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We discussthe role of periodic euclideansolutionswith two turning points andzero winding
number(periodic instantons)in instanton-inducedprocessesbelowthe sphaleronenergyE~Ph.

We find that the periodic instantonsdescribecertainmultiparticle scatteringeventsleading to
the transitionsbetweentopologically distinct vacua.Both thesemiclassicalamplitudesand inital
and final statesof thesetransitionsare determinedby theperiodic instantons.Furthermore,the
correspondingprobabilities are maximal among all statesof a given energy.We show that at
E ~ ESPh, the periodic instantonscan beapproximatedby infinite chainsof ordinary instantons
and anti-instantons,and theynaturally emergeas deformationsof the zero-energyinstanton.In
the framework of the two-dimensionalabelian Higgs model and four-dimensionalelectroweak
theory we show, however, that there is no obvious relation betweenperiodic instantonsand
two-particle scatteringamplitudes.

1. Introduction

Instanton-like transitions in the electroweak theory give rise to interesting
phenomena,including baryon- and lepton-numberviolation [1]. Recently, much
attention has been paid to the possibility of baryon-numberviolation being
unsuppressedin high-energycollisions. The leading-ordercalculationsof two-par-
ticle scattering cross sections [2,31 in the semiclassicalexpansion around the
instantonshow the exponentialgrowth of the total cross section in all models
possessinginstantons[4—7].The studyof correctionsto the leading-orderinstanton
calculations[6,8—111indicated that some instanton-inducedamplitudesmay be
calculableby a techniqueof a semiclassicaltype.
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The existingcalculationsrely on a certain type of perturbationexpansionabout

the ordinaryzero-energyinstanton. This procedureis inadequatein that it erro-
neouslyprescribesthe vacuumboundaryconditionsto the saddlepoint configura-
tion. As a result,the expansionbreaksdown at sufficiently high energies,E ESPh,
where the differencebetweenthe final state and vacuumbecomessubstantial.
(HereESPh is the sphaleron[12]mass,i.e. the heightof the energybarrierbetween
neighbouringvacua.)Alternatively, onemight try to look for new solutions to the
field equations,manifestly satisfying non-vacuumboundaryconditions,although
one is not guaranteedthat thesenew solutions(if any)describescatteringampli-
tudes.The strategymay be to find any solution that might be relevantat non-zero
energy and then try to understandwhether it has any relation to scattering
processes.If so, suchsolutionswould provide correctsemiclassicalexpressionsfor
the correspondingscatteringprobabilitieswith no correctionsexceptfor loops(as
opposedto the expansionaroundthe zero-energyinstanton).

Obvious candidatesfor the saddlepoints relevant at non-zero energiesare
solutionswith two turning points. In quantummechanicsof a particle with one
degreeof freedomq in a potentialV(q), the periodicinstantonis characterizedby
the energyE (see fig. 1) andruns from the turningpoint q1 to the other turning
point q2 and back. In field theories possessingusual instantonsolutions with
infinite duration in euclideantime (we will call thesesolutions thezero-energy,or
vacuum,instantons),onealso expectsthe existenceof periodicinstantonswith two

turningpoints. At small energies,thesesolutionsmay be approximatedby chains
of vacuuminstantonsand anti-instantons(fig. 2), while at E ESPh thesesolutions
are independentof euclideantime andcoincidewith sphalerons.Clearly, periodic
instantonsinterpolatebetweenthe original vacuuminstantonand the sphaleron
and describethe instanton-liketransitionsbetweenthe vicinities of topologically
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Fig. 2.

distinct vacuaat finite, but not too high energies.It is worth pointing out that in
the Yang—Mills theories, the periodic instantonshave zero winding number
fFF d4x. So, theseperiodicinstantonsare not the high-temperatureinstantonsof
ref. [13]: the latter havenon-vanishing(andinteger)winding number.

The purpose of this paper is to study the role of periodic instantons in

multiparticle scatteringat high energies.We find in sect. 2 that the periodic
instantons, in fact, describe some multiparticle scattering events that lead to
transitionsbetweenthe vicinities of topologically distinct vacua.Unlike the zero-
energyinstanton,the periodicinstantonsareexact saddlepoints in the functional
integral for the corrspondingamplitudes.The transitionsdescribedby the periodic
instantons,thoughnot directly related to the two-particle scattering,are interest-
ing in their own right. Namely, theseevents have, in some sense, the largest
probability at a given energy(below ESPh). More precisely, if one constructsthe
mixed initial statewith all possiblepure initial statesof a given energytakenwith
equalweights, then the probability for this mixed stateto tunnel to the vicinity of
the neighbouringvacuumis determinedby the periodic instanton,and, further-
more, this probabilityis saturatedby the pureinitial statethat is directly relatedto
the analyticcontinuationof the periodicinstantonconfigurationto theminkowskian

time. The analyticcontinuationof the periodicinstantonthroughtheother turning
point determinesthe mostprobablefinal stateat a given energy.

The main interestin the multiparticle statesdescribedaboveresidesin the fact
that they are the “most probable escapestates” at a given energy, so that the
correspondingescapeprobability definitely becomesof order unity at high ener-
gies. In practice,thesemaximum probabilitiescan be found most easily at rela-
tively low energieswherethe periodicinstantonsmay bea approximatedby chains
of zero-energyinstantonandanti-instantons(in sect. 3 we show that suchconfigu-
rationsnaturallyemergein perturbationtheoryaroundthe zero-energyinstanton).
Even at theseenergies,the probabilityof the multiparticle eventsmay set a useful
standardof how fast the probabilitycould grow.

The initial state of a scatteringevent describedby a periodic instanton is,
roughly speaking,a certain coherentstatewith an indefinite numberof particles.
Although the averagenumberof particlesin this state is large, its projectiononto

the two-particlesectoris finite (but exponentiallysmall). As the periodicinstanton
correspondsto the scatteringeventhaving maximumprobabilityat a given energy,
one might hope to obtain a good estimatefor the cross sectionof instanton-like
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two-particle scattering at all energies below ESPh by the product of the above
projection factor and the multiparticle cross section determinedby the periodic
instanton. This approach to the most interesting problem of two-particle
instanton-likescatteringwould be close, at least in spirit, to the calculationsof
refs. [14—16].We discussthis point in sects.4 and 5 in the framework of the
two-dimensionalabelian Higgs model and four-dimensionalelectroweaktheory,
respectively. In both caseswe find that even at relatively low energies,the
two-particlecrosssectionsobtainedin this approximationdiffer exponentiallyfrom
the correctexpressionscalculatedby the expansionaroundthe vacuuminstanton.
We think that this result makesthe projectionapproachdoubtful at high energies
as well.

