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In quantumtheory,internal symmetriesmore generalthan groupsare possible.We show that
quasi-triangularquasiHopf algebras.k’~(“quasi quantumgroups”)asintroducedby Drinfeld [1]
permit a consistentformulation of a transformationlaw of statesin the physicalFlilbert space
~, of invariance of the ground state,and of a transformationlaw of field operatorswhich is
consistentwith local braid relations of field operatorswhich generalisethose proposedby
Frbhlich [21.All this remains true when Drinfeld’s axioms are suitably weakenedin order to
build in truncatedtensorproducts.Conversely,all the axioms of a weakquasi-triangularquasi
Hopf algebraare motivated from what physics demandsof a symmetry. Unitarity requires in
addition that ~ admits a ~-operation with certainproperties.Invariancepropertiesof Green
functions follow from invarianceof the groundstateand covarianeeof field operatorsas usual.
Covariant adjoints and eovariantproductsof field operatorscan he defined. The R-matrix
elementsin the local braid relationsarein generaloperatorsin ~. They are determinedby the
symmetry up to a phase factor. Quantumgroupalgebraslike U~

1(sl~)with Iq = 1 are examples
of symmetrieswith specialproperties.We show that a weak quasi-triangularquasiHopf algebra
~ is canonically associatedwith U,1(sl~)if q” I. We argue that these weak quasi Hopf
algebrasare the true symmetriesof minimal conformal models.Their dual algebras~ (“func-
tions on the group”) are neithercommutativenor associative.

1. Introduction

In quantumphysics,states I ~ji) are elementsof a Hilbert space~, and
(i) Elements of a symmetry act as transformationsof physical states (i.e. as
operatorsin ~‘) Iv’) —*

(ii) The transformationlaw is consistentwith statistics;
(iii) There is a relationbetweenspin and statistics.Bosonshavespin s = 0, 1,.
fermions have spin s = ~, ~,..., but other values for s are possible in 2 space
dimensions,and are associatedwith braid group statistics.

In this paperwe assumethat braidgroupstatisticsis implementedthroughlocal
braid relationsamongthe field operatorswhich createandannihilateparticlesor
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excitations[2]. We examinewhat symmetriesareconsistentwith this assumption.
They arecalled quantumsymmetriesand arenot groups in general.

To find signs of (nonabelian)quantumsymmetryin nature, experimentalsolid
statephysicistsshould look for degeneratemultiplets of excitationswith non-half-
integer fractional spin in two-dimensionalquantumsystems.

It appearsthat the possibility of quantum symmetriesis special to quantum
theory. In classicalmechanics,symmetriesaregroupsof transformationswhich act

on phasespace.The observablesform a commutativealgebrad which consistsof
functionsf on phasespace;the hamiltonianis oneof these.In quantummechan-
ics, the pointsof phasespacehavegoneaway,but a (noncommutative)algebraof

observablesor field operatorspersists. It is surprising that it took 60 years to
discoverthat quantum theory admits a larger class of symmetriesthan groups.
Groupsare topologicalspacesG whosepoints arethe groupelementsa.Whenthe
pointsof phasespaceon which the group elementsact havegoneaway, one does
not needthe group elementsa any more either. It is said that “quantum theory
may be regardedas mechanicson noncommutativephasespace” [91and that
“quantum groups are the symmetries of noncommutativespaces” [10,111.But
actually they areonly exampleswith specialpropertiesas we shall see.

The readeris invited to think of (secondquantized)nonrelativistic many-par-
ticle systemsor of relativistic quantumfield theories as examplesof quantum
mechanicalsystems.

Whenthereis a symmetrygroup G, the Hilbert spaceof physicalstatescarriesa
(unitary) representationof an algebra ~‘~‘ (the group algebra)which containsthe
group elementsas distinguishedelementsthat generateit. ~‘~‘ is the dual of the
commutativealgebra ~‘ of functionson the group G, i.e. its elements4 ~ are
linear maps

~: ~

Actually ~‘ is a “bi-algebra” * and this yields a product in ~ known as the
convolutionproduct. The notion of invarianceof the ground stateor vacuumcan
be formulatedin this language,without referenceto group elements,and also the
transformationlaw of field operatorswhich createparticlesor excitations.This is
all that is neededto formulatethe notion of a symmetry andto extractfrom it the
usualconsequences(sect. 2).

It is therefore possibleto admit as symmetry algebra~ the dual of a more
generalbi-algebra .~‘ than the commutativealgebraof functionson a group (sect.
3). Quantum groups [7] are among thesemore general symmetries.They are
associatedwith a special type of braid relationswhich involve solutions of the
Yang—Baxterequations[2] (sect.4). But this is not the most generalpossibility as
will be seen.Nonassociativealgebras~‘ arealso admissiblewhen they are thedual

* A hi-algebrais an algebrawith a productand a co-product, a unit clement and a Co-unit — seelater.



G. Mack, V Schomerus/ QuasiHopfquantumsymmetry 187

of a quasi-triangularquasi Hopf algebra~ as introducedby Drinfeld [1]. Wewill
exhibit the appropriateform of the local braid relationsof field operatorswhich is
quasiHopf invariant. (It involves solutionsof quasi-Yang—Baxterequations.)(sect.
5). But this is still not the most generalpossibility. We show that all the physical
requirements,including in particular validity of local braid relations of field
operators,remain satisfiedwhen Drinfeld’s axiomsare weakenedin such a way
that the truncatedtensorproductswhich haveappearedin conformal field theory
areaccommodated(sect.6). In this casewe speakof a weak quasi-triangularquasi
Hopf algebra.Conversely,all the axioms of a weak quasi-triangularquasi Hopf
algebrawill be motivated by propertieswhich onewants quantumfields to have,
andwe believethereforethat this is the generalalgebraicstructureof a symmetry
in low dimensions.

In all cases a * -operation with certain properties is needed in order to
formulateunitarity. This is a somewhatsubtle issue.We will explain in some detail
why quantumgroupalgebrasU~(sl2)with I q I = 1 are consistentwith this require-
ment, and how adjoints of field opertorscan be definedwhich transformcovari-
antly (sect.7).

In this paper, ~ will be regardedas the fundamentalsymmetry algebra.
Emphasisis on its representationsin the Hilbert space~ of physical states,as
opposed to symmetries of Green functions. The transformation law of field
operatorsis the sameasproposedby Buchholz et al. for quantumgroup algebras
[4]. There is an alternative picture, proposedby Reshetikhinand Smirnov [15],

where ~‘ is regardedas a co-modulefor ~‘. The relationbetweenboth interpreta-
tions will be explainedin sect. 8.

Models with quantum groups as symmetrieswere studied by many authors,
[4,5,13—17,19—22]and others.Integrablemodels,conformal field theory, and the
massivesine—Gordonmodel provide examples. Green functions of an orbifold

model with a quasi Hopf algebraas symmetry were examinedby Dijkgraaf et al.
[3’.

Some pedagogicalmaterial that is well known to expertsis included in this
paperfor the benefit of the reader.But the constructionof quasiHopf covariant
products(5.4) and adjoints (7.2) of field operators,and the resultingquasi Hopf
invariant form of local braid relationsof field operators(5.7)ff. are believedto be
new, and so is the weakerform of the quasi Hopf axiomswhich permits to
incorporatetruncatedtensorproducts,andthe identification of what we believeto

be the generalalgebraicstructureof a symmetryin low dimensions.
Sect.9 is a review of known factsaboutthe quantumgroup algebrasUq(512).
Our resultson the incorporationof truncatedtensorproductsare in sect.6 and

10. We show in sect. 10 that a weak quasi-triangularquasi Hopf algebra .~“ is
associatedin a canonicalwayto every quantumgroupalgebraUc,(sl2)with q”

2 = 1.
The physical representationsof U(,(s1

2) are representationsof /‘ ~‘, and the
co-productof L~’

5’ yields the truncatedtensorproductof physical representations
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of U0(sl2). Sincethis truncatedtensorproduct is the “physical” tensorproductin
conformalmodels[19], it appearsappropriateto regard .~“ ratherthan Uq(512) as
the true symmetry of the conformal models. Our resultson local braid relations

imply for instance that an appropriate form of local braid relations for field
operatorsholds in the whole physical Hilbert spaceof the conformalIsing model
[5] ~. There is no need to introduceunphysical statesto achieve this. This is in
contrastwith what happenswhen one interprets the full algebra Uq(5l2) as a
symmetry, instead of the appropriatealgebra ~ = Uq(Sl2)/Jwith a non-co-as-

sociativecoproductasproposedhere.The Uq(5l2) braid relationsare eitheronly
valid on a subspaceof ~‘, or elseone has to introduceunphysicalstates[5,30] ~.

The weak quasi Hopf characterof the symmetry affects not only the braid
relations, but also the operator product expansions.It is the (nonassociative)

covariant product of field operatorswhich involves numerical Clebsch—Gordan
coefficients. Upon transition to (associative)ordinary products,thesenumerical

Clebsch—Gordancoefficients get multiplied with representationoperatorsof the
symmetryalgebrain the physical Hubertspace.

In a weakquasi-triangularquasiHopf algebrathereexistsan element~ E ~ ®

® ~ which assuresquasi-associativityof tensorproducts.Its constructionuses
solutionsof the pentagonandhexagonidentities.Theseidentitiesappearedfirst in
conformalfield theory [34].

It is instructiveto note that supersymmetrycanbe regardedas a specialcaseof
a quantumsymmetry(sect. 11).

By definition, a nontrivial transformationlaw under a nonabelianquantum
symmetryis consistentwith local braidrelations,but not in generalwith local Bose
commutationrelations.Observablesare thereforeinvariant, i.e. quantumsymme-
tries aregaugesymmetries(of first kind). The hamiltonianis the integralof a local
Bose field. The importantquestionarisestherefore,whethernonabelianquantum
symmetry can be broken at all by a perturbation(or spontaneously),and under
what conditions.We arenot preparedto discussthis question.

2. Abstraction from symmetry groups

We begin with well-known facts about group representationsin quantum
mechanics.The ideawill be to reformulatethemso that the groupelementscanbe
discardedin the end.

First we remindthereaderthat the Hilbert space~‘ carriesa unitary represen-
tation of the group algebra~‘ ~‘ Thenwe will deducethe transformationlaw of
field operatorsunder~ This will involve the co-multiplication.The statementof

* The fields which satisfy thesebraid relationsarepreciselythoseconstructedin ref. 151. Theproof is

spelledOut ifl ref. [6].
** The unphysicalstatesmaytransformnontrivially undertheideal 7 which we proposeto factorout.
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invarianceof the groundstatewill involve the co-unit. The transformationlaw of
adjointsof field operatorswill involve the antipode.And the transformationlaw of
statescan be recovered from the transformation law of field operatorsand
invarianceof the groundstate.

To stateall this in moredetail,we beginwith thedefinition andrepresentations
of ~ Let G be a compactsymmetry group of a quantum mechanicalsystem.
Thentherewill be a unitary operator U(a) associatedwith everygroupelementa.
Theseoperatorsact in the Hilbert spaceof physicalstates,

U(a): Z-~Z.

