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Quantization of Chaos
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We study a rule for quantizing chaos based on the dynamical zeta function defined by a Euler product
over the classical periodic orbits as suggested by Gutzwiller’s semiclassical trace formula. A test of our
approximate quantization formula is carried out for the planar hyperbola billiard, which shows that at
least the first 150 quantum energy levels can be generated.

PACS numbers: 05.45.+b, 03.65.—w

In this Letter we study a semiclassical quantization
rule for the quantum energy levels of a system whose
classical limit is strongly chaotic. As an illustrative ex-
ample, we discuss the hyperbola billiard [1] and show
that more than 150 energy levels can be generated using
as an input only the classical periodic orbits of finite
length.

The hyperbola billiard is a two-dimensional planar bil-
liard system with domain D={(x,p)[x=0Ay=0Ay
=< 1/x}. All orbits are isolated and unstable, and thus
the system is chaotic. Although the area of D is infinite,
the particle cannot escape to infinity if trajectories along
the x and y axis, respectively, are excluded. The corre-
sponding quantum system is governed by the Hamiltoni-
an H=—(h?%/2m)A, where A is the two-dimensional La-
placian. The wave functions have to vanish on the bound-
ary 0D. The energy spectrum of H is purely discrete [2]
with O<E|<E,=< ---. The full hyperbola billiard
defined on the domain D is symmetric with respect to
reflections on the line y=x. In the following we shall
therefore consider the two desymmetrized quantum bil-
liards labeled by + and — depending on whether the
eigenfunctions are even (+) or odd (—) under reflec-
tions on the straight line y =x.

The first estimates of the eigenvalues of the hyperbola
billiard have been presented in [1] based on a variational
method. Using a boundary-element method we have re-
cently calculated [3,4] the first 294 (284) energy levels
for the + (—) case with high accuracy. The mean in-
crease of the spectral staircase /V(E): = No. {E,|E, < E},
which is denoted by N(E), is well described by the fol-

lowing generalization of Weyl’s law (A =2m =1):

+
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Here, the first term has been obtained in [5], while the
second and third terms have been derived in [6] with
a=2(y—In2n), b* =+2v2+472¥41%(%) (y denotes
Euler’s constant). The last term in Eq. (1) has been es-
timated in [4]: ¢ ¥ =—0.173, ¢ = =0.194.

Our quantization rule for the two desymmetrized bil-
liards is based on the dynamical zeta functions Z £ (s),
where s = —ip ad p denotes the (complex) momentum,
E=p?=—52 [Z2™(s)=Z"(s)Z ~(s) for the full hy-
perbola billiard.] The functions Z * (s) arise in a natural
way if one starts from the generalized version [7] of
Gutzwiller’s trace formula [8] and considers the regular-
ized trace of the Green’s function following exactly the
derivation of the Selberg zeta function described in [9].
In the case of the Selberg zeta function the derivation
starts from the Selberg trace formula which is an exact
relation and plays the role of the Gutzwiller trace formu-
la for the Hadamard-Gutzwiller model [10]. With the
definition (suppressing the index * from now on)

Z():=TITI01—okb,x
y k=0

xexpi—sl,— (k+1/2)u,—inv,/2}]1, (2)

one finds the following representation for the logarithmic
derivative of the zeta function [Z(0)=0, Z'(0) =0I:

1.Z'6) _ D L 3)
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In Eq. (2) the “Euler product” over ¥ runs over all primi-
tive periodic orbits. To each orbit y there belongs a
well-defined length /,, an instability exponent u, > 0, and
a (scaled) Lyapunov exponent A,:=u,/l,. o, is the sign
of the trace of the monodromy matrix for the periodic or-
bit y, and v, is the maximal number of conjugate points
along the orbit plus twice the number of reflections on
boundaries, where Dirichlet boundary conditions are
demanded. For a generic orbit one has b, s =1, whereas
for orbits along the line y=x one obtains b} =ck
xexpi—ku}, b,k =k tlexp{— (k + Du,}.