2. Periodic instantons and multiparticle scattering

In this sectionwe discussthe interpretationof the euclideanperiodic solutions

(periodic instantons)as configurationssaturating,in the semiclassical-typeapproxi-
mation,certain scatteringamplitudes.

Webeginwith thegeneratingfunctional for thescatteringamplitudes,~Y(b a).
The amplitudes are the derivatives of 5~~(b*,a) with respectto the complex
sourcesb~’and ak whichcorrespondto the final andinitial particles,respectively.
The generatingfunctional 5~~(b*,a) has the following functional integral repre-
sentation(see,e.g. ref. [6]):

50(b*, a) = T-.-~ d4
1~1q~

xexP{Bi(ak~~i)

+Bf(b, ~) +iftdt~(~)}~ (2.1)

where 4 standsfor all bosonicfields (we do not considerfermions in this paper),
B1(ak, j.,) and B~(b,~’,~ are the boundaryterms

Bl(ak, ~) = — ~fdkaka_ke
2~kT — ~fdk wkcb~(k)~~(—k)

+ fdk v~e_l~Tak4~(k),

B~(b,4~)= —~fdkbb*ke2t~kTf_ ~fdk wk4f(k)~f(—k)

~ (2.2)



338 5.Vu.Khlebniko~et al. / Instantons

and ~1~(k) denotesthe spatial Fourier transformof the field ~~~(x) = ~(T1~,x).
The generatingfunctional ~9~(b*,a) canalso beviewed as the matrix elementof
the scatteringmatrix ~9” in the coherentstate representation[17,18], so that

5~(b*,a) is the transitionamplitude betweenthe coherentstates I a) and Kb,
~7(b*, a)=KbL?Ia).

We are interestedmainly in the the S-matrix on the subspaceof fixed total
energyP0 = F and total momentum P = 0. It can be obtainedfrom eq. (2.1) by
making useof the projectionoperatoronto this subspace,which, in the coherent

staterepresentation,reads

.~E(b,a) =fd4~exP{_iP~+fdkb:ak e~}. (2.3)

Here k~= Wk~O— k~.So, insteadof ~ a) we considerthe matrix elementsof
the product ‘-~E’

~E(b, a) (b~~FIa)=fdc* dc e~*~(b*, c)~F(c*,a), (2.4)

wherewe haveusedthe rule of convolution in the coherentstaterepresentation.
Making useof eqs. (2.1), (2.3) and(2.4) we find

~‘E(b, a) =fd~ d
4~exP{_iP~r+BI(ak e’~,~.)

+B~(b,~) +if~dt ~(~)}. (2.5)

The interpretationof the functional .YE(b*, a) is that it gives the transition
amplitudebetweenthe states ~E a) and Kb

As discussedin refs. [6,8—11],the instanton-inducedcrosssectionsare likely to
havean exponentialform. Guided by this observation,we may try to evaluatethe
functional integral in eq.(2.5) in thesaddle-pointapproximation.The saddle-point
configurationis determinedby the field equation

=0 (2.6)

while the presenceof theboundaryterms Bf in eq.(2.5) gives rise to the following
boundaryconditions:

~k~i( —k) + i~
1(—k) = ~/~ekT+1~ak, (2 7)

wk~f(k) i~f(k) = ~~etwkT1b.
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The meaningof theseboundaryconditionsis that they fix the negative-frequency
and positive-frequencyparts of the field ~ at t —‘ —~ and t —~ ~, respectively.
They correspondto the presenceof particles in the initial and final states.At
ak = b~’= 0 the boundaryconditions, eq. (2.7), reduceto the Feynman(vacuum)
ones.

Besides the field equation, there are four more saddle-pointequationsthat
comefrom the variationof the exponentin eq. (2.5) with respectto ~,

F = fdk (Ok{ —akak e2~kTj+2~f+ V
2wkak~l(k) e_~T1+1~}, (2.8)

p = 0 = fdk k\/~~ak4I(k)e_~~kTif. (2.9)

As we will seebelow, eq.(2.8) relatesthe energyE andthe periodof the periodic
instanton.

Clearly it is a complicatedproblem to find a generalsolution to eq. (2.6) with
boundaryconditions(2.7). However,at somevaluesof ak and b~’,the solutions to
these equationsare known. The obvious exampleis the ordinary zero-energy
instanton describing the vacuum-to-vacuumtransition. The vacuum instanton
configuration solves eqs. (2.6) and (2.7) continuedto the euclideandomain pro-
vided that b~’= ak = 0.

In this sectionwe consideranothertype of saddlepoints in eq.(2.5), namelythe
periodic instantons.Theseare periodic solutions to the euclideanfield equations
with the following properties.The set of periodic instantonsinterpolatesbetween
the zero-energyinstanton and the sphaleronwhen the period T changesfrom
T= to the period of small oscillations in the sphaleronnegativemodel ~.Each
periodic instantonhas two turning points 4(0, x) = 0 and q5(T/2, x) = 0, so that
the evolutionfrom oneturningpoint to anothercorrespondsto half of the period
(and anotherhalf of the periodcorrespondsto the motionback).In this paperwe
considerperiodicinstantonswhich are real both in the euclideanandminkowskian
domainsof their evolution. The winding number(e.g. JFF d4x for the electroweak
theory) per period for a periodic instanton is zero, but the winding number
evaluatedbetweenthe two turningpoints is non-vanishingandchangesfrom unity
for configurationsnearthe instantonto zerofor configurationsnearthe sphaleron.