Let .~‘ be the commutativealgebraof (“good”) functions f on G,

f: G—~C. (2.1)

The product in ~ is definedby pointwisemultiplication, fg(a) =f(a)g(a).
The dual ~ of .~ consistsof linear maps

ç~: .~—*C. (2.2)

The group elementsa E G can be regardedas specialelementsof .~ * by virtue of
the assignment

a(f)=f(a) forf~/~’. (2.3)

Compactsymmetry groupsadmit a volume elementda known as Haarmeasure,
which is uniquely determinedby the requirementof invarianceandnormalization.
Elementsi~ of ~ aredeterminedby generalizedfunctions[36] ‘i on G. We use
the shorthandnotation

~=fda 1(a)a.

It follows that

~(f) =fda ~(a)a(f) =fda ~(a)f(a)

by eq.(2.3). A group elementa, regardedas an elementof ~ is identified with
the 6-functionof G supportedat a.

The product in ~ is given by convolutionof generalizedfunctions,since

~I~2 = fdafdb ~1(a)~2(b)ab = fdc (~* ~2)(c)c (2.4)

with

(~* ~2)(c) = fda ~1(a)~2(a’c). (2.5)
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For group elements,regardedas elementsof ~~‘* in the mannerjust explained,
this definition agreeswith the productdefinition in G.

The algebra ~‘ admits a unit element1, the constantfunction 1 on G. One
definesa co-unit on ~ ~: ~ .—‘ C, which is a homomorphismof algebrasandis
definedby

�(q~)=q5(l) =fda ~(a). (2.6)

Later on we shall need also the co-product LI on ~ It is a linear map LI:
* ‘.+ ,~‘ * ® * andis explicitly definedby referenceto the productin .~‘, viz.

LI(4)(f, g) =~(f~g). (2.7)

When .~ is a spaceof functionsof onevariable,then ~/ 0 ~ consistsof functions
of two variables.Thereforeelementsof ~ ~ may be regardedas maps of
pairs of functions (f, g) into complex numbers. ~ ® ~ is an algebra with
product (~0 ~2X~1® ~12) = ~Th ® ~2~72’ and LI is in fact a homomorphismof
algebras.

The representationof G induces a representationof the algebra ~ by
operators

U(~): Z—~Z (2.8)

in the Hilbert spaceof physical states,viz.

U(çb) = fda cP(a)U(a). (2.9)

The representationpropertyholds,

= U(~1)U(~2). (2.10)

Unitarity of the representationtranslatesinto

(2.11)

The action of the * -operationson elements4i E ~? * is definedby a* = a— ~, and
more generallyby çb

5’ = f da cP(a)a’. Finally, G-invarianceof the ground state

I 0) translatesinto

U(~)I0)= 0) c(~). (2.12)

We ended up with statementswhich involve only the algebra .‘~“ and the
* -operationandco-unit on it, but makeno referenceto groupelements.Summing

up, the Hilbert spacecarriesa unitary representationof the algebra~ Unitarity
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is expressedthrough eq. (2.11) and invarianceof the ground state through eq.
(2.12).

Let usnow supposethat the Hilbert spaceof physicalstatesis createdfrom the
groundstate 10) by applicationof field operators1J1’(r, t) which createparticles
or excitations.I, i aresomequantumnumberswhich distinguishthese.Later on, I
will specify the transformationlaw (isospin, for instance)while i distinguishes
membersof a multiplet. Let us supposethat these field operators transform
covariantlyunderthe symmetrygroupG. This meansthat thereexistfinite-dimen-
sional representationsof G by matricesr’(a) such that

U(a)’I’~’= ‘I’k’rk’~(a)U(a). (2.13)

Summationover repeatedindiceswill be understoodthroughout.We will neglect
to write arguments(r, t) of field operatorswhen their valuesdo not matter. Eq.
(2.13) saysthat ‘1” is a tensoroperator.

We will generalizethis formula to arbitrary elements c~f. ~ The resulting
formula will involve the co-product LI. By definition LI(4) is an element of
~ 0 ~ and is thereforeof the following form. To every f thereexist sequences
of elements and of elementsof ~ such that

LI(4) = ~ (2.14)

If 4 is a group element,then thereexistsonly oneterm in the sum.We may admit
integralsin placeof sums and use our shorthandnotationto write an explicit

generalformula,

4(a) = a® a for a E G, LI(4) = fda cb(a)a 0 a. (2.15)

Thecovariancepropertygeneralizesto

U(4)1111
1= Lr~

1(~)U(~). (2.16)

U(4) wasdefined in eq. (2.9) and r(4i) is defined in the sameway.
Let us check eq. (2.16) with the use of the explicit formula (2.15). The

right-handside of eq.(2.16)will read

fda a)~t’,~’r,~1(a)U(a).

By virtue of eq.(2.13) this is indeedequalto

= fda cP(a)U(a)~I//.
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Let usnow determinethe transformationlaw of the specialstates

I’, i)=~P~’I0>
that follow from this. Denotingthe identitymapby id, co-productandco-unit have
the propertythat

(id 0 e)LI = id. (2.17)

This meansthat validity of eq.(2.14)implies

0 = 4,. (2.18)

Since c(4,) is a complex number, the symbol 0 is redundantin this formula. It

standsfor ordinarymultiplication with a complex number.
Usingeqs.(2.16), (2.12) and(2.18) in turn,we find

U(4,)~I’~’10) = ~ T~
1(4,~)U(4~)10) (2.19)

= ~ e(4~) (2.20)

=~P,~I0)~-,~(4). (2.21)

This shows that the “1-excitation states” I I, i) = 11’,’ 0) transform accordingto
the representation‘r

1. The derivation of this formula used covariance of field
operatorsunder.~“, invariance(2.12)of the groundstate (0), andproperty(2.17)
of the co-unit. All of thesewill be retainedin the caseof moregeneralsymmetries

lateron.
Similarly, the transformationlaw of states

Il’, i
1 ...i,I~,i~)= ~IJ~’i,...,sIi;.!*(0)

is determined.Applying U(4,) to such a state, one shifts the representation
operatorU(S) through the fields oneby one from left to right, usingcovariance
property(2.16).Finally, an operatorU(•) standsnext to the ground state,so that
one canconvert it into a c-numberusinginvariance(2.12)of the groundstate.

As a result one finds the well-known result that the states I I~,~ I,~,i~)

transformaccordingto the tensorproduct

(Thl~(T12~...~(T1*_l~T1*)...)) (2.22)

of representationsunder the group G. The bracketsin this formula are actually
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unnecessarybecausethe tensorproduct is associative.But if one doesnot make
use of this fact in the derivation, eq. (2.22) is what one gets. To generalizethis
formula, one observesthat the tensor product of group representationscan be
definedin an abstractway by useof the co-productLI, as follows.

We distinguishin notationbetweenthe standardtensorproduct 0 of matrices,
andmoregenerallyof algebrasandof their elements,andthe tensorproduct ® of
representations.If ‘r’ and T~ are representationsof ~ by matrices T~’(~),etc.,
thenthe standardtensorproductT~’ 0 r~(A)is definedfor elementsA ~ 0~~*

such as A = ~ 0 i~ in the ovbiousway, (T’ 0 ‘r~)(~0 ~)= T~) 0 ~ wherethe
right-hand side involves a tensor product of matrices. By contrast, the tensor
product of representations(‘r’®T’)(4,) is going to be defined for arguments

E~‘ * through the formula

(T’®T~)(4,) = (T’0T’)(LI(4,)) = ~T”(4,~) 0T~(4~). (2.23)

Indeed,for groupelements4, = a,

(T’ 0 T~)(LI(a))) = (T’ 0 T~)(a0 a) T’(a) 0 T’(a)

by eq. (2.15). Retainingdefinition (2.23) of the tensorproductof representations
for the group algebra g”4’, the tensor product transformation law of states
continuesto hold for arbitraryelements4, E ~

By taking the adjoint of the transformationlaw (2.13) of field operatorsunder
group elements,one finds that the adjoint of a field operator II” transforms
accordingto the contragredientrepresentation~‘ of T1. This generalizesto ~ in
the sameway as before. The contragredientrepresentationis definedby

~(4,) =tT(5~1(4,))

where.5~’is the antipodalmap.Its actionon groupelementsis givenby .9~(a)=
This extendsto ananti-automorphismof the group a[gebra in the obviousway, viz.
5’~’(4,)=f

0 da ‘I(a)a’. The transformationlaw of the adjoint field operatorcan
be written as

U(4,)1I1,~’*= ~ *.i:~j(4,j;~)U(4,~~,). (2.24)

The interchangeof 4~and 4~comparedto the transformationlaw (2.16) of field
operatorsis immaterialhere.This is true becausethe co-productis co-commuta-
tive in the caseof group algebras.Indeed,if P interchangesfactors,P(a 0 b) = b
0 a, then 4(a) = a 0 a = P4(a) for aE G, andthis extendto ~

However, if one wants to derive the transformationlaw of adjoints from the
transformationlaw (2.16)of fields usingabstractpropertiesof the antipodebut not



194 G. Mack,V. Schomerus/ QuasiHopf quantumsymmetry

co-commutativityof the coproduct,onegetseithereq. (2.24)or eq.(2.24) with 4,~
and 4,j, interchanged,dependingon the appropriate* -operationin ~“~‘ 0 ~ The
formula (2.24) was first obtained for the quantum group algebra Uq(S1

2) with
= 1 in ref. [51.

3. Quantumsymmetry

Abstractingfrom the exampleof a symmetrygroup as discussedin sect. 2, we
find conditionson a symmetryalgebra~‘ * whichpermit to spellout featuresthat
arecommonlyassociatedwith symmetriesin quantumtheory:
(i) A tranformation law of states in the Hilbert space ~I~’which determinesa
unitary representationof ~‘ * in ~
(ii) Covariancepropertiesof field operatorsandtheir adjoints;
(iii) Invarianceof the groundstateandthe hamiltonian.
Locality andstatisticswill be discussedin sect.4.

Definition 3.1. (bi- * -algebra)A * -algebra ~‘ * with unit elemente is called a
bi- * -algebraif a * -operationis specifiedon ~‘ * 0 ~ * and ~‘ * is equippedwith a
co-productLI, a co-unit e, and an antipode,.7, with propertiesas follows:
(1) The co-multiplication 4: ~ -~ ~ ® ~ is a * -homomorphismof algebras.
(2) The co-unit �: -~ C is a * -homomorphismof algebrassubjectto the extra
condition

(id0c)LI=id=(eOid)LI. (3.1)

(3) The antipodal map 5°: ~‘ * * is a * -anti-automorphism.It shouldobey
the further conditions

mr((5°
1 0 id 0 id)(id 04)4(4,)) = e 04,, (3.2)

m~((id®5°~0 id)(id 04)4(4,)) = 4, 0e, (3.3)

with multiplication operatorsdefinedby

~ ~

Remark.Note that we do not requirethat 4(e) = e 0 e. Instead,4(e) maybe a
nontrivial projectorwhich commuteswith all 4(e), ~ E ~ In thiscaserepresenta-
tion operators(‘n’®i-r~)(~) = ~ 0 ~~-~(4(~))will annihilatea propersubspaceof
the representationspaceV1 0 V~for someI, J andall ~E ~ This is so because

4(e)= 4(e~)= LI(e)4(~).In this way Drinfeld’s remark [1], which suggeststhat
minimal conformalmodelscannothavequasiHopf algebrasas symmetries,will be
evaded(see below).
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The standardchoiceof the * -operationon ~‘ * 0 ~‘ * is

(~0~)*=~*0~* (3.4)

but it is also permissibleto adoptthe alternativechoice

(3.5)

and to interpret condition (3.7) accordingly.The interchangeof factors matches
with the formula for adjointsof operators,(AB)* =B*A*.

