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Extending earlier work, we investigate the vacuum structure of the pure SU ( 3 ) gauge theory in the maximally abelian gauge. In 
this gauge the long-distance physics is carried essentially by the abelian degrees of freedom. Monopoles show up as particle-like 
singularities in the gauge fixing procedure. We find evidence that these monopoles condense in the confined phase of the vacuum, 
in accordance with the picture of a dual superconductor, whereas they are dilute and increasingly static as the temperature in- 
creases in the deconfined phase. 

I. Introduction 

It is impor tan t  to unders tand  the mechanism of  
quark conf inement  and, finally, to der ive an effective 
act ion that  describes the long-distance proper t ies  of  
QCD. This requires, first of  all, to identify the dy- 
namical  variables that  are relevant  at the confine- 
ment  scale and beyond.  

It has been conjectured [1,2] that  the QCD vac- 
uum is a coherent  state o f  color magnet ic  monopoles .  
In this picture color electric charges, i.e. quarks and 
gluons, are confined by the dual  Meissner  effect. I f  
this idea is right, the long-distance physics must  be 
carr ied entirely by the abel ian components  of  the the- 
ory, because monopoles  are constructed within the 
maximal ly  abel ian (Car t an )  subgroup of  SU ( 3 ), i.e. 
U ( 1 ) X U ( 1 ) .  

The abel ian degrees of  f reedom are singled out  by 
fixing to a gauge, such that  a U ( 1 ) X U ( 1 )  gauge 
f reedom (or a U ( 1 )~ ' - '  gauge freedom in the general 
case of  gauge group SU ( N ) )  remains,  and by subse- 
quent abel ian project ion [3] .  In ref. [4] we have 
provided  the f ramework for quant i ta t ive  analysis by 
construct ing the abel ian project ion on the lattice. 
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In order  that  only the abel ian components  of  the 
theory are relevant at long distances, the gauge must  
not be accompanied by ghosts that can propagate over 
macroscopic  length scales [3] .  Fur thermore ,  the 
gauge must  be manifest ly renormalizable.  This does 
not leave much freedom for choosing a gauge. A gauge 
which satisfies these cri teria at least approximate ly  is 
the abelian gauge [ 3 ]. According to an argument  by 
Mandels tam [5] ,  this gauge resembles the Lorentz 
gauge at short distances and the uni tary gauge at large 
distances. It has ghosts, but they will only propagate  
over  those short distances descr ibed by the Lorentz 
gauge. In ref. [6] we have in t roduced and employed 
the maximal ly  abelian gauge for gauge group SU (2)  
on the lattice. In the classical cont inuum limit  the 
maximal ly  abelian gauge reduces, by construction,  to 
the abel ian gauge. It has been shown that  the abelian 
gauge is renormal izable  [ 7 ]. 

In the pure SU (2)  gauge theory we have found evi- 
dence for the presence of  monopoles  in the underly- 
ing vacuum [ 6 ]. The qual i tat ive agreement of  the re- 
sults with those of  the pure compact  U ( I  ) gauge 
theory, which is well unders tood [8] ,  suggests that  
the color magnetic  monopoles  condense in the con- 
fined phase in accord with the picture of  a dual  su- 
perconductor ,  whereas they form a Coulomb gas in 
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the high temperature, deconfined phase. 
This work has led Suzuki and Yotsuyanagi [ 9 ] to 

examine the question of abelian dominance and the 
choice of gauge from an independent point of view. 
They simulated the pure SU(2)  gauge theory on the 
lattice, transformed the gauge field configurations to 
the maximally abelian gauge and performed the abe- 
lian projection as described in refs. [4,6]. Then they 
investigated large Wilson loops composed of the re- 
sidual U (1) gauge fields and computed the associ- 
ated string tension K. They found not only that K 
scales according to the gauge group SU (2),  but also 
that x/K~58AL, which is in agreement with the 
SU (2) result [ 10]. Furthermore, they found a much 
improved signal-to-noise ratio. This is what one ex- 
pects if the picture outlined above is correct. Other, 
non-renormalizable gauges they have investigated did 
not show this effect. 

