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We discuss the role of periodic euclidean solutions with two turning points and zero winding
number (periodic instantons) in instanton-induced processes below the sphaleron energy E .
We find that the periodic instantons describe certain multiparticle scattering events leading to
the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital
and final states of these transitions are determined by the periodic instantons. Furthermore, the
corresponding probabilities are maximal among all states of a given energy. We show that at
E <« E,;, the periodic instantons can be approximated by infinite chains of ordinary instantons
and anti-instantons, and they naturally emerge as deformations of the zero-energy instanton. In
the framework of the two-dimensional abelian Higgs model and four-dimensional electroweak
theory we show, however, that there is no obvious relation between periodic instantons and
two-particle scattering amplitudes.

1. Introduction

Instanton-like transitions in the electroweak theory give rise to interesting
phenomena, including baryon- and lepton-number violation [1]. Recently, much
attention has been paid to the possibility of baryon-number violation being
unsuppressed in high-energy collisions. The leading-order calculations of two-par-
ticle scattering cross sections [2,3] in the semiclassical expansion around the
instanton show the exponential growth of the total cross section in all models
possessing instantons [4-7]. The study of corrections to the leading-order instanton
calculations [6,8-11] indicated that some instanton-induced amplitudes may be
calculable by a technique of a semiclassical type.
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The existing calculations rely on a certain type of perturbation expansion about
the ordinary zero-energy instanton. This procedure is inadequate in that it erro-
neously prescribes the vacuum boundary conditions to the saddle point configura-
tion. As a result, the expansion breaks down at sufficiently high energies, £ ~ E_,,
where the difference between the final state and vacuum becomes substantial.
(Here E,, is the sphaleron [12] mass, i.e. the height of the energy barrier between
neighbouring vacua.) Alternatively, one might try to look for new solutions to the
field equations, manifestly satisfying non-vacuum boundary conditions, although
one is not guaranteed that these new solutions (if any) describe scattering ampli-
tudes. The strategy may be to find any solution that might be relevant at non-zero
energy and then try to understand whether it has any relation to scattering
processes. If so, such solutions would provide correct semiclassical expressions for
the corresponding scattering probabilities with no corrections except for loops (as
opposed to the expansion around the zero-energy instanton).

Obvious candidates for the saddle points relevant at non-zero energies are
solutions with two turning points. In quantum mechanics of a particle with one
degree of freedom ¢ in a potential V'(gq), the periodic instanton is characterized by
the energy E (see fig. 1) and runs from the turning point ¢, to the other turning
point g, and back. In field theories possessing usual instanton solutions with
infinite duration in euclidean time (we will call these solutions the zero-energy, or
vacuum, instantons), one also expects the existence of periodic instantons with two
turning points. At small energies, these solutions may be approximated by chains
of vacuum instantons and anti-instantons (fig. 2), while at E = E_, these solutions
are independent of euclidean time and coincide with sphalerons. Clearly, periodic
instantons interpolate between the original vacuum instanton and the sphaleron
and describe the instanton-like transitions between the vicinities of topologically



336 8. Yu. Khiebnikov et al. / Instantons

Fig. 2.

distinct vacua at finite, but not too high energies. It is worth pointing out that in
the Yang-Mills theories, the periodic instantons have zero winding number
[FI*: d*x. So, these periodic instantons are not the high-temperature instantons of
ref. [13]: the latter have non-vanishing (and integer) winding number.

The purpose of this paper is to study the role of periodic instantons in
multiparticle scattering at high energies. We find in sect. 2 that the periodic
instantons, in fact, describe some multiparticle scattering events that lead to
transitions between the vicinities of topologically distinct vacua. Unlike the zero-
energy instanton, the periodic instantons are exact saddle points in the functional
integral for the corrsponding amplitudes. The transitions described by the periodic
instantons, though not directly related to the two-particle scattering, are interest-
ing in their own right. Namely, these events have, in some sense, the largest
probability at a given energy (below Esph). More precisely, if one constructs the
mixed initial state with all possible pure initial states of a given energy taken with
equal weights, then the probability for this mixed state to tunnel to the vicinity of
the neighbouring vacuum is determined by the periodic instanton, and, further-
more, this probability is saturated by the pure initial state that is directly related to
the analytic continuation of the periodic instanton configuration to the minkowskian
time. The analytic continuation of the periodic instanton through the other turning
point determines the most probable final state at a given energy.

The main interest in the multiparticle states described above resides in the fact
that they are the “most probable escape states” at a given energy, so that the
corresponding escape probability definitely becomes of order unity at high ener-
gies. In practice, these maximum probabilities can be found most easily at rela-
tively low energies where the periodic instantons may be a approximated by chains
of zero-energy instanton and anti-instantons (in sect. 3 we show that such configu-
rations naturally emerge in perturbation theory around the zero-energy instanton).
Even at these energies, the probability of the multiparticle events may set a useful
standard of how fast the probability could grow.

The initial state of a scattering event described by a periodic instanton is,
roughly speaking, a certain coherent state with an indefinite number of particles.
Although the average number of particles in this state is large, its projection onto
the two-particle sector is finite (but exponentially small). As the periodic instanton
corresponds to the scattering event having maximum probability at a given energy,
one might hope to obtain a good estimate for the cross section of instanton-like
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two-particle scattering at all energies below E, by the product of the above
projection factor and the multiparticle cross section determined by the periodic
instanton. This approach to the most interesting problem of two-particle
instanton-like scattering would be close, at least in spirit, to the calculations of
refs. [14-16]. We discuss this point in sects. 4 and 5 in the framework of the
two-dimensional abelian Higgs model and four-dimensional electroweak theory,
respectively. In both cases we find that even at relatively low energies, the
two-particle cross sections obtained in this approximation differ exponentially from
the correct expressions calculated by the expansion around the vacuum instanton.
We think that this result makes the projection approach doubtful at high energies
as well.