Given the periodic instantonwith the aboveproperties,one can constructthe
following field configuration. Due to the conditions 0, x) = T/2, x) = 0 one
can analytically continuethe solution 4. at the points r = 0 and T = T/2 to the
minkowskiandomain.The analyticcontinuationis the solution to the minkowskian

* In the electroweaktheory this changeis not monotonic:at E ~ ESPh the period actually increases

with energy,but slower than the othercharacteristicparameter,the sizeof individual instanton,see
eq.(5.7) below.
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Fig. 3.

field equationswith the initial conditions~(0, x) and 4(0, x) = 0 (q5(T/2,x) and
~(T/2, x) = 0 for the other turningpoint). In thisway one obtainsthe configura-
tion which correspondsto the minkowskianevolutionfrom t = — ~ to the turning

point, tunneling according to the euclidean field equations and then again
minkowskian evolution from anotherturningpoint to t = ~. In other words,one

performs not the completeWick rotation but rather a deformationof the time
contourinto that shown in fig. 3.

We now wish to show that, in a certain sense,the periodicinstantondetermines
the maximumtunnelingprobabilityat a givennon-zeroenergy.Moreprecisely,our
claims are as follows: (i) The field configuration describedabove is the saddle
point in the functional integral for S~~(b*,a) for some particular values a,~=fk

andb’ = g~.The periodof the instanton,aswell as fk and ~ aredeterminedby
the energy F. (ii) The amplitude /7~p(g*,f) obtained in this way gives the
maximum transition probability amongthe initial stateswith fixed energyE. (iii)
The initial statehaving maximum transition probability and the most probable
final state are the projections of the coherent states I f) and Kg onto the
subspaceof fixed energyequal to the energyof the saddle-pointconfiguration.

Point (i) can be understoodby consideringthe analytic continuation (i.e. the
deformationof the time contour) in the functional integral for ~~7’E(b~ a). Indeed,
the S-matrix becomesindependentof the initial and final times T and Tf when
they go to infinity. It is naturalto assumethat T1 and T~can havenon-vanishing
imaginaryparts.In particular,we are interestedin the casewhen the imaginary
part of the differencebetweenT~and tf equalsT/2. In this casethe integralover
t in eq.(2.1) runsalong the contourwhich is shown in fig. 3. The variationof the
exponentwith respectto ~ now producesthe minkowskianfield equationsat the
horizontal parts of the contour and the euclideanfield equationsat the vertical
part. This is preciselythe set of equationsthat is obeyedby the field configuration
obtainedfrom the periodic instantonby the analytic continuation,the condition
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= 0 beingthe matchingconditionat the turningpoints.Therefore,the configura-
tion we haveconstructedcan be viewed as the saddlepoint in eq. (2.5) for some
valuesof ak and b~.

The particularvaluesof ak and b correspondingto a givenperiodic instanton
are determinedby the l.h.s. of eq. (2.7), which should be evaluatedin the
asymptoticminkowskianregions,T~—s (— + iT/2) and Tf —5 ~, respectively.In
theseregions,the periodicinstantonhasthe following form:

= (f~e”~”+fk* e’),
~2w,~

1 (2.10)
~f(k) = (g_k e~+g e~Tt),

where t
1 = Re T1, so that T~= t + iT/2. Here f_k’ fk* and ~ g~’are complex

functions of the momentumwhosevaluesaredeterminedby the configurationof
the periodicinstanton.Substitutingeq. (2.10)into eq.(2.7) we find that the values
of ak and bk* are

ak=fk, b~’=g/’~< (2.11)

provided that the saddle-pointvalueof ~ is

~°=iT/2, ~=0. (2.12)

By inspectingeq. (2.8) we seethat it is indeedsatisfied if

E=fdk Wkfkfk, (2.13)

while eq.(2.9) is satisfiedidentically.
To summarize,the periodicinstantonconfigurationand 4~’= (iT/2, 0) are the

saddlepoint of the integral (2.5) at ak and b~’determinedby the minkowskian
asymptoticsof the periodicinstantonfield via eq.(2.11), providedthat the period
is chosenin such a way that eq. (2.13) is satisfied.Substitutingthe saddle-point
valuesinto eq. (2.5) we obtain,up to a pre-exponentialfactor,

~~(g*, f) = exP{~FT+~fdkf~ fk + ~fdk g~g~— ~S+ ~iS’}~ (2.14)

where -~Sand ~S’ are the imaginary and real parts of the periodic instanton
action,evaluatedalong the contourof fig. 3. Notice that ~S and ~S’ comefrom
the euclideanandminkowskiandomains,respectively,andthat ~S’ is irrelevantas

it cancelsout in the probability.



342 S. Vu. Kh!ebnikovet a!. / Instantons

The particularvaluesof fk and g,~’determinethecoherentstates f) andKg I,
which, in the coherentstaterepresentation,havethe wave functions

~f(a) Ka f) = exP{fdkfka~}~

(2.15)

Kgb) = exp{fdkg:bk),

or, in the Fock representation,

If) = exP{f dkfka~}10),
(2.16)

K~I= KOI exP{fdk~:bk}~

whereâ~and ~k are the creationandannihilationoperators.So, f) andKg I are
the two coherentstatescorrespondingto the periodic instanton.Note that the
states I f) and Kg I arenot normalized.Their normsare

Nf=exP{~fdkIfk 2)

(2.17)

Ng = exP{~fdkl g 12).

The projectionof the coherentstate,.5l~I f)~also has the norm P~providedthat
the energysatisfiesthe condition(2.13). It is clear from eqs.(2.17) and(2.14) that

the probability of the process.~EI f) ~ I g) in the saddle-pointapproximation
is

I~E(g, f)~
~E,f-.g N2N2 =exp{—S+ET},

fg

which coincideswith the semiclassicalformula familiar from quantummechanics
of one degreeof freedom(notice that S is the euclideanaction of the periodic
instantonevaluatedover the period).

