
Z. Phys. C - Particles and Fields 54, 331-339 (1992) 
Zeitschriff P a r t  J C ~  for Physik C 

and F -= ds 
�9 Springer-Verlag 1992 

An SU(2)L | SU(2)  symmetric Yukawa model 
in the symmetric phase 
Lee Lin and Hartmut Wittig 

Deutsches Elektronen-Synchrotron DESY, W-2000 Hamburg 52, Federal Republic of Germany 

Received 12 December 1991 

Abstract. The lattice regularized SU(2)L | SU(2)R sym- 
metric scalar fermion model with explicit mirror fermions 
is investigated in the phase with unbroken symmetry. In 
the present work numerical Monte Carlo calculations 
with dynamical fermions are performed on 43"8 and 
43. 16 lattices near the expected perturbative Gaussian 
fixed point. The bare Yukawa coupling of the mirror 
fermion is fixed at zero. Global symmetries of the model 
are discussed, and the numerical results are supported by 
lattice perturbation theory. 

1 Introduction 

Recently the Higgs-Yukawa sector in the Standard Model 
has attracted a lot of attention. Several groups have been 
studying various types of scalar-fermion models in order 
to study the mechanism of mass generation in the Stand- 
ard Model in a non-perturbative framework (see [1] and 
references therein). In view of the fact that the presently 
quoted upper limit on the top quark mass of 200 GeV is 
a l-loop perturbative result, non-perturbative studies can 
shed some light on the possibility of a strongly interacting 
Higgs-Yukawa sector. 

One important issue in lattice studies of scalar-fermion 
models is "triviality". In our model, l-loop perturbation 
theory tells us that the renormalization of the model is 
governed by an infrared-stable fixed point at zero coup- 
lings and hence predicts that the theory is trivial in the 
sense that the renormalized scalar and Yukawa couplings 
vanish as the cutoffis removed. This in turn implies cutoff- 
dependent upper limits on the scalar and fermion masses 
in the phase with broken symmetry. Therefore, an inter- 
esting question for our lattice study is whether or not the 
l-loop prediction is qualitatively correct. 

One notorious problem associated with lattice formu- 
lations of chiral scalar-fermion models is species doubling 
[3]. Currently, there are mainly two ways of dealing with 
this problem, one of which was introduced by Smit and 
independently by Swift [4]. The other approach, which 

also forms the basis for this work makes use of the explicit 
inclusion of mirror fermions in the action [5]. In a series of 
previous papers a simplified U(1)L| U(1)R symmetric 
Yukawa model with explicit mirror fermions has been 
investigated in both phases [6-9]. There it was shown that 
the fermion doublers can be made heavy, and in the 
broken phase the mirror fermio n can be given a large mass 
by the appropriate tuning of the two Yukawa couplings 
such that the light fermion spectrum is "chiral". 

In this paper we investigate the renormalized coup- 
lings in the neighbourhood of the Gaussian fixed point in 
the symmetric phase of an SU(2)L | SU(2)R symmetric 
Yukawa model with explicit mirror fermions. We now 
work with an O(4)-symmetric ~b4-theory and fermion 
doublets, which represents a better approximation of the 
Standard Model. As before, the gauge fields are ignored 
because at the electroweak scale those couplings are weak. 
Our numerical simulations are supplemented by pertur- 
bative calculations of renormalized parameters, /?-func- 
tions and tree unitarity upper limits on the Yukawa 
couplings. Furthermore, we discuss the Ward identities 
associated with a global shift symmetry in the fermionic 
fields. Since we want to compare our results to the pre- 
viously studied U(1)-case, the structure of this paper is 
quite similar to [7] where also more details about the 
model can be found. Furthermore, in order to compare 
our results to [7] we set the Yukawa coupling of the 
mirror fermion Gx=0 in the Monte Carlo simulations 
while increasing G~ from 0.1 to 1.0. In the symmetric 
phase, due to the symmetry ~b~--,)~, 7s~--~ -75 ,  Gq,*--~Gz this 
is equivalent to choosing G o =0  and varying G x to large 
values. In the broken phase of the model the latter scen- 
ario is a possible strategy to decouple the mirror fermion 
X by giving it a large mass, while having a light (massless) 
fermion field ~b. 

In Sect. 2 we discuss the lattice action, define the 
renormalized parameters for the Monte Carlo simulation 
and discuss the Ward identities arising from the shift 
symmetry in the fermionic fields. Section 3 is devoted to 
perturbation theory. We derive expressions for the renor- 
malized parameters in bare lattice perturbation theory, 
and furthermore the perturbative/3-functions and the tree 
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unitarity upper limit on the Yukawa couplings are cal- 
culated. In Sect. 4 the numerical results are presented, and 
the final section contains the discussion and summary of 
the results. 