For the quantum group algebrasUq(5l2) with q a root of unity which were
proposedas symmetriesof conformalfield theorymodels,the aboveconditionswill
be fulfilled if we adopt the secondchoice(3.5) of * -operationon ~ 0 ~ The
consequencesof this choicewill be discussedlater on.

For the convenienceof the reader we spell out the (anti)homomorphism
properties.4, 5°and e shouldbe linear maps.They shouldobey

4(e) 4(~)4(~), 4(~*)=4(~)* (3.6), (3.7)

e(~~)=�(~)e(s~), ~(~*) ~ (3.8), (3.9)

5°(~)=5°(~)5°(~) ~(~*) =5°(~)* (3.10), (3.11)

It follows that c(e)= 1.

Definition 3.2. (Symmetry)Considera quantummechanicalsystemwith hamilto-
nian H whoseHilbert spaceof statesZ is generatedfrom a ground state 10) by
field operatorsW~’(r,t). A hi- * -algebra ~ with unit element e, co-product4,
co-unit c and antipode5° is called a symmetry of this systemif Z carries a
unitary representationU of ~ the groundstate 10) is invariant, all representa-
tion operatorsU(4,) commutewith the hamiltonian,andfield operatorstransform

covariantly.This meansthat for all 4, * we shouldhave

U(4,*)=U(4,)*, (3.12)

U(4,)I0)= 0) E(4,), (3.13)

[u(4,),HJ =0, (3.14)

U(4,)~P~’= ~ (3.15)

if 4(4,)=~4,~o4,~. (3.16)
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From covariancepropertiesof field operatorsand invarianceof the ground state
one obtainsinvariancepropertiesof Green functions in the standardway, see
below.

Neitherco-commutativitynor co-associativityof the co-productwere required.

Definition 3.3. (co-associativity)The co-product4 is said to be co-associativeif

(idOLI)4=(LIOid)4. (3.17)

Lemma 3.1. If the co-multiplicationis co-associative,then the properties(3.2)
and(3.3) are implied by the requirement

m’(5”1 Oid)LI(4,) =m’(ido5°1)4(4,) =e(4,)e (3.18)

for all 4, E .~“. Themultiplication operatorm’ is definedby m’(~® ~)=

Givenone co-multiplication4,

4(4,) = E4,,~®4,~, (3.19)

thereexistsanotherone:

= ~ (3.20)

Definition 3.4. (co-commutativity)The co-multiplication is said to be co-com-
mutative if LI = 4’.

Examples.Compactsymmetrygroupsyield group algebras~‘ * with a co-multi-
plication that is co-associativeandco-commutative.Hopf algebras.~“ are exam-
ples which fulfill all our conditionsexceptpossiblythoseinvolving the * -operation.
In a Hopf algebra, the co-multiplication is co-associativebut not necessarily
co-commutative.In a quasiHopf algebraas introducedby Drinfeld theco-multipli-
cation is not co-associativebut only “quasi-co-associative”.This and further
propertiesof quasi-triangularquasiHopf algebraswhich aremotivatedby locality
will be discussedin the next sections.Later on we will introduce a further
generalizationwhich we call “weakquasi-triangularquasiHopf algebras”.

We turn to a preliminarydiscussionof the transformationlaw of the adjoint of
covariantfield operators.It will involve the contragredientrepresentation.

Definition 3.5. The contragredientrepresentation~ to a representationT of g~*
is definedby

~(4,) =tT(5°1(4,)) (3.21)

wheret standsfor the transpose
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When co-multiplicationis not co-commutative,thereexist actuallytwo possible
co-multiplications LI and 4’, and therefore also two possible covariant field
transformationlaws, and two possibletensorproductsof representations0 and
0’. If the *-operationon ~ ~ is definedby eq.(3.4) then the adjoint ~ of
4,’ will transform like 4,’, except that ~‘ getssubstitutedfor r1. But in the other

casewe have:

Proposition 3.1. Supposethat the * -operation on ~‘ * ~ * is definedby eq.
(3.5). Thenvalidity of the onecovariantfield transformationlaw (3.15)for the field

~P’ will imply that its adjoint II” * will transformthe otherway,

U(4,)~tI,’*= ~lpi*~i.(4,2)U(4,i) (3.22)

Note that the role of ~ and4,,~got interchangedcomparedto (3.15). This means
that LI got replacedby 4’. The necessarycomputationsto establishthis proposition
will be presentedin appendixA.

We shall seein sect. 4 that the presenceof an R-elementin ~‘ * 0 ~‘ * will

permit to definea covariantadjoint II” which transformsin the sameway as
apartfrom the appearanceof the contragredientrepresentation~‘ in placeof ~

Let usnow turn to the transformationlaw of states

lii, ~ j)~sp~!i ... ~I’.’~Io).

It is derived in the sameway as describedat the end of sect. 2. This derivation
makesno referenceto group elements.One usesthe covariancepropertyof field
operators(3.15) to shift representationoperators U() through field operators
from left to right until they act on the ground state 0). Then invarianceof the
ground stateeq. (3.12) is usedto convert the operatorsU() into numbers.The
result is stated in theorem 3.1 below, using the appropriatenotion of tensor
productsof representations0.

Definition 3.6. The tensor product of representations0 of a bi-*-algebra is
definedwith the help of the co-product,

(T’®T~)(4,) =(T’0T~)(4(4,)). (3.23)

The standardtensorproduct 0 of matricesis associativeby definition. But the
tensor product 0 of representationsis not associativeunless the co-product is
co-associative.It is associativefor Hopf algebras ~‘* (quantumgroupalgebras),
though.

Theorem3.1. (Transformationlaw of states)Supposethat the bi- * -algebra5’~’
is a symmetryof aquantummechanicalsystemasdescribedin definition 3.2. Then
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“1-excitation states” I I, i) = iJ~,.’10> transformaccordingto representationT’ of
.~,* viz.

U(4,) I I, i) = I I, k)T~’,(4,). (3.24)
k

More generally,the states I I~’ i1,~ , I~, i,,) transformaccordingto tensorprod-
ucts of representations

U(4,)111, i1,...,I~,i~)

= III, k1, ..., I~, k~)(i-”0. . .~(T’~—1~...T’*) ... )~.. k,,,i1...i,,(

4,)~ (3.25)

Summation over k
1 k~is understood.

The representations T’ furnish linear functions T/~ on ~“. Such linear func-
tions may be regardedaselementsof the dual ~‘ of ~‘ ~• The co-product 4 in ~‘ *

yields a product in ~‘ suchthat

(T1~TJ)~J~~(4,)= (T~~. T~~)(4~). (3.26)

The details of this constructionshall be recalledin the sect. 8. In generalthis
product is neithercommutativenor associative.In this new notation,the transfor-
mation law (3.25) canbe written in the equivalentform

U(4,)111, i1,...,I~, i~)

= 1I~,k1,...,I~, k~)(T~’~. . (~-~ T~1)...)(4,). (3.27)

Let us finally turn to the invariancepropertiesof Greenfunctions.Taking the
adjointof the eq.(3.12) which expressesinvarianceof the groundstate,andusing
the unitarityconditionson U and e we find that

<OIU(4,) ‘e(4,) (01.

It follows that

=

Insertingthe transformationlaw of statesderivedbefore, oneobtainsthe invari-
ancepropertystatedin the following theorem.

Theorem3.2. (Invariancepropertiesof correlation functions)Under the same
hypothesesas in theorem3.1, correlationfunctionsare invariant in the sensethat

4,)(0 I~I’~’... ‘I”~’~ 0>

= (UI .. . ~i’~ Io)(~’~... (~-‘~~ T~).. . )(~. (3.28)
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This involves a tensor product of representations,written in the compact
notationwhich involvesthe noncommutativeproduct in .~‘, seeeq.(3.26) above.

In specialcasesit is known that the mostgeneralGreenfunction whichsatisfies
these invariancepropertiesis a weighted sum of products of suitably defined
Clebsch—Gordancoefficients for tensorproducts of irreducible representations,
much as in the caseof symmetrygroups.This is true for Uq(512) for instancewhen
q is not a root of unity [24]. In general one will need information about the
decompositionof the representationU into irreduciblesto obtain sucha represen-
tation. This is why one preferssemisimplesymmetryalgebraswhoserepresenta-
tions are all fully reducible.

4. Locality

Local Fermior Bose fields obeyanticommutationor commutationrelations

IJI,’(r1, t)1F/(r2, t) = ±‘I~,~(r2,t)1P1
1(r

1, t) if r1 s’=r2. (4.1)

In the case of a Lorentz covariant theory this has to hold in an arbitrary
referenceframeand implies local (anti-)commutationrelationsat arbitraryspace-
like distances.

It has been discussedin detail in the literature that there are more general
possibilitiesin 1 and2 spacedimensions[2,26,27].Whenonewantsto interchange
positionsof two particlesor argumentsof wave functions r1 and r2 * r1 onemay
encountertwo differentsituationswhichwe distinguishsymbolicallyas r2 > r1 and
r2 <r1 ~. Thesetwo different situationsmay requiretwo different interchanging
operationsa~1and ~ More generally,when thereare N particlestheremay be
two operationscr, and o~ which interchangeparticle i and i + 1. Theseopera-
tions mustsatisfy the Artin relations

k~~k~
7i if 1k —iI ~2, ~ (4.2)

A~sa result, cr
1 . . — I generatethe braid group B~on n threads.Using the

Iraphicalnotationof fig. la, a generalelement

b=cr~...cr~Li

:an be representedby a braid, as in fig. ib, andmultiplication of groupelements
:orrespondswith juxtaposition of braids. Braids which can be continuouslyde-

In 1 spacedimensionsr2> r1 if the realcoordinater2 isbiggerthan r1. In 2 spacedimensionswave
functionsmaybemultivalued, i.e. havecuts,andthetwo possibilitiesdiffer in the relativepositionsto
the cut (seeref. [271).
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a, ~ ~

(a) (b)

(‘1
Fig, 1. (a) Segmentsof braids representingelementaryoperationsif and o~~. (b) A braid multiplied

with its inverse.

formedinto eachother(holdingendsfixed) with the help of operationsas in fig. 2

are regardedto be the same.The possibledeformationsexpressthe Artin relations
andthe further relation o~o-,= ~ 1 = 1. As a result,the braid shownin fig. lb

a
3cr1

a)a1cr) a1a20t

Fig. 2. Deformationsof braids.
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is the product of a braid b (abovethe dashedline) with its inverse,and is thus
equalto the identitybraid (parallel lines).Everybraiddeterminesapermutationin
the obvious way, but cr, and ~y I determine the samepermutation i —~i + 1.
Thereforethe permutationgroup /~, is a factor group of the braid group B,,.
Bose—Fermistatisticscan be regardedas a specialcaseof braid group statistics
with t’.~~

1=o~.
Fröhlich proposedthat field operatorsshould obey localbraid relationsof the

following form in the caseof braid groupstatistics:

1J1,’(r

1, t)111/(r2, t) =‘1I1,~(r2,t)~I1,,’(r1,t)5°,~,>,1 if r2>r1, (4.3)

and a similar relation involving 5l~”<if r2 <r1. The two matricesare relatedas
follows. Denoting by 5°the matrix obtainedfrom 5°by interchangeof the first
two indices n, m, the two matrices5°> and 5°< are relatedby

~IJ<= (~J/>)l (4.4)

The local braid relationsfor T2 <r1 follow from those for r2 > r~by inversion
using(4.4) andwill thereforenot lead to independentconsistencyconditions.

