trajectories, 
which correspond to (1 : n)-resonances around the diagonal 
solutions with initial values closer and closer to the corner 
points. In contrast to the phenomenon considered by 
Polyakov and Coleman, we now have E = 0 fixed and vary 
the order of the resonance n. The appearance of this infinite 
number of resonances leads to a nested set of self-similar 
SI's. 

To illustrate this, we first look at the trajectories of the 
(1:2)-resonance (Fig. 4c and d). From the previous discus- 
sion we know that the elliptic fix-points of this resonance 
lie on, and the hyperbolic fixpoints symmetrically to the 
(01 = 0)-axis. The construction of the elliptic and hyperbol- 
ic fixpoints of the (1:3)-resonance now proceeds in com- 
plete analogy. The four unstable trajectories of the (1 : 3)- 
resonance (Fig. 5a plus the symmetry images; in the 
following we restrict our attention to the diagonal 01 = 02 .  

Trajectories oscillating around the other diagonal lead to 
the same points in the SI.) intersect the SI at 01 = 0, the four 
stable trajectories intersect it symmetrically to the (01 = 0)- 
axis. Because the trajectories of the (1:3)-resonance start 
closer to the corner point 01 = 02 = - ~ / 2  and lie closer to 
the diagonal than the trajectories of the (1:2)-resonance, 
the elliptic fixpoints of the (l:3)-resonance lie inside the 
region enclosed by the islands of the (1:2)-resonance. This 
picture is illustrated in Fig. 6. In Fig. 6a we see two islands 
of the (1:2)-resonance and in the region enclosed by them 
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Fig. 4a~l. The (1:2)-resonance. a surface of intersection; b enlargement of a; c the elliptic trajectory; d the hyperbolic trajectory 

the islands of the (1 : 3)-resonance. An enlargement* of this 
region (Fig. 6b) shows that the islands of the (1:3)- 
resonance look like those of the (1:2)-resonance rotated by 
~/2. An analogous discussion for the trajectories of the 
(l :4)-resonance (Fig. 5b) shows that the two islands of the 
(1 : 4)-resonance lie inside the region enclosed by the islands 
of the (1:3)-resonance, and that they are again rotated by 
~/2 (Fig. 6b). 

With increasing values of n the trajectories start closer 
to the lower left corner of the potential and cluster along 
the diagonal solution for n-~ ~ .  Their strong oscillations 
orthogonal to the diagonals produce a rich structure of 
caustics [12]. As their actions are almost equal they should 
all be taken into account in any attempt to evaluate the 
path integral. 

A similar discussion can be performed for all (m:n)- 
resonances. The numerical calculations confirm the 
clustering along the diagonal as n--+ m for any value of m. 

* Because the trajectories near the diagonal 01 = 02 are very sensitive 
to a variation of the initial conditions, the islands of the (1:3)- 
resonance in Fig. 6 are not as densely drawn as those of the (1:2)- 
resonance 

Again we observe that the starting points move towards 
the corner of the potential and see a nested set of self- 
similar SI's. In Fig. 7c and d, for example, we show the first 
two unstable trajectories for the (2:n)-resonances. They 
lead to the hyperbolic fixed points of Fig. 7a (Fig. 7b shows 
the inner chain of islands of Fig. 7a on a larger scale). The 
action of the (m: n)-resonance is roughly proportional to m. 

But still another kind of clustering exists, which leads to 
an infinite set of intersecting trajectories in the neigh- 
bourhood of any trajectory that begins and ends on the 
potential boundary. 

We illustrate this for the (2: 3)-resonance. In Fig. 8a it is 
depicted in the middle of two other chains of islands, one 
surrounding it that corresponds to the (3:4)-resonance, 
and another one corresponding to the (3: 5)-resonance that 
lies inside the region enclosed by the islands of the (2: 3)- 
resonance. If we approach the (2: 3)-resonance from these 
neighbouring chains of islands we find two more reso- 
nances shown in Fig. 8b: the (5:7)-resonance with its ten 
islands squeezed in between the (3:4)-resonance and the 
(2:3)-resonance and a barely visible (5:8)-resonance be- 
tween the (2:3)- and the (3:5)-resonance. Repeating this 
procedure, one will always get new chains with ever higher 



282 

82 
1.6  

0 . 8  

O 0  

- 0 8  

1 .6  

. . . . .  i ' F  

/ 

, . . . . . .  i . . . . . . .  i . . . . . . .  i . . . . . . .  

- 1 . 6  - 0 8  0 . 0  0 8  1 .6  
81 

iP1 
1.25 

1.00 

0.75 

0 . 5 0  

. ,  . . . . . .  , ,  , 

,_2>J 
; 

.... o 

0 . 2 5  . . . .  I . . . .  I . . . .  J . . . .  ~1 

- 0 . 5 0  - 0 . 2 5  0 . 0  0 . 2 5  0 5 0  

82 
1.6 

0 .8  

0 .0  

- 0 . 8  

- 1 . 6  

/ 
/ 

- 1 . 6  - 0 . 8  0 . 0  0 . 8  1 6  

P: 
0.750 

0.725 

0.700 

0.675 

I' 

J .. 