2 Action, renormalization and Ward identities 

2.1 Lattice actions and parameters 

The lattice action of the SU(2)L | SU(2)R model with 
a general field normalization is 

S =  ~x {flCPSxCfsx-t- 2(~)SxdPSx)2-K E ~gSx+p~Sx 
It 

+ ~,x [(2~ 4'~) + ( ~  Z~)] - ~ [Kv,(~ +p 7. r 
# 

+ Kx(~x+pTuZ~)] + K, ~ [ ( 2 ~ ) - -  (Z.,+; ff~) 
x 

+ G~ 4)~x(~xr~ Zx) t '  0) 

where the summation over repeated O(4)-indices 
S = 0  . . . . .  3 is assumed. Here we denote the fermion 
doublet by ~ and its mirror fermion partner by Z, x is 
a lattice point, and the sum ~ ,  runs over eight directions 
of the neighbours;/~ is the unit vector in the direction of IL 
The Dirac matrices 7, are in the chiral representation and 
for negative # we have 7 _ , =  - ? , .  In the Yukawa coup- 
lings the 8 | 8 matrices Fs (S = 0, 1,2, 3) are defined as 
Fs = (1, - i75 r~) where the r's are the 2 | 2 Pauli matrices. 
The ~bs~, S = 0  . . . . .  3 are the four real components of the 
SU(2)-scalar field q0~ which is defined as 

( qS~ ~b2x+iq~lx'] (2) 
~~ _~b2x+iq~lx dPox-i~gzx/" 

In this paper, we always use the following convenient 
normalization: 

p , =  1-2A; K o = K z = - K ;  

K~ - rK; fi =- Izoz + 8rK = 1. (3) 

A different form of the fermionic lattice action which is 
particularly useful for the computation of the tree unitar- 
ity bound is obtained from the definition 

@ A ~ ~I L -J- Z R , I/I B ~ ~J R "-~- Z L , 4) 

where the subscripts L, R denote the left and right handed 
field components, respectively. In our normalization the 
free fermionic action now reads 

SF=~x { - -K~u  [tffax+~7.@AxW~Bx+~TU~lBx] 

# 

Defining 

G~=�89 G~=�89 (6) 

one obtains the following expression for the Yukawa term 

s~ = y~ {6~x(C~- G~)~0x~,~ + 6~x(G~ + G~)~0; q,~}. 
x 

(7) 
Note that in this formulation the free fermionic action is 
diagonal in the fields ~a, fin, whereas the Yukawa coup- 
ling term involves only off-diagonal contributions. 

In (1), there is only one pair of fermion and its mirror 
partner. In order to be able to use the Hybrid Monte 
Carlo algorithm for dynamical fermions in the numerical 
simulations, the fermion spectrum has to be flavour- 
doubled just like in the U(1)-case. Throughout this paper 
we set the Wilson parameter r = 1. 

2.2 Renormalized quantities 

The definitions of the renormalized quantities in the 
SU(2)-symmetric model are very similar to the previously 
studied U(1)-case [7] and require only slight modification. 
The fermion propagator matrix in the limit p-+0 is 

ziv (p)= ~ e ip" (y - x ) d  fx = A - i p  "TB + (9 (p z), (8) 
x 

and the inverse propagator for p ~ 0  is 

A7 ~ = M + ip '~N  + (9(p2), (9) 

where one has the following relations among the matrices 
A , B , M , N  

M = A - 1 ,  N = A - 1 B A  1 (10) 

The 16 | 16 matrices A, B can be determined from 
measuring fermionic timeslices in a numerical simulation. 
The renormalization of fermionic quantities is defined in 
the same way as for the U(1)-model, and the reader is 
referred to [7] for further details. 

For the definition of the renormalized Yukawa coup- 
lings we introduce fermion-fermion-scalar expectation 
values such as, e.g. 

-- St 1 (~~ ~ - - 7 ~  ~ o - i ~ - x ~ / , . o + . l .  ~.v,, \ \l, tUz tP'yLpl ~'xRa/, 
1-~ l X, y, g 

(11) 

where p, a are the spinor indices of the chiral components 
of fermion fields, and s, t are isospin indices. From these 
expectation values one can construct the Yukawa coup- 
ling matrix which is defined as 

m~ 
GR'= 2 ~  M R Z ~  1/2  ( t~j~. l~)oZ ~ 1~2MR" (12) 

Here, m R is the renormalized scalar mass, and Ze is the 
scalar wave function renormalization constant. The 
quantity (~bTx~)0 is the diagonal matrix of the above 
expectation values 

((~OZLZR)O , ( ~ 0  + Z R ~ L ) 0 } ,  (13) 

MR is the renormalized fermionic mass matrix which is 
obtained by multiplying the matrix M with the fermionic 
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wave function renormalization matrices Zv 

MR=_Z~/2MZ~/2=_(L %R), (14) 

where 

(15) 

and Z0, Z x are the wave function renormalization con- 
stants for the fermion and mirror fermion fields, respect- 
ively. With these definitions the expressions for GR0, GR~ 
become 

G Rq ~ 

GRz 

2 2 2 2 
mR#R mR#R 

Z z 2 x / ~  ~ <~ZL,~.>o= Z x 2 x / ~  ~ <~0+ZR2L>o, 

(16) 

2 2 2 2 
mR#R mR#R 

Z o 2 x / ~  ~ <~+0L#T")~ Z x 2 x / ~  ~ <~00R~L>~ 

(17) 

An alternative definition of GRO , GRx is given by (33, 34) in 
[7], except that here ~ is replaced by ~ and 
<4~+~b>o by <Os(Os> o where 

1 4Zo 
<r176 }]x,~ <r = . 4  ' (18) 

2.3 Shift symmetry and Ward identities 

For vanishing bare fermion mass Pox = 0, the model pos- 
sesses a shift symmetry in the fermionic field as discussed 
by Golterman and Petcher [10]. In this case, the action (1) 
is invariant under the following global transformations of 
the fermion fields 

0x~0x+og, ~ x ~ + ( 5  if Go=0; (19) 

Zx~)~+e, 2 x ~ x + g  if Gx=0, (20) 

where o, e do not depend on the lattice site x. Since in this 
paper we set G x = 0 throughout we shall now discuss the 
implications of the shift symmetry for the mirror fermion 
in the context of Ward identities. 