2. Periodic instantons and multiparticle scattering

In this section we discuss the interpretation of the euclidean periodic solutions
(periodic instantons) as configurations saturating, in the semiclassical-type approxi-
mation, certain scattering amplitudes.

We begin with the generating functional for the scattering amplitudes, .#(b*, a).
The amplitudes are the derivatives of #(b*, a) with respect to the complex
sources b;f and a, which correspond to the final and initial particles, respectively.
The generating functional #(b*, a) has the following functional integral repre-
sentation (see, e.g. ref. [6]):

F(b*, @)= lim /d¢f do, 24

Ti—» —

XCXD{Bi(ak’ é:)

+B,(bf, &;) + if:dt.,?(d))}, (2.1)

where ¢ stands for all bosonic fields (we do not consider fermions in this paper),
Ba,, ¢;) and B(b}, ¢,) are the boundary terms

Bi(a,, ¢;) = _%fdkaka—k e HenTi— %fdk W, i(k)b(—k)
+ [dk 2w, e i ( k),
Bi(b, ¢r) = — 1 [dkbib*, e Tt — 4 [dk w, (k)b —k)

+ [dk 2w, e TibEd(~k), (2.2)
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and &, (k) denotes the spatial Fourier transform of the field @i 1(x) = §(Ti4, x).
The generating functional .*(b*, a) can also be viewed as the matrix element of
the scattering matrix . in the coherent state representation [17,18], so that
F(b*, a) is the transition amplitude between the coherent states |a) and {b|,
L(b*, a)={b|Za).

We are interested mainly in the the S-matrix on the subspace of fixed total
energy P, =E and total momentum P =0. It can be obtained from eq. (2.1) by
making use of the projection operator onto this subspace, which, in the coherent
state representation, reads

Zp(b*, a) = [d% exp{ —iP¢* + [dkb}a, e"kf}. (2.3)

Here k¢ =w, &, — k&. So, instead of .#(b*, a) we consider the matrix elements of
the product %,

Fe(b*, a) = (b| P, | a) =/dc* dc e~ (b*, ¢)Pp(c*, a), (2.4)

where we have used the rule of convolution in the coherent state representation.
Making use of egs. (2.1), (2.3) and (2.4) we find

Fe(b*, a) = qus d exp{ —iP,£* + Bi(a, e, ;)

+By(bF, ;) +ijrffdt .,?(qﬁ)}. (2.5)

The interpretation of the functional ¥.(b*, a) is that it gives the transition
amplitude between the states % |a) and (b| 2.

As discussed in refs. [6,8—11], the instanton-induced cross sections are likely to
have an exponential form. Guided by this observation, we may try to evaluate the
functional integral in eq. (2.5) in the saddle-point approximation. The saddle-point
configuration is determined by the field equation

85(¢) o
s

while the presence of the boundary terms B;; in eq. (2.5) gives rise to the following
boundary conditions:

(2.6)

wpbi(—k) +id(—k) = 2w, ek,
kdj( ) ; (—k) e k @7
w (k) —id;(k) = 2w, b,
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The meaning of these boundary conditions is that they fix the negative-frequency
and positive-frequency parts of the field ¢ at t > — and t — , respectively.
They correspond to the presence of particles in the initial and final states. At
a,=b} =0 the boundary conditions, eq. (2.7), reduce to the Feynman (vacuum)
ones.

Besides the field equation, there are four more saddle-point equations that
come from the variation of the exponent in eq. (2.5) with respect to &,

E = fdk wk<_aka—k o~ Ziwg T+ 2iwg" 4 szwkakqgi(k) e_iwkri+ik§}’ (2.8)

P=0= [dkk20,a,(k) e ke, (2.9)

As we will see below, eq. (2.8) relates the energy E and the period of the periodic
instanton.

Clearly it is a complicated problem to find a general solution to eq. (2.6) with
boundary conditions (2.7). However, at some values of a, and b/, the solutions to
these equations are known. The obvious example is the ordinary zero-energy
instanton describing the vacuum-to-vacuum transition. The vacuum instanton
configuration solves eqs. (2.6) and (2.7) continued to the euclidean domain pro-
vided that b =a, = 0.

In this section we consider another type of saddle points in eq. (2.5), namely the
periodic instantons. These are periodic solutions to the euclidean field equations
with the following properties. The set of periodic instantons interpolates between
the zero-energy instanton and the sphaleron when the period T changes from
T = « to the period of small oscillations in the sphaleron negative model *. Each
periodic instanton has two turning points ¢(0, x) =0 and ¢(T/2, x) =0, so that
the evolution from one turning point to another corresponds to half of the period
(and another half of the period corresponds to the motion back). In this paper we
consider periodic instantons which are real both in the euclidean and minkowskian
domains of their evolution. The winding number (e.g. [FF d*x for the electroweak
theory) per period for a periodic instanton is zero, but the winding number
evaluated between the two turning points is non-vanishing and changes from unity
for configurations near the instanton to zero for configurations near the sphaleron.

Given the periodic instanton with the above properties, one can construct the
following field configuration. Due to the conditions (0, x) = (T /2, x) =0 one
can analytically continue the solution ¢ at the points =0 and »=T7/2 to the
minkowskian domain. The analytic continuation is the solution to the minkowskian

* In the electroweak theory this change is not monotonic: at E < Eon the period actually increases
with energy, but slower than the other characteristic parameter, the size of individual instanton, see
eq. (5.7) below.
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field equations with the initial conditions ¢(0, x) and (0, x) =0 ((T/2, x) and
c[)(T/Z, x) = 0 for the other turning point). In this way one obtains the configura-
tion which corresponds to the minkowskian evolution from ¢ = — to the turning
point, tunneling according to the euclidean field equations and then again
minkowskian evolution from another turning point to ¢t = . In other words, one
performs not the complete Wick rotation but rather a deformation of the time
contour into that shown in fig. 3.