',. . ;  

0 . 6 5 0  . . . .  " ~ :  ' . . . . . . .  ' . . . . . .  " - : ' "  '~ . . . .  

-0.0750 -0.0375 0.0 0.0375 0.0750 
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Fig. 6. The self-similarity of the SI for the (1 :n)-resonances 

numbers of islands. In Fig. 9 we show the corresponding 
trajectories for the two outer chains in Fig. 8. If we look at 
the trajectories' starting points on the (02=-n /2) -ax is  
(Fig. 9), we see that they lie the closer to the starting point 
of the (2:3)-trajectory (Fig. 7c), the closer the chain of 
islands lies to the islands of the (2:3)-resonance. The 
accumulation of islands around the islands of the (2:3)- 
resonance therefore leads to a clustering of starting points 
at the starting point of the unstable trajectory of the (2: 3)- 
resonance. The trajectories intersect each other and have a 
diverging action for a vanishing distance of their starting 
point from the starting point of the (2: 3)-trajectory. 

Generally, an arbitrary (m:n)-resonance is surrounded 
by higher resonances. For  any not too large rational 

number q = m'/n' which cannot be reduced to lower terms 
we find an (m':n')-resonances with an initial point the 
closer to that of the (m:n)-resonance the better q approxi- 
mates m/n. The SI's of all (m:n)-resonance's with fixed m 
but varying n form a nested self-similar set, the SI's 
shrinking to the fixpoint of the diagonal as n--+ oo. Let us 
stress again, that for a proper evaluation of the path 
integral multiple transversals of single trajectories as well 
as the clustering of nearby but different trajectories should 
be taken into account. Whereas the former problem has 
been solved by Polyakov [14] the latter seems to be new 
and constitutes the phenomenon which is at the heart of 
this paper. Qualitatively we expect that the existence of 
nearby classical tunneling solutions leads to extrema of the 
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action integral which are so close to each other that they 
cannot be evaluated with the usual gaussian approxima- 
tion. The notion 'close to each other'  clearly needs a more 
precise meaning; however, independent of such a specifica- 
tion, one expects that it depends upon two quantities: the 
curvature of the action integral at the classical solution, i.e. 
the eigenvalues of the second variation of the action, and 
the size of the small parameter,  i.e. gg in our case. The latter 
defines a 'resolution': the smaller go becomes, the more we 
are justified to use the usual gaussian approximation, i.e. 
the more the path integral is able to resolve any given 
extremum of the action and discern it from the neigh- 
bouring ones. The aspect of 'resolution' becomes more 

transparent if we turn to the ground state wave function: to 
evaluate it in the semiclassical approximation at a given 
point in configuration space, we have to sum over all paths 
which, starting from some toron point, arrive at this point. 
For  a nonintegrable system the semiclassical approxi- 
mation to the ground state wave function is expected to 
exhibit strong fluctuations, due to the erratic pattern of 
classical solutions. Quantum mechanics, on the other 
hand, is smooth over distances of the mean de Broglie wave 
length, i.e. on a scale of the order of the small parameter  of 
the Schr6dinger equation, which in our case is g2. There- 
fore, agreement of the semiclassical approximation and the 
'true' quantum mechanical solution is obtained only after 
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resonance (inside) 

averaging the semiclassical wave function over distances of 
the order oz. On the other hand, the 'true' solution shows 
more and more of the semiclassical peaking structure, as g2 
goes to zero (for a one-dimensional quantum map this has 
nicely been demonstrated in [22] ): in this sense we can say 
that the resolution increases as 92 becomes smaller and 
smaller. 

Returning to the evaluation of the partition function Z, 
the actual summation over the classical paths and the 
calculation of the contribution to Z of the fluctuations 
around them lies beyond the scope of this paper. Using the 
results of our numerical computation, we only wish to 
demonstrate how the number of paths which can be 
resolved increases as 9o 2 goes to zero. We simply ask, just 
how many terms one would get in a semiclassical approx- 
imation of the path integral, summing all contributions up 
to some smallest scale, lip say (the resolution p will go to 
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Fig. 9a, 5. The trajectory of the (3:4)-resonance; 5 The trajectory of 
the (5 : 7)-resonance 

infinity as g2 goes to zero). For  the sake of the argument, let 
us take the distance of the starting points of the trajectories 
as a naive measure of their closeness in path space and 
assume that it is proportional to the difference mini - m / n 2  
for the trajectories of an (m:n0- and an (m: n2)-resonance. 
To take multiple transversals into account, we denote the 
trajectory of the (m:n)-resonance which is transversed r 
times by (rm:rn); in the following we shall assume that its 
action is proportional  to rm. Now note that the (ml:nl)- 
trajectory transversed r times has an action comparable to 
that of the (m2 : n2)-trajectory if m2 = rrnl, irrespective of the 
values of n 1 and n 2. For consistency reasons one should 
therefore not only sum over all trajectories corresponding 
to irreducible fractions m/n, but also allow for rm/rn, i.e. r 



transversals of (m:n)-trajectories, as long as their action 
(assumed to be proportional to rm above) is no larger than 
that of the trajectory with the largest value of m resolved. 
Thus the question addressed above reduces to determining 
the number of rationals re~n, m < n, such that 

m m 1 
n n + l > p "  (5) 