Motivated by this success, we shall extend our ear- 
lier work [ 6 ] to the more realistic case of gauge group 
SU (3). Here we have two different types of "pho- 
tons" and monopoles, which require special atten- 
tion. Because in SU (3) the deconfining phase tran- 
sition is of first order, we also expect to find a more 
unambiguous signal of monopole condensation in this 
case. 

e-~ ~ [I011(s,¢)12~-IO22(s,¢)12+lO33(s,~)l 2] 
S,I~ 

(2.4) 

is maximized. In the classical continuum limit this 
condition reduces to the local gauge condition 

o ~,--~,--u---~-~ = 0  i ~ j  (2.5) _ _ i f A i i A t J  AU, ,~JJ)  OuA ~, , , 

0 lj a where A u = 2~A u are the gauge fields. Eq. (2.5) spec- 
ifies the abelian gauge introduced by 't Hooft [3]. 
This determines V(s)  only up to left multiplication 
by 

d(s) 

=diag{exp [io~1 (s) ], exp [io~2 (s) ], exp [io~3 (s) ]} 

e U ( 1 ) X  U(1) ,  (2.6) 

where 

oL~ (s) + o~2(s) +a3( s )  = 0 .  (2.7) 

Thus, under general SU (3) gauge transformations 
g(s )  the parallel transporters in the maximally abe- 
lian gauge, O(s, ti), transform as 

O' (s, ft) = d(s) O(s, ;t)d(s+f~)-I , (2.8) 

2. Gauge fixing and abelian projection 

We consider a hypercubic lattice and take the stan- 
dard Wilson action 

S = f l ~  [ 1 - ~  R e T r  U([~)]  , (2.1) 

where U([]  ) is the product of  parallel transporters 
U(s, fi) around a plaquette []. The boundary condi- 
tions are chosen to be periodic. 

Under gauge transformations the parallel trans- 
porters transform as 

U' (s, ~)  = g ( s )  U(s, l i )g ( s+f t )  -~ . (2.2) 

The maximally abelian gauge is obtained by perform- 
ing a local gauge transformation, 

O(s, ~) = V(s)  U(s, ~)  V(s+l i )  - i ,  (2.3) 

such that the quantity 

i.e. they transform under the residual U( 1 ) X U (  1 ) 
gauge group. To extract matter fields c(s, I~) and abe- 
lian parallel transporters u ( s , ~ )  [4] from U(s,/i) ,  
we perform a coset decomposition with respect to the 
subgroup U ( 1 ) X U ( 1 ), 

O(s, li) =c(s ,  ~ ) u ( s , / i )  , (2.9) 

such that - 

c' (s, ft) = d(s )c (s ,  I~)d(s) - i  , 

u' (s, l~) = d ( s )u ( s ,  I~)d(s+fi)  - '  

e U ( 1 ) X U ( 1 ) .  (2.10) 

This is achieved by defining 

u(s, t~) = diag[u~ (s, li), u2(s,/~), u3(s,/i)  ] , 

ui(s, ft) = exp{i arg[ O,i(s, fi) ] - lifo(s,/~)}, 

(p(s,/)) = ~ arg[U,(s , / ) ) ] ]mod2~e(--n ,  n ] .  (2.11) 
i 
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In components eq. (2.8) reads 

u' i (s , /2)  =exp[ic~,(s) ] u , ( s , / 2 )  exp[ -ic~,(s+/~) ] , 

c'u(s, f i ) = e x p [ i o ~ , ( s ) - i o l j ( s )  ] c , j ( s , / J )  . (2.12) 

The u , ( s , / 2 )  represent two "photons" (to be exact, 
three "photons" with one constraint) and the 
c , j (s , /2)  describe six charged "gluons". In total there 
are eight degrees of freedom as it should be for gauge 
group SU (3). 