Fröhlich proposedthat local braid relations(4.3) shouldhold with a numerical
matrix 5°.In this case,consistencyrequiresthat matrices5°shouldsatisfy the
Yang—Baxterequations.This assuresthat 5°yields a representationof the braid
group.The Yang—Baxterequationsarea translationof theArtin relations(seeref.
[2]).

As we shall see, quasi Hopf symmetry leadsin a naturalway to 5°-matrices
which are representationoperatorsof certainelementsof ~ Only in the special

caseof Hopf symmetry (quantumgroups)can they be expectedto be numerical
matrices.

It is neverthelessinstructiveto examinefirst the conditionsthat comefrom the
requirementthat both sidesof the localbraid relationstransformin the sameway
under the symmetry, assumingthat 5° is a numericalmatrix. The calculation is
presentedin appendixB. The result is as follows.

Supposethat thereexistsan elementR in the algebra,

R ~ (4.5)
a

suchthat

= c(T’ 0 T~),usr(R) = c ET/,~(r,~)T~r(r~), (4.6)

where c is a numericalphasefactor.Then the following condition is sufficient:

(R0e)~(id 04)4(4,) = (P12(id ®LI)4(4,)) . (ROe), (4.7)



202 G. Mack, V. Schomerus/ QuasiHopfquantumsymmetry

where P12(a10 a2® a3) = a2 0 a1 0 a3 andwewrote . for theproductin ~ ® ~

0 ~ for the sakeof clarity.

In a Hopf algebra,co-multiplicationis co-associative,so that eq. (3.17) holds.

Theneq.(4.7) is fulfilled if

(R0e)~(40id)(~0s~)=(P12(40id)(~077))(ROe)fora1l~E~’*.

This is equivalentto

R4(~)=4’(~)R forall~E.~’*, (4.8)

where 4’ differs from 4 by the interchangeof factors[cf. eq. (3.20)].
Hopf algebraswith an element R E ~‘ * 0 ~‘ * satisfying eq. (4.8) are called

quasi-triangular,or quantumgroupalgebras.Uq(512)areexamples.
In conclusionwe seethat quantumgroupsymmetryis consistentwith local braid

relationswith a numerical5°-matrixthat satisfiesthe Yang—Baxterequations.It is
a specialcaseof quantumsymmetryin which the co-multiplication is co-associa-

tive.
By Einstein causality,observableshaveto satisfy ordinary Bose commutation

relations.A nontrivial transformationlaw undera quantumsymmetrywhich does
not comefrom a group will typically be consistentwith an appropriateform of
localbraid relationsbut not in generalwith Bosecommutationrelations.It follows
that observablesshouldbe invariantunderquantumsymmetries.(Global)symme-
tries which leavethe observablesinvariantareknown as gaugesymmetries(of first
kind). They occur in theorieswith superselectionsectors[5,24,26,28].Fieldswith a
nontrivial transformation law under such a gauge symmetry make transitions
betweendifferent superselectionsectors.

5. Quasi Hopf symmetry

Definition 5.1. (quasi-co-associativity)The co-multiplication4 of ~ is quasi-
co-associativeif thereexistsan invertible element~ * 0 ~‘ * 0 ~‘ * such that

q(LI 0id)4(~)= (id®4)4(~)~ for all ~ (5.1)

If the co-multiplication is not co-associative,then the tensorproduct of repre-
sentationsof ~ is not associativein general.However, quasi-associativityof
co-multiplicationimplies that representations

and ~l®(~.

2®~.3) (5.2)

areequivalent.
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Quasi-triangularquasiHopf algebrasas introducedby Drinfeld [1] arehi-alge-
bras in which the co-multiplicationis quasico-associative.They possessa co-unit,
antipodeand R-elementR E .~‘ * 0 ~‘ * which satisfy certain properties.We shall
see that symmetry undera quasi-triangularHopf algebra is consistentwith an
appropriate form of local braid relations.

If co-multiplicationis no co-associative,then the covariantfield transformation
law (3.15) doesnot imply a covarianttransformationlaw of productsof fields. But
co-associativityhelpsto definea new productof field operatorswhich is covariant.

Theorem5.1. (covariantproductof field operators)Supposethat the hi- * -alge-
bra ~‘ * is a symmetryof a quantummechanicalsystemin the senseof definition
3.2, andthat thereexists

~ ~ (5.3)
if

which satisfieseq.(5.1). Define

(RI” x iI
1)~~= ~ ~ (5.4)

Then ~I”x ~I’~’transformsaccordingto the tensorproduct T’OT” of representa-

tions of ~‘* in the sensethat it obeys transformationlaw (3.15).

This is verified by straightforward computation.Note that invertibility of ~
(which we wish to relax later on) is notassumedin theorem5.1.

The covariantproduct x is not associativein general. But a straightforward
computationestablishesthe following theorem.

Theorem5.2. (quasi-associativityof the covariantproductof fields) If ~ satisfies
Drinfeld’s relation

(id Oid 04)(q’)(LI Oid 0id)(ç~)=(e 0q)(idOLI 0 id)(~)(qOe) (5.5)

then the product X is quasi-associativein the sensethat

((iJi~’>< 1I~’1)x ~I1K)jjk = (1P~’X (‘I”>< 1P’<))I,J,k,(T~’ 0 T’ 0 T~’~’)j,j,k,jjk(Cp). (5.6)

Explicitly

(T’ 0 T~0 T~<),,i,k’ijk(cD) =

Next we turn to the discussionof local braid relationsfor field operators.It is
consistentto demandthat

(~P’x ~

1tJ)11 = (~P~x q”)11,g~,1,~1 (5.7)
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if the argumentsof the field operators,whichwe neglectto write, satisfy conditions
as in eq. (4.3). Becauseof the covariancepropertiesof field operators,bothsides
will transformin the sameway if thereexists an elementR E ~ 0 ~ satisfying
the relation

4’(rj)R=R4(~) forall~E~~* (5.8)

and ~ in eq. (5.7) is a numericalmatrix which is obtainedfrom R, up to a phase
factor c whichmay dependon I and J, as

(5.9)

If R = ~ 0 r~then this readsexplicitly as follows:

= ~ (5.10)

We neglectto write superscriptsIf> on 5°.
Later on we shall wish to relax invertibility of ç~.But for now, we adopt the

hypothesisthat ço hasan inversewhich we write as

q’~1 ~ (5.11)
0~

It follows that ordinaryproductsof field operatorscanbe recoveredfrom covari-
ant ones,

~Ii~R1i~.~= E (1I”~ x ~ (5.12)

Insertingthe local braid relationsin the form (5.7) andusingthe definition of the
covariantproduct onceagain,one finds that Fröhlich’s local braid relations(4.3)
hold. But the R-matrix elements~ are not numbersany more but operators
in Hubertspace,

= c” ~ ~ (5.13)
r,a,u

This is a linear combinationof representationoperatorsU(q~~)andis therefore
equal to a representationoperator U(’i~)of some element i~ E ~ Expression
(5.13) involvesthe element

~ ço~r,~® ~ 0 ~ (5.14)

‘~P
213(’~~®e)c~~ o.~**®g~*~ (5.15)
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Here andin the following we usethe notation

I )s(2)s(3)= ~ ~(1)® (2) ® ~ (3) (5.16)

for any permutations of 1, 2, 3 if ~ is givenby eq. (5.3).The samenotationwill be
usedfor ~ = ~ -

Consistencyrequiresthat the matrix A’ satisfiesconstraintswhich comefrom
the possibility of interchangingtriplesof fields in two differentways, leadingto the
sameresult. We write 11,1 for lIth(r1, t) and T’ for T’. The constraintis that the
following diagrammustbe commutative.

(x~t’
2)x~I’3-~(~I’2x~t’1)x~t’3—~1’2x(’I” x~P3) 2x(~I’3x~t”)-*(~2 x’I’3)x’t”

J. .1.
(~1’3x~I’2)x~P’

4. .1.
~J~1x(~t’3x ~(i2),~ (~pix~t’3)x~p2,.÷()f13x -w1)x~p2.-. ~p3 x(~J”x ~ ~j,3 x(~1’2x 951)

(5.17)

Let us supposethat r
1 <r2 <r3. The operationsrepresentedby arrowsmay then

be performedby use of the local braid relations(5.7) and quasi-associativity(5.6)
of the product X. Using eq. (5.9) one seesthat the resulting relation for A’ is
fulfilled if R E ~ 0 ~ satisfiesDrinfeld’s quasiYang—Baxterequations.We use
the standardnotation

R13= Er~01 ~ 0~~*~

etc. (e= unit elementin ~ The quasiYang—Baxterequationsread

R12~312R13q~R23~= ~321R23~R13~213R12. (5.18)

In the casethat the co-productis associative,~ is equalto the identity andthe
quasiYang—Baxterequationbecomesthe ordinaryYang—Baxterequation

R12R13R23= R23R13R12. (5.19)

It is known to follow from generalprinciplesthat the Hilbert spaceof physical
statescarriesaunitary representationofthe braidgroup[26]. ThequasiYang—Baxter

equationsarea reflection of this fact. Considerstateswhich arecreatedfrom the
ground state 10) by applicationof a covariant product ~I1~x >< N of field
operators11/1 . . i/iN which dependon argumentsr1 TN. Supposethat r1 <r2

<TN, for instance.Completespecificationof the multiple covariantproduct
requiresputting brackets,but we may use quasi-associativityto rearrangethe
brackets.Supposethis is donein a suitablewayso that (~I”x ‘p~+ I) appears.Then
we maydefinethe action of ci, on the stateby interchanginglit’ and ~i”~ ~. (This is
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true if r~<r~~~. In the other casethis operationis o~I~)This action of cr,’s must
satisfy the secondArtin relation(4.2). Commutativityof the diagram(5.17) assures
this.

Finally onewould like to havevalidity of local braidrelationsalsofor composite
fields. Thereforeit is naturalto requirethat braidrelations(5.7) are valid whenli”
is a covariantproductof li” x lit’2 of field operators,with a braid matrix (5.9)
involving representationT” T” ®T’2. Thus we shouldhavethat

(lit
1 x (~2 x 1j13))..k = (.li’2 x iIt3) >< lit1) A’i’j’k’,ijk (5.20)

with

~~=c~rI(r,~) 0 (T20r3)(r,~), (5.21)

wherec is a phasefactor.Similarly, considerationof compositeq,J leadsto

((~i’1x li’2) x ~‘3)Jk = (li’3 x (~f,I x p2)),k,,~, (5.22)

with

~‘ =c~~(rI0r2)(r~) 0T~(r,~). (5.23)

The resultof the exchange(5.20) canbe determinedfrom the simplebraid relation
(5.7) andquasi-associativityas shownin the following diagram:

(li”xli’2)xli’3 -~ li’3x(li’txli’2)
.1~ I

x (~f~2x ~3) ~fj1 x (li’3 x li’2) -* (li’1 x li’3) x ~y2 (~ii3x li’1) x li’2

(5.24)

This leadsto the sameresult as (5.20) and(5.21) if

(id o4)(R) = R
13~213R12~

1. (5.25)

Similarly, eqs.(5.22) and(5.23) arevalid if

(4 0 id)(R) = ~ (5.26)

Thesetwo relationsaretrue by definition in a quasi-triangularquasiHopf algebra
[1].