Wewill now discusspoint (ii). To find the maximum tunnelingprobabilityat a
given energyE, considerthe quantity

UE ~H”E(b, a)~2

=fda* da db* db exp(_Jdkaak_fdkbbk) I~E(b,a)12. (2.18)
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canbe interpretedasthe total probabilityof the transitionof a mixed statewith
all pure statesof energy F taken at equal weight (microcanonicalensemble).
Therefore,the saddle-pointvaluesof ak, a~and bk, b,~!’ in the integral (2.18)
determinethe statehaving the largestprobabilityto tunnel andthe mostprobable
final state,respectively.We will now show that

—ç ,,*_ *ak—Jk, k

*_r* t. —
ak Jk ‘

is the saddlepoint in the integral (2.18).
Considerthe variation of ak and b~’aroundthe values(2.19),

ak=fk-l-ak, b1~’=g+f3~’.

We have to consider the terms in the exponentthat are linear in ak, /3~.

According to eqs. (2.7) and (2.8), thesevariations induce the variations in the
saddle-pointvaluesof çb(x) and ~. However, due to the saddle-pointnatureof
the old values of ~ and ~, their variation does not produce linear terms.
Therefore,we simply substituteak =fk + ak, b~’= g~’+ /3~’,and the old saddle-
point valuesof 4. and ~, eqs. (2.10)and (2.12), into eq.(2.5) and obtain

~~(g* +/3*, f+a)

=exP{~ET+~fdk(f~fk+g~gk+f~ak+/3gk) — ~S+ ~iS’+...)~ (2.20)

wheredotsdenotehigherordersin a andj3 ~ Making useof eq.(2.20) onecansee

that the termslinear in a and /3* cancelin eq.(2.18), i.e. eq. (2.19) indeedgives
the saddle point of the integral (2.18). Finally, we find in the saddle point
approximation

~~E=exp(S+ET) =
0~Efg• (2.21)

As is clear from the aboveconsideration,thestatehaving the largestprobabilityto
tunnel and the most probablefinal state are determinedby eq. (2.16) and the
subsequentprojection onto the fixed energyE and momentum P = 0. So, point
(iii) is now obvious. This completesthe generaldiscussionof the periodicinstan-
tons.

Thus,the periodicinstantondeterminesthe mostprobabletransitionchannelat
finite energyF provided that its period is chosenin such a way that the energy
condition, eq. (2.13), is satisfied.Notice that the latter condition is equivalentto
the relation

3S(T)
(2.22)
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i.e. the conditionfor theextremumof the exponentin eq.(2.21)with respectto the
period T.

In the endof thissectionwe note that the projectionontothe subspaceof fixed
energyintroducedin eq. (2.5) plays the crucial role in the aboveanalysis.Indeed,
without theprojectorfactor, theperiodic instanton(2.10)is still the saddlepoint in
eq.(2.1), but it describesthe transitionamplitude betweenthe states I f e~0T/

2)

and Kg I. However,the amplitude ~92(g* f e_WT/2) doesnot maximizethe corre-
spondingtotal probability Eai, .i/(b*, a)I 2 as can be seenby the direct calcula-
tion of the linear terms in the exponentfor this quantity.From the physical point
of view, the necessityto project onto the sectorof fixed energy is also clear: the
tunnelingprobabilityexponentiallydependson the energyF, andincreaseof the
energyalwayscausesincreaseof the probability, so that thereis no saddlepointat
all, unlessthe energyis fixed.

3. Periodic instanton as a deformation of the zero-energyinstanton

At relatively low energies,the adequateapproachto the evaluation of the

functional integral in eqs. (2.1) or (2.5) in many models is the perturbation
expansionaroundthezero-energy(vacuum)instanton.It is instructiveto tracehow
the periodicinstantonemergesfrom this formalism.

In the perturbative approach, one decomposesthe field into the vacuum
instantonfield and fluctuations,~ = ~ + e,and treatsthe fluctuationsperturba-
tively. The saddlepoint in the functional integralbecomesa series,the first term
being the vacuuminstantonfield, the secondthe linear fluctuation around the
instanton,etc. We will considerin this section the perturbativecalculationof the

total probability 0~F’ eq. (2.18), and show that the sum of the vacuuminstanton
field and the first correction(the linear fluctuation) reproducesthe field of the

infinite instanton—antiinstantonchain,which canbe viewedas an approximationto
the periodicinstanton.

In the linear approximation, when the cubic and higher-orderterms in the
action for fluctuationsare neglected,the behaviourof the fluctuation ~‘ is gov-
ernedby the following equation*

(3.1)

where ~1is the second-orderdifferential operatordependingon the instanton
background.The boundaryconditionsfor the field v aregivenby eq. (2.7) in which
one substitutes~ = ~ + ii. Since the instantonfield satisfiesthe Feynmanbound-
ary conditions, it dropsout of eq. (2.7), so that the boundaryconditionsfor ii are
given by eq.(2.7) with v substitutedfor ~.

* For the sakeof simplicity, we disregardat the moment the problemsrelatedto the existenceof the

zero modeswhich modify this equation.They can be treatedby standardtechniques.
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At low energies(E ~ FSPh),where the perturbationtheoryaroundthe zero-en-

ergy instantonmakes sense, the typical size of instantonscontributing to the
scatteringamplitudesis small comparedto the momentaof the particles.(This is
the case in many models, including the electroweaktheory [6].) Therefore,in the
first approximation,we can neglectin eq.(3.1) the effectsof the backgroundfield
of the vacuuminstanton,so that the solution is a planewave. The correctionsdue
to scattering in the instanton background are suppressedby powers of the
instariton size, and we disregard them in what follows. Taking the euclidean
versionof boundaryconditions(2.7) into accountwe obtain

= f {ak e_~T±~1~ + b~e0~T_1k1} + scatteringcorrections,
(2ir) V

2°~k

(3.2)

where ~i- is the euclideantime. Substituting / = cb~+ v, with r’ given by eq. (3.2),
into eq.(2.5) we find

~~erturh(b* a) = fd4xo d4~exP{_So_iP~~+ fdk \2wke_~~kT+1~ak~C(Ti,k)

+fdk ~/2wke~k’tb~C(~, —k) + f dkakb e’~)~ (3.3)

wherex~is the instantonposition (the instantonfield ~ in eq.(3.3) dependson
x(~)and S~is the vacuuminstantonaction.The last term * in the exponentcomes
from the fluctuation r’.