We now wish to show that, in a certain sense, the periodic instanton determines
the maximum tunneling probability at a given non-zero energy. More precisely, our
claims are as follows: (i) The field configuration described above is the saddle
point in the functional integral for .#.(b*, a) for some particular values a, = f,
and b;" = g/*. The period of the instanton, as well as f, and g;*, are determined by
the energy E. (ii) The amplitude ¥, (g*, f) obtained in this way gives the
maximum transition probability among the initial states with fixed energy E. (iii)
The initial state having maximum transition probability and the most probable
final state are the projections of the coherent states | f) and (g| onto the
subspace of fixed energy equal to the energy of the saddle-point configuration.

Point (i) can be understood by considering the analytic continuation (i.e. the
deformation of the time contour) in the functional integral for .%.(b*, a). Indeed,
the S-matrix becomes independent of the initial and final times 7; and 7T; when

1
they go to infinity. It is natural to assume that 7, and 7; can have non-vanishing
imaginary parts. In particular, we are interested in the case when the imaginary
part of the difference between T; and ¢, equals 7/2. In this case the integral over
t in eq. (2.1) runs along the contour which is shown in fig. 3. The variation of the
exponent with respect to ¢ now produces the minkowskian field equations at the
horizontal parts of the contour and the euclidean field equations at the vertical
part. This is precisely the set of equations that is obeyed by the field configuration

obtained from the periodic instanton by the analytic continuation, the condition
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45 = ( being the matching condition at the turning points. Therefore, the configura-
tion we have constructed can be viewed as the saddle point in eq. (2.5) for some
values of a, and bj.

The particular values of a, and b} corresponding to a given periodic instanton
are determined by the Lh.s. of eq. (2.7), which should be evaluated in the
asymptotic minkowskian regions, T; = (—o +iT/2) and T; — =, respectively. In
these regions, the periodic instanton has the following form:

. 1 ‘ |
$i(k) = ==(f k¢ HfF ),
(2.10)

- 1 . .
d)f(k) _ fz_ (g—k efwlf_f_glzk elwrf)’
Ve @

where t;=Re T,, so that T;=1¢,+iT/2. Here f_,, f* and g_,, g are complex
functions of the momentum whose values are determined by the configuration of
the periodic instanton. Substituting eq. (2.10) into eq. (2.7) we find that the values
of a, and b} are

a,=fi» bi=gf (2.11)

provided that the saddle-point value of £* is
0=iT/2, £=0. (2.12)

By inspecting eq. (2.8) we see that it is indeed satisfied if

E= [dk w0 fE Fes (2.13)

while eq. (2.9) is satisfied identically.

To summarize, the periodic instanton configuration and ¢* = (iT /2, 0) are the
saddle point of the integral (2.5) at a4, and b} determined by the minkowskian
asymptotics of the periodic instanton field via eq. (2.11), provided that the period
is chosen in such a way that eq. (2.13) is satisfied. Substituting the saddle-point
values into eq. (2.5) we obtain, up to a pre-exponential factor,

YE(g*,f)=exp{%ET+%/dkfk* fk+%fdkg,;"gk—§5+%i5’}, (2.14)

where 3§ and 1S’ are the imaginary and real parts of the periodic instanton
action, evaluated along the contour of fig. 3. Notice that %S and %S " come from
the euclidean and minkowskian domains, respectively, and that %S " is irrelevant as
it cancels out in the probability.
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The particular values of f, and g/ determine the coherent states | f) and (g|,
which, in the coherent state representation, have the wave functions

Yr(a*)y={alf)= exp{fdkfka,’f},

(2.15)
r(b)=(glb)= exp{fdk g,:“bk},
or, in the Fock representation,
)= exp{fdkfkﬁl} 0),
(2.16)

(gl =<0|exp{fdkg,§“l3k},

where @}, and b, are the creation and annihilation operators. So, | f) and (g | are
the two coherent states corresponding to the periodic instanton. Note that the
states | f) and (g | are not normalized. Their norms are

Nf=exp{%/dk|fk |2},

(2.17)

N, = exp{%fdk| g |2}
The projection of the coherent state, & | f ), also has the norm N; provided that
the energy satisfies the condition (2.13). It is clear from eqs. (2.17) and (2.14) that
the probability of the process % | f) =%, | g) in the saddle-point approximation
is

Opp .= === —exp{—S +ET},

which coincides with the semiclassical formula familiar from quantum mechanics
of one degree of freedom (notice that § is the euclidean action of the periodic
instanton evaluated over the period).

We will now discuss point (ii). To find the maximum tunneling probability at a
given energy E, consider the quantity

o= L |Fp(b*, @)’
a,b

= [da* da db* db exp(—fdk afa,— [dk b,;kbk)|y5(b*, a)’. (2.18)
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oy can be interpreted as the total probability of the transition of a mixed state with
all pure states of energy E taken at equal weight (microcanonical ensemble).
Therefore, the saddle-point values of a,, af and b,, b} in the integral (2.18)
determine the state having the largest probability to tunnel and the most probable
final state, respectively. We will now show that

— ko *k
ay=fx by =8¢,

2.19
ag =fi¥, by =8> ( )

is the saddle point in the integral (2.18).
Consider the variation of a, and b;f around the values (2.19),

ay=fiptag, bf=g; +Bi.