Conversely we have now motivated all the relations (5.5), (4.8), (5.18), (5.25)and
(5.26) between R, q’ and 4, which are valid in a quasi-triangularquasi Hopf
algebra, from natural postulateson properties of quantum fields (The quasi
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Yang—Baxterequations(5.18) are actually consequencesof eqs.(5.25) and(5.26)
[1].) Invertibility of ~ and R could berelaxedas we shall seein sect. 6.

There is also a co-unit and an antipodein a quasiHopf algebra.They serve to
state invarianceof theground stateandthe transformationlaw of adjointsof field
operatorsas was explainedearlier.

6. Weak quasi Hopf algebras

We would like to admitthe possibility that

4(e) *e Oe. (6.1)

Since e2 = e = e* and LI is supposedto be a *-morphism, 4(e) is a projector, i.e.
self-adjoint and idempotent.If it is a nontrivial projector, then for some I, J the
range and co-kernel of the tensor product representation7r’®1r~ will have
dimensionless than the productof the dimensionsof the representations~r’ and
‘n-’~.This is so becausee~= ~ implies

~ =~‘®~7.’(4(sc)) (6.2)

~ =n-’®ir~(~)P,~ (6.3)

(6.4)

In this way we can hope to accommodatethe truncated tensor products of
representationsof Uq(Sl

2) whichappearin conformal field theory — seesect.5. To
accommodatethis possibility, we must weakenthe requirementthat R and the
associator~ both haveinverses.Otherwise,the right-handside of eq.(5.25)hasan
inverseand the left-handside doesnot.

Let us recall that an element~ of an algebrais said to possessa quasi-inverse~
if ~ =

Definition 6.1. (weakquasitriangularquasiHopf * -algebra)A bi- -algebra ~‘ *

with unit e, co-product4, co-unit E andantipode5°is calleda weak quasi-trian-

gular quasi Hopf *-algebra if there exist elements~ e.~”
1’o~’~~ and RE

* 0 ~‘ * which possessquasi-inverses,denotedby ~ 1 and R 1, suchthat

= (id 0 4)4(e), (6.5)

~=(40id)LI(e), (6.6)

RR~=4’(e), (6.7)

R’R=4(e), (6.8)

~ (6.9)
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and which satisfy Drinfeld’s relations (4.8), (5.1),(5.5), (5.18), (5.25) and (5.26)
betweenco-unit e, R, ~ and 4. In particular,R4(~)= 4’(~)Rfor all ~ E ~

When the propertiesinvolving * -operationsare not assumed,we speakof a

weak quasi-triangularquasiHopf algebra.
Convention.Whena quasi-triangularquasiHopf algebra~ is mentioned,it is

alwaysunderstoodthat the symbols4, e, R, R— I, ~ havethe samemeaning
as in definition 6.1.

The existenceof a quasi-inversepermits to deducefrom eq. (5.1) that

p(LI 0 id)LI(4~)q~ (id ®4)4(~). (6.10)

(LI® id)4(~)= çri1(id ®4)4(~)w (6.11)

for all ~ ~ *~ Thereforewe havethe following theorem.

Theorem6.1. (quasi-associativityof the tensorproduct of representations)The
tensorproduct representations

(~!o~.J)o~K and ~.I®(~~.Jo~K) (6.12)

of a weak quasi-triangularquasiHopf * -algebraareequivalent.

There arevarious consistencycheckswhich one can maketo get familiar with
the setup. For instance,one may multiply eq. (5.26) for (4 0 id)(R) with (4 0

id)(4(e)) from the right. On both sides this amountsto doing nothing. One may
also pushthe factor (LI 0 id)(4(e)) through the operatorson the right-handside
from right to left. In each step it gets convertedinto anotherprojector which
matcheswith the rangeof the precedingoperatorandwith the co-kernelof the
next one.

We will not makeanattemptto derive property(6.9) from the otherproperties
of a weak quasi-triangularquasiHopf algebra,butwe explainwhy it shouldhold.
The co-unit definesthe trivial one-dimensionalrepresentation,~ ~-* e(~,).Identity
(3.1) assuresthat tensoringwith this one-dimensionalrepresentationamountsto
doing nothing. Thereforethe mapwhich implementsthe equivalenceof the two
triple productsof representations(6.12) shouldbe trivial when one of the repre-
sentationsn-1, irs, ,rr!< is the trivial one-dimensionalone.Identity (6.9) assuresthat.

We would like to arguethat the conclusionsof sect. 5 remainunchangedwhen
weweakeninvertibility requirementsin the mannerdescribedabove,andthat we
should therefore regard weak quasi-triangularquasi Hopf algebrasas possible

symmetriesjust as well.
There is only one point which needsdiscussion.We usedthe existenceof an

inverseof ~ to recoverlocal braid relations involving ordinary productsof fields
from the local braid relation(5.7) for covariantproducts.
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Let 4(e) = )e~0 e~.Given the fields li”, we may definenew fields ~‘ by

= (1It’(’r’ 0 U)(4(e))), ~ ‘r1~(e~)U(e~). (6.13)

Using the field transformationlaw, property(3.1) of theco-unit,and U(e) = 1, it is
straightforwardto verify by inductionthat

1~’~ 0) = U(e)li’,~’1 . . . ~I’,’~0) = 1i1,

t,~.. . “I’~’~ 0). (6.14)

But the Hilbert spaceof physical states is spannedby vectors of the form
~ 0) by hypothesis.As operatorsin this Hilbert space,iJt’ and li” are

thereforejust the same.We statethis as the following proposition.

Proposition6.1. Supposethat thebi- * -algebra~* with unit e andco-productLI
is a symmetry of a quantummechanicalsystemwith field operators111/ which
generatethe Hubert spaceof physical statesfrom a ground state 10). Then

= li’/ in the notation(6.13).

Writing (li” 0 li”)~ for 1P~’1P/,it follows from the field transformationlaw that

= l~/!lJ/J = ((ipl 0 ~jrJ)(~i 0 T’~0 U)((id 04)4(e))),
1. (6.15)

This implies

Corollary 6.1. If the symmetryis a weak quasi-triangularquasi Hopf * -algebra
then the ordinaryproductof field operatorscan be recoveredfrom the covariant
productthroughthe sameformula (5.12) as for a quasiHopf algebrabut with ~ —1

interpretedas a quasiinverse.

The local braid relations for ordinary products follow then from those for

covariantproductsin the samemanneras for a quasi Hopf algebra(see sect. 5).
Thus we havethe following theorem.

Theorem6.2. (local braid relationsfor weakquasi-triangularquasiHopf symme-
tries) Supposethat the field operators1111 andli’~transformcovariantlyaccording
to representationsT~’andT” of a weakquasi-triangularquasiHopf * -algebra~‘.

Supposethat ~ are representationoperatorsof ~ in Z which are defined
by eq.(5.13),viz.

A’I~ = (r’ 0 r~0 U)kl,IJ(tp213(R0 e)q~
1).

Then the local braid relations(4.3) areconsistentin the sensethat both sides of
eq.(4.3) transformin the sameway under~
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Nextwe discussconsequencesof the postulate(6.9). Togetherwith invarianceof

the groundstate(2.12), eq.(6.9) implies that

(li”x li’~)11I0)= li’/li’/IO), (6.16)

andmoregenerally

(li” x (1p’2 x . . . (li~l~~l x li’~”) . . . )),, . .,, 10) = lpillit’2 . ~‘~—1W~.’~10). (6.17)

Statedin words,we havethe following proposition.

Proposition 6.2. (fields actingon the groundstate)If the weak quasi-triangular
quasi Hopf *-algebra is a symmetry of a quantum mechanical system with
propertiesas in definition 3.2 then the ordinaryproduct of field operatorsagrees

with the covariantproduct, with multiplications performedin the definite order
(6.17), when it is appliedto the invariantground state.

In sect.5 we investigatedconsequencesof Drinfeld’s relations(5.25) and (5.26).
They remaintrue when invertibility requirementsareweakenedso that we have
the following theorem.

Theorem6.3. (local braid relationsfor compositefields) Supposethat the weak
quasi-triangular*-algebra .~“ is a symmetry of a quantummechanicalsystem
whosefield operatorsli”, li’~satisfy local braid relations(4.3), with matrix A’ as
describedin theorem6.2. Then the compositefields 11” x li’s will also satisfy local
braid relations, under appropriateconditions on the argumentsof the field
operators.

Usingquasi-associativity(5.6) of the product x of fields one canconvert to a
differentorder of performingthe multiplications.This makesit easyto readoff the
braid relationsfor statesandfor correlationfunctions.Wegive an example.Using
quasi-associativity(5.6) we havethat

i’~”~1’/- 10) = (li’s x (li”< x lpL)) 10> (6.18)

= ((i/ri>< 1pK) x IIJL)rpq 0>(TJ0rR’®TL)rpq,jkt(~p_l) (6.19)

= (li’s X ~~~rp!PqL 0>(r~®r~<®r~)rpq,jkt(~p~

1). (6.20)

Assumingthe argumentsof the fields li” and~

1,K, which weneglectedtowrite, are
in the properorder, we can now apply the local braidrelations(5.7) and(5.10) to
invert the order of the field operators1P~and i/rN Then one goes backwards,
usingquasi-associativityand relation(6.9) again.The final result is that

~ (6.21)
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where

= (i-’ 0 r’< 0 r’)J,k,,,Jkl(q.
213(R 0 e)cP’)cJK, (6.22)

where cJK is the phasefactor in the braid relationswhich is left undeterminedby
the symmetry: it may dependon J and K. The notationT(ci2) waschosento take
note of the fact that a representationof the braid group shows up. The braid
relation for four point correlationfunctions is obtainedfrom eq. (6.21) by taking
the scalarproductwith states(0 I

Let us finally add a mathematicalnote.The definition of the covariantproduct
of field operatorsamountsto introducing a ~ V” X V” of V” 0 v~0
~ and more generally3~’~..submodu1es(...(V” x V’2)... x V’~),etc. of V’ 0

V’2 ® ... 0 V’~0 ~‘*~ These are the appropriatemodules to consider in our
context.It may be of interestto note that they areactuallybimodules,sinceright
andleft actionof ~‘ * on themare defined.Bimodulesappearnaturally [29]when
onestartsfrom the algebraictheoryof superselectionsectors[28].

7. Covariant adjoints of field operators

The R-element R = )r~0 r~E ~ 0 ~ servesanotherpurposebeyond the
consistentformulation of local braid relation. It makes it possibleto define a
covariantadjoint of field operators.This is of interestalso in the quantumgroup
context.

A transformationlaw of adjointsof field operatorswasstatedin proposition3.1.
If there exists and antipodal map 5° of the algebra ~‘ * with properties as
describedin definition 3.1, thenthe transformationlaw (3.15)of field operators~W’
leads to a different transformationlaw for adjoints liu!* of field operators,
assumingthe * -operationon ~‘ * 0 ~‘ is definedas in (3.5).

= ~lIrI~*~~.(4,
2)U(4,,I). (7.1)

This differs from the transformationlaw of fields by the interchangeof and
apartfrom the expectedappearanceof the contragredientrepresentation

~(4,) tT(5°1(4,)).

This complicationcan be eliminatedby defining a covariantadjoint.