_Following the procedure in [10] we introduce sources, 
#, #, r/, q, J and define the generating functional as 

Z[~, (, t/, g/, J ]  - ~  [dO] [d~] [dz] t-dz] [dqS] 

�9 exp ( - -  S -  ~ (~-x0~ + ~ x  + (/~Z~ + 2~qx + J~q~x)), 

(21) 

where the path integral measure is invariant under any 
shift of the field variables. Therefore, varying the generat- 
ing functional with respect to the global shift transforma- 

tions of Z, 2 yields 

[dO] [d~] [dz] [d)T] [dq~] 
�9 exp(-  S -  ~ ((0 + qT~ + qX + 2r/+ JqS)) 

x{-K ~ ~,,,,A,,z~-(#o~+8Kr)O~, 
# > 0  

Z (Ox+p+Ox-p)-OzchsxF~zx-tl~ =0, (22) +Kr 
# > 0  ) 

and 

IdOl [dq;] [dz] [d22 [d~] 
�9 exp(- S -  Y,(C~, + 6~ + qZ + 2~ + Jr 

x{K ~ Au2~Tu-(#Ox+8Kr)6x 
#>0  

+Kr ~ (qx+~+G 0, (23) 
# > 0  ) 

where Auf=f~+p-fx_~. Defining the generating functional 
of 1PI vertices as 

F(O, q, Z, 2, cP) =- W(G 3, O, rl, J ) - ( O - - ~ - q Z - -  2tl-- Jq b, 
(24) 

where W = - l o g  Z, we define fields and sources via the 
following relations 

6W 6W 6F 3F 
Z=6t7 '  Z = - 6 ~ - '  q = - 6 ~ '  O=6Z" (25) 

Setting G x = 0 the Ward identities become 

K ~ 7,Auz~+(#oz+8Kr)O~ 
t t > 0  

6F 
- K r  2 (0x+,i+0x-p)-x~U =0, (26) 

,u>O t a x  

--K ~, Au~?u+(pq, x+8Kr)~ ~ 
,u>O 

6F -Kr E (t#x+~+6., p)+~Z =0. (27) 
/a>0 

Defining 

63F 
F(3) _ (28) 

~zz, - 60s6Z62' 

one finds 

F(3) --0. (29) 

The breaking of the shift symmetry by considering #ox # 0 
is only soft: since the vertex function F ~  is defined by 
means of the functional derivative, the result (29) is inde- 
pendent of #ox. From the Ward identities one sees that the 
mirror fermion Z can couple to the fermion 0 only 
through the mass term. It is, however impossible to con- 
struct any 1PI diagram which gives a contribution to the 
full qSZZ vertex. Hence we conclude that the renormalized 
Yukawa coupling GRx should always be zero for vanishing 
G x . 

The expressions (26, 27) can further be used to com- 
pute Ward identities for the propagator by taking the 
appropriate functional derivatives. If in addition to G x 
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also/tox is equal to zero (i.e. K = ~ in our normalization), 
we infer from those Ward identities that the mass matrix 
M defined in (9) vanishes identically. From the renormal- 
ization condition (14) we then conclude that in this case 
also the renormalized fermion mass /tR vanishes exactly. 
Note that the above results do not depend on the choice of 
the symmetry group of the model. In particular the de- 
rived Ward identities are also valid for the previously 
studied U(1)L | U(1)g-symmetric case. 

3 Perturbation theory 

3.1 Lattice perturbation theory and finite-volume effects 

For the derivation of the l-loop expressions for the renor- 
malized parameters around the Gaussian fixed point it is 
convenient to rescale the fields such that the lattice action 
corresponds to the continuum expression. The bare 
SU(2)-field ~Po and its real components q~os, S = 0  . . . . .  3 
are defined as 

~b~176176 qS~176 (30) 
" ~ ( ~ 1 7 6  2 _4,o2+iq5ol ~boo-iqSo3J' 

In terms of the components Oos the scalar part of the 
action becomes 

2 go ,3 .  

where c~ u denotes the finite difference lattice derivative, 
and the relation between the bare parameters (too, 9o) and 
(~:, 2) is 

1 - 2 2  62 
mo z -  8, 9 o = ~ .  (32) 

The free fermionic part is obtained by rescaling 0, X 
according to 

0o = x / ~ 0 ,  Zo = , ~ Z .  (33) 

The free fermionic part of the action now becomes 

~ t ~ = l  

+ (~0,x+p- ~0,x ~ -  220, x) 0o, ~ + (0~z ) ]  

+/to(~o, ~Zo, ~ + 2o, ~Oo, x) t,  (34) 
l 

and the Yukawa interaction is 

Sr = Y EGoor ~ Vs~o, ~) + ~o~r ~V; Zo, ~)3 
x 

(35) 

where 

/tOz 
/t o = ~-~, 

Go Gz 
G o O - 2 K x / ~ ,  G o x = 2 K ~ x ~ .  (36) 

With these definitions the Feynman rules can be easily 
derived. Now we consider vertex functions 