We have to consider the terms in the exponent that are linear in a, Bj.
According to eqs. (2.7) and (2.8), these variations induce the variations in the
saddle-point values of ¢(x) and £*. However, due to the saddle-point nature of
the old values of ¢ and &*, their variation does not produce linear terms.
Therefore, we simply substitute a, = f, + a,, b =g/ + B, and the old saddle-
point values of ¢ and £*, egs. (2.10) and (2.12), into eq. (2.5) and obtain

Fp(g*+B*, f+a)
= exp{éET%— %/dk(fk*fk +grg fFa, +BEg) — 3S + 1S+ }, (2.20)

where dots denote higher orders in @ and 8*. Making use of eq. (2.20) one can see
that the terms linear in « and B8* cancel in eq. (2.18), i.e. eq. (2.19) indeed gives
the saddle point of the integral (2.18). Finally, we find in the saddle point
approximation

op=exp{—S+ET} =0, (2.21)

As is clear from the above consideration, the state having the largest probability to
tunnel and the most probable final state are determined by eq. (2.16) and the
subsequent projection onto the fixed energy £ and momentum P = 0. So, point
(iii) is now obvious. This completes the general discussion of the periodic instan-
tons.

Thus, the periodic instanton determines the most probable transition channel at
finite energy E provided that its period is chosen in such a way that the energy
condition, eq. (2.13), is satisfied. Notice that the latter condition is equivalent to
the relation

aS(T)
9T

(2.22)
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i.e. the condition for the extremum of the exponent in eq. (2.21) with respect to the
period T.

In the end of this section we note that the projection onto the subspace of fixed
energy introduced in eq. (2.5) plays the crucial role in the above analysis. Indeed,
without the projector factor, the periodic instanton (2.10) is still the saddle point in
eq. (2.1), but it describes the transition amplitude between the states | f e ~“7/2)
and (g|. However, the amplitude .#(g*, f ¢ “7/?) does not maximize the corre-
sponding total probability X, , | 5#(b*, a)| % as can be seen by the direct calcula-
tion of the linear terms in the exponent for this quantity. From the physical point
of view, the necessity to project onto the sector of fixed energy is also clear: the
tunneling probability exponentially depends on the energy E, and increase of the
energy always causes increase of the probability, so that there is no saddle point at
all, unless the energy is fixed.

3. Periodic instanton as a deformation of the zero-energy instanton

At relatively low energies, the adequate approach to the evaluation of the
functional integral in egs. (2.1) or (2.5) in many models is the perturbation
expansion around the zero-energy (vacuum) instanton. It is instructive to trace how
the periodic instanton emerges from this formalism.

In the perturbative approach, one decomposes the field into the vacuum
instanton field and fluctuations, ¢ = ¢, + v, and treats the fluctuations perturba-
tively. The saddle point in the functional integral becomes a series, the first term
being the vacuum instanton field, the second the linear fluctuation around the
instanton, etc. We will consider in this section the perturbative calculation of the
total probability oy, eq. (2.18), and show that the sum of the vacuum instanton
field and the first correction (the linear fluctuation) reproduces the field of the
infinite instanton—antiinstanton chain, which can be viewed as an approximation to
the periodic instanton.

In the linear approximation, when the cubic and higher-order terms in the
action for fluctuations are neglected, the behaviour of the fluctuation v is gov-
erned by the following equation *

Av(x) =0, (3.1)

where A is the second-order differential operator depending on the instanton
background. The boundary conditions for the field v are given by eq. (2.7) in which
one substitutes ¢ = ¢, + v. Since the instanton field satisfies the Feynman bound-
ary conditions, it drops out of eq. (2.7), so that the boundary conditions for v are
given by eq. (2.7) with v substituted for ¢.

* For the sake of simplicity, we disregard at the moment the problems related to the existence of the
zero modes which modify this equation. They can be treated by standard techniques.
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At low energies (E < E_; ), where the perturbation theory around the zero-en-
ergy instanton makes sense, the typical size of instantons contributing to the
scattering amplitudes is small compared to the momenta of the particles. (This is
the case in many models, including the electroweak theory [6].) Therefore, in the
first approximation, we can neglect in eq. (3.1) the effects of the background field
of the vacuum instanton, so that the solution is a plane wave. The corrections due
to scattering in the instanton background are suppressed by powers of the
instanton size, and we disregard them in what follows. Taking the euclidean
version of boundary conditions (2.7) into account we obtain

dk
V(X) :'/‘(277)3/2L”’ka

{a e onrHikevike g p gowr—ikx) 4 scattering corrections,

(3.2)

where 7 is the euclidean time. Substituting ¢ = ¢, + v, with v given by eq. (3.2),
into eq. (2.5) we find

FEI(b*, a) = [dix, d*% exp{— 0= iPg + [dk 20,0 T kG, ¢ (T, k)

+ [dk 20, e TG (T,, —k) + [dk a, b e"kf}, (3.3)

where x} is the instanton position (the instanton field ¢, in eq. (3.3) depends on
xh) and S, is the vacuum instanton action. The last term * in the exponent comes
from the fluctuation v.

Let us find the relevant fluctuation » which emerges when evaluating o, as
given by eq. (2.18). For this purpose we obtain the values of a,, b, x4 and &*
thta determine the saddle point in the integral (2.18), and then substitute them
into eq. (3.2).