Theorem8 (covariant adjoint of field operators)Supposethat the weakquasi-
triangular quasi Hopf algebra ~ is a symmetry of the quantum mechanical
systemwith field operatorsli’~’ andthat the * -operationon .~k’* 0 Y * is defined
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by eq. (3.5). Make use of R = Er~0 r~to define the “covariant adjoints” W~’of

field operatorsli’,’ by

= ~ lJi’*.~1(r1)U(r2) (7.2)

Then li-’,’ transforms covariantly according to the contragredient represetation f’
of T’, ViZ.

U(4,)~7=~‘~‘,(4,~
2)u(4,~). (7.3)

This differs from the transformationlaw for li” only by the appearanceof r’ in

placeof r’~.
Proof The main property4’(4,)R = RLI(4,) of the R-elementreadsexplicitly

~ 0 4,~r~=~r~4,)~0r~4,~.
a,b a,b

Using this it is straightforwardto deducefrom the transformationlaw (7.1) of
adjoint field operatorsthat iJ1,~transformasstatedin the theorem.

Our constructionof the covariantadjoint resembleswhat onedoesin thetheory
of the Dirac equationwhen one introducesan adjoint Dirac spinor li’ = li’ * Yo
which transformscovariantlyunderthe Lorentz group.

8. The comodule picture

We regardedthe Hubert space ~?‘ of physical statesas a representationspace
for ~ becausewe wantedto generalizethewell-known notion of a symmetryin
quantumtheorywhere ~ is a representationspacefor a group ~‘ and its group
algebra .~“. This point of view wasproposedby Buchholzet al. [4].

There exists an alternative point of view, introduced by Reshetikhin and
Smirnov[15]wherethe dual ~‘ of ~ plays thecentral role, andZ is regardedas
a co-modulefor ~‘. In this sectionwe will explain the connectionbetweenboth

pictures.
A representationU of ~‘ * in f definesa linear map

U(4):2”—*Z (8.1)

for every ~ E ~‘ ~ Therefore,U maybe regardedas a map

U:.~*0Yf_*Z. (8.2)
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Given sucha representationU, Z becomesa co-modulefor the dual ~‘ of ~‘ * in
a naturalway. This meansthat thereis a linear map

U:Z-~.~’07~’. (8.3)

It is determinedby U as follows. Elementsf E ~‘ may be regardedas linear maps
of ~~“K into C, ~T_*f(~). Therefore,elementsf0 I v> E.~’0~’ mayberegardedas
linear maps ~ —* Z, viz.

~_*(fo i’>)(~)= Iv>f(~)EZ. (8.4)

O is definedby

OIv>(~)=U(~)Iv> for IV)EZ. (8.5)

if * is a bi-algebra then .~‘ is also a bi-algebra.The co-productLI in .~‘ * gives

the product in ~,

(f~g)(fl =f®g(4(~)). (8.6)

And the product in ~~‘* yields a co-product~ in .~‘,

5f(~,i~) =f(~’q). (8.7)

Unit andco-unit aresimilarly interchanged.
When the co-product in ~~“K is not co-associativethen ~‘ is a nonassociative

algebra.So far the co-modulepicturehas beenusedonly for associative.? as far
as we know, andwe will restrictthe discussionto this caseto beginwith.

We postulateda covarianttransformationlaw of fields under ~ This trans-
latesinto commutationrelationsof U with fields. In carefulnotation

Uli’,’ = (1 0 li’~’)(T1’ 0 1)0. (8.8)

Herein,the first 1 is the unit elementof ~‘ and 1 0 li’,’ is a linear mapon ~‘ 0 ~

which takesfO I v> into fO li’/ I v>. i~ are the elementsof ~‘ which aredefined
as linear maps on ~“I’, ~—+r~(~) by the representationmatrices encountered
previously.A productof such elementsof ~‘ is definedthrough eq.(8.6).

Let us demonstratethe validity of commutationrelation(8.8). We introducean
orthonormalbasis I c,,> in t~’.We seefrom eq.(8.5) that

0IVn>=t~mn0IL’m> (8.9)

with Urn,, E.~’given by

Urnn(~) = (cml U(~) I c,,>. (8.10)
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Considernow Oil’,’ I v,,>. From the definition (8.5) andthe covariancepropertyof
fields under ~ we deduce

Oil,,’ I v,,>(~)= U(~)li’,’ I v,,> = ~ T~,(~)U(~)I v,,> (8.11)

= ~ (8.12)

if 4(e)= E~0 ~. On the other hand

(1 0 iIf~’)(T~~0 1)0 I c’,,>(~)= (i o li~’)(TJ~0 1)(U,,,,, 0 I Vm>)(~) (8.13)

‘j’It)m>(Tj~mn)(~) (8.14)

= ~ il’3’ I ~ (8.15)

In the lastequation,the multiplication law (8.6) in ~‘ wasused.We seethat both

sidesof eq.(8.8) are indeed equalwhenapplied to an arbitrarybasisvector. This
provesthe commutationrelations(8.8).

The statementof invarianceof the ground statetranslatesinto

OIo>=lo 10>, (8.16)

where 1 is the unit elementin ~‘. Regarded as a linear function on ~ it is given
by the co-unit on .~~

1: ~—‘e(fl. (8.17)

Let us introduce a shorthandnotation. Elementsof .~‘ 0 Z will be written

f I v> or I v>f in placeof f 0 I v>, andfactors1 E ~‘ will be dropped(but keepeq.
(8.17) in mind!) Then, commutationrelations with fields and invarianceof the
groundstatereads

Oli~!=1I~’T1~O,OIo>= 10>. (8.18),(8.19)

It follows that

~ ...TJ~. 8.20

Whenbothsidesof the statetransformationlaw (8.20) areappliedto an arbitrary
element~ E ~ we recoverthe old transformationlaw (3.27)of states.

Elementsr E ~‘ commutewith operatorsli’ on ‘1’~.However, the multiplication
in ~‘ is not commutative if the co-multiplication in ~‘ * is not commutative.
Thereforethe order of the factors ~ matters.
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From the definition (8.6) we seethat the product in ~‘ is in fact equal to the
tensorproduct(of representations)introducedearlier in the sensethat

= (T’®T~)~Jk,. (8.21)

The transformationlaw (8.18) ff. are very much reminiscentof the formula
(2.13) for the transformationlaw of fields undera group,the main differencebeing
that the ‘rjk do notcommute.The similarity is still moredeceptivewhen T’ is the
fundamentalrepresentationof a matrix groupso that r,~(a)= alk. One might then
be temptedto write ak in placeof r,~for the functionwhich mapsa into a,k. But
mathematicaldecencyrequires that one distinguishbetweenfunctions and the
valueswhich they take. The ~ in eq.(8.20) aregeneralizationsof functionson a
group,not valuesof suchfunctions.

In thecaseof a quasiHopf symmetry,theproduct in .~‘ is not associative.The
formulasobtainedso far remainvalid, exceptthat it is necessaryto put bracketsto
indicate the orderin which multiplicationsin ~‘ are to be performed.For instance,
the state transformationlaw (8.20) is to be read as

li’” 0> = 1It~’i ... 1II:,i~ 0>(r~’~. ... . ~ . Tf’~) ... ). (8.22)

9. The quantum group algebra U~(sl2)

It is instructive to consideras an examplethe matrix pseudogroup~‘ whose
dual is (or rather: contains) the quantum group algebraUq(5l2) [8,9]. Y is an
associative but noncommutativeone-parameterdeformation* of the algebra
Fun(G) of functions on the group = SL(2, C) of complex unimodular2 x 2 matri-
cesa = (a11)11~t,2~

Let us first consider the commutative algebraFun(SL(2,C)). This algebrais
generatedby simple functions r,1, i, j = 1, 2. They aredefinedby

r,~(a)=a~1. (9.1)

In the old language,r is the fundamentalrepresentation.Thesegeneratorsof ~‘

obeythe relations

detr~r11~r22—r12~r21=1, (9.2)

T~1 Tkl = Tkl ~. (9.3)

* GL(2) possessesa two-parameterdeformation1311.
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We rememberthat the multiplication . of functionsis pointwisedefined,f. g(a)=

f(a)g(a). Eq. (9.3) expressescommutativityof this product.
The deformations ~‘ are parametrizedby a complex numberq. ~‘ is again

generatedby elementsT
11,but the relations(9.2) and(9.3) get replacedby

det T~T11 ~r22—q”

2T

12~r21 = 1, (9.4)

A’ikrsTrc T~= Tk, TimA’micw, (9.5)

where A’ is our old elementR E ~‘ * ® ~‘ * in the fundamentalrepresentationr of

= (TO T) jk,rs(R)~

When rows and columnsare labelled in lexicographicorder, A’ has the explicit
form

q
1”2 0 0 0
o i 0 0
0 qI/2_q~I/2 1 0 (9.6)

o o 0 q”2

In the alternativenotation

T(T~I ~ ~) (9.7)

the relations(9.5) aregiven by

ab=q’~2ba, ac=q~2ca, ad—da=(q’/2—q1~’2)bc,(9.8)—(9.1O)

cd=q’~2dc, bd=q’~2db, bc=cb. (9.11)—(9.13)

It remainsto exhibit the generatorsof ~‘ ascomplexlinear functionson Uq(5l2).
The formulas that do this havebeenfound by Reshetikhinet al. [23].

The quantumgroup algebraUq(5l
2) is generatedby elementsq±H/

2and S~

subjectto the relations

qH/2q_H/2 = q_H/2q11/2 = 1, (9.14)

qH/2s±q±l/2s+qH/2, (9.15)

[St, Sj = (9.16)
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Here and in the following we write 1 in place of e for the unit element in
= Uq(S1~).

The co-multiplicationis given by

(9.17)

LI(S~)~ (9.18)

If I q I = 1, a * -operationcanbe definedby

S~=S—~, (q±H/2)*q~H/2

and this is an automorphismsatisfying 4(S*) = LI(S)* provided we adoptconven-
tion (3.5) for the adjoint on ~ ~

The co-unit is

= 1, e(S.~)=0,

and the antipodalmap 5°actsas

qTH/
2=5°(q±H/2) —q~1~2S~=5°(S~).

It is convenientto use matrix notation again. Following Reshetikhinet al. [23]
oneputs

L = q~”2 (q~2—q1”2)S~ L = q_H/2 0
+ 0 q~H/2 (q~”2 — q1’~2)S qH/2

(9.19)

L’~=L~o1, L~=1oL~, (9.20)
= TO 1, T2 = 1 0 T, (9.21)

R~=PRP, R=R~, (9.22)

with P(aob)=b®a.
In this notationthe actionof generatorsq ± H/2 S~of Uq(5l2) on generatorsi-~

of .~‘ is given by

L1~:T2—+Rt (9.23)
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10. Weak quasi Hopf algebras associatedwith Uq(512) for qP = 1

Now we turn to the problem of how to truncatethe algebraUq(512) in sucha
way that its unphysicalrepresentationsareeliminatedbut constructionsof physical

interest,such as the constructionof tensorproducts of physical representations,
remainpossible.

The quantumgroup algebraUq(512) with q” = 1 has physical representations
~K 2K = 0, 1,. . . , p — 2, which act in representationspacesV’~.The tensorprod-

uct of two such physical representationsdecomposesin general into physical
representations,plus unphysicalsubrepresentationswith quantumdimension0.

Let f be the ideal in Uq(512)which is annihilatedby all physical ir’<. We set

= Uq(Sl2)/Y.