F("'z"F)(pa), a= 1 . . . . .  ns+ 2nv, (37) 

for n8 bosons, nv fermions and nv antifermions. The rela- 
tions between the bare and renormalized vertex functions 
are the same as for the U(1)-symmetric case, and we refer 
the reader to [7] for the details. Introducing a shorthand 
notation for the lattice momenta 

,u = 2 sin ( -~) ,  /5, = sin(pu), (38) 

and the momentum sums 

1 

p p 

2~ d4p 
= ! (5~p for L, T= oo, 

we find that up to one loop the renormalized scalar mass 
squared is given by 

m2 = mo 2 + go I (/~2 + mo 2) -1 
p 

+ 8Uf ~ 2a~176176 - (Gg~ + G22)/~2 

+ rno2 (2~cZ~- 1), (39) 

where Z~ is the wave function renormalization factor and 
/tp=/to+~2/2. The expression for Z~ is too lengthy to be 
displayed here. Note that Ny is the total number of 
fermion-mirror doublet pairs and is equal to 2 in our 
flavour-doubled model. For the renormalized fermion 
mass one obtains 

Pg=po-4GooGoz~ , -2 /tv 
ptP +/t2v)(Pz +m2) 

~2 
-~to (620 + G~x)! (/~2 + #2)(/~z + mo2)2 �9 (40) 

The renormalized scalar self-coupling gR up to one loop is 

gg = go -- 2gg ~ (/~2 + too2)- 2 + 48NI ~ (/~2 +/tp2)- 4 
p p 

2 2 4- 2 �9 [2GooGoxpp - 4GooGoz(Goo + G~ z + Go,Gox)P -2/tp 2 

+ (G~, + Go4x)(/~2) 2 ] + 2go (2~cZ, - 1), (41) 

and the renormalized Yukawa couplings are determined 
a s  

3 if2 
GRO = Go,--ZGo, ! + m 2 ) 2 ( f i  2 +/tv 2) 

p (~2 + mg)(ff2 +/t2)2 ~ Go, ~ (2~Z~ - 1), 

(42) 

GRx = (~,~.Z). (43) 
A simple observation is that all purely fermionic 1-1oop 
contributions are twice as big as in the U(1)-case. 

For sufficiently small bare couplings the perturbative 
formulae can be used to locate the critical points in para- 
meter space, i.e. those points where the renormalized 
masses vanish, viz. 

mR = 0, /tR = 0. (44) 



For the special case G X = 0, one derives the critical values 
for K and ~c in a similar fashion to [7], i.e. 

1 
/to~=0, K~=g,  (45) 

and the quadratic equation for the determination of ~c~ 
reads (N I = 2) 

~c2 + [ ~ - + 1 6 G ~ l e ] t c ~ - 3 @  Ii=O, (46) 

where 

i 1 _ ~  " d4p ,^2,-1 
0 ( ~ ) 4 t P )  =0.154933 . . . .  (47) 

2~ d 4 p  102 
lz = ~ ! (~)4  [/52 + (~2/2)212 = 0.025703 . . . .  (48) 

This should be approximately valid for small G~. Solving 
for lc~ in (46) one observes that at constant 2, ic~ decreases 
for increasing Go, but here the decrease is much stronger 
than in the U(1)-case. 

After we obtain the perturbative formulae expressing 
renormalized quantities in terms of bare parameters at 
l-loop level, we can consistently invert those relations to 
get l-loop renormalized lattice perturbation theory. This 
is particularly useful in the analysis of finite size effects. 
One can use non-perturbative input for the renormalized 
parameters used in the perturbative expressions for finite 
size effects which allows one to extrapolate the Monte 
Carlo results to infinite volume. Imposing the renormal- 
ization conditions at infinite volume (i.e. L = T = ~ ,  
mR= m~ ~), 9R = 9~ ~) . . . .  ), we define the finite size differ- 
ence 6Xa for any renormalized quantity Xa as 

6XR--Xa(L, T ) -  XR(~,  ~). (49) 

Calculating 6XR essentially amounts to calculating the 
difference of the l-loop integrals evaluated for different 
lattice sizes, viz. 

L 31" T ~ f ( P ) - ( 2 ~  ~ d4p f(p)' (50) 
p p 

wheref(p) is some function of the lattice momenta. As an 
example we display the expression for the finite size effect 
on the fermion mass 

6PR=--4GRoGRz~, 2 PRy 
pt/5 +#~;)(/~2 +m2) 

fi2 

--,UR(G2o+GZz)c~ I (fi2 +lA2p)(}2 +m2)2 , (51)  
p 

where i~p= t~g + ~z/2. Similar expressions can be derived 
for the other quantities. The finite size differences are 
evaluated numerically using suitable computer programs. 