As the maximally abelian subgroup U ( 1 ) X U ( 1 ) 
is compact, there are, in addition, topological excita- 
tions. These are the color magnetic monopoles, which 
manifest themselves as half-integer valued magnetic 
currents on the links of the dual lattice [4 ]: 

1 
arg u,([] ) 

m i ( * s , /2  ) - -  4 7r D ~ ~!t~ s + ~,~ ) 

=0,  _+½, _+1, (2.13) 

where u~ ( [] ) is the product of abelian parallel trans- 
porters u~(s, f i )  around a plaquette [~, and f ( s +  
/2,/2) is an elementary cube perpendicular to the #- 
direction with origin s+/2. The phases arg u~( [] ) must 
be chosen such that 

arg ui ( [ ] )  = 0 ,  
i 

larg ui(r-q) - a r g  uj ( [ ] )  [ < 2 ~ .  (2.14) 

Because of this constraint 

mi(*s ,  /2 ) =O . (2.15) 
i 

That means there are only two independent types of 
monopoles. Each magnetic current is conserved at *s: 

Z [m~(*s,/2)-m~(*s-/2,/2) ] = 0 .  (2.16) 
/1 

As a consequence, the magnetic currents of each type 
form closed loops on the dual lattice. The Dirac 
quantization condition is topologically expressed by 

1-12{SU(3)/[U(1 ) × U ( 1  )1} = I-l, [ U ( 1 ) × U ( 1 ) ]  

=Z  2 . (2.17) 

3. Monopole density below and above the phase 
transition 

We have performed simulations on 83X4 and 
123X 4 lattices at various values of fl ranging from 
fl= 5.4 to fl= 6.2. We use a Metropolis algorithm for 
updating the system. On these lattices the deconfin- 
ing phase transition takes place at fl~ 5.67 (see also 
below). The gauge fixing is done by an iterative pro- 
cedure. We maximize R in eq. (2.4) by letting Vrun 
through the various SU (2) subgroups of SU (3). After 
each iteration we perform a microcanonical overre- 
laxation step, which leaves R unchanged. We need 
about 1000 iterations altogether until the gauge fix- 
ing procedure has converged. This restricts our in- 
vestigations to smaller lattices at the moment. 

In figs. l a - l c  we show a two-dimensional perspec- 
tive projection of the monopole currents for typical 
gauge field configurations at fl= 6.1, 5.8 and 5.5, re- 
spectively. Because of the constraint (2.15) each 
monopole is accompanied by an antimonopole of a 
different type. In fig. 1 a we have displayed the differ- 
ent types of monopoles. This allows, unlike SU(2) ,  
for monopole contact interactions as indicated by the 
eight-link monopole loop. In figs. lb, lc the different 
types of monopoles are not distinguished. In the de- 
confined phase (figs. la, lb)  the monopole loops are 
small. At higher temperatures (fig. la)  the fraction 
of approximately static loops (that close over the 
temporal boundary) increases. In the confined phase 
(fig. lc) we find a dense state of long entangled mo- 
nopole loops. We have verified that most of these 
currents belong to a single connected loop, which 
suggests that the monopoles condense in this phase. 

To substantiate these result, we have computed the 
perimeter density of the monopole loops, 

l , =  1- -  ~, I m , ( * s , p ) [  (3.1) 
4 V .,.~, 

Note that ( l , )  is the same for all i=  1, 2 and 3. In the 
following we shall therefore average over the differ- 
ent monopole types and drop the index i. Before we 
attribute any significance to this quantity now, let us 
briefly discuss the effect of dislocations [ 11,12 ]. The 
minimal action for an elementary monopole loop is 
known to be [ 12 ] 

Smi n =4.52,8 (3.2) 
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(b) 

Fig. 1. Two-dimensional perspective projection of the monopole currents on the 83× 4 lattice. Apparently open loops are in fact closed 
due to the periodic boundary conditions. (a) fl= 6.1. The different types of monopoles are marked by solid, dashed and dotted lines, 
respectively. The time direction is in the horizontal direction. (b) fl= 5.8. In this and the next figure it is not distinguished between the 
various types of monopoles, and we try to show long loops in their entirety and thereby occasionally leave the lattice. (c) ,8= 5.5. 

for  t he  W i l s o n  ac t ion .  In  ref. [ 13 ] it h a s  b e e n  a r g u e d  

t h a t  in  the  c o n f i n e d  p h a s e  ( l )  scales  l ike a 3, w h e r e  a 

is t he  la t t i ce  spac ing ,  w h i c h  is poss ib ly  co r r ec t  ~ 

T h u s ,  the  m i n i m a l  a c t i o n  is to  be  c o m p a r e d  w i t h  the  

e x p o n e n t  o f  the  a s y m p t o t i c  decay  o f  a 3, i.e. 