Before evaluating the integral in eq. (2.18) with .#.(b*, a) determined by eq.
(3.3) we have to make explicit the dependence of ¢_. on x4. Consider the vacuum
instanton field centered at the point (7,, x,). At 7= T, — —, the instanton field
is the linear combination of the positive-frequency plane waves, so that

ewk(Tlfr())'l—ikx‘,

BT, k) = ————R,(k). (3.4)
YLy

* This term is also present in .#(b*, a) and is missed in ref. [6]. Note that when obtaining amplitudes
(2 = any) from #(b*, a) one differentiates (b *, a) twice with respect to a and sets a = 0, so that
this term becomes irrelevant. In that case the deformation of the instanton comes entirely from the
scattering corrections, cf. ref. [19].
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Analogously,

—w(Te—70)—ikxy

d;c(Tf, _k)ZTRb(k)- (3-5)

Here R (k) and R, (k) are some coefficients depending only on spatial momentum
k, which are related to the instanton positioned at the origin. They can be
expressed through the residue of the Fourier transform of the instanton field {6].
Making use of egs. (3.3)-(3.5) we obtain

a_éperturb = Z |yEperturb(b*, a)
a,b

12
~ [dux, d¢ dxj d¢’ da* da db* db exp{—ZSO — P (g8 — ™)

+ [dk(—afa, = bfb, + e 0"0a, R (k) + e*0bFR, (k)

+abf e* 1 arb, e K + kT R* (k) + e‘i"xf>ka,’,"(k))}.
(3.6)

Here we have performed the analytic continuation t;, — if, in order to regularize
the integration over T,,.
The saddle-point equations for @, and b;f which follows from eq. (3.6) are

R, e *xomO 4 px glkt _ gk =, R¥ ekx0=¢) 4 p e~k — g, =0,
Ry e 04 qf ¢7ik¢ —px =0, R, e**+q, e*-b,=0. (3.7)

It is instructive to solve them perturbatively, formally treating the second terms in
all equations as perturbations. The solution is a series,

[s.2] 2]
a, =R2< eik(xj—¢" Z eink(E—&H +Rb elk(xg=¢" Z eink(§—§’),
n=0 n=0
0 o
af =R, e ko= Y oink(i=¢) | R o —ikixh—£) Y ginkt—t"),
n=0 n=0

fee fee)
bk =R;|< eikx(', Z eink(§7§’) +Rb eikxo Z eink(g—g')’
n=1 n=0

€0 €0
b,:k =Ra e—ikxo Z eink(§A§') _+_Rl>)k e—ikx(', Z eink(g—g’). (38)
n=0

n=1
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Consider now the saddle-point values for x,, x;, £ and &’. There are two
linearly independent equations which allow one to determine the variables x* =
(t, x)=xb —x}} and {* =¢* — &% The variables x,+x) and &+ &' remain
arbitrary (i.e. the integration over these variables gives the square of the space-time
volume *). For definiteness we take the values x, +x/,=0and ¢+ ¢’ = 0. Clearly,
at P = 0 the saddle-point values of x and { are x = { = 0. Differentiation of the
exponent in eq. (3.6) with respect to £° leads to the equation

eiwk{“ -
E= [dk o,————— (R} (k)R,(k) ™' + R (k) R,(k)
(1 —e'xt)
+RY(E)RS(k) + RF(kYR,(k) ei“’k’), (3.9)
or, equivalently,

E= fdk w,aga,.

The second equation coming from differentiation with respect to ¢, reads

e—iwk(:—g") eiok!

fdkR;‘(k)Ra(k)—l——_e— =fdkR;,"(k)Rb(k):—. (3.10)

iwgl" iwg "

This equation can be rewritten in the following form:
[dk w,ata, = fdk w,bib,.

From the istanton symmetry properties we have R¥(k)R (k)= R} (k)R (k) which,
by virtue of eq. (3.10), leads to the relation

1=¢%/2,

while the value of ¢” is determined by eq. (3.9). As is clear from eq. (3.9), the
saddle-point value of ¢° is purely imaginary,

(0=iT, (3.11)
where T is some positive real constant. So we can rewrite the saddle-point values

* The appearance of the extra space-time volume factor is due to the norm of the projector, eq. (2.3),
PE =540 7.
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of the variable x§, x(”, £* and £* in terms of single constant T,

xt=(iT/4,0), x™=(—iT/4,0),

- . (3.12)
§“=(1T/2,0), glﬂz(_lT/za 0),

As we will see immediately, T plays the role of a period.

Eqgs. (3.8) and (3.12) determine the saddle-point values of the variables a,, a},
b, and bf and, in virtue of eq. (3.2), the relevant fluctuation v, Neglecting the
scattering corrections we obtain

dk °°
vLX = - 21,4 —
(x) /(277)3/2\,”2(»,( ,,z::()

{R:Ik e—wk(3T/4+nT+T)+ikx+Rb efwk(ST/4+nT+T)+ikx

+Ra e—wk(37‘/4+nT—T)—ikx+R2< e*wk(T/4+anT)fikx}‘ (313)

The various terms contributing to the r.h.s. of eq. (3.13) can be interpreted as
follows. The terms proportional to R, e ~“«T/47nT+m) and R e «GT/4+nT=7) gre
contributions of instantons located at 7= —(5T/4+nr7T) and 7=37/4 +nT,
respectively [cf. egs. (3.4) and (3.5)]. Since the anti-instanton can be viewed as the
time reversal of the instanton, the contributions containing R¥ e~ ««GT/4+nT+7)
and R} e »«7/4+"T=7 come from anti-instanton located at 7= —(3T/4 + nT)
and 7= T/4 +nT, respectively. Therefore, the saddle-pont configuration may be
written in the following form:

d)saddle = ¢c(x) + V(X)

= Y {olr+T/4+nT, x) + X (r+3T/4+nT, x)}, (3.14)

n= —o

where ¢! and ¢2 denote the instanton and anti-instanton field, respectively. Eq.
(3.14) means that, in the linear approximation, the saddle-point configuration in
the integral eq. (3.6) is the periodic chain of instantons and anti-instantons sitting
on the straight line and separated by the distance 7 /2. Clearly, this is a good
approximation to the periodic instanton at large separations.