3.2 fl-functions 

The fl-functions, which describe how the renormalized 
couplings change with varying cutoff if the bare couplings 
are held constant, are derived from lattice perturbation 
theory in l-loop approximation. Their universal scaling 
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parts read 

167z2 fl~l)= 492 + 16Ns 9R (G20 + G2z)-- 96Ny(G4m, + G~z), 

(52) 
l ~ 2 a ( 1 )  2 2 "~ ~'o =4NyGR~,(GRo + GRz), (53) 

16g2fl~ 1) = 4N I GR~(G2z + G2o). (54) 

Please note that for N y =2  and GR~= +GRz the above 
expressions are the same as the universal scaling parts of 
the fl-functions for a Yukawa model with a heavy genera- 
tion (i.e. with four degenerate chiral fermion doublets). 
The behaviour of the renormalized couplings as func- 
tions of the scale variable ~ _= log(am)- 1 (where am is some 
mass in lattice units) in the limit z ~  ~ are governed by the 
infrared structure of the fl-functions. One can see that 
gR = GR0 = Gax = 0 is an infrared fixed point, therefore the 
continuum limit of the model is trivial unless there is some 
other nonperturbative nontrivial fixed point. In order to 
have an interacting continuum theory, one has to keep the 
cutoff at some finite scale higher than the typical mass 
scale of the theory. The renormalized couplings will de- 
pend on the cutoff scale and will go up as the cutoff is 
decreased. When the cutoff is as low as the mass scale, the 
theory ceases being an effective theory due to large effects 
from the scaling violation terms. Therefore, one can get 
upper bounds on the renormalized couplings which are 
cutoff dependent. Since in our flavour-doubled model the 
l-loop fl-functions are the same as for the case of four 
degenerate chiral doublets, one concludes that the cutoff- 
dependent bounds on the masses will be the same in these 
two models. 

It can also be easily seen that in the limit z ~ ,  the 
ratio 2 2 GRx/GRo can stay at any value at any energy scale. 
This arbitrariness of this ratio is important, because in the 
continuum limit in the spontaneously broken phase it 
allows to fix the mass ratio ~Rx/#R~," The l-loop equations 
indicate that GRx is (approximately) zero once Gox = 0. 

The l-loop formulae will break down and higher loop 
contributions should come in as the couplings get relat- 
ively strong. In order to estimate when the l-loop for- 
mulae become invalid, we need at least to know the 2-loop 
fl-functions. 

The universal 2-loop contributions can be figured out 
from [11] in which the 2-loop fl-functions of a general 
scalar-gauge-fermion model were worked out. The results 
are 

(167z2)2flt02)= 26 3 2 2 - - ~  OR -- 32NIgR(GRo + G2z) 

-- 64Nyoa(G~, + G4x) + 768Ny(G60 + G6Rz), 

(55) 

(167z2)2fl~2)=(12-24Nf)GSgo - 8Nf GRoGRz3 2 

- 16NyGRoG~x-4gaG3o+ 1 g2GRq,, (56) 
o 

(16rt2)/fl~x2) 5 3 2 = (12 -- 24Ns)GRx -- 8Ns GRxGRo 

4 3 1 2 -- 16Nf GazGRo - 4gR GRz +-~ gg GRz. (57t 
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Again we state that for N I = 2  these expressions are 
equal to the universal parts of the //-functions for 
a Yukawa model with a heavy generation, provided 
GR0 = + GRz. This suggests that also the full//-functions 
might be the same for the two models, which however we 
cannot prove. Together with the l-loop contributions, one 
can roughly estimate that the l-loop//-functions become 
invalid when GRq,,2 G2z ~ 30 for Nf =2. One can also see 
that, due to the alternating signs, some new zeros of the 
//-functions are generated at 2-loop level. It is possible that 
they are just 2-loop artifacts because the 2-loop formulae 
will also be invalid as the couplings become even stronger. 

In order to get a hint on the size of cutoff effects we 
calculated the lattice//-functions in l-loop approximation 
using our results from Sect. 3.1. The lattice//-functions are 
defined as 

@R @~ (58) //o = mR ~ma + #~ 8#a' 

flO, z = m R  3G~q,, z t~GRo, x (59) 
~m~ § ~ R  ~IAR , 

where mg, ]-/R denote the masses in lattice units, and the 
derivatives are taken at fixed bare couplings. The//-func- 
tions for the Yukawa couplings read 

~2 
8m 2 G30 Jq (q2 _+_ f12q)(02 _f_ m2)3 

G.~,q z - GR~#~q 
~ 4 m ~ G ~ ~ f 

Jq (0 2 +#20)2(02 + m2) z 

q 2 [ 2 R q  
+ 4fiR G3, 

~ (0~ + m2):(O: + ~,~)~ 

2 ! P~q 
-4p~G~*GRz (02 +m~)(gl2 +p~q)Z 

- 2  2 

- - 8 f l R G 2 q  * J ^2 2 -2 2 3 q (q +mg)(q +#gq) 

+~ GRq, laR ~ (2~cZ 0 -- 1), (60) 

fl~=(0 '---' Z), (61) 

where/tRq = #R + 02/2. The expression for L ( 2 x Z o -  1) is 

too long to be displayed here. The above formulae will be 
used together with the l-loop continuum fl-functions to 
give an estimate for the effects of scaling violations on the 
renormalized Yukawa couplings. 

3.3 Tree unitarity 

The partial wave analysis of transition amplitudes at tree 
level allows the computation of upper bounds on the 
renormalized couplings, requiring the unitarity of the S- 
matrix. The calculations presented here are in the spirit of 
[12]. For our purpose it is convenient to use the action 
defined in (5 7). Throughout this section we will work in 
continuous Minkowski space-time. 