Equivalently,

= 3T(Uq(512)), ~. = ~ ,~.K (10.1)
K phys

Let be the tensorproduct of Uq(5l7) representations.It comes from a
co-productLI,, for U,,(sl2). In application to conformalfield theoryone inventsan
extrarulewhich saysthat the extratermsrepresentedby dotsin the tensorproduct
decomposition

(10.2)

q I!JL~<K~t~(IJ)

u(IJ) ~min{II+Jl, p—2—I—J} (10.3)

are to be thrown away. The left out part has quantumdimension0 [16]. Supple-

mentedwith this extra rule, the tensor product decompositionreproducesthe
fusion rulesof minimal conformalmodels.

It is customaryto definea truncatedtensorproduct ® of physical representa-
tions of Uq(512)such that the unwantedtermsin the tensorproductdecomposition
(10.2) are absent,

(10.4)
I—i ~<K~u(1J)

The explicit constructionusesa projection operatorwhich is furnishedby the
Clebsch—Gordanmapsfor U,,(sl2),

Cq(IJIK): VIOVJ_~VK
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By definition, they enjoy the intertwiningproperty

C,,(IJ I K)(®~)(~) = ~K(~)C,,(IJ 1K) (10.5)

for all ~. The nonassociativetruncatedtensorproduct ® of physical representa-
tions of Uq(512) is definedby

(~‘®~)(~)= C~,(lJI K)*ir~~(~)Cq(If 1K) (10.6)
j—J~~<K~<u(JJ)

= (~‘o~’)(LI,,(~))P,~, (10.7)

with

Cq(IJIK)*Cq(IJIK). (10.8)
-J~<Keu(!J)

This tensorproductis at the sametime a representationof ~ i.e. it annihilates

We may now statethe main resultof this section in the following theorem.

Theorem 10.1. (truncatedquantum groups) Let q” = 1. There exists a weak
quasi-triangularquasiHopf * -algebra~ suchthat the indecomposablerepresen-
tationsof .~Y”arepreciselythe physicalrepresentationsof Uq(512), andthe tensor
product 0 of representationsof ~“K, which is furnishedby its co-product LI,
agreeswith the truncatedtensorproduct of physicalrepresentationsof U,,(sl2).

As an algebra, ,~‘I’ = U,,(sl2)/f, where 7 is the ideal in U,,(s12) which is

annhilated by all its physical representations.The co-product 4 and R are
obtainedfrom the co-product LI,, and R-elementR,1 of U~,(sl2)as follows:

4(~)=P4,,(~), R=R,,P, (10.9)

where P ~ ~ is a projector whose representativein U,,(s12)0 U,,(Sl2) is
given by eq. (10.15), with projectors P~<E U,,(s12) obtainedfrom eqs. (10.11)—
(10.14). The associator~ E ~~“l’ ® ~ ® ~ exists and is determinedby its action
on basisvectorsin triple truncatedtensorproductsof dual representationspaces,

eq.(10.28),with 6j-symbols (10.34)as coefficients.

The proof will proceedin severalstages.As a * -algebrawith unit e, ~ * is
definedby eq.(10.1) (andthe *-operationon ~ ~ is given by eq.(3.5)).This

ensuresthat the indecomposablerepresentationsof ~ are preciselythe physical
representationsof U,,(s12). It remainsto exhibit the co-product,co-unit, antipode,
R, and ~ with the appropriateproperties.Co-unit and antipodewill be those
inheritedfrom Uq(5l2). We turn to the constructionof the co-product4.
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Supposefor amomentthat thereexistsanelementP of U,,(sl2) 0 Uq(512) such
that

p = (37W’ ®~7J)(p)

Thenwe may define a co-product4 in Y * such that

(ir’®ir’)(fl = (ir’ ®ir~)(4(4)). (10.10)

This is achievedby setting

4(e) =P4,,(~).

Property(10.10) is immediate.We show that 4(e) is well definedfor ~ i.e.
dependson XE Uq(5l2) only through its equivalenceclass ~ mod 7 in ~“. In

view of the definition (10.1) it sufficesto show that for arbitraryphysical I, J we
have (ir’ 0 7r~)(4(Z))= 0 if Z Ef. But this follows right away from property
(10.10)and eq.(10.6).

We will constructthe desiredprojectorfrom the Casimir invariant ~‘ E Uq(512),

— q_(H+~)/2 2 ~

1~4 — q~l/4 2

~=~-~++ ( ql/2 _q~l/2 ) — ~ _~_l/2) . (10.11)

It haseigenvalues

A~=[f-i-~]~— ~ J=0, ~, 1,..., (10.12)

where we use the standardnotation [x]q =(qx/2_q_x/2)(ql/2_q~/2)~~ The
Casimirdoesnot suffice to makea global distinctionbetweenphysicalrepresenta-
tions and unphysicalonesbecauseof the symmetry of AK underK ~-*p— 1 — K.
But fortunatelythis is not needed,either.Given I, J we say that K is “permissi-
ble” if Il—fl ‘e~K~i+JI and K~<u(I,J) and “unwanted”if Il—fl s~K~

I I + f I but K> u(I, J). We seethat it canneverhappenthat K is unwantedbut
its brotherp — 1 — K is permissible,or the otherway round.

Let 0K be the realfunction, definedon the set E of distinct possibleeigenvalues
of ~, which is equalto 1 for argumentx = AK and0 otherwise,

fl (x—r)(AK—r)’. (10.13)
r~E,r*AK

We considerthe projectors

pKoK(~) eU,,(sl
2), (10.14)
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andset

~ (P’®P~) ~ LIq(PK)EUq(S12)0Uq(S12).(10.15)
t,J phys I—fl ~K~u(IJ)

P’ commuteswith all elementsof U,,(sl2). ThereforeP is a sumof productsof
commutingprojectors.It has the desiredpropertiesbecauseof the intertwining
propertyof Clebsch—Gordanmaps,and becausethereis no needto discriminate
betweenrepresentationswhich pK fails to distinguishon accountof the symmetry
K—~p—1—K.

The one-dimensionalrepresentation~-° gives the co-unit,

e(~)=~r°(~).

The co-unit will thereforeremainthe sameas in U,,(sl2).When I = 0 or J = 0 then

the restrictedtensorproduct (10.6) agreeswith the old tensorproduct ‘rr
1®,,’rr1.

Therefore

= (~Ko~.O)(~) = (~K®~O)(4(~)) ~~.K((ido�)4(~))

and similarly for 7r0®ir~~.This is true for all physical representations~.K

Recallingdefinition (10.1), it follows that the relation

(id 0 �)LI = id = (e0 id)4

holds true.
This completesthe constructionof the co-productLI for .~ ~

An R-element and its pseudo-inverseexist such that RLI(~)= 4’(flR and
relations(6.7) and(6.8) hold. In termsof the R-elementR,, of U,,(sl

2) it is given by

R =R,,4(e) =LI’(e)R,,, (10.16)

R’=R~’4’(e)=4(e)R~’. (10.17)

Next we will show that there exists an element ~ ~ 0~”K ~ which
possessesa quasi-inverseand which makesthe co-productquasi-coassociativein
the sensethat eq.(5.1) holds,viz.

~(LI 0 id)LI(~)= (id ®LI)LI(~)q for all ~ (10.18)

One of the purposesof the associator~ is to ensurethat the restricted tensor
productsof representations( ®~rn)01~~Kand irn®(iri®irK) areequivalent.
By definition,

((irI®irJ)®irK)(~e) = ~I® ~f® irK((4 o id)LI(4)), (10.19)

(irn®(irn®irK))(~) = ~.I ® ~.J oirK((kj o4)LI(~)). (10.20)
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Both are representationsof Uq(S12)which areat the sametime representationsof
~ It is well known that equivalenceof thesetwo representationsis indeedtrue
[19,32].Therewill thereforebe maps

co,JK: V’OV~®V”—’V’OV~®V” (10.21)

suchthat

= (ir’®(ir’®ir’<))(~)~,JK (10.22)

for all ~ E ~‘ ~, and çv,~possessesa quasi-inverse~ suchthat

‘PIJK
tPIfK = (‘rt-’0(ir~®n-’<))(e) = (ir’ 0 rr~0ir’<)((id 04)4(e)), (10.23)

c°ukc°,JK= ((ir’®ir’)®ir’<)(e) = (ir’ 0 ir~’0
7~~c)(LI0 id)4(e)). (10.24)

Weseek~ ~ ~‘~‘ 0 ~ 0 ~ or arepresentativeof it in U,,(s12)o U,,(sl2) 0 Uq(5l2),
such that

~IfK(ir0ir0ir)(tP). (10.25)

Let .1!’ be the full matrix algebrawhich consistsof (21 + 1) >< (21 + 1) matrices.
By construction,.~“ is a finite-dimensionalsemisimplealgebra.Thereforeit is a
direct sumof full matrix algebras.Since the representationsrr

1~are irreducible, it
follows from the definition (10.1) that irnCC~~*)

4’K To every matrix m E%IK

therewill thereforeexist someelement~cE .?‘~ suchthat m = ~r”(js). By defini-
tion

~JJK E4” ~ ®~,j..K

It follows that thereexists ~Jf K E.~f
104~’0 ~‘ * suchthat

‘PuK = (id 0 id 0 ir”)(4~,JK).

Setting

.1. —
tt’IJK’

K

we havethat

K(~

~ ~~t~Jf) ‘PIJK•

for all K. çb,, is a sum of termsm Om 0~’,, with matricesm’, m’ and~,,EY*.

Next we may usethe sameargumentto write m~= ~ anddefine

~= ~
/
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And so it goes.Repeatingthe sameargumentoncemore we arrive finally at an

element‘P ~ ~ ~ with the desiredproperty(10.25). This completesthe
constructionof ‘P~The existenceof its quasi-inverse‘p ‘ follows in the sameway.

Given ‘PIJK’ ‘p is unique. We will now show that there exists an element

‘P E.~” 0.~” ~ so that Drinfeld’s relations(5.1), (5.5), (5.25) and (5.26) hold.
To this effect we will give an explicit definition of ~p1JK by specifyingits actionon
basisvectors.Wewill no longerdistinguishin notationbetween‘p and ‘PIJK in the
following. More generallywe write ~ in placeof (ir’ 0 ir~ 0 ~ etc.

~ acts on the duals V’ of representationspacesV’ from the right, êf~=
T~~(~)e,’for ~ A truncatedtensor product 0 is not only defined for
representations,but also for basisvectorsê! in the spacesV’,

“t ,9, ~J — ‘~1 ~‘J~ — “1 r;’, “.1~ e1 e

The definition extendsto reducible representations,so that multiple productsare
also defined. In particular

e[®(ef®e~) = ê,’ ® ê o ê~(id04)LI(e), (10.26)

(e/®e,~’)®ê~= ê,’ 0 e’ oêf(4 Oid)LI(e). (10.27)

Vectors ef®(eJ®e~)span a subspace~®(~®V,~’) of \1’ 0 ~7’ 0 ~ and
vectors (ef®ef)®e~ span another subspace(~‘®V!)®~/~.The vectors
(êf®ef)®e~will sometimesbe called“physical states”.They are not all linearly
independent,but ‘~‘,‘®(V/®V,~’)is spannedby the linearly independentvectors

Ec ~ ~ L C J K P
ljkp ~ p / ,, .i k p,, ‘ /

with IK—JI ‘s~P±~u(KJ)and P—Il ~L~u(P1). The symbols C[~],, denote
the usual Clebsch—Gordancoefficientsfor Uq(5l2) which are determinedby the
abovementionedClebsch—Gordanmaps.They will bethe Clebsch—Gordancoeffi-

cients for .~‘ * at the sametime when I 1 — J I ~ K ~ u( If). The other Clebsch—
Gordancoefficientsfor .i~’~’vanish.