The product (2) converges absolutely [7] for Res
> g,:=1—MA/2, where the topological entropy 7 mea-
sures the exponential proliferation of the periodic orbits
as a function of their length /,; No. {,|l, < I} ~exp{z 1}/
7l for large values of /. The quantity A denotes the aver-
age of the Lyapunov exponents A, and is also called the
metric entropy, because it measures the exponential
spreading of the trajectories, i.e., the rate at which phase
space is distorted in the neighborhood of a periodic orbit
11l

In Eq. (3) there enters, apart from the constant B
which is irrelevant for the discussion in this Letter, the
function ¢(s) which originates from the ‘“zero-length”
contribution to the trace formula and is explicitly given as
a dispersion relation in p with one subtraction at s=0.
It satisfies ¢(0) =0 and Im¢(=xip) ==+ zd(p), where
d(p):=dN(E)/dE is the mean level density. The exact
(nonperturbative) result for d(p) is not known. But from
the asymptotic expression (1) we can derive the following
semiclassical expansion for ¢(s) (|s|— oo, |args| < n):

_ 1, ,a+l, _b*

o(s) yyn In’s + yp Ins ™ + -
In the derivation of Eq. (3) we have assumed Res > o, in
order to deal with absolutely convergent series only.
Since the right-hand side of Eq. (3) is a meromorphic
function in s at least in the half-plane Res = 0, we infer
that Z(s) is (after analytic continuation) holomorphic for
Res = 0, having in this region its only zeros on the “‘criti-
cal line” Res=0 at points s = =% ip,, where p,=(E,)'?
(n=1,2,...) is determined by the semiclassical approxi-
mations E,, to the quantal energies E,. Here, we assume,
for simplicity, that the unknown corrections to the trace
formula and thus to Eq. (3) are holomorphic for Res = 0,
which implies that the analog of the Riemann hypothesis

4

By integrating both sides of Eq. (3), we obtain the ex-
plicit representation

Z(s)=Z0)D(s?)F(s),
()

F(s):=exp [Zfsds's'q)(s') ]

where D(z) denotes the [normalized, D(0) =1] function-
al determinant [9] of the Hamiltonian H = — A,

DG =BT | |1+ -2 |e /5
= E"
det(—A)

It follows from (1) that the infinite product in (6) con-
verges for all z € C and thus D(z) is an entire function of
z whose only zeros are at z=—E,. On the assumptions
already stated, F(s) is holomorphic and nonzero for
Res =0, and formula (5) nicely expresses the desired
properties of Z(s). Making the replacement s— —s in
Eq. (5), we immediately derive the functional equation

26y =279, %)
which implies that the combination
Z(—ip)expi—izN(E)}
is real on the critical line (s = —ip, p>0). We are thus
led to define the real function (E > 0)
E(E):=Re{Z(—iVE )e ~"NEY (®)

whose zeros as a function of the energy E are located just
at the quantal energies E =En. Next we transform
[12,13] the double product in Eq. (2) into a Dirichlet
series using for the inner product Euler’s identity [14]

H(l—yxk)—1+2

m=|

(_l)m iy m(m—1)/2

)

|] —x’

(both sides converge absolutely for |x] <1, y €C), and
then expand the product over the periodic orbits yielding

Z) =1+ Aze .

n=1

a0

Here, the sum runs over all pseudo-orbits [13] whose
lengths L, (L, < L,+,) are obtained by forming all possi-

. . + .
holds for the dynamical zeta fo{Ctlof{S Z=(s), ie, the  ple linear combinations of the lengths of all primitive
semiclassical energies E, have no imaginary part. | periodic orbits, L, =Xk, mil, (k=1, m; €N). From
Egs. (9) and (2) one obtains
4= (-1 )mfo;'i"(""' "2 expf— inm;v, /2 = u,m;(m; —1)/4}
n = - ' ; _ ) a1 1)
i=1 ITZ lexpQiu,,/2) = o4, exp(— ju,/2)]c,7}

where ¢, ;=1 for a generic orbit, while for orbits along the line y =x one has

oyexplu, )1+ ofexpGiu,)l !, for Z 71,
T N+ odexpGu)1 ", for 2~
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FIG. 1. Evaluation of the sequences in Eq. (12) whose limit

gives the abscissa of absolute (upper curve) and conditional
(lower curve) convergence, respectively, of the Dirichlet series
for the zeta function Z * (s).