Asking only for the large p behaviour we may replace sums 
by integrals and turn the condition (5) on n into n < x / ~ '  
In this way we obtain 

p .,~rap p 

I dm ~ d n ~ S d m x ~ p ~  2, 

i.e. the number of terms is proportional to the square of the 
resolution and goes to infinity as g2 goes to zero. This large 
number, together with the expected strong quantum fluc- 
tuations, imply that the sum over all these contributions 
leads to a much larger contribution to the path integral 
than a single trajectory, as well as some unknown 92- 
dependence. The crucial question remains whether the 
number of these trajectories can be large enough and the 
fluctuations strong enough to compete with the expo- 
nential exp(-S/g2). To answer this question we need 
more information about the action integrals and their 
variations near the classical solutions. 

We conclude our discussion of the motion in the classically 
forbidden region with the determination of Lyapunov 
exponents (see [16, Sect. 5.2.b] or [23]) which we measured 
for four different trajectories over approximately 10 4 

periods. For a trajectory that intersects the SI in the center 
where appears to be the region of strongest stochasticity 
(cp. Fig. 3), we found the largest exponent a 1 ~_ 0.022. For 
the trajectories of the (2: 3)-resonance (Fig. 7), we obtained 
a smaller, but still non-zero exponent o 2 _~ 0.007 for the 
unstable trajectory (Fig. 7c), whereas for the stable trajec- 
tory, we got a vanishing exponent a3 < 10 -~. Around the 
diagonal (see Figs. 4-9) we found isolated stable and 
unstable trajectories that cluster along the diagonal corres- 
ponding to elliptic and hyperbolic points in the Poincar6 
sections. We have been concerned with the study of the 
latter in the limit E ~ 0  as these appear as tunneling 
trajectories in the path integral. For a trajectory in the 
direct neighbourhood of the diagonal, we measured a non- 
zero exponent. Its exact evaluation was hampered by the 
fact that the integration of the motion close to the potential 
boundary proceeds only very slowly. 
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theory and combined its results with numerical calcu- 
lations in order to understand the complex behaviour of 
the system at E = 0. 

Our analysis showed how the tunneling trajectories 
cluster along the diagonal. We have been looking for 
solutions which at time - Tleave from a toron point and at 
time + Tend at a toron point. Each such trajectory can be 
labeled by the two integers (re:n), where m indicates how 
often the trajectory swings along the diagonal before it 
closes or ends at a toron point and n counts the number of 
intersections with the diagonal. We then found that the 
accumulation near the diagonal line can be described by 
the rational numbers m/n, where m and n are the two labels 
of the trajectory: the smaller this value, the closer the 
trajectory lies to the diagonal. In the same way as rational 
numbers are accumulation points of series of other ratio- 
nals, each trajectory is an accumulation point for other 
classical solutions. Furthermore, if we follow, for fixed m, 
solutions with increasing n, the Poincar6 surface of inter- 
section shows a self-repeating structure. Finally, the action 
integral of these solutions goes approximately as re.So, 
where S o is the action integral of the diagonal solution. 

The task of summing over all these paths has not been 
attacked in this paper. We have only tried to formulate this 
problem more precisely. Since many classical paths, i.e. 
extrema of the action, lie close to each other, the fluctu- 
ations around them are expected to be large and the usual 
gaussian approximation cannot be used. A rough estimate 
demonstrates that the number of trajectories which, for 
given go, can be resolved grows with p2 which tends to 
infinity when go becomes small. This supports the expecta- 
tion that tunneling along the diagonal line gives a much 
stronger contribution to the ground state energy split than 
a single isolated trajectory. Further progress necessitates a 
better understanding of the nature of the fluctuations 
around these accumulating trajectories, i.e. the second 
variation of the action integral. 

The self similarity that we have found in the inter- 
section surfaces suggests the use of the renormalization 
group. Following the arguments of [24], one first defines 
renormalization group transformations to describe classi- 
cal solutions on finer and finer scales in phase space. Since 
in the path integral of quantum mechanical quantities a 
decrease in go improves the resolution power in phase 
space and, hence, allows to 'see' classical trajectories on 
smaller and smaller scales, the same technique should also 
be useful for the evaluation of path integrals in the 
semiclassical approximation. As a result one might expect 
to find some sort of scaling behavior. 

3 Discussion 

The goal of our analysis was to provide the prerequisites 
for an evaluation of the path integral in the semiclassical 
approximation of SU (2) lattice gauge theory, To this end 
we studied the tunneling trajectories in the space of con- 
stant fields described by the Hamiltonian 

H=l(p  2 +p~-cos 2 01 COS 2 02). (3) 

For small energies E - -  1/2 we applied perturbation 
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