Let us find the relevant fluctuation r’ which emergeswhen evaluating0’E as
given by eq. (2.18). For this purposewe obtain the valuesof ak, b~’,x~and ~

thta determinethe saddlepoint in the integral (2.18), and then substitutethem
into eq. (3.2).

Before evaluatingthe integral in eq. (2.18)with 5~2E(b*,a) determinedby eq.
(3.3) we haveto makeexplicit the dependenceof 4~on x~.Considerthe vacuum

instantonfield centeredat the point (~
0,x0). At T = T1 — —~, the instantonfield

is the linear combinationof the positive-frequencyplanewaves,so that

— e~0~Tj_Tf~cx
4~(T~,k) = Ra(k). (3.4)

~
2w,~

* This term is also presentin 5~(b*,a) and is missedin ref. [6]. Note that when obtaining amplitudes

(2 —~ any)from .9~~(b*,a) onedifferentiates5~~(b*,a) twice with respectto a and sets a = 0, so that
this term becomesirrelevant.In that casethe deformationof the instantoncomesentirely from the
scatteringcorrections,cf. ref. [191.
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Analogously,

— ~~C(Tf, —k) = Rb(k). (3.5)~/2COkHere R~(k)and Rb(k)aresomecoefficientsdependingonly on spatial momentum

k, which are related to the instanton positioned at the origin. They can be
expressedthrough the residueof the Fourier transformof the instantonfield [6].
Making use of eqs. (3.3)—(3.5)we obtain

~ b *, a) 2

= fdxo d~dx~d~’da* da db* db exp{_2S0— iP~(~—

+ fdk( akak — b~bk+ e (o~)aR(k) + e”~b~Rb(k)

+akbk e’~+ abk e~’~’+ e’~a~R~(k) + e~bkR~(k))).

(3.6)

Here we haveperformedthe analytic continuation r0 —s it0 in order to regularize

the integrationover r0.
The saddle-pointequationsfor ak and b’ which follows from eq.(3.6) are

Ra e_ x0~f)+ b~’e’~— a = 0, R e1k~_f’) + bk e’~’ — ak = 0,

R~e”~~ + a~e~©— b,~’= 0, Rb e”~°+ ak e’~— bk = 0. (3.7)

It is instructive to solve them perturbatively,formally treatingthe secondterms in
all equationsasperturbations.The solution is a series,

ak = R~~ ~ ~ + Rb e~°~’~~ ~
n=0 n=0

= Ra e~°~
0~ ei~©) + R~e~U ~
n=0 n=0

bk = R~e°’~~ e!~~k_©)+ Rb e°~’~~E ~
n=1 n=0

= Ra e1~o ~ ~ + R~e’~ ~ e1~©). (3.8)
n=1 n=0
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Consider now the saddle-pointvalues for x0, x~,~ and ~‘. There are two
linearly independentequationswhich allow one to determinethe variables x~=

(t, x) =x~—x~and ~ = — ~ The variables x0 +x~and ~ + ~‘ remain

arbitrary(i.e. the integrationoverthesevariablesgivesthe squareof the space-time
volume *)~Fordefinitenesswe takethe valuesx0 +x~= 0 and ~+ ~‘ = 0. Clearly,
at P = 0 the saddle-pointvaluesof x and ~ are x = = 0. Differentiation of the

exponentin eq.(3.6) with respectto ~° leadsto the equation

eu~~k~
E= fdk ~

0k
2(R~(k)Ra(k)e~~r+Ra(k)Rb(k)

(1_et~~k~)

+R~’(k)R~’(k)+R~(k)Rh(k)e~kt), (3.9)

or, equivalently,

E = fdk ~~kakak.

The secondequationcoming from differentiationwith respectto t0 reads

e~”~k(t~) e’~”~
t

f dk R~’(k)Ra(k)1 — ~ = fdk R~’(k)Rb(k) 1 — e’(”k~’~ (3.10)

This equationcanbe rewritten in the following form:

f dk wkakak= fd’i wkb,~!’bk.

From theistantonsymmetrypropertieswe haveR~(k)Ra(k)= R~(k)Rb(k)which,
by virtue of eq.(3.10), leadsto the relation

=

while the value of ~° is determinedby eq. (3.9). As is clear from eq. (3.9), the
saddle-pointvalueof ~T°is purely imaginary,

(3.11)

where T is somepositivereal constant.So we canrewrite the saddle-pointvalues

* The appearanceof the extraspace-timevolume factor is dueto the norm of theprojector, eq. (2.3),

=
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of the variablex~,x[~, ~ and ~‘~in termsof singleconstantT,

x~=(iT/4,0), x’~=(—iT/4,0), (312

~=(iT/2,0), ~‘~=(—iT/2,0), . )

As we will seeimmediately,T plays the role of a period.
Eqs. (3.8) and(3.12) determinethe saddle-pointvaluesof the variablesak, a~,

bk and b~’and, in virtue of eq. (3.2), the relevant fluctuation r’. Neglectingthe
scatteringcorrectionswe obtain

~(x) = f ~ {R~e *k(3T/
4 T+T)+ikx + Rh e_wk(5T/4T~~k1

(2ir) ~/2Wk 0=0

+Ra e
5(3T/4+~Ty).ut~i + R~e_(T~/

4±0T__(~~~}. (3.13)

The various terms contributing to the r.h.s. of eq. (3.13) can be interpretedas

follows. The termsproportionalto Rb e_~k(ST/4~T+T)and R~e k(3T/4~T~) are

contributions of instantons located at T= —(5T/4+nT) and ‘r=3T/4+nT,
respectively[cf. eqs.(3.4) and (3.5)]. Sincethe anti-instantoncanbe viewedas the
time reversalof the instanton, the contributions containing R ek(3T/4+~1T~

and R~e_ T/4±nT~~) come from anti-instantonlocated at r = —(3T/4+ nT)
and T = T/4 + nT, respectively.Therefore,the saddle-pontconfigurationmay be
written in the following form:

~saddIe = 4~(x)+ ~(x)

= E{~(r+ T/4+nT, x) +~(r+3T/4+nT, x)), (3.14)

whereç~and ç~’denotethe instantonand anti-instantonfield, respectively.Eq.
(3.14) meansthat, in the linear approximation,the saddle-pointconfiguration in
the integraleq.(3.6) is the periodicchain of instantonsand anti-instantonssitting
on the straight line and separatedby the distanceT/2. Clearly, this is a good
approximationto the periodicinstantonat largeseparations.