We makean ansatzfor the action of ‘p on thesebasisvectors,

II P L J K P ~, ~ “K
p 1 C1 k e/OelOek’P

,jkp ‘1

[K L]C[~ ~ ~ ~]e1®e!oe~. (10.28)
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The actionof ‘p is extendedto all of ~/‘ o ® i~,jKby imposingthe requirement
that p = (id 0 LI)LI(e)’p. By this ansatz, the intertwining property (5.1) of ‘p is
assuredfor arbitrarychoiceof the complexcoefficientsF~0[~].

This is verified by a short calculationasfollows. Since

(id ®LI)LI(fl’p = (id 0LI)4(~)(idØLI)4(e)’p = (id 0 4)LI(e)(id ®LI)4(~)’p

it suffices to consider(id 0 LI)LI(~)’p on the physical statesin the tensorproduct
decomposition.Using the following transformationlaws

~‘ Q1 ~JQ K Li
ijk,~ {~ j qj,, [q k /jê~®eI0êk(LI®id)LI(~)

~ f ~ C
1~ K ~]T/~(~)êf®êf0e~, (10.29)

=EC[.
. I

I j qj,, [q k

1 P Li
ECV ~ ~1 C1 I ef0eJ0e~(id0LI)LI(~)

p],, [i p 1
ijkp

f K p1 p ~ r~.(~)ef0ef0ê~, (10.30)

~/kp1’ [
= E C j k p],, [i p j,,

we calculate

J K p1~~]c{. k ] e~0êj0ê~(id0LI)LI(~)’pU p j p
ijkp L 0 ‘1

=Ec1’ P L1cFJ K p1
~jkp1 ~i p 1 .j,, j1 k p Lj (~) êf® 0 eL~

= ~ F~[~ ~]C{~ ~ Q1 C1~ K L] TJf.(~)ê/0êf0ê~
Q,ijkql’ ~ qJ,, [q k 1’

~ FPQEJ ~1 ~ ‘ Q1 ~ K Li
= L}CIiQ,ijkq K [a k 1’],,

Xr
1~.(~)êf®ê,’0ê~(4®id)LI(~)

I P L f K P1~,
= C C I e®ê!0ê~<co(LI0id)LI(sc).

ijkp [~~ J,, {~k p Jo
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This completesthe demonstrationof the intertwiningproperty(5.1). Now we turn
to the otherpropertiesof ‘p in a weakquasiHopf algebra.

Eqs. (5.25) and (5.26) impose further restrictions on the coefficients FPQL].
Acting with (id 0 id 0 LI)(~)(LI0 id 0 id)(tp) and (e0 cp)(id 04 0 id)(’p 0 e) on
physical statesin the fourfold tensorproduct and comparingthe coefficients,we
may formulate (5.5) as a relation for the FPQ[::] which takes the form of a
“pentagonidentity [34]”,

F K ~ F ‘ —~F FK “F [R ‘‘F ~
~ L M “ Q M — ~_‘ QR~L Pj “~“~L Mi ~?~°‘ K Q~

(10.31)

Using the sameprocedurefor the evaluationof tp231(id 0 LI)(R)’p and R13cp213R12
relation (5.25) requiresthe “hexagonidentity [34]”

r’ ~ [I Ki If I
q / FP~Q[f L]FPP~{K L

= ( ~ I±J±K+I. ~Q ~Pq~c0± ~c~- ~c~- ~c~- ~CK~ ~c/F~0[ ~ ~]. (10.32)

Here c~ (f + 1)f andwe usedthe relation

~~]=(_l)’~~ q~K_~1 iC[~ ~ ~]. (10.33)

A numericalsolution of the restrictions(10.31)and(10.32) is explicitly known to be
given by the fusion matrix,

If I]_fK ~ P\ 0FPQ{K Lj~l L QJ~ 1 .34)

Here 1: :}q denotethe 6j symbolsof U,,(s12). In the casewhere q is a root of unity
it is well known that the correspondingidentities for 6j symbols (namely the
q-analogsof Biedenharn—Elliotand Racahequations)restrict to summationover
physical indices.The last identity (5.26) is also satisfiedby thischoice of ‘p.

The definition of ‘p reducesto the identity when 4(e) = e 0 e and thereis no
truncationin the sumover representations.This situationprevailswhen q is not a
root of unity. In our situation ‘p vanisheson a complementof the subspace

and it maps this subspaceonto (V,’®\~~)®Vr.This map is

ontobecauseit hasan inverse ‘p which is given by the inversefusion matrices.
This inverseextendsto a quasi-inverseon all of “~0 V~’0 ~cJ,~<by putting ‘p =

(id 0LI)LI(e)’p~.By construction,this quasi-inversehas the defining properties
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(6.5) and (6.6) of a quasi-inverse.The property (6.9) is also true. This completes
the proof of the existenceof ‘p with the propertiesthat are required in a weak
quasi-triangularquasiHopf algebraand finishesthe proof of the theorem.

It may be of interest to note that the fusion matrix F which entersinto the
definition of ‘p may be computedfrom the algebraof observablesand its mor-

phisms in the algebraicfield theory approach[26,33].

Example.The conformal Ising model,with multiplicities 1, 2, 3 assignedto the
sectorswith Virasoro lowest weight 0, -~,~, has the weak quasi-triangularquasi
Hopf *-algebra ~ as a symmetry (in the senseof definition 3.2) which is
canonicallyassociatedwith U,,(s12),q = i, and its fields satisfy ~~*~covariantlocal
braid relations.

Theproof of this statementwill be publishedin ref. [6].

11. Supersymmetry

It is instructive to considersupersymmetryas a special case of a quantum

symmetry as described in this paper. Supersymmetryis not a purely internal
symmetry, since it includes the space-timetranslation generatorsP,, among its
generators.This canbe accommodated.

We adjoin fermionic parity ( )F to the generatorsof the supersymmetry

algebra.It becomesa quasi-triangularHopf algebra(“quantumgroupalgebra”)by
defining co-product,co-unit and antipodeas describedbelow, andan R-element
which reproducesthe standardcommutation/anticommutationrelations.The co-
productis coassociative,therefore ‘p = e0 e 0 e and 4(e) = e 0 e.

Apart from generatorsof groups,the supersymmetryalgebracontainsfermionic
generatorsQ,,A which anticommutewith (_)F~ Thesefermionic generatorsobey

anticommutationrelationswith Fermi field operatorsandcommutationrelations
with Bosefields. Both are reproducedby the co-productdefinedbelow.

4(QA)=QA0e+(~~)F0QA, (11.1)

R = ~[e 0 e + ( ) R® + e 0 ( ~ R — ~ )F® ( )R] (11.2)

5°(QA)()FQA (11.3)

Obviously, the co-productis not co-commutative.It maybe called “gradedco-com-
mutative”. The co-unit is the obvious one, e(Q~)= 0, etc. All of Drinfeld’s
relationsaresatisfied.
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Appendix A

ADJOINT TRANSFORMATION LAW

We start from the transformationlaw (3.15)of field operatorsunderthe algebra
s”, viz.

U(q~)li’,’= Er,~~(~)U(4~) (Al)

if

If we take the adjoint of this relation, the order of U() and li’ gets inter-
changed,so that the resulting relation tells us how to move representation
operatorsU(~)through adjoints of field operatorsfrom right to left, rather than
from left and right. For the special case of the quantum groups U,,(s12) with

I a I = 1, the inverserelationwas found in ref. [5],

= E~~(~
2)u(’~), (A.2)

where ~ is the contragredientrepresentationto T, definedwith the help of the
antipodalmap 5°,

f(~) tr(5°-~f~)) (A.3)

We postulategeneralvalidity of the transformationlaw (A.2) for adjoints of field
operatorsanddeterminewhat propertiesof the antipodalmap~V are requiredto
assurethis. It is immediatelyclear that 5°must be an antihomomorphismof .~ *

becauseotherwise~ doesnot havethe representationproperty.
We assumethat LI is a *-homomorphismof algebraswith the choice (3.5) of

*-operation on ~ ~ so that

4(~*) ~ (A.4)
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Substituting4’~for 4 in eq.(A.2) and taking its adjointwe find with the help of
eq.(A.4) that transformationlaw (A.2) is equivalentto

~1
1U(q5)= Eu(i’~T~,(5°~(~)). (A.5)

This relation tells us how one moves representationoperatorsU(S) throughfield
operatorsfrom right to left. Clearly,consistencyof our postulaterequiresthat one
shouldobtain an identity if eq. (A.5) is substitutedinto eq.(A.1), or vice versa.

Let L4(~) = 0 /~,,.Substituting(A.1) into eq. (A.5)yieldsan identity if

o = e 0 ~,

where e is the unit elementof ~ so that T~~(e)= ~5kj~Written more abstractly,
this requirementreads

0 id 0 id)(id o4)LI(~))=e 0q5, (A.6)

with multiplication operatordefinedby

mr(~Or~®~)=s~®~’.

Similarly, substitutionof eq. (A.5) into eq. (Al) yieldsan identity if

in~((id05°~0 id)(id 0 LI)4(~~5))= ~ 0 e, (A.7)

with multiplication operatordefinedby

m0~0~)=~0s~.

It is instructive to verify validity of theserelations in the casewhen 2~’* is a
group algebra.For group elementsa we have 5°(a)= a’ and 4(a)= a 0 a.
Therefore

(idOLI)4(a) =(idOLI)a Oa =a 0a 0a,

and

0 id 0 id)a 0a Ott) ‘=mr(a~’Oa 0a) =aa’ 0a =e Oa, (A.8)

m.((id05°~1®id)a0a0a)=m~(a0a~0a)=a0a’a=a0e. (A.9)

This illustratesthat the requiredpropertiesof the antipodal map 5°are natural
generalizationsof the property that it mapsa group elementinto its inverse.
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Appendix B

CONSISTENCYWITH A NUMERICAL R-MATRIX

We wish to examine what requirementsare imposed by consistencyof a
quantumsymmetrywith local braid relations(4.3) with a numericalR-matrix.Both

sides of eq. (4.3) will haveto transformin the sameway.
We multiply both sidesof eq. (4.3) with U(4) from the left, pushU(~)through

the fields usingcovarianceproperty(3.15),andre-insertbraid relations(4.3) on the
left-hand side. Write

LI(~)=E~ø~, 4(~)=E~o~.

Thenwe find that we shouldhave

= ~ (B.1)

We droppedsuperscriptsif> on A’. Supposethat thereexistsan elementR in
the algebra,

~ (B.2)
a

such that

A’t’i~>r= (T’0 ‘r’),,,~~(R)= LT,’,(r~)T,~r(r,~). (B.3)

Then requirement(B.1) will be satisfied if

Er,~c~0 ~ 0 = ® 0

Written in more abstractform, this requirementreads

(Roe) (id0LI)4(~) = (P12(id®LI)LI(~)) . (ROe), (B.4)

where P12(a10 a2 0 a3) = a2 0 a1 0 a3 and is the productin ~‘~‘ 0 ~ 0 ~
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