It is known from the theory of Dirichlet series that a
series of type (10) is in general absolutely convergent in a
half-plane Res > o, (o, is called the abscissa of absolute
convergence) and is (conditionally) convergent for Res
> 6., 0. < o, (o, is called the abscissa of convergence),
where 6, and o, are (for o, > 0) determined by

N

2 An

n=|

. (12)
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With the leading asymptotic behavior Ly =(1/7)InN
+ .- - (N— =) we obtain for o, our previous result [7]
o, =1 —A/2, i.e., the absolute convergence of the Dirich-
let series (10) is determined by this particular combina-
tion of the topological and the metric entropy. Using an
effective code, we have determined in Refs. [1,4] all
periodic orbits of the desymmetrized hyperbola billiard
with length /, =< 20. This amounts to 13098 periodic or-
bits or to 59370 pseudo-orbits with length L, =< 20.
Knowing such a large number of orbits allowed us to
determine the two kinds of entropy. The values obtained
are [4] £ =0.593 and 21 =0.703. We thus infer that the
Euler product (2) and the Dirichlet series (10) are abso-
lutely convergent for Res > 0,=0.2415. In Fig. 1 we
show an evaluation of the expressions (12) for Z *(s),
where the sequences are shown for NV =1 to 59370. The
upper curve in Fig. 1 shows the result for o, and is seen
to approach nicely the value 0.242, in excellent agree-
ment with our direct computation of o,. The lower curve
in Fig. 1 shows the corresponding evaluation of (12) in
the case of o.. Although the curve shows a somewhat ir-
regular behavior, it stays, in the whole range up to
N =59370, clearly below zero which suggests strongly
that the abscissa of convergence of the series (10) sat-
isfies o, <0 and thus (10) converges on the critical line.
With this remarkable result it is legitimate to insert the
series (10) in formula (8), and we thus obtain our rule
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FIG. 2. The function &*(E) in the energy range

0 < E =<600. The sum in Eq. (13) is truncated at nmax =59 370
(solid line). The dotted line represents an evaluation of the
Riemann-Siegel look-alike formula of Berry and Keating in the

range 0 < E =< 330. The triangles mark the positions of the
quantal energies.

for quantizing chaos (v, even),

EX(E)=cos{zN T (E}+ i AT cosinN T (EY—VEL,}
n=1

=0. 13)

Notice that the first term in Eq. (13), which comes out

1943



VOLUME 67, NUMBER 15

PHYSICAL REVIEW LETTERS

7 OCTOBER 1991

very naturally in our approach, already predicts energies
with the correct density, while the sum over the pseudo-
orbits generates the level fluctuations. Knowing N *(E)
from Eq. (1), and L,,A,F for n < 59370, we have com-
puted £ T (E) for 0 < E < 600. The result for 1 (E) is
shown in Fig. 2. The quantal energies are marked by tri-
angles. One sees a striking overall agreement between
the zeros of £¢*(E) and the true eigenvalues. We have
carried out the same calculation for £ ~ (E); again the re-
sult is very satisfactory. Taking the results together, we
are thus able to determine about the first 150 energy lev-
els of the full hyperbola billiard within the semiclassical
approximation. To our knowledge this is the first time
that such a large number of eigenvalues could be ob-
tained from a quantization rule for a strongly chaotic sys-
tem.

Recently, Berry and Keating [13] conjectured a rule
for quantizing chaos in analogy with the Riemann-Siegel
formula for the Riemann zeros. Their quantum condition
looks very similar to our Eq. (13), the difference being a
factor of 2 and a cutoff of the sum over pseudo-orbits at
the energy-dependent length L*(E)=2zpd(p). From
L*(E) < L.,,x=20 and Eq. (1) one derives a maximal
energy E n.x up to which their quantum condition can be
applied if we use as an input all available 59 370 pseudo-
orbits: Emux=330 for Z* and E.x=347 for Z ~. The
dotted curve in Fig. 2 shows our evaluation of the
Riemann-Siegel look-alike formula [13] for Z*. Again
the agreement with the true eigenvalues is remarkable.
Furthermore, it is seen from Fig. 2 that the two curves
roughly agree even in magnitude for £ < 140. In view of
the fact that formula (13) is convergent on the critical
line, it is too early to draw any definite conclusions at this
stage. It is, however, important to have a deeper under-
standing of the Riemann-Siegel look-alike formula on a
theoretical basis, since its derivation rests on analogy ar-
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guments.

A different Riemann-Siegel relation has been proposed
by Bogomolny [15] based on a Poincaré section of the
classical motion. A detailed discussion of Bogomolny’s
quantum condition will be published elsewhere.
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