4. Periodic instanton in the two-dimensional abelian Higgs model

In this sectionwe explicitly constructthe low-energyperiodic instantonin the
two-dimensionalabelianHiggsmodel. The euclideanactionof this model reads

I = fd2x{~F~ + I (a~- i~)~ 2 + I I2_ L2)}. (4.1)
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The model possessesthe instantonsolution which is the well-known Abrikosov—

Nielsen—Olesenvortex [20,21]. In the limit A >> g2 (which correspondsto MH>>
M~,whereM~= 2v~vand M~= ~/~gv are the Higgsandvectorbosonmasses,
respectively)it behavesas follows. The Higgsfield formsa smallcorewith the size
of order of Mj1

1
1 where4 changesfrom zeroto somevalueclose to v. Outsidethis

core, i.e. at x >> Mj1
1 ~, the instantonfield in the unitary(singular)gaugeis

= v(1 +

= — e~3~Ko(Mwr)(1+ O(M~/M~)). (4.2)

where K0 is the modified Besselfunction. The anti-instantonfield is obtainedby
the substitution~ —s —Ag. It worth noting that outsidethe core, the gaugefield
obeys free massivefield equations.

In the limit A >> g
2, the leadingcontributionto the instantonaction is propor-

tional to ln(Mu/Mw). This contribution comesfrom the region outsidethe core
andcanbe calculatedexplicitly. The resultfor the instantonaction reads[22]

S
11 = 2~v

2ln(Mu/Mw) + 0(v2), (4.3)

where the term 0(r2) includesthe contributioncoming from the instantoncore.
The model under considerationpossessesalso the sphaleronsolution [23,24].

The sphaleronenergy,

ESPh = ~v2MH,

sets the characteristicsenergy scale for the instanton-mediatedprocesses.It
determinesthe height of the barrierbetweentopologicallydistinct vacua.

Let us now constructthe approximateperiodicsolution along the lines of sect.
3. Sincethegaugefield satisfiesfree field equationoutsidethe core,we canobtain
a newtwo instanton(or instanton—anti-instanton)solution,in the unitarygauge,by
taking the Higgs field to be equal to v and the gaugefield to be the sum of
instanton(anti-instanton)fields outsidethe two cores. In this way we obtain an
approximatesolution with the accuracyO(M~/M~).To construct the periodic
solution we take the infinite chain of instanton—anti-instantonpairs, as shown in
fig. 2. This configurationis indeeda good approximationto the periodicinstanton
providedthat the period is much larger than the sizeof the core, T>> M~’.

Making use of eq. (4.2), one can find the field of the periodic instanton

explicitly. Writing the field of periodicinstantonin the form

1
A~=——e.,~~3~P(x), (4.4)
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onehas

P(x)~(l)1Ko(MwIx(n/21/4)T~j), (4.5)

whereT~= (T, 0) and T is the period.The summationin eq.(4.5) canbe carried
out by making useof the propertiesof the Besselfunctions [25]. At I r I < T/4 the
result is

sinh(MwT cosh A)
P(x) = f dA cosh(M~T/4cosh A) cos(Mwxi sinh A). (4.6)

The correspondingvectorfield, eq.(4.4), reads

M~ ~°° . sinh(M~rcosh A)
A

0 = I dA sinh A sin(Mwx1 sinh A),
g Jo cosh(M~T/4cosh A)

M~ ~ cosh(Mwr cosh A)
A1 = j dA cosh A cos(Mwxi stnh A).

g ~ cosh(MwT/4cosh A)

This solutioncontinuedto the region I T I > T/4 hastwo different turningpoints.
Theseare the lines T = 0 and T = T/2. It is clear from eq.(4.7) that A0(T = 0) = 0,

AI(T = 0) = 0 (the sameis valid at T = T/2). The turningpointnatureof the lines
r = 0 and T = T/2 persistsalso in the gaugeA0 = 0.

The main propertyof the periodic solution is the action per period.As in the
caseof a single instanton,the main contribution into this action comesfrom the
regionoutsidethe cores.Since the action (4.1) is quadraticoutsidethe cores,the
action perperiod is the sumof the bare instantonandanti-instantonactionsplus
the interactionterms.The interactionof instantonwith (anti-)instantonat distance

T/2 is [22]

S1~1(T/2)= ±4~r
2Ko(MwT/2), (4.8)

wherethe minussign correspondsto the instanton—anti-instantoncase.Therefore,
the actionperperiodwith logarithmic accuracyreads

S = 2{So+ E (— 1)flSint(nT/2)} = 4~r2ln(TMH). (4.9)

The logarithmbecomesof order one when the period T becomesof the order of
MjIj’, i.e. whenthe coresof instantonsand anti-instantonbegin to overlap.

Let us find the coherentstates I f) and Kg I correspondingto this periodic
instanton. One may either use the boundaryconditions of eq. (2.7) or simply
comparethe asymptotic form of the periodic instanton to eq. (2.10). Since the
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periodic instanton, eq. (4.7), is a free field outside the cores, it reachesthe

asymptoticsat x >>M~’.The analogof eq. (2.10) for the two-dimensionalvector
field in the euclideandomain reads

= r 2 /dk (fk�~(k) e ~kT+1~l +f~�~(k)~ (4.10)
—~ y’lTW~

where E~(k)=M~(ik, Wk) is the euclideanpolarization vector. Eqs. (4.7) and
(4.10) coincideprovided that

fk fk = 2g cosh(okT/4)~ (4.11)

Analogously,onefinds g~= g = —fk.

Wearenow in a position to find the relationbetweenthe energyandthe period

of the periodicinstanton.We have

1
E = fdk Wkfkfk = 4g2 fdkcosh2(wT/

4)~

In the region TM~-©z I which we assumein what follows, the integrationgives

4~.