The interaction Lagrangian is 

S,t 

+ ~ . ( 6 . .  + ' + G.f75)(qgR ) s t ~ / R A } ,  (62) 
where the sum is over the SU(2)-isospin indices and ~o is 
the SU(2) matrix 

1 
~o = ~  (r +i%~bs). (63) 

. /2 

Here we use the renormalized fields and couplings 
throughout, since we calculate at tree level. The fermion 
propagator is 

st i (64) 5~(p)= (0~,~7~) =6 6A,, r 

and for the scalar propagator one gets 

i 
A~(P) = ( ~Pst (~o + ),v) = 6~v 3,, p2 _ m 2' (65) 

Now we consider the scattering process of a particle of 
type B and an antiparticle of type A according to 

BS(pl, 21) + ,4t(p2, 22)--*B"(p3, 23) + AV(p4, 24), (66) 

where the pi's are the four-momenta, and s . . . . .  v denote 
the SU(2)-isospin indices of the incoming and outgoing 
particles. The helicities are denoted by 21 . . . . .  24. The 
S-matrix element is determined as 

(AtBSISI ~vB") = - ,~s.,6t,~ ( A'BSl~a (GRa - -  GR,75) 
$ - u  

x ,P,~,,O,,.~,~.(GR. + G.~,75) 
+ V --V U x ~OR,~RAIA B >. (67) 

Hence the isospin indices of particle and antiparticle are 
left unchanged by the scattering process, and therefore the 
helicity amplitudes T~x~a~,st are the same for any choice 
of the indices s, t. 

Now we go to the center-of-mass frame of the incom- 
ing particles by requiring 

Pl +P2 =0, (68) 
and choose 

Pl =(Pl ,  0, 0)= Ipl(1, 0, 0) (69) 

such that the momenta of the outgoing particles are 

P3 -- I p[(cos 0, sin 0 cos ~b, sin 0 sin q~) = - P4, (70) 

where (0, ~b) are the polar and azimuthal angles, respect- 
ively. Furthermore one has the relations 

s=(plq-p2) 2, E1 =x/s, Ipl-- Ex/~-~2-~. (71) 
2 

With these definitions, one obtains the helicity amplitudes 
st T~,z~z ,  for any choice of the isospin indices s, t up to 

a phase as 

8 T~+++ - 2 2 2 2 2 
s _ m E  (GR ~(E 1  - - f i R ) +  G R u E l  

- 2GR~GRaEI~- -  #2), (72) 



8 T a t  2 2 2 2 2 _ _ _ - + GmjE1 2 (GR~(E1--tZR) 
S - -  m R 

+ 2 G R , G R , E 1  ~ - -  tz2), (73) 

8 T% - 2 2 2 2 2 
+ -  - ~ -  m~ ( ~ R ~ ( E I - - ~ R ) - -  ~R~E~)  

= T~ + +. (74) 

All other amplitudes are zero. 
Expanding the above amplitudes in a partial wave 

series, one observes that only J = 0 partial waves contrib- 
ute since there is no dependence on 0, qS. Unitarity of the 
S-matrix requires [16] 

O T - J = 0  1 IRe(~ .~1~2~,3~.4)1 ~ 2  (75) 

where 5 - J : ~  is the coefficient of the partial wave A1 ~-2-~324 
expansion. In the limit s ~  we obtain the following 
bounds on the renormalized Yukawa couplings from 
(72-74) 

2 Gzz ,  GROGRz<47Z. (76) GR0, 

From this results one expects the Yukawa couplings to be 
strong at GRO, GRz ~ 3~4. This value is slightly lower than 
the one derived from the analysis of the perturbative 
fl-functions. In fact, tree unitarity yields the same result as 
in the U(1)-symmetric model [-7] which is due to the fact 
that the isospin components are conserved during the 
scattering process. Note however, that this discussion is 
based on the assumption that the number of fermion- 
mirror-fermion pairs is N f  = 1. For a comparison to the 
numerical simulations where Ny = 2, the additional contri- 
bution of the second flavour yields a factor of 1/2 for the 
rhs of (76). 

4 Numerical simulations 

We performed Monte Carlo simulations on a 4 3 " 8  
lattice with periodic boundary conditions in the spatial 
directions. Due to limited amount of computer time, we 
have not been able to move to larger lattices so far. In the 
(longest) time direction, periodic boundary conditions 
were taken for the scalar field and antiperiodic ones for 
the fermions. The algorithm we use is the unbiased Hybrid 
Monte Carlo method [13]. This requires the flavour 
doubling of the fermion spectrum. In the molecular-dy- 
namics step typically about 15000 trajectories per point 
were calculated, with about 10% at the beginning used for 
equilibration. The number of leapfrog steps per trajectory 
was chosen randomly between 3 and 10. The step size was 
tuned so that the acceptance rate for the trajectories was 
near 75%. The necessary inversions of the fermion matrix 
were done by the conjugate gradient iteration, until the 
residue was smaller than 10-s-times the length square of 
the input vector. 

The Wilson-parameter was always chosen to be r = 1. 
The bare Yukawa coupling of the mirror fermion field G x 
was fixed to zero, while G o was changed between 0.1 and 
1.0. The bare quartic coupling 2 was chosen to be 10 -4, 
1.0 and ~ .  The remaining two bare parameters x and 
K were tuned such that the system was in the symmetric 
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phase and the masses of the scalar (mR) and fermion (#R) 
were not too small to avoid large finite size effects. On the 
43 .  8 lattice, we let mR "~ #R ~- 1.0. 

Our data are presented in Tables 1 3. With the present 
statistics, the renormalized scalar coupling 9R could not 
be determined accurately enough, and hence we do not 
include it in the tables. Furthermore, our results show that 
the fermion doublers can be easily made heavy, i.e. they 
receive masses greater than 2 in lattice units. 