~ Note that ( l )  is a dimensionless quantity, which can be inter- 
preted as the number of monopoles per three-dimensional lat- 
tice volume. Unfortunately, we cannot test this statement here 
because the temporal extent of our lattices is too small for that. 

322 

a 3 z c e x p (  - 4zc2fl)  . ( 3 . 3 )  

Because  4 . 5 2 >  4~r2, we c o n c l u d e  t h a t  in  S U ( 3 )  ( l )  

is no t  a f fec ted  by  d i s loca t ions  in  the  c o n t i n u u m  l imit .  

In  the  d e c o n f i n e d  p h a s e  t he re  are  severa l  c o m p e t i n g  

m e c h a n i s m s  w i th  d i f fe ren t  scal ing laws, wh ich  we will 

d i scuss  in  m o r e  de ta i l  be low.  T h e  d o m i n a n t  con t r i -  

b u t i o n  to ( l )  a t  large va lues  o f f l  is a lso e x p e c t e d  to 

scale l ike a 3, a n d  the re  are  i n d i c a t i o n s  t h a t  th i s  is in-  

d e e d  t he  case. 
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In fig. 2 we show ( l )  as a function of  ft. Each entry 
is based on 100 (well equi l ib ra ted)  gauge field con- 
f igurations separated by 15 Monte  Carlo sweeps, ex- 
cept for the data  within Aft= 0.015 of  the critical value 
of/?. The lat ter  is obta ined  from either the next lower 
or higher value of/? after applying 100 Monte  Carlo 
sweeps for equi l ibrat ion.  This da ta  is based on 50 
gauge field configurat ions separated by 15 Monte  
Carlo sweeps. It is drawn on a larger scale in fig. 3, 
where the triangles (squares)  are found by stepping 
up (down)  in/?. The curves are freehand drawings 
through the da ta  points  and are meant  to guide the 
eye only. The data show a clear hysteresis effect, which 
suggests a first order  phase t ransi t ion of  the mono-  
pole state of  mat ter  from a Coulomb gas phase at high 
tempera tures  to a monopole  condensate  ( l iqu id)  at 
zero temperature .  It also shows that  color magnet ic  
monopoles  are a genuine feature of  the Yang-Mil l s  
vacuum and not  a latt ice artifact.  F rom fig. 3 we read 
o f f the  crit ical coupling o f / ? ~  5.67. This is in agree- 
ment  with the value found from the invest igat ion of  
Polyakov loops on lattices of  the same temporal  ex- 
tent [ 14]. 

Let us go back to fig. 2 now. It appears  that  ( l )  
decreases exponent ia l ly  with/? for/? >/5.8. In ref. [ 6 ], 
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5 . 3  5 . 5  5 . 7  
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5 . 9  6 . 1  6 . 3  

Fig. 2. The perimeter density { l) as a function of ft. The data for 
fl~< 5.9 are taken on 83 X 4 lattices, whereas the data for fl~> 6.0 are 
taken on 123×4 lattices. The errors are smaller than the symbols. 
The dashed line shows the fl dependence of a 3. 
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Fig. 3. The perimeter density ( l )  as a function offl in the vicinity 
of the deconfining phase transition. The triangles (squares) de- 
note the values of ( l )  found while increasing (decreasing) the 
temperature. The curves are freehand drawings through the data 
points. 