4. Periodic instanton in the two-dimensional abelian Higgs model

In this section we explicitly construct the low-energy periodic instanton in the
two-dimensional abelian Higgs model. The euclidean action of this model reads

1= [ax{1F2 + 15, —igd, )6 1>+ 21617 —02) ). (4.1)
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The model possesses the instanton solution which is the well-known Abrikosov—
Nielsen—Olesen vortex [20,21]. In the limit A > g? (which corresponds to M,, >
M,,, where M, = 2vA v and My, = V2 gu are the Higgs and vector boson masses,
respectively) it behaves as follows. The Higgs field forms a small core with the size
of order of M;' where ¢ changes from zero to some value close to v. Outside this
core, i.e. at x > My;', the instanton field in the unitary (singular) gauge is

¢ =v(1+0(M3/M2)),

1
A, = -EGW(?VKO(MWr)(l +O(Mg,/Mp)). (4.2)
where K, is the modified Bessel function. The anti-instanton field is obtained by
the substitution 4, — —A,,. It worth noting that outside the core, the gauge field
obeys free massive field equations.

In the limit A > g2, the leading contribution to the instanton action is propor-
tional to In(M,;/M,,). This contribution comes from the region outside the core
and can be calculated explicitly. The result for the instanton action reads [22]

Sy =2mv? In( My, /My,) + O(v?), (4.3)

where the term O(v?) includes the contribution coming from the instanton core.

The model under consideration possesses also the sphaleron solution [23,24].
The sphaleron energy,

Esph = %UZMH 4

sets the characteristics energy scale for the instanton-mediated processes. It
determines the height of the barrier between topologically distinct vacua.

Let us now construct the approximate periodic solution along the lines of sect.
3. Since the gauge field satisfies free field equation outside the core, we can obtain
a new two instanton (or instanton—anti-instanton) solution, in the unitary gauge, by
taking the Higgs field to be equal to v and the gauge field to be the sum of
instanton (anti-instanton) fields outside the two cores. In this way we obtain an
approximate solution with the accuracy O(M3 /M}). To construct the periodic
solution we take the infinite chain of instanton-anti-instanton pairs, as shown in
fig. 2. This configuration is indeed a good approximation to the periodic instanton
provided that the period is much larger than the size of the core, T> M.

Making use of eq. (4.2), one can find the field of the periodic instanton
explicitly. Writing the field of periodic instanton in the form

1
A, = —gelwayP(x), (4.4)
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one has

P(x)= i (—1)"+1K0(Mwlx”—(n/2—1/4)T“I), (4.5)

n=-—o

where 7, = (T, 0) and T is the period. The summation in eq. (4.5) can be carried
out by making use of the properties of the Bessel functions [25]. At || < T/4 the
result is

o sinh( My, 7 cosh A)
P(x)= [ da
o  cosh(MyT/4 cosh A)

cos( My, x, sinh A). (4.6)

The corresponding vector field, eq. (4.4), reads

sinh( My, 7 cosh A)
cosh(MyT/4 cosh A)

cosh(M,7 cosh A)
cosh(MyT/4 cosh A)

M o
Ay = ?W[O dA sinh A sin( My x, sinh A),

(4.7)

M o0
A= —wf dA cosh A cos( My x; sinh A).
g o

This solution continued to the region | 7| > T /4 has two different turning points.
These are the lines 7 =0 and 7= T/2. It is clear from eq. (4.7) that A (7=0) =0,
AI(T = 0) = 0 (the same is valid at 7= T/2). The turning point nature of the lines
7=0and 7 = T/2 persists also in the gauge A, =0.

The main property of the periodic solution is the action per period. As in the
case of a single instanton, the main contribution into this action comes from the
region outside the cores. Since the action (4.1) is quadratic outside the cores, the
action per period is the sum of the bare instanton and anti-instanton actions plus
the interaction terms. The interaction of instanton with (anti-)instanton at distance
T/2is [22]

Swl(T/2) = +4m0*Ko(MyT/2), (4.8)

where the minus sign corresponds to the instanton—anti-instanton case. Therefore,
the action per period with logarithmic accuracy reads

S=2{50+ i (—1)"Sim(nT/2)} =470? In(TMy). (4.9)

n=1

The logarithm becomes of order one when the period T becomes of the order of
My, i.e. when the cores of instantons and anti-instanton begin to overlap.

Let us find the coherent states | f) and {g| corresponding to this periodic
instanton. One may either use the boundary conditions of eq. (2.7) or simply
compare the asymptotic form of the periodic instanton to eq. (2.10). Since the
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periodic instanton, eq. (4.7), is a free field outside the cores, it reaches the
asymptotics at x > My'. The analog of eq. (2.10) for the two-dimensional vector
field in the euclidean domain reads

4 - o dk X T HikX 4 £ R k() eoxT—ikx 4.10
M_/“wm—wk{fkeu( )e fk eu( )e }’ ( ) )

where eM(k)=M\7v1(ik, w,) is the euclidean polarization vector. Egs. (4.7) and
(4.10) coincide provided that

fi=f&= i - ‘Alwﬁ (4.11)
2g \/ w, cosh(w,T/4)

Analogously, one finds g, =g/ = —f,.
We are now in a position to find the relation between the energy and the period
of the periodic instanton. We have

TMY, 1

dk .
4g° f cosh?’(w,T/4)

E= fdk wcfifd =

In the region TM,, < 1 which we assume in what follows, the integration gives

47 p?
E=—, (4.12)

which is the desired relation.