E= T (4.12)

which is the desiredrelation.
Eqs. (4.9) and (4.12) determinethe maximal probability of tunneling at fixed

energyF, introducedin sect.2. Substitutingeqs.(4.9) and(4.12)into eq.(2.21) and

keepingonly the leadinglogarithmic termsone obtains

F
crE=exp 4~rL’

2In ‘2M (4.13)
U H

The tunnelingprobability a-F is exponentiallysuppressedat small E, the character-
istic energy scale being the sphaleron energy, ESPh ‘~ V2MH. Notice that the
numberof particlesin the most probableinitial and final statesis large in the
weak-couplinglimit i,2>> 1, with logarithmic accuracy

n = f dkfkfk* = fdk gkgk~ = ~L’2 In r2M~

As discussedin sect. 1, onemay try to obtain a good estimatefor the total cross
sectionof the scatteringof two particlesby multiplying the maximum probability
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(4.13) by the factor that arisesfrom the projectionof the initial state I f) on the
two-particlestate.The latter factor is

K21f) exp{_~fdkfkfk*)=exP{_~r2ln2M

So, the two-particle crosssectionsuggestedby this naive projection of the multi-
particleprobabilityonto the two-particle statewould be

a-project(2—sany) IK2If)2IuE

= exP{4~r2 ln( V2MH) — ~r2 ln( r2Mw) + O(r2)}. (4.14)

This expressionshouldbe comparedto the correctlow-energyresult

a-perturh(2 any) =exP{4~r2 ln(2M) +O(r2)}, (4.15)

which can be obtainedby the techniqueof ref. [6]. Clearly, eqs. (4.14) and (4.15)
differ exponentially, so that the naiveprojection conjecturedoesnot work evenat

low energies.
A quantitythat might be of interest in connectionto the unitarization[26,27] is

the ratio a-
2 any/CE of the one-instantontwo-particle crosssection to the maxi-

mum transition probability. It is somewhatsurprising that, in this model, the

leading logarithmscancelout in this ratio [cf. eqs. (4.13) and (4.15)], so that this
ratio may not be exponentiallysuppressed,contraryto the expectationof ref. [27].

5. Periodic instanton in four-dimensional gaugetheory

Let us now construct the periodic instanton in the four-dimensionalSU(2)
gaugetheory that describesthe microcanonicaltunnelingrate in the electroweak
theory. As in the previousexample,we are not able to obtain the exact solution,
neigher canwe rigorously prove its existence.Instead,motivated by the general
discussionof sect. 3, we assumethat the periodic instantonexists and considera
configurationwhich we expect to approximateit. This configurationis merelythe
infinite sequenceof BPST instantonsand anti-instantons(in the singular gauge)
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placed in alternationalong the euclideantime axis andseparatedfrom eachother

by a half-period T/2,

A~(r,x) = ~(A~’~(r — T/4 — nT, x) +A~(r + T/4 — nT, x)). (5.1)

Here

22 — x
= ‘•‘ Iap.~’ ~‘

~ g x2(x2+p2)

2p2 s~ x
A~(x) = —i-- x2(;2+p2) (5.2)

The parameterthat governsthe approximationis the ratio of the size of BPST
instantonsp to the period T determiningthe distancebetweenthem. Note that
this parameteris quite similar to the one appearingin perturbationtheoryabout
the zero-energy instanton and suppressing,say, the propagator insertions as
comparedto the leading semiclassicalresult [6,28,29].The meaningof the latter
expansion is, however, different: the non-trivial series around the zero-energy
instantonappearsbecausethe zero-energyinstantondoes not have the correct
boundaryconditionswith respectto the final particles. On the other hand,the
periodicinstantonsatisfiesthe boundaryconditionsexactly, so that the occurrence
of corrections to eq. (5.1) indicates merely our failure to solve exactly the
complicatedfield equationsof the theory. In what follows we usethe configuration
of eq. (5.1) to obtain the results to leading order in p2/T2. This approximation

correspondsto the low-energy limit F <<E
0, where F0 = V~irMw/aw ESPh is

the non-perturbativeenergyscaleof the electroweaktheory.
With only instantons(or only anti-instantons),one would be able to construct

the exact periodic solution [13] which is the finite-temperatureinstanton. It is,
however,irrelevantfor our purposesas explainedin sect. 1. To obtain the solution
having two turningpoints, we haveto alternateinstantonsand anti-instantons,as
in eq.(5.1), andas yet no exactsolutionsof this form areknown. In principle,one
might improve the approximatesolution (5.1) somewhatby superimposingthe
properlyshiftedexactmulti-instantonandmulti-anti-instantonsolutions.However,
this would not make much sensesince the instanton—instantoninteraction is
absentboth for the exact solution and — to the leadingorder in p

2/T2 — for the
approximatesolution (5.1) (seebelow). Only instanton—anti-instantoninteractions

contributeto leadingorder.
To find the tunneling rate for the microcanonicaldistribution of initial states,

onehasto calculatethe actionon the configurationof eq. (5.1) as a function of the
period T. It canbe shown that a certain kind of virial expansionholds for this
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action. Namely, the leading interaction term of order p4/T4 comesexclusively
from pair interactionswhile the three- and higher-bodyinteractionsare at least
p6/T6. The instanton—instantonandinstanton—anti-instantonpair interactionsare

[30—32]

6

5(11) =

5(AA) —

nt mt — T
6

2 2 ,296~pp p+0 (54)
mt g2(T/2)4 T6

Eqs. (5.3) and(5.4) allow one to calculatethe actionof the periodicinstantonto

order p4/T4.The actionperperiod is

16ir2 96~-2p4 1 l6ii-2
S= —2 = —32————— (5.5)g2 g2(T/2)4~=_~(2n+1)4 g2 g2T4’

wherethefactor two reflectsthe existenceof two nearestneighboursin contrastto
the one “neighbour” in the leading-orderzero-energyinstantoncalculations.

The tunneling rate of the microcanonicaldistribution with fixed energy E

equals

16ir2
a-E—fdpexp — g2 —21-2L’2p2+ET+32~~, (5.6)

where r is theHiggsvacuumexpectationvalue, and T= T(E) is to be determined
from the energycondition(2.22). Making useof eq.(2.22)we find that the energy
condition is equivalentto extremizingthe exponentof eq. (5.6) with respectto T.
Note that this extremumis actually a minimum meaningthat variations of the
periodcorrespondto a negativemode of the saddlepoint.