i.e. in the case of  S U ( 2 ) ,  we have a t t r ibuted  some 
significance to the slope of  the exponent ia l  decrease. 
We found that  it was compat ib le  with - n  2, which is 

the result of  a dilute monopole  gas in the U ( 1 ) the- 
ory. In the U ( 1 ) X U ( 1 ) theory the slope would be 
_ %2. This is also what a s tudy of  the S U ( 3 )  vac- 
uum at finite tempera ture  [ 15 ] would suggest, which 
yielded a monopole  act ion of  S =  2n2fl. But this is not 
what we observe at large values of  ft. We have found 
evidence already that  the monopoles  become static at 
high temperatures .  In fig. 4 we show the ratio o f  spa- 
tial to temporal  monopole  currents, 

1 ( X ' s , / z = I , 2 , 3  ]mi(*s, ~ ) 1 )  (3.4) 
Q= 3 (•.slm,(*s, 4 ) ] )  ' 

as a function of  ft. This quant i ty  will be zero for static 
monopoles .  We find that  Q starts to decrease rapidly 
above the deconfining phase transi t ion.  Approxi-  
mately static monopole  loops that  wind a round  the 
latt ice will give rise to the scaling behavior  ( l )  oca 3. 
Note that  these monopoles  are responsible for the ob- 
served area-law behavior  of  spacelike Wilson loops at 
high tempera tures  [ 16 ]. Hence, we expect the per im- 
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Fig. 4. The ratio Q of spatial to temporal monopole currents as a 
function of ft. 

eter dens i ty  ( l )  to fall off  even tua l ly  like ~2 
exp ( - 4 n2fl) (cf. eq. (3 .3)  ). Such a behavior ,  which 

is ind ica ted  by the dashed l ine in  fig. 2, is suppor ted  
by our  data.  

We have also cons idered  par t ia l  abe l ian  gauge fix- 
ing such that  a S U ( 2 ) X U ( 1 )  gauge f reedom re- 
mains .  In  this  case there  is only  one  type of  m o n o p o l e  
associated with the ( o n e )  U ( 1 ) subgroup.  We fo u n d  

quan t i t a t i ve ly  the same results for the pe r ime te r  den-  
sity as in the U ( 1 ) X U ( 1 )  case. This  shows that  
U ( I )  X U ( 1 )  is in fact the subgroup  re levant  for 
con f inemen t .  

4. Conclus ions  

We have ex tended  our  earl ier  work to the case o f  
gauge group SU ( 3 ) and  found ,  also in  this case, sup- 
por t  for the dual  supe rconduc to r  p ic ture  o f  conf ine-  
ment .  In  par t icu la r  the hysteresis effect f o u n d  in fig. 
3 m ay  be cons idered  as ev idence  for the condensa -  
t ion  of  magnet ic  mo n o p o l e s  in  the conf ined  phase. 
These  results pave the way for the cons t ruc t ion  of  an 
infrared-effect ive act ion.  The  m a i n  bu i ld ing  blocks 
will be  the abe l ian  gauge fields a n d  perhaps  their  dua l  

~2 This was also assumed in ref. [ 17 ]. 

counterpar t s .  Firs t  p romis ing  a t t empts  in  this direc- 
t ion  can a l ready be found  in the l i terature  [ 17,18 ]. 

At high t empera tu res  the only  s ignif icant  contr i -  
b u t i o n  to the func t iona l  integral  comes  f rom the 
ne ighborhood  of  conf igurat ions ,  which are static 
m o d u l o  gauge t r ans fo rma t ions  [ 19 ], so that  the spa- 

tial and  t empora l  c o m p o n e n t s  of  the gauge fields de- 
couple.  The  gauge cond i t i ons  then  lead to O(s, 
4)  = d i a g o n a l  and  A 4 =,,].3 A3 + 2 8 A ]  ( ¢ 0 ) ,  respec- 
tively. This  means  that the monopoles  become (semi-  
classical)  ' t  H o o f t - P o l y a k o v  monopo le s  in this l imit .  
As ' t  H o o f t - P o l y a k o v  monopo les  are exper imenta l ly  
observable ,  it would  be in teres t ing  to work out  their  
s ignatures  and  to search for them in fo r thcoming  
heavy- ion  exper iments .  
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