Egs. (4.9) and (4.12) determine the maximal probability of tunneling at fixed
energy FE, introduced in sect. 2. Substituting egs. (4.9) and (4.12) into eq. (2.21) and
keeping only the leading logarithmic terms one obtains

E
O'EzeXp{47TL'2 IH(W)} (413)
. H

The tunneling probability o, is exponentially suppressed at small E, the character-
istic energy scale being the sphaleron energy, Esph~u2MH. Notice that the
number of particles in the most probable initial and final states is large in the
weak-coupling limit 2 > 1, with logarithmic accuracy

n:[dkfkfk*=fdkgkgk =7’ anZM i
w

As discussed in sect. 1, one may try to obtain a good estimate for the total cross
section of the scattering of two particles by multiplying the maximum probability
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(4.13) by the factor that arises from the projection of the initial state | f) on the
two-particle state. The latter factor is

QIf)~exp| — L [dk fofe b = T e
f exp{ 2/ fkfk}—eXD *5L H‘L-ZM—W}

So, the two-particle cross section suggested by this naive projection of the multi-
particle probability onto the two-particle state would be

oprojecl(z - aHY) = |<2 | f>2 | Of

E
= drp? In| —— | — 70?1
exp{ U (UZMH) TU n(

s O(Uz)} . (4.14)

This expression should be compared to the correct low-energy result

2
UMy

Operurb( 2 = any) = exp{“rwvz ln( + 0(1/'2)}, (4.15)

which can be obtained by the technique of ref. [6]. Clearly, eqgs. (4.14) and (4.15)
differ exponentially, so that the naive projection conjecture does not work even at
low energies.

A quantity that might be of interest in connection to the unitarization [26,27] is
the ratio o, _, ,, /or of the one-instanton two-particle cross section to the maxi-
mum transition probability. It is somewhat surprising that, in this model, the
leading logarithms cancel out in this ratio [cf. egs. (4.13) and (4.15)], so that this
ratic may not be exponentially suppressed, contrary to the expectation of ref. [27].

5. Periodic instanton in four-dimensional gauge theory

Let us now construct the periodic instanton in the four-dimensional SU(2)
gauge theory that describes the microcanonical tunneling rate in the electroweak
theory. As in the previous example, we are not able to obtain the exact solution,
neigher can we rigorously prove its existence. Instead, motivated by the general
discussion of sect. 3, we assume that the periodic instanton exists and consider a
configuration which we expect to approximate it. This configuration is merely the
infinite sequence of BPST instantons and anti-instantons (in the singular gauge)
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placed in alternation along the euclidean time axis and separated from each other
by a half-period T /2,

A1, x)= Y (AXV(r=T/4=nT, x) + AN (7 +T/4—nT, x)). (5.1)

n=—w

Here
2p% 7, x
A9 4y = _‘“‘L,
R Ferw
2p%  m,x
a( A _ auvty
A#‘ (x)= ——F—< (5.2)

g x*(x*+p%)’

The parameter that governs the approximation is the ratio of the size of BPST
instantons p to the period T determining the distance between them. Note that
this parameter is quite similar to the one appearing in perturbation theory about
the zero-energy instanton and suppressing, say, the propagator insertions as
compared to the leading semiclassical result [6,28,29]. The meaning of the latter
expansion is, however, different: the non-trivial series around the zero-energy
instanton appears because the zero-energy instanton does not have the correct
boundary conditions with respect to the final particles. On the other hand, the
periodic instanton satisfies the boundary conditions exactly, so that the occurrence
of corrections to eq. (5.1) indicates merely our failure to solve exactly the
complicated field equations of the theory. In what follows we use the configuration
of eq. (5.1) to obtain the results to leading order in p?/T2. This approximation
corresponds to the low-energy limit £ < E, where E,= \/57rMW/aW~Esph is
the non-perturbative energy scale of the clectroweak theory.

With only instantons (or only anti-instantons), one would be able to construct
the exact periodic solution [13] which is the finite-temperature instanton. It is,
however, irrelevant for our purposes as explained in sect. 1. To obtain the solution
having two turning points, we have to alternate instantons and anti-instantons, as
in eq. (5.1), and as yet no exact solutions of this form are known. In principle, one
might improve the approximate solution (5.1) somewhat by superimposing the
properly shifted exact multi-instanton and multi-anti-instanton solutions. However,
this would not make much sense since the instanton-instanton interaction is
absent both for the exact solution and — to the leading order in p?/T? - for the
approximate solution (5.1) (see below). Only instanton—anti-instanton interactions
contribute to leading order.

To find the tunneling rate for the microcanonical distribution of initial states,
one has to calculate the action on the configuration of eq. (5.1) as a function of the
period T. It can be shown that a certain kind of virial expansion holds for this
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action. Namely, the leading interaction term of order p*/T* comes exclusively
from pair interactions while the three- and higher-body interactions are at least
p®/T°. The instanton—instanton and instanton—anti-instanton pair interactions are
[30-32]

int int Tﬁ

6
Sill)zs.(AA)=O( P ) (5.3)

2.2 42 6
any_ _ 0T ep (p ) (5.4)

" gX(T/2)* T¢

Egs. (5.3) and (5.4) allow one to calculate the action of the periodic instanton to
order p*/T*. The action per period is

1672 9612p* * 1 1672 mop?
4 7= ~ 32—, (5.5)
g g (T/2)" v~ (2n+1) g g’ T

where the factor two reflects the existence of two nearest neighbours in contrast to
the one “neighbour” in the leading-order zero-energy instanton calculations.

The tunneling rate of the microcanonical distribution with fixed energy E
equals

1672 wo*
0'E~fdp exp(— g2 _2772L‘2p2+ET+ 32;2—714 y (56)

where v is the Higgs vacuum expectation value, and 7 = T(E) is to be determined
from the energy condition (2.22). Making use of eq. (2.22) we find that the energy
condition is equivalent to extremizing the exponent of eq. (5.6) with respect to 7.
Note that this extremum is actually a minimum meaning that variations of the
period correspond to a negative mode of the saddle point.