The saddlepoint valuesof p and T are

E4 1/6 ir2E 1/3

4 2 10 T=2 —~—~ . (5.7)8i~gr gr

The microcanonicaltunneling rateis finally

16ir2
crE=exp —--—

1----+W(E)
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where the energy-dependentpart of the exponentis

3 ~ 1/3

W(E) = ~(g2~4) . (5.8)

The latteris by a factor of (1T
4/3)1’~3larger than the analogousterm [5—7]for the

process2 —s any.
Consequently,the ratio a-(2 —s any)/o-~in the electroweaktheory is exponen-

tially small at F <<E
0. (This conclusiondiffers from the one in the two-dimen-

sional abelianHiggsmodel wherethe leadingenergydependenciesof a-(2 —s any)
and a-F coincide.)This resultmay lead to the speculationthat unitarizationwould
occur at energieswhere the microcanonicaltunneling rate is of order unity while
the processes2 -~ any (whichgrow much slower) arestill exponentiallysuppressed
(cf. ref. [27]).

As in sect.4, let us now discusswhetherthe projectionof the two-particlestate
onto the mostprobableinitial stategives a correctapproximationfor a-(2 —s any).
For this purposewe haveto calculatethe averagenumberof particlesin the most
favourableinitial state,N = fdkfk*fk. The expressionfor the two-particle cross
sectionobtainedvia the projectionwould then be

up~0j~~t(
2any)=IK2If)I2a-E=a-F c_N,

where,asusual,only the leadingexponentialdependenceis retained.
For evaluating fk~we have to studythe periodicinstantonfield (5.1) in more

detail. The three-dimensional Fourier transform of the one-instanton field,
A~(r, k) f exp(—ikr)A~(T, x) dx, equals

2ip2 a
A~(r, k) = —~---~(r, k),

2p2 a
A~(r, k) = .__ ~~aii~j~ ai~ ‘I’(r, k), (5.9)

where k= IkI, and

2~2
~(r, k) = ~(exp(—kIrI) _exp(_k~/p2+r2)). (5.10)

To the leadingorder in p/T, eq.(5.10) becomes

‘fl..2

iJ(r, k) = -~—-e’t~”~. (5.11)



356 S.Yu.Kh!ehnikoi’eta!. / Instantons

As is clear alreadyfrom eq. (5.1), one of the turning points is at ~- = 0. Summing
over the contributions from all instantonsand anti-instantonsin the periodic
configuration,eq. (5.1), oneobtains

aA~’
A~(0,k) = —~-(0,k) = 0

aT

which are the turning-pointconditions,and

A~(0,k) = 4~2p2~ e~”( ~ + (~
g

2ir2p2 k. 1 1
= —i� ~ +~ (5.12)g am] k sinh(kT/4) aIcosh(kT/4)

where T,
1 = T/4 + nT/2. Eq. (5.12) shouldcoincidewith the boundaryvalue of the

minkowskianplane-wavesolution specified by the functions fk~i.e.

A7(0, k) = 2(2~)3/2~1 ~ f~’
0e~(k), (5.13)

in 1,2,3

where e71(k) arepolarizationvectors.Eqs.(5.12) and (5.13) allow oneto find the
functions .fk.

Insteadof writing explicitly the cumbersomeexpressionsfor fk’ let us present

the result for the relatedquantity, the occupationnumber~k’

= Efamn~fam = ~~k ( cosh2(~T/4)+ sinh2(~T/4))’ (5.14)

wherethe lastequality is true to the leadingorder both in p2/T2 and M~JT2.To
this accuracy,the averagenumberof particlesin coherentstate I f) is

16ir2 ~
N = fdk ~k = 84~(3)—i-- ~ (5.15)

which leads to the following expressionfor the crosssection a-(2 -~ any) in the
projection approach:

16~r2 1 ~r2E4g4 1/3 21~3) E4g4 1/3
—s any) = exp — —~~— + ~ r4 — g2 ~-10r4
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This value is exponentially smaller than the correct low-energy cross section

calculatedin perturbationtheoryaroundthe zero-energyinstanton[5—7],

16~2 3 3E4g~1/3
a-perturh(2 —s any) = exp — + g2 8’rr2r4

We conclude that the naive approachto the calculation of the two particle
crosssectionbased on the projection of the microcanonicalresult is generally
inadequate.

6. Conclusion

We haveseenin this paper that the periodic instantonsprovide exact saddle
points in some multiparticle scattering amplitudesat all energiesbelow the
sphaleronmass.Furthermore,the correspondingcross sectionsare maximal at a
given energy.However, we havefound that thereis no obvious relation between
the most interesting cross sectionof two-particle scatteringand periodic instan-
tons. In particular, the projection of the multiparticle amplitude inducedby the

periodic instantonsonto the two-particle initial stategives wrong resultseven at
relatively low energies.

The presentunderstandingof the role of classicalsolutions in multiparticle

scattering,and,in particular,of the correspondencebetweenthe boundaryvalues
of classicalfields and the initial and final states,makesus to conjecturethat the

two-particle instanton-like scatteringprocessescannot be describedby any solu-
tions to the classicalfield equations,eithereuclideanor minkowskian.Indeed,any
solution with non-vanishingenergyhas large classicalfields on both boundaries.
This correspondsto large number(of order 1/g2) of particles both in the initial
and final states.Clearly, this situation is totally different from the two-particle
scatteringinto large numberof particles.

On the other hand,the resultsof refs. [6,9—11]indicate that therestill might
exist a masterfield (deformedinstanton[4,19]) that would enableoneto evaluate
the two-particle amplitudesin a semiclassical-typemanner. If so, this masterfield
should obey some equationsqualitatively different from the usual classicalequa-
tions of the field theory.

The authors are deeply indebted to V.A. Kuzmin, V.A. Matveev and M.E.

Shaposhnikovfor stimulating discussions.One of us (P.T.) thanks E. Mottola for
interestingdiscussionsat initial stagesof this work, andAspenCenterfor Physics
for hospitality. S.K. acknowledgesthe kind hospitality of DESY Theory Group
where thiswork was completed.
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