The data on the 43 .  8 lattice show that Ggx is always 
substantially smaller than GRo. However, the l- loop ex- 
pressions and in particular the Ward identities arising 
from the shift symmetry discussed in Sect. 2 predict that 
GRz should be exactly zero for vanishing bare coupling. 
This apparent paradox can be explained by observing that 
all fermionic quantities are extracted from the matrices 
A, B, M ,  N defined in (8, 9), where terms of order p2 are 
neglected. In fact, this is not a good approximation on the 
43 .  8 lattice with the smallest momentum being (0, 0, 0, ~). 
Therefore we repeated the run at (G 0, Gx)=(0.3, 0.0) on 
a 43. 16 lattice (point "d" in the tables). Here one finds that 
the value for GRx is indeed compatible with zero. 

GRz is linearly rising with G 0 (Fig. 1) but comparing 
our results to the U(1)-case one observes that the rise is 
slightly steeper. This is also supported by the perturbative 
expressions, which for SU(2) involve a further positive 
contribution to GRO. We see that at G 0=  1.0 the renor- 
malized coupling GR, is twice as large as the tree unitarity 
limit. This indicates that the system is strongly interacting 
at that point, and we are therefore led to believe that in the 
broken phase the mirror fermion can be made heavy by 
appropriate tuning of G z, just like what we did in the 
U(1)L | U(1)R model [8]. Furthermore, the results for 
point "d" suggest that the same is still true for the larger 
lattice. 

Our results show only weak dependence on the value 
of the bare quartic coupling 2. However, at 2 = 10 -4 and 
large values of Go, one is forced to go to negative values of 
~: in order to stay at mR ~--#g ~- 1.0. Thus one ends up in 
a region of bare parameter  space where reflection posit- 
ivity cannot be proven, as was reported for the U(1)-case 
I-8]. Plotting x versus Go, one observes that the values of 

are shifted parallely downwards for decreasing 2 (see 
Fig. 2). This suggests that at any value of 2 and for large 
enough G o the scalar hopping parameter  x becomes 

Table 1. The chosen points in the parameter space and the meas- 
ured renormalized masses mR and PR. Points labelled by capital 
letters are on the 43 �9 8 lattice. Point "d" was determined on a 43. 16 
lattice. Statistical errors in last numerals are in parenthesis 

label t 3" T 2 Gv, G z tr K m R PR 

A 43"8 ~ 0.3 0.0 0.220 0.100 1.00(5) 1.06(2) 
B 43"8 ~ 1.0 0.0 0.042 0.100 1.07(11) 0.954(9) 
C 43"8 1.0 0.1 0.0 0.205 0.100 1.04(1) 1.0733(4) 
D 43-8 1.0 0.3 0.0 0.181 0.100 1.17(1) 1.058(1) 
d 43. 16 1.0 0.3 0.0 0.181 0.100 1.18(1) 1.002(2) 
E 43"8 1.0 0.6 0.0 0.140 0.100 1.12(2) 1.009(3) 
F 43"8 1.0 1.0 0.0 0.032 0.100 1.07(2) 0.917(5) 
G 43-8 10 40.3 0.0 0.096 0.100 0.99(2) 1.037(2) 
H 43"8 10 -4 1.0 0.0 -0.055 0.100 0.87(3) 0.78(1) 
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Table 2. Some global expectation values in 
the points with label defined in Table 1. I is 
the normalized link variable average. I~01 
denotes the magnitude of the average scalar 
field. The other notations are self- 
explaining. Statistical errors in last 
numerals are given in parenthesis 

1 <x~6x> < ~ + r  <~x,~2R~> <1~1> <l~l> 

A 0.144(2) 7.9313(8) 0.0201(7) -1.1954(5) 0.115(5) 1.0 
B 0.085(1) 7.848(2) 0.0405(8) -3.919(1) 0.089(6) 1.0 
C 0.1423(4) 7.942(1) 0.0073(8) -0.4805(7) 0.119(1) 1.0649(2) 
D 0.1276(3) 7.929(1) 0.0195(7) 1.422(1) 0.106(1) 1.0593(2) 
d 0.1268(3) 7.9300(7) 0.0200(4) 1.4197(5) 0.0746(7) 1.0591(1) 
E 0.1189(4) 7.891(2) 0.0367(7) -2.805(2) 0.107(2) 1.0561(2) 
F 0.0896(5) 7.821(2) 0.0502(10) -4.540(2) 0.104(2) 1.0476(3) 
G 0.1369(5) 7.915(1) 0.0417(9) 2.693(2) 0.168(3) 1.4135(5) 
H 0.0592(7) 7.749(3) 0.078(2) -8.01(1) 0.156(6) 1.362(1) 

Table 3. Renormalized couplings and Z-factors in the points with 
label defined in Table 1. Statistical errors in last numerals are given 
in parenthesis 

GR, GR~ Z 0  Z 0 Z x 

A 3.3(1) -0.4(4) 1 . 7 ( 1 )  4.24(1) 4.44(1) 
B 10.7(8) -2.0(1) 2.0(2) 3.38(5) 4.29(1) 
C 1.26(5) -0.23(5) 2.24(4) 4.44(3) 4.41(3) 
D 3.78(8) -0.56(7) 2.22(3) 4.25(2) 4.43(2) 
d 4.24(12) -0.15(8) 2.24(3) 4.65(3) 4.81(3) 
E 7.1(1) -0.94(6) 2.05(4) 3.86(3) 4.35(2) 
F 9.6(2) -1.72(8) 1.76(4) 3.10(4) 4.22(2) 
G 5.02(9) -0.71(6) 4.03(7) 4.06(3) 4.41(3) 
H 9.1(4) -2.22(7) 2.6(1) 2.11(7) 4.05(3) 
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Fig. 1. The renormalized Yukawa coupling GR0 as a function of the 
bare coupling G 0 at 2= 10 -4 (open circles), 2= 1.0 (open squares) 
and 2= m (crosses) on an 43-8 lattice. At G0= 1.0 the points are 
slightly shifted for a better display of the errorbars. For smaller 
values of G o the errors are of size of the symbols 

negative for fixed mR, and hence the continuum limit is 
possibly ill-defined. 

To get a hint on the dependence of the numerical 
results on the finite volume, we used them as input in the 
perturbative expression for finite size effects (see Sect. 3). 
Since gR could not be determined accurately enough, we 
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Fig. 2. Values for the scalar hopping parameter ~c versus the bare 
Yukawa coupling G o at mR-~ 1 and for several values of 2. Open 
circles: 2= 10-4; open squares: 2= 1.0; crosses: 2=  

chose gR = 30 as input, which corresponds roughly to the 
tree unitarity bound on gR in the O(4)-symmetric ~b *- 
theory [16]. The finite size analysis shows that both 
masses decrease as one goes to the infinite lattice. The 
effect amounts up to 10% for mR and less than 5% for #R. 
GR~ is smaller by about 3% for the infinite volume. These 
are of course only rough estimates since there are no 
Monte Carlo results on larger lattices so far. For essenti- 
ally the same reason we cannot provide an estimate of the 
influence of scaling violations. Studying the effects of finite 
lattice spacing amounts to scaling down the renormalized 
masses which can only be achieved on larger lattices. 
A rough estimate of cutoff effects on GRO is obtained by 
comparing the l - loop ~-functions derived for the con- 
tinuum and the lattice, respectively. Performing the 
analysis for point "d" where the Yukawa couplings are 
expected to be sufficiently weak for the l - loop expressions 
to apply, we took the numerical values for the couplings as 
input and integrated the fl-functions from a mass scale of 
1 down to 0.7. The latter is a value that can be reached on 
a 63. 16 lattice. In both cases G~o decreases as one goes to 
smaller scales, but this decrease is much stronger for the 
continuum fl-function. At the mass scale of 0.7 the coup- 
lings obtained from the two fl-functions differ by about 
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10%. Of course, this is only a crude estimate of the 
influence of scaling violations since the analysis is based 
on l - loop perturbat ion theory. 

5 Discussion and summary 

The behaviour of the renormalized Yukawa couplings 
was investigated in the symmetric phase of an SU(2)L | 
SU(2)R symmetric lattice Yukawa model  with explicit 
mirror fermions. We started at small bare couplings 
(2=0.0001, G0=0.1 ) in the perturbative region near the 
Gaussian fixed point and then increased the couplings up 
to (2=  ~ ,  G o = 1.0). The bare Yukawa coupling of the 
mirror  fermion field was fixed to G x = 0. In the numerical 
simulations only weak dependence of the renormalized 
Yukawa coupling GRO on the bare quartic coupling 2 was 
observed. GRO rises approximately linearly in the whole 
range as a function of the bare Yukawa coupling G 0. The 
obtained values of the renormalized Yukawa coupling 
GRO at Go=  1.0 are about  three times the tree unitarity 
limit. On  the 43. 16 lattice the value for Ggx is in agree- 
ment (within errors) with the prediction of the Ward  
identities that GRx should exactly be zero for vanishing 
bare G z. 

These findings are very similar to the previously 
studied U(1)-case. Thus, there is no qualitative difference 
to the results of I-7], and in particular the results imply 
that the upper limit on the renormalized Yukawa coup- 
ling, at a cutoff corresponding to masses in lattice units of 
about  1.0, is at least 2- or 3-times larger than the tree 
unitarity limit. This is different from pure q54-models, 
where the corresponding upper limit is roughly equal to 
the tree unitarity bound (for references see [14], and in 
particular for the symmetric phase [15 17]). 

At the present stage we cannot  make any statement 
concerning the renormalization of Yukawa couplings 
since we do not  have any results on larger lattices. Thus 
we have not  been able to confirm the linear rise of 
GR0 with G o on bigger volumes and smaller mass scales 
either. A systematic analysis of cutoff effects by using 
improved actions or lattices with a higher symmetry (e.g. 
the F4 lattice) would certainly be too demanding at the 
present level. We leave these problems to a later study. 

Our  data show that in order to fix the masses in the 
theory at, say mR--~/~R ~-- 1 one is forced to negative values 
of x as the bare Yukawa coupling is decreasing. This 
happens earlier for small 2 than at 2 = ~ .  Hence one ends 

up in a region where reflection positivity cannot  be 
proven, which implies that the reconstruction of the the- 
ory in Minkowski  space possibly (but not necessarily) 
fails. As a guideline for further studies this shows that in 
order to make predictions relevant for the cont inuum 
theory, one should restrict the analysis to medium values 
of the bare Yukawa couplings. 
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