The saddle point values of p and T are

£ 1/6 +2E 1/3
P=\grigzgn| » T=2 - (5.7)

g% PR

The microcanonical tunneling rate is finally

1672
op =exp| — — +W(E)],
g
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where the energy-dependent part of the exponent is

3(mE* 3

W(E) = ( g2u4) (5.8)

The latter is by a factor of (m*/3)"/? larger than the analogous term [5-7] for the
process 2 — any.

Consequently, the ratio o(2 — any) /o in the electroweak theory is exponen-
tially small at £ < E,. (This conclusion differs from the one in the two-dimen-
sional abelian Higgs model where the leading energy dependencies of o(2 — any)
and oy coincide.) This result may lead to the speculation that unitarization would
occur at energies where the microcanonical tunneling rate is of order unity while
the processes 2 — any (which grow much slower) are still exponentially suppressed
(ct. ref. [27]).

As in sect. 4, let us now discuss whether the projection of the two-particle state
onto the most probable initial state gives a correct approximation for o(2 — any).
For this purpose we have to calculate the average number of particles in the most
favourable initial state, N = [dk f,*f,. The expression for the two-particle cross
section obtained via the projection would then be

Oproject(2 = any) = |21 )] oy =0z eV,
where, as usual, only the leading exponential dependence is retained.

For evaluating f,, we have to study the periodic instanton field (5.1) in more
detail. The three-dimensional Fourier transform of the one-instanton field,
A7, k)= [ exp(—ike) A%(7, x) dx, equals

A¢ k 2ip2 i b k
o(7s )—T@ (7, k),
. 2% [ 9
Ai(T,k)=? le”ijﬁ_/(j—S“iT (I)(T,k), (59)
where k= | k|, and
27 )
<15(7',k)=—pz—k(exp(—lel)—exp(—kvp +77)). (5.10)

To the leading order in p /7, eq. (5.10) becomes

2

) e 5.11
Py G40
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As is clear already from eq. (5.1), one of the turning points is at 7= 0. Summing
over the contributions from all instantons and anti-instantons in the periodic
configuration, eq. (5.1), one obtains

a

A"
A0, k) = —(0, k) =0,

which are the turning-point conditions, and

4172 2 k. ,
A0, k) = __i Y e’”"(—ieai,—J +(-1) lﬁa,-)
8 n=0 Tk
27p? k 1
== —ie, ;= +4, . (5.12)
g k sinh(kT/4) cosh( kT/4)

where 7, =T/4 4+ nT /2. Eq. (5.12) should coincide with the boundary value of the
minkowskian plane-wave solution specified by the functions f,, i.c.

1
AY0, k) =227) == ¥ fimer(k), (5.13)
Ve m=123

where e/"(k) are polarization vectors. Egs. (5.12) and (5.13) allow one to find the
functions f,.

Instead of writing explicitly the cumbersome expressions for f;, let us present
the result for the related quantity, the occupation number n,,

PN T : ! 5.14
— am*ram _ T T ’ ‘
" amfk ‘ 2 g2 \cosh?(kT/4) = sinh*(kT/4) ( )

where the last equality is true to the leading order both in p?/T? and M3,T*. To
this accuracy, the average number of particles in coherent state | f) is

1672 p*

N = [din, =84(3) e ol (5.15)

which leads to the following expression for the cross section ¢(2 — any) in the
projection approach:

16wz 1 (w2E%\" 212(3) [ E‘g\”
Oproject(2 = aNy) = exp{ — g2 +2g2 o - P 10,4 :
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This value is exponentially smaller than the correct low-energy cross section
calculated in perturbation theory around the zero-energy instanton [5-7],

1672 3 (3E*g*\’
Uperlurb(z_)any):eXp o gZ +? 87TZU4 .

We conclude that the naive approach to the calculation of the two particle
crosssection based on the projection of the microcanonical result is generally
inadequate.

6. Conclusion

We have seen in this paper that the periodic instantons provide exact saddle
points in some multiparticle scattering amplitudes at all energies below the
sphaleron mass. Furthermore, the corresponding cross sections are maximal at a
given energy. However, we have found that there is no obvious relation between
the most interesting cross section of two-particle scattering and periodic instan-
tons. In particular, the projection of the multiparticle amplitude induced by the
periodic instantons onto the two-particle initial state gives wrong results even at
relatively low energies.

The present understanding of the role of classical solutions in multiparticle
scattering, and, in particular, of the correspondence between the boundary values
of classical fields and the initial and final states, makes us to conjecture that the
two-particle instanton-like scattering processes cannot be described by any solu-
tions to the classical field equations, either euclidean or minkowskian. Indeed, any
solution with non-vanishing energy has large classical fields on both boundaries.
This corresponds to large number (of order 1/g°) of particles both in the initial
and final states. Clearly, this situation is totally different from the two-particle
scattering into large number of particles.

On the other hand, the results of refs. [6,9—11] indicate that there still might
exist a master field (deformed instanton [4,19]) that would enable one to evaluate
the two-particle amplitudes in a semiclassical-type manner. If so, this master field
should obey some equations qualitatively different from the usual classical equa-
tions of the field theory.

The authors are deeply indebted to V.A. Kuzmin, V.A. Matveev and M.E.
Shaposhnikov for stimulating discussions. One of us (P.T.) thanks E. Mottola for
interesting discussions at initial stages of this work, and Aspen Center for Physics
for hospitality. S.K. acknowledges the kind hospitality of DESY Theory Group
where this work